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The e�et of visosity on jet formation for bubbles ollapsing near solid boundaries is

studied numerially. A numerial tehnique is presented whih allows the Navier-Stokes

equations with free-surfae boundary onditions to be solved aurately and eÆiently.

Good agreement is obtained between experimental data and numerial simulations for

the ollapse of large bubbles. However, it is shown that ompressible and thermal e�ets

must be taken into aount in order to desribe the energy dissipation ourring during

jet impat orretly. A parametri study of the e�et of visosity on jet impat veloity is

undertaken. The jet impat veloity is found to derease as visosity inreases and above

a ertain threshold jet impat is impossible. We study how this ritial Reynolds number

depends on the initial radius and the initial distane from the wall. A simple saling law

is found to link this ritial Reynolds number to the other non-dimensional parameters

of the problem.

1. Introdution

Violent ollapse of bubbles in asymmetrial geometries our in a number of situations

of pratial interest inluding avitation, shok-wave and laser lithotripsy. When lose

enough to a solid boundary these ollapses are usually assoiated with high-speed jet

formation. While jet formation for avitation bubbles was demonstrated experimentally

as early as 1961 (Naud�e & Ellis 1961) there is still debate regarding the importane of jet

impat as the main mehanism for avitation damage. The �rst explanation was given

by Rayleigh (1917) who onsidered the high pressure aused by the ollapse to be the

main damaging mehanism. An alternative explanation was given by Kornfeld & Suvorov

(1944) who suggested the jet formation e�et whih was experimentally demonstrated by

Naud�e & Ellis. Benjamin & Ellis (1966) then onluded that jet formation and impat

was important and probably the main fator for avitation damage. Reently, however,

a number of experiments have ast doubt on this explanation. In these investigations,

the damages were found to be distributed around a irumferene and not on the axis

of symmetry as would be the ase if jet impat was the main fator for avitation dam-

age (Tomita & Shima 1986). Philipp & Lauterborn onlude that the main mehanism

for avitation damage are the high-pressures and temperatures reahed inside a bubble

ollapsing very lose to the solid boundary (Philipp & Lauterborn 1998).

A number of points regarding bubble ollapse in bounded domains thus remain open

questions. However, the analytial study of the problem of bubble ollapse in the viinity
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of a solid boundary is very diÆult. Consequently, apart from the perturbation approah

of Rattray (1951), most of the results were obtained using numerial solutions of bound-

ary integral formulations (Plesset & Chapman 1971; Blake et al. 1993). These methods

rest on the surfae integration of a potential solution for the uid ow and an be used

only for vanishing visosities or vanishing advetion terms (Stokes ow). In all the stud-

ies so far the e�et of visosity has thus been negleted. While good agreement was

found between numerial and experimental results, due to obvious pratial onsidera-

tions experiments are usually performed with large bubbles (millimeter sized). In these

ases, visosity is unlikely to play a major role and invisid alulations give good results.

However, one an ask how these results would sale for smaller bubbles where visosity

is likely to ome into play (avitating bubbles are likely to be muh smaller than one

millimeter). Experiments with very small bubbles are more diÆult to perform and an-

alytial approahes inluding visous e�ets are even more intriate, but we believe that

the use of an appropriate numerial tehnique an give useful insights.

In this artile, we desribe an original numerial tehnique whih allows the resolution

of the inompressible Navier-Stokes equations in axisymmetri oordinates with free-

surfae boundary onditions. We then present the results of �rst omparisons between

our numerial results and experiments for bubble ollapse and jet formation near a wall.

Then, beause the ode is fast enough to allow a parametri study of the inuene

of visosity on jet formation and evolution, we present a phase diagram funtion of the

independent non-dimensional parameters illustrating the e�et of visosity on the impat

veloity.

2. Numerial tehnique

We present a numerial method for solving the axisymmetri Navier-Stokes equations

with free-surfae boundary onditions. While this has been done in the past, the methods

used either made rude assumptions about free-surfae boundary onditions (Harlow &

Welh 1965; Chan & Street 1970; Nihols & Hirt 1971; Hirt & Nihols 1981) or used

boundary �tted grids (Blano & Magnaudet 1995; Legendre 1996). Our method is based

on a �nite volume formulation using both a �xed grid and a front-traking approah. The

free-surfae is traked using surfae points (markers) onneted with ubi splines. This

allow us to deal with surfae integral terms appearing in the �nite volume formulation

orretly. Moreover, this method is not limited to simple geometries and an deal eÆ-

iently with large deformations of the interfae. This tehnique onstitutes an extension

of the two-uid approah of Popinet & Zaleski (1999).

2.1. The expliit equations

The inompressible Navier-Stokes equations for an axisymmetri ow in ylindrial o-

ordinates an be written as
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Figure 1. Finite volume disretisation.
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where � is the kinemati visosity.

2.2. Finite volume formulation

In order to obtain a �nite volume formulation neessary for numerial analysis, we �rst

need to integrate the equations over an arbitrarily moving domain. Let us all the domain
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 its boundary. u is the veloity of the boundary �
. Integrating over 
 yields

the integral equations
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Then, onsidering a square �nite volume entered at (z

i

,r

j

) of side h, we seek the

integral formulation above for the v

r

omponent of the veloity. In the general ase of

a free-surfae ow problem this ontrol volume an be ut by the interfae. In this ase

the volume of integration is a piee of the square 
 with boundary ABCDEA (Figure

1). The veloity u of the boundary is 0 on AB [BC [DE [EA and v on CD. Equation
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(2.9) an then be written
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where
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denotes the integration along the piee of interfae ontained in 
. The equa-
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whih yields the disrete volume inompressibility ondition
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2.3. The Disrete Pressure Equation

We use a projetion method to solve the inompressibility ondition. The Poisson-like

equation for the pressure an be expressed as a funtion of the numerial divergene of

the temporary veloity �eld v

?

. The veloity �eld at time n + 1 is obtained from the

relations
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Figure 2.Mesh and disretisation of the veloity and pressure �elds. The marker points and the

onneting ubi splines are represented. The light arrows are extrapolated values of the veloity

�eld. The squares indiate the loation of the pressure nodes where the pressure equation is

solved.
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2.4. Numerial method of resolution

The Poisson-like pressure equation (2.21) is solved using multigrid-aelerated Gauss-

Seidel relaxation (Press & Teukolsky sep/ot 1991).

The interfae is disretised using a set of marker points linked by ubi splines. This

desription allows the preise knowledge of the position and urvature of the interfae

required in order to inlude the surfae tension terms and all the other surfae integral

terms appearing in (2.12), (2.13) and (2.21).

As in all free-surfae odes (Harlow & Welh 1965; Chan & Street 1970; Nihols &

Hirt 1971; Hirt & Nihols 1981), the most deliate point is the treatment of free-surfae

boundary onditions. The pressure on the interfae on the uid side is given by

p = p

i

+ ��+ �n:D:n; (2.24)

where p

i

is the pressure in the bubble, � the surfae tension oeÆient, � the urvature,

� the dynami visosity, n the normal to the interfae and D the deviatory part of

the stress tensor. This boundary ondition is used diretly when alulating the surfae

integral pressure ontribution to (2.12) and (2.13).

Sine we use a �xed grid to solve the Navier-Stokes equations, we need to extrapolate

the veloity �eld far enough inside the bubble to get the veloity values neessary for

the marker points advetion and for the resolution of the Navier-Stokes equations on the

uid boundary (Figure 2). Moreover, this must be done while ful�lling the zero tangential

stress interfae boundary ondition

t:D:n = 0; (2.25)

where t is the tangent to the interfae. Given a point P near the interfae, we assume

that loally around P the veloity �eld an be desribed as u = u

0

+A � x where x is
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Figure 3. Seletion of points for the extrapolation tehnique around point P .

the position vetor and A is a 2 � 2 matrix. For this partiular veloity �eld equation

(2.25) an be expressed as e

ij

t
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e

ij

=

�u

i

�x

j

+

�u

j

�x

i

= A

ij

+A

ji

: (2.26)

Given a set of N points in the viinity of P and a vetor t tangent to the interfae, u

0

and A an be found by minimisation of the funtion
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where � is a Lagrange multiplier. The set of points is hosen as on Figure 3. Line L has

diretion n(I) and goes through points P and I . A small number of points (typially

�ve) is hosen around L by minimisation of the ost funtion

X

d(P

i

; L)

2

+ �d(P

i

; P )

2

; (2.28)

where d is the Eulidean distane and � is a geometrial parameter usually set to 1=2.

The marker points are adveted using bilinear interpolation and a redistribution is done

at every time step to ensure a uniform distribution as the bubble deforms. The average

distane between markers is of the order of the grid size. As underlined by Popinet &

Zaleski (1999) the omputational ost of the marker part of the algorithm sales as 1=n

where n is the number of grid points along one dimension and is then negligible for

reasonable domain sizes.

2.5. Validation tests

The time evolution of the radius of a spherially symmetri bubble surrounded by an

inompressible uid is desribed by the Rayleigh{Plesset equation (Plesset & Prosperetti

1977). As we are interested in bubbles osillating radially, it is important to obtain a

good agreement between diret numerial simulations and the numerial solution of the

Rayleigh{Plesset equation. In the test ase illustrated on Figure 4, a bubble with an

equilibrium radius R

0

= 5 �m is set in a uid initially at rest. The initial radius of the

bubble is 10 �m. A onstant pressure is applied on three sides of the simulation domain

(the fourth side being the axis of symmetry) and the veloity gradient is set to zero on

these three sides. The physial parameters are as follows: dynami visosity � = 0.001

kg/ms, surfae tension oeÆient � = 0:07 kg/s

2

, � = 1000 kg/m

3

, p

1

= 10

5

Pa. The

pressure in the bubble is given by a polytropi law of the form p(R) = p

0

(R

0

=R)

3

with
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Figure 4. Free radial osillations of a bubble of 5 �m equilibrium radius.

 = 7=5. The bubble osillates radially while keeping its spherial shape. The amplitude

of the osillations dereases due to visous damping. The agreement between the diret

numerial simulation and the numerial solution of the Rayleigh{Plesset equation is

exellent. The relative quadrati error between the two solutions illustrated is smaller

than one perent.

It is important to note that to obtain suh an agreement it is neessary to minimize

the inuene of the boundary onditions in the simulation. This is done by using very

large simulation domains. The ratio between the domain size and the bubble diameter is

160. By using the adaptive multidomain tehnique presented in the following setion the

omputational ost is still reasonable (approximately one hour on a Pentium 350 MHz

for a base grid of 128� 64).

This simulation is also a good validation test for the extrapolation tehnique presented

in the previous setion. The pressure jump on the free-surfae due to the normal ompo-

nent of the visous stress ontrols the visous damping of the solution. A 2% variation

in visosity leads to solutions of the Rayleigh{Plesset equation varying by 1.3%. Given

the 1% error that we obtain, we an onlude that loal derivatives of the veloity �eld

near the interfae di�er by less than 2%.

However this test does not involve any deformation of the interfae and the inuene

of surfae tension is limited to a onstant pressure jump. A seond simple test where the

driving fore is surfae tension is illustrated on Figure 5. A slightly ellipsoidal bubble

is set in a liquid initially at rest. Under the inuene of surfae tension the bubble

shape osillates around its spherial equilibrium position. The parameters are as follows:

equivalent radius R = 5� 10

�4

m, surfae tension oeÆient � = 0:07 kg/s

2

, kinemati

visosity � = 5� 10

�6

m

2

/s, � = 1000 kg/m

3

. In order to limit the e�et of on�nement
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Figure 5. Temporal evolution of the seond mode of deformation of a slightly ellipsoidal

bubble set in a liquid initially at rest.

the ratio between the size of the domain and the bubble diameter is 240. The diameter

of the bubble is about 128 grid points and the multidomain tehnique is used.

The temporal evolution of the relative amplitude of the seond mode of deformation

is illustrated together with two theoretial solutions. The �rst one is the lassial normal

mode analysis of Lamb (1932). It supposes a stationary regime of osillation and does

not take into aount transient e�ets suh as the di�usion of vortiity in the liquid. The

seond solution is a numerial inversion of a Laplae transform obtained by Prosperetti

(1980) taking into aount transient e�ets. This solution is exat for this problem in the

limit of a vanishing amplitude of osillation. The agreement between the numerial simu-

lation and Prosperetti's theory is exellent with a relative quadrati error of 0.4% for the

�rst eight periods of osillation. It is also interesting to note that the di�erene between

the approximate normal mode solution and Prosperetti's solution is signi�ant. This test

further on�rms that vortiity generation at the free surfae is aurately desribed by

our interpolation tehnique.

3. Comparison with experiments

In order to assess the appliability of our numerial method to real ases, we wanted

to ompare our results with experimental measurements. Lauterborn and ollaborators

have developed an elegant tehnique to generate highly reproduible bubbles near solid

boundaries (Lauterborn & Bolle 1975; Lauterborn & Ohl 1997; Philipp & Lauterborn

1998). The high speed photographi series of Figure 6 illustrate one of these experiments.

A foused short laser pulse is �red in water near a solid wall, a gas bubble is then formed

and expands, eventually reahes a maximum radius and then ollapses violently. A jet is

formed near the point of minimum radius and penetrates the re-expanding bubble.

The main problem we are onfronted with is the hoie of initial onditions for the
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numerial simulation. In fat, neither the initial radius (or initial pressure), nor the

equilibrium radius (or gas ontent) of the bubble are known. We have hosen to use

initial onditions given by the �t of the lassial Rayleigh{Plesset equation (Plesset &

Prosperetti 1977) to the measured time-evolution of the radius. The experimental time

evolution has been measured diretly using a digital version of the photographi series

and image proessing tehniques.

The numerial simulation uses a 512�512 grid. The maximum bubble radius reahes 50

grid points. The bottom boundary of the domain is a free-sliding solid wall (the normal

omponent of the veloity is zero, there is no onstraint on the tangential omponent)

and the right boundary is the axis of symmetry. On the top and left walls the pressure is

onstant and set to the ambient pressure (gravity is negleted). No onstraint is imposed

on the veloity. The dynami visosity for water is 10

�3

kg/ms, the surfae tension

oeÆient for an air-water interfae � = 0:072 kg/s

2

and the density of the liquid is

1000 kg/m

3

. The proess is assumed to be adiabati and the gas pressure is given by

p = p

0

(V=V

0

)



where V is the volume of the bubble, V

0

= 4:78� 10

�9

m

3

, p

0

= 100 072

Pa and  = 7=5. The surrounding uid is initially at rest and the initial radius of the

bubble is 0.4 mm.

Simulation results are shown on Figure 6 with the same spatial layout and inter-

frame time. Figure 7 illustrates the temporal evolution of the equivalent radius (de�ned

as 3V

1=3

=4�) together with the evolution measured experimentally and given by the

Rayleigh{Plesset alulation. The agreement between the experiment and the numerial

result is relatively good with initial jet formations qualitatively and quantitatively simi-

lar. Both the experiment and the simulation learly show the jet impating and deforming

the opposite side of the bubble, while the jet is strethed by the bubble expansion. The

jet veloity is well reprodued by the numerial model, the tip of the deformed bubble

touhing the wall at approximately the same time. Another interesting feature revealed

by the numerial simulation is the \splashing" e�et of the jet impat with the forma-

tion of an axisymmetri rim expanding with the bubble (Figure 8). This observation is

very similar to results reported by Blake et al. (1997, 1998) using a boundary integral

tehnique.
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Figure 6. Comparison between a high-speed photographi series of a bubble ollapsing near a

wall (Lauterborn & Ohl 1997) and a diret numerial simulation. Sampling rate is 75 000 frames

per seond.
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Figure 7. Temporal evolution of the equivalent radius of the bubble as given by experimental

measurements, numerial simulation and the Rayleigh{Plesset equation.

Figure 8. Jet formation and impat.
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However, we an see both on Figures 6 and 7 that the rebound of the bubble is muh

larger in the numerial simulation than that observed in the experiment. The Rayleigh{

Plesset equation gives a result omparable to the numerial alulation. This would

indiate that the e�ets of uid ompressibility, in partiular the emission of aousti

and shok waves, whih are not taken into aount by our inompressible ode or by the

Rayleigh{Plesset equation, are an important soure of energy dissipation. Moreover, the

very simple equation of state hosen to desribe the gas ontained in the bubble does not

take into aount heat transfer and phase hange at the interfae between the liquid and

the gas.

4. Numerial study of the inuene of visosity on jet formation and

evolution

While interesting for validation purposes, the previous result is of limited interest due

to the small inuene of visosity on the fast ollapse of relatively big bubbles. For this

type of simulation, a boundary integral ode with a visous boundary layer approximation

would probably give good results (Plesset & Chapman 1971; Blake et al. 1993). For this

reason, we have hosen to fous our attention on the inuene of visosity on jet formation

and evolution for moderate Reynolds numbers.

In order to study the inuene of visosity, we �rst need to �nd whih harateristi

parameters ontrol the problem. We assume that the pressure in the gas is desribed by

a polytropi law of the type

p(R) = p

1

�

R

0

R

�

3

; (4.1)

where R is the radius of the bubble, R

0

is the equilibrium radius, p

1

is the ambient

pressure and  is a polytropi exponent. We an hose R

0

as a length sale and

p

�R

2

0

=p

1

as a time sale. The Rayleigh{Plesset equation (Plesset & Prosperetti 1977) desribes

the evolution of the radius and an be written in non-dimensional form as

R

?

�

R

?

+

3

2

_

R

2

?

+ 4�

?

_

R

?

R

?

= R

�3

?

� 1�

2�

?

R

?

; (4.2)

where the ? denotes non-dimensional quantities. The set of harateristi oeÆients is

then

�

?

=

�

R

0

r

�

p

1

; �

?

=

�

R

0

p

1

and ; (4.3)

where � is the surfae tension oeÆient, � the kinemati visosity and � the density. We

need to add the oeÆients harateristi of the initial onditions. The relative initial

radius � = R

M

=R

0

and the relative initial distane from the boundary � = H=R

M

,

where H is the distane from the enter of the bubble to the solid wall. Thus we have

�ve independent parameters: �, �, , �

?

, �

?

. In order to simplify the study, we will neglet

surfae tension (�

?

= 0) and assume that the gas is diatomi and the proess adiabati

( = 7=5). A Reynolds number is de�ned as Re = 1=�

?

.

In order to resolve the small sale whih an our for high ompression ratios orretly

we have used an adaptive hierarhy of grids. Eah grid has a �xed number of points

(128�64 in all the results illustrated here) but is half the size of its parent. A typial

setup is shown on Figure 9. Grids are added or removed as the bubble shrinks and grows.

Moreover, this tehnique allows the use of relatively large simulation domains in order

to minimise the inuene of the boundary onditions.

Figures 10, 11 and 12 illustrate the inuene of the Reynolds number on jet formation
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Figure 9. Example of the hierarhy of grids used to deal aurately and eÆiently with large

variations in bubble radius.

and impat veloity. For high Reynolds numbers (Figure 10) the initial jet veloity is high

and the impat ours shortly after jet formation. For low Reynolds numbers (Figure 12),

the initial jet veloity is small and the veloity of rebound of the opposite wall of the

bubble is large enough to prevent any impat. For intermediate Reynolds numbers (Figure

11), the initial veloity of the jet is omparable to the veloity of rebound of the opposite

wall, the jet is strethed by the expansion of the bubble, the impat is delayed and the

impat veloity is small. The ritial Reynolds number Re



is de�ned as the Reynolds

number for whih the impat veloity is zero. If the Reynolds number is smaller than

Re



, the jet never impats the other side of the bubble.

This transition is illustrated di�erently on Figures 13 and 14. The lower urves (thik

lines) represent the time evolution of the position of the south pole (loser to the wall)

for the di�erent Reynolds numbers shown in the legend. The thin lines are the time

evolution of the north pole and the upper urves desribe the evolution of the position

of the point farther away from the solid wall. The upper and lower urves desribe the

global dynamis of the bubble: ollapse until t � 2 followed by a re-expansion and motion

of the enter of gravity toward the wall. The thin lines desribe the jet dynamis. Initially

there is no jet and these urves are indistinguishable from the upper urves. At the time

of urvature inversion ourring at the north pole and orresponding to jet formation

the urves separate (Figure 14). The jet ontinues to penetrate inside the bubble and

eventually hits the other side. If visosity is too high the jet is slowed down and never

makes it to the south pole.

As an be seen on Figure 11, when Re is lose to Re



the jet beomes very thin and

the impat ours late in the yle of osillation. If we want to �nd the value of Re



with

a reasonable auray, we need to use a very �ne grid in order to model orretly the

ow inside the jet. Suh high resolutions would be impratial for a parametri study of

Re



(�; �). We therefore sought an alternative and more easily omputable de�nition of

Re



.
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Figure 10. Time evolution of a bubble ollapsing near a wall at high Reynolds number. The

wall is along the bottom side of the box. Not all the simulation domain is shown. Interframe

time is 0.243. Re = 29:906, � = 2:023, � = 2:625.

Figure 11. Time evolution of a bubble ollapsing near a wall at intermediate Reynolds

number. Interframe time is 0.303. Re = 24:519, � = 2:023, � = 2:625.

Figure 15 illustrates the time evolution of the relative veloity between the top and

bottom poles for various values of Re. The relative veloity is hosen to be positive during

ollapse and negative during expansion. The blak dots indiate the instant of impat

and the white dots indiate the instant of jet formation (urvature hanges sign at the top

pole). As the Reynolds number dereases the impat is delayed and the impat veloity

dereases. For values of Re lose to Re



, the urve has two extrema: a maximum relative

veloity is reahed near the end of the ollapse and a minimum relative veloity ours
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Figure 12. Time evolution of a bubble ollapsing near a wall at low Reynolds number.

Re = 18:413, � = 2:023, � = 2:625.

not long after jet formation. Moreover, near the ritial Reynolds number, the relative

veloity at impat is seen to be lose to its minimum value. Therefore we take the value

of Re for whih the minimum relative veloity is zero as an alternative de�nition of Re



(i.e. at some point lose to the beginning of jet formation the tip of the jet is moving

exatly as fast as the bubble is re-expanding).

Figure 16 on�rms that both de�nitions give lose values for Re



(17.15 and 17.77

for the impat and the minimum relative veloity respetively). Moreover, the impat

veloity is strongly dependent on the Reynolds number near the ritial value. This new

riterion is muh easier to test numerially sine we only need the value of the minimum

veloity and do not need to solve the jet impat diretly.

The urves on Figure 17 have been obtained for various values of � (shown in the

legend). Eah value of Re



is found using a bisetion tehnique. On average, �ve simu-

lations are neessary to �nd a value of Re



with a 3% auray (eah simulation takes

approximately �fteen minutes on a PC). As the value of � inreases, it beomes more

diÆult to form a jet and visous e�ets play a more important role: the value of Re



inreases. On the other hand when � inreases, the ollapse veloity is larger and visous

e�ets tend to be smaller: the value of Re



dereases.

The urves of Figure 17 an be resaled as shown on Figure 18. The blak urves on

Figure 17 are the resaled versions of the interpolating urve of Figure 18. The agreement

is exellent, and the disrepanies observed in partiular for high values of � for � = 2:023
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Figure 13. Time evolution of the position of the poles as a funtion of the Reynolds number

indiated in the legend. � = 1:754, � = 1:5.

and � = 1:921 an be attributed to the formation of thin jets whih are diÆult to resolve

aurately.

We have obtained this saling empirially by measuring numerially the orrelation

C(�; �) between the transformed point sets, where the transformation is: � ! �=�

�

and

Re



! Re



=�

�

. As illustrated on Figure 19, the maximum orrelation is obtained for

values of � and � lose to 3 and 1/2 respetively.
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5. Theory

In what follows we desribe a theory based on the approximation of a relatively large

Reynolds number and a large initial bubble radius � and distane to the wall �. Thus in

our estimates we �rst neglet the visous e�ets. Then we disuss stability and visous

orretions.

5.1. Veloity ondition

The asymmetrial bubble ollapse that heralds jet formation is inuened by the presene

of the wall. While the approximately spherial bubble shrinks in size, its enter of mass

is attrated towards the wall by the image bubble. As the bubble approahes the wall,

a momentum Q is gained mostly by the liquid phase surrounding it, the so-alled added

mass momentum. In equations

_

Q = �

4

3

�R

3

�p

�z

; (5.1)

where we have used the dimensionless variables as in (4.2) but where as in what follows

we dropped the ? subsripts for simpliity. The added-mass momentum may be expressed

in terms of the vertial position of the bubble z

b

(t) as

Q = C

M

4

3

�R

3

_z

b

; (5.2)

where C

M

is the added mass oeÆient, approximately C

M

= 1=2 at high Reynolds

numbers. To estimate onditions for jet formation and impat, we distinguish two e�ets:

the stability or instability of the near-spherial bubble motion, and the possible mismath

between the time sale of the rebound and the time sale of the jet traversing the bubble.

The �rst ondition is a jet formation ondition, while the seond is a suÆient veloity

ondition. We begin with the jet impat.

In what follows, we �rst investigate the spherial ollapse, then the e�et of the image

bubble. We neglet visosity. As in the numeris, surfae tension is left aside. Then

Equation (4.2) beomes

R

�

R+

3

2

_

R

2

= R

�3

� 1: (5.3)

This equation integrates to

E

0

= R

3

_

R

2

+

2

3 � 3

R

�3+3

+

2

3

R

3

: (5.4)

We have R = R

m

at minimum radius and R = � at maximum radius. Assuming � � 1

we have E

0

=

2

3

� and

R

m

� [( � 1)�℄

1

1�

: (5.5)

This formula is a good approximation for high Re as on�rmed by Figure 20 where we

have plotted the ratio of the maximum to minimum radius �=R

m

for di�erent values of

� and Re. All the simulations we have performed are represented whih also shows the

small inuene of � on the ompression ratio.

In what follows we omit -dependent prefators. A full solution may be found for the

invisid motion in the form of an integral, but we shall only need some basi asymptoti

features of the solution at large �. We have a time sale during whih the radius remains

lose to R

m

and the typial aeleration is

�

R

m

. From (5.3)

�

R

m

� R

�3�1

m

(5.6)
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and thus

t

m

� �

2+3

2�2

;

�

R
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� �

3+1

�1

: (5.7)

We set the referene time t = 0 at the point of minimum radius. There is the well-known

outer solution for jtj � 1 of the form

R � jtj

2=5

�

3=5

; (5.8)

and an inner solution for jtj

<

� t

m

. We are now in position to integrate the added-mass

equation (5.1). The pressure gradient may be estimated from the pressure �eld assoiated

with the image bubble. From Bernouilli's equation the dominant term is, in dimensionless

units

p = �

1

2

_

R

2

R

r

�
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2

_

R

2

R

4

r

4

: (5.9)

At large � and at distane H (still in dimensionless units) from the wall the leading order

is

jrpj �

_

R

2

R

H

2

: (5.10)

Thus

Q �

Z

0

��

_

R

2

R

4

H

2

dt: (5.11)

Using the inner and outer salings, we �nd that the leading order ontribution omes
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from the outer solution (5.8), thus, sine � = H=� we get

Q � �

3

�

�2

: (5.12)

The jet forms at time 0 near minimum radius. A kind of equipartition priniple leads to

assume that it gets half the added mass momentum, on a spatial sale of the order of

R

m

. Thus the jet veloity V

J

is given by

V

J

� Q=R

3

m

(5.13)

and thus

V

J

' C

J

�

3

�1

�

�2

: (5.14)

We have measured the jet veloity diretly from the data: the results, although relatively

noisy are onsistent with the above saling for Re > 100 with a prefator C

J

' 0:05. We

an now state our �rst ondition for the impat of the jet: the time that the jet takes to

traverse the bubble must be shorter than the small time sale t

m

. For if it were otherwise,

the south and north pole of the bubble would separate ever faster, while the jet, due to

visous e�et, would slow down. In equations, the ritial veloity is of the order

V

J

� R

m

=t

m

; (5.15)

whih leads to

�

2

�

�3

2



�1

� 1: (5.16)

A -dependent numerial onstant is bound to appear on the right hand-side. For  = 7=5

we thus have

��

�21=8

= C

0

: (5.17)

In a graph having ��

�21=8

on the horizontal axis and Re=�

1=2

on the vertial axis, the

invisid dynamis yield a vertial line, to the right of whih there is no jet impat.

5.2. Visous e�ets

What happens when a small visosity is added? Most of our estimates involve only the

autonomous dynamis, without the image bubble foring. All these estimates are a�eted

by orretions of the form �f(�) were f(�) is some �-dependent expression. The exat

expressions are omplex sine they involve the integrals of the invisid motion. However

the added-mass momentum remains proportional to �

�2

, exept for the fat that the

pressure gradient ould now involve additional terms. However, the uid veloity around

the bubble, imposed by inompressibility, is u =

_

RR

2

=r

2

on whih the visous term �r

2

u

vanishes (visosity omes about in the Rayleigh{Plesset equation only beause of surfae

terms). Thus the pressure �eld reated by the image bubble remains the one omputed.

Keeping now  = 7=5, all the orretions amount to

��

�21=8

= C

0

+

f(�)

Re

+O(

1

Re

2

): (5.18)

Thus the impat ondition, dependent on three variables �; � and Re may be ollapsed

onto a single graph in the variables x = ��

�21=8

and y = Re=f(�). In that graph the

impat ondition asymptotes to the vertial invisid ondition, in a manner onsistent

with our numerial �nding (Figure 21). In the numerial data, f(�) ' �

1=2

provides a

good �t (although there is some unertainty on the exponent, see Figure 19). At this

time we have not found a onvining theoretial argument yielding f(�). It is possible

that f(�) ombines several e�ets that yield an e�etive saling law in the range of �

onsidered.
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Figure 21. A graphial summary of our saling theory. Curve I is the asymptoti limit at

small visosity, separating a region where the veloity of the jet is too small for impat from a

region of large enough veloity. With visosity, the separation appears as urve II. Jet formation

is possible if there is instability, it ours above urves IIIa,b,. However these urves are not

saling with �, thus eah � yields a di�erent urve. From our numerial results, there is good

reason to assume that all urves of type III are below urve II, so the stability ondition is not

relevant.

5.3. Jet formation ondition

The jet formation arises through an instability of the Rayleigh{Taylor type: as the bubble

wall is aelerated towards the heavier, liquid phase, it beomes instable to deviations

from spheriity. Visosity may prevent that instability provided that the time sale for

visous di�usion t

v

= R

2

m

=� is smaller than the time sale assoiated with the Rayleigh{

Taylor instability. For plane waves of wave number k the growth rate s is s = (gk)

1=2

.

Here the most dangerous mode has k � 1=R

m

and g is

�

R

m

so the time sale of the

instability is t

m

. The ondition t

m

� t

v

then yields t

g

= (R

m

=

�

R

m

)

1=2

.

Equating the visous and aeleration time sales t

g

and t

�

yields a ritial ondition

for jet formation:

Re � �

3�2

2�2

: (5.19)

In the diatomi ase  = 7=5 this yields Re = �

�11=4

. Notie that saling does not

involve � (the inuene of � on the exponential growth phase of the instability yields

logarithmi orretions.). Thus in the variables of our saling diagram, retaining the

theoretial value of the previous setion for the exponent of x, x = ��

�21=8

and y =

Re

�

1=2

we have y = (x=�)

22=21

. This is almost a straight line and may have some onnetion

with the lower part of our numerial-experimental urve.

5.4. Disussion

We �nd two onditions to observe jet impat, one of suÆient veloity and one of stability.
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The ritial lines for the two onditions are shown on Figure 21. As � dereases, the

stability ondition moves up. However, our numeris show that it does not interset the

suÆient veloity ondition: near the ritial Re, the jet always forms and what is relevant

is the time it needs to reah the other side of the bubble. Thus in the suÆient veloity

ondition is the only relevant one. However, with surfae tension added, it is possible

that the jet formation ondition ould beome relevant.

An interesting onsequene of our theory is that it runs ounter to a onventional point

of view. It is generally onsidered that the more spherial the bubble, the later the jet

develops and thus the stronger jet impat is. This is not onsistent with our asymptoti

saling. In our theory � ontrols bubble spheriity: the further the bubble is from the

wall, the more spherial it remains at least initially. But at large � the jet veloity is small

(Equation (5.14)). It is still true that for very early jet formation, 1) the momentum of

the image bubble may not have enough time to be fully transmitted to the jet, and 2)

impat may happen way before R

min

whih would redue the jet veloity.

6. Conlusions

We have presented an original numerial tehnique to solve aurately the Navier-

Stokes equations with free-surfaes. This method is not limited to simple geometries

or small interfae deformations. Partiular emphasis has been put on the aurate de-

sription of free-surfae boundary onditions. Validation tests have shown an exellent

agreement with the Rayleigh-Plesset equation and a theoretial solution obtained by

Prosperetti for the small amplitude shape osillation of an ellipsoidal bubble.

Diret omparisons between high-speed photographi series and numerial simulations

of bubble ollapse near a solid boundary have shown a good qualitative and quantitative

agreement while giving aess to the details of the proess. However, the simulations

also show that visous dissipation alone an not explain the strong damping of radial

osillations observed in the experiments. Aousti and thermal dissipation|not taken

into aount in the present ode|should be inluded in order to apture orretly the

dynamis of the proess after the �rst rebound. A simple solution would be to use a more

sophistiated model equation for the pressure in the bubble.

A detailed parametri study of the inuene of visosity has demonstrated the existene

of a ritial value of the Reynolds number below whih jet impat is no longer possible.

A simple saling law is shown to relate the value of this ritial Reynolds number to two

other non-dimensional parameters ontrolling the problem: the relative stand-o� distane

and the relative initial radius of the bubble.

We have presented a simple theory whih desribes orretly the overall harateristis

of the phase diagram we obtain. In partiular, we demonstrate the existene of a vertial

asymptote in the parameter spae of the resaled non-dimensional ontrol parameters.

This provides a simple upper-bound for the domain in whih jet impat is possible,

independently of the Reynolds number.

A number of further studies would be possible and useful. In order to redue the

number of free parameters in the problem, we have negleted surfae tension and hosen

a onstant polytropi exponent for the gas law. A simple analysis of the e�et of surfae

tension is to ompute a time sale related to surfae tension near R

m

. If this time sale

is longer than t

m

then surfae tension is negligible with respet to the only time sale

appearing in the analysis of stability and jet veloity. The relevant dimensionless number
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is, going bak to our �rst notations:

N =

�

?

t

2

m

R

3

m

: (6.1)

Using the above estimates, for  = 7=5 , N = �

?

�

�1=4

= [�=(R

0

p

1

)℄(R

M

=R

0

)

�1=4

. It is

interesting to apply this to the strong ompression ratios in sonoluminesent air bubbles,

whih are very small. For a 5 miron air bubble, with � = 10, N � 0:008. For typial

experiments on bubble ollapse with larger (1 mm) bubbles, N is even smaller. So for

several pratial appliations negleting surfae tension is justi�ed.

On the other hand, a parametri study of the inuene of the polytropi exponent

would allow to on�rm the generality of the saling laws we have found numerially

and predited theoretially. Moreover, while adequate for desribing the general piture,

the simple theory we propose is not able to explain the fat that the saling we �nd

numerially is learly valid not only in the invisid limit but aross the whole range of

Reynolds numbers we investigated. This remains an open question.

From a more pratial point of view, it would be interesting to investigate how our

phase diagram for jet impat inuenes our understanding of avitation damage for real

distributions of bubble sizes in experiments of hydrodynami avitation. If a majority of

avitation bubbles fall in the zone of the phase diagram where no jet impat is possible

then avitation damage would most probably be due only to the overpressure aused by

the bubble ollapse.
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