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The e�e
t of vis
osity on jet formation for bubbles 
ollapsing near solid boundaries is

studied numeri
ally. A numeri
al te
hnique is presented whi
h allows the Navier-Stokes

equations with free-surfa
e boundary 
onditions to be solved a

urately and eÆ
iently.

Good agreement is obtained between experimental data and numeri
al simulations for

the 
ollapse of large bubbles. However, it is shown that 
ompressible and thermal e�e
ts

must be taken into a

ount in order to des
ribe the energy dissipation o

urring during

jet impa
t 
orre
tly. A parametri
 study of the e�e
t of vis
osity on jet impa
t velo
ity is

undertaken. The jet impa
t velo
ity is found to de
rease as vis
osity in
reases and above

a 
ertain threshold jet impa
t is impossible. We study how this 
riti
al Reynolds number

depends on the initial radius and the initial distan
e from the wall. A simple s
aling law

is found to link this 
riti
al Reynolds number to the other non-dimensional parameters

of the problem.

1. Introdu
tion

Violent 
ollapse of bubbles in asymmetri
al geometries o

ur in a number of situations

of pra
ti
al interest in
luding 
avitation, sho
k-wave and laser lithotripsy. When 
lose

enough to a solid boundary these 
ollapses are usually asso
iated with high-speed jet

formation. While jet formation for 
avitation bubbles was demonstrated experimentally

as early as 1961 (Naud�e & Ellis 1961) there is still debate regarding the importan
e of jet

impa
t as the main me
hanism for 
avitation damage. The �rst explanation was given

by Rayleigh (1917) who 
onsidered the high pressure 
aused by the 
ollapse to be the

main damaging me
hanism. An alternative explanation was given by Kornfeld & Suvorov

(1944) who suggested the jet formation e�e
t whi
h was experimentally demonstrated by

Naud�e & Ellis. Benjamin & Ellis (1966) then 
on
luded that jet formation and impa
t

was important and probably the main fa
tor for 
avitation damage. Re
ently, however,

a number of experiments have 
ast doubt on this explanation. In these investigations,

the damages were found to be distributed around a 
ir
umferen
e and not on the axis

of symmetry as would be the 
ase if jet impa
t was the main fa
tor for 
avitation dam-

age (Tomita & Shima 1986). Philipp & Lauterborn 
on
lude that the main me
hanism

for 
avitation damage are the high-pressures and temperatures rea
hed inside a bubble


ollapsing very 
lose to the solid boundary (Philipp & Lauterborn 1998).

A number of points regarding bubble 
ollapse in bounded domains thus remain open

questions. However, the analyti
al study of the problem of bubble 
ollapse in the vi
inity
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of a solid boundary is very diÆ
ult. Consequently, apart from the perturbation approa
h

of Rattray (1951), most of the results were obtained using numeri
al solutions of bound-

ary integral formulations (Plesset & Chapman 1971; Blake et al. 1993). These methods

rest on the surfa
e integration of a potential solution for the 
uid 
ow and 
an be used

only for vanishing vis
osities or vanishing adve
tion terms (Stokes 
ow). In all the stud-

ies so far the e�e
t of vis
osity has thus been negle
ted. While good agreement was

found between numeri
al and experimental results, due to obvious pra
ti
al 
onsidera-

tions experiments are usually performed with large bubbles (millimeter sized). In these


ases, vis
osity is unlikely to play a major role and invis
id 
al
ulations give good results.

However, one 
an ask how these results would s
ale for smaller bubbles where vis
osity

is likely to 
ome into play (
avitating bubbles are likely to be mu
h smaller than one

millimeter). Experiments with very small bubbles are more diÆ
ult to perform and an-

alyti
al approa
hes in
luding vis
ous e�e
ts are even more intri
ate, but we believe that

the use of an appropriate numeri
al te
hnique 
an give useful insights.

In this arti
le, we des
ribe an original numeri
al te
hnique whi
h allows the resolution

of the in
ompressible Navier-Stokes equations in axisymmetri
 
oordinates with free-

surfa
e boundary 
onditions. We then present the results of �rst 
omparisons between

our numeri
al results and experiments for bubble 
ollapse and jet formation near a wall.

Then, be
ause the 
ode is fast enough to allow a parametri
 study of the in
uen
e

of vis
osity on jet formation and evolution, we present a phase diagram fun
tion of the

independent non-dimensional parameters illustrating the e�e
t of vis
osity on the impa
t

velo
ity.

2. Numeri
al te
hnique

We present a numeri
al method for solving the axisymmetri
 Navier-Stokes equations

with free-surfa
e boundary 
onditions. While this has been done in the past, the methods

used either made 
rude assumptions about free-surfa
e boundary 
onditions (Harlow &

Wel
h 1965; Chan & Street 1970; Ni
hols & Hirt 1971; Hirt & Ni
hols 1981) or used

boundary �tted grids (Blan
o & Magnaudet 1995; Legendre 1996). Our method is based

on a �nite volume formulation using both a �xed grid and a front-tra
king approa
h. The

free-surfa
e is tra
ked using surfa
e points (markers) 
onne
ted with 
ubi
 splines. This

allow us to deal with surfa
e integral terms appearing in the �nite volume formulation


orre
tly. Moreover, this method is not limited to simple geometries and 
an deal eÆ-


iently with large deformations of the interfa
e. This te
hnique 
onstitutes an extension

of the two-
uid approa
h of Popinet & Zaleski (1999).

2.1. The expli
it equations

The in
ompressible Navier-Stokes equations for an axisymmetri
 
ow in 
ylindri
al 
o-

ordinates 
an be written as
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where � = p=�, � is 
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omponents of the stress tensor are de�ned as
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Figure 1. Finite volume dis
retisation.
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where � is the kinemati
 vis
osity.

2.2. Finite volume formulation

In order to obtain a �nite volume formulation ne
essary for numeri
al analysis, we �rst

need to integrate the equations over an arbitrarily moving domain. Let us 
all the domain


 and �
 its boundary. u is the velo
ity of the boundary �
. Integrating over 
 yields

the integral equations
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Then, 
onsidering a square �nite volume 
entered at (z

i

,r

j

) of side h, we seek the

integral formulation above for the v

r


omponent of the velo
ity. In the general 
ase of

a free-surfa
e 
ow problem this 
ontrol volume 
an be 
ut by the interfa
e. In this 
ase

the volume of integration is a pie
e of the square 
 with boundary ABCDEA (Figure

1). The velo
ity u of the boundary is 0 on AB [BC [DE [EA and v on CD. Equation
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(2.9) 
an then be written
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We then assume that the di�erent quantities needed are de�ned either at the 
enter

(z

i

; r

j

) of the 
ell or at the 
enter of the 
ell fa
es (z

i

; r

j

� h=2) and (z

i

� h=2; r

j

), in

a typi
al staggered grid fashion (Peyret & Taylor 1983). We also make the assumption

that quantities de�ned at the 
enter of the 
ell are 
onstant over the whole 
ell whereas

the quantities de�ned on the 
ell fa
es are 
onstant on these fa
es. Introdu
ing the 
ell
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es area s

i;j

r

, s

i;j

z

, 
ell area a

i;j

and 
ell volume 


i;j

de�ned as the area of the 
ell fa
es,

area or volume of the 
ell o

upied by the 
uid, in the general 
ase we obtain
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where

R

int

denotes the integration along the pie
e of interfa
e 
ontained in 
. The equa-

tion for the z 
omponent of the velo
ity, obtained in a very similar manner is
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Noting that
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whi
h yields the dis
rete volume in
ompressibility 
ondition
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2.3. The Dis
rete Pressure Equation

We use a proje
tion method to solve the in
ompressibility 
ondition. The Poisson-like

equation for the pressure 
an be expressed as a fun
tion of the numeri
al divergen
e of

the temporary velo
ity �eld v

?

. The velo
ity �eld at time n + 1 is obtained from the

relations

v

i;j

r

= (v

?

r

)

i;j

+

�t




i;j

h

(s

r

�)

i;j�1=2

� (s

r

�)

i;j+1=2

+ (a�)

i;j

i

:

v

i;j

z

= (v

?

z

)

i;j

+

�t




i;j

h

(s

z

�)

i�1=2;j

� (s

z

�)

i+1=2;j

i

:

We make the assumption that the two 
omponents of the velo
ity vary linearly from one

side of the 
ell to the other, yielding the expressions for the velo
ity in a (z
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Figure 2.Mesh and dis
retisation of the velo
ity and pressure �elds. The marker points and the


onne
ting 
ubi
 splines are represented. The light arrows are extrapolated values of the velo
ity

�eld. The squares indi
ate the lo
ation of the pressure nodes where the pressure equation is

solved.
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2.4. Numeri
al method of resolution

The Poisson-like pressure equation (2.21) is solved using multigrid-a

elerated Gauss-

Seidel relaxation (Press & Teukolsky sep/o
t 1991).

The interfa
e is dis
retised using a set of marker points linked by 
ubi
 splines. This

des
ription allows the pre
ise knowledge of the position and 
urvature of the interfa
e

required in order to in
lude the surfa
e tension terms and all the other surfa
e integral

terms appearing in (2.12), (2.13) and (2.21).

As in all free-surfa
e 
odes (Harlow & Wel
h 1965; Chan & Street 1970; Ni
hols &

Hirt 1971; Hirt & Ni
hols 1981), the most deli
ate point is the treatment of free-surfa
e

boundary 
onditions. The pressure on the interfa
e on the 
uid side is given by

p = p

i

+ ��+ �n:D:n; (2.24)

where p

i

is the pressure in the bubble, � the surfa
e tension 
oeÆ
ient, � the 
urvature,

� the dynami
 vis
osity, n the normal to the interfa
e and D the deviatory part of

the stress tensor. This boundary 
ondition is used dire
tly when 
al
ulating the surfa
e

integral pressure 
ontribution to (2.12) and (2.13).

Sin
e we use a �xed grid to solve the Navier-Stokes equations, we need to extrapolate

the velo
ity �eld far enough inside the bubble to get the velo
ity values ne
essary for

the marker points adve
tion and for the resolution of the Navier-Stokes equations on the


uid boundary (Figure 2). Moreover, this must be done while ful�lling the zero tangential

stress interfa
e boundary 
ondition

t:D:n = 0; (2.25)

where t is the tangent to the interfa
e. Given a point P near the interfa
e, we assume

that lo
ally around P the velo
ity �eld 
an be des
ribed as u = u

0

+A � x where x is
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P

L

I
n

Figure 3. Sele
tion of points for the extrapolation te
hnique around point P .

the position ve
tor and A is a 2 � 2 matrix. For this parti
ular velo
ity �eld equation

(2.25) 
an be expressed as e

ij

t

i

n

j

= 0 with

e

ij

=

�u

i

�x

j

+

�u

j

�x

i

= A

ij

+A

ji

: (2.26)

Given a set of N points in the vi
inity of P and a ve
tor t tangent to the interfa
e, u

0

and A 
an be found by minimisation of the fun
tion

L =

N

X

n=1

(u
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+A � x

n

� u

n

)

2

+ �e

ij

t

i

n

j

; (2.27)

where � is a Lagrange multiplier. The set of points is 
hosen as on Figure 3. Line L has

dire
tion n(I) and goes through points P and I . A small number of points (typi
ally

�ve) is 
hosen around L by minimisation of the 
ost fun
tion

X

d(P

i

; L)

2

+ �d(P

i

; P )

2

; (2.28)

where d is the Eu
lidean distan
e and � is a geometri
al parameter usually set to 1=2.

The marker points are adve
ted using bilinear interpolation and a redistribution is done

at every time step to ensure a uniform distribution as the bubble deforms. The average

distan
e between markers is of the order of the grid size. As underlined by Popinet &

Zaleski (1999) the 
omputational 
ost of the marker part of the algorithm s
ales as 1=n

where n is the number of grid points along one dimension and is then negligible for

reasonable domain sizes.

2.5. Validation tests

The time evolution of the radius of a spheri
ally symmetri
 bubble surrounded by an

in
ompressible 
uid is des
ribed by the Rayleigh{Plesset equation (Plesset & Prosperetti

1977). As we are interested in bubbles os
illating radially, it is important to obtain a

good agreement between dire
t numeri
al simulations and the numeri
al solution of the

Rayleigh{Plesset equation. In the test 
ase illustrated on Figure 4, a bubble with an

equilibrium radius R

0

= 5 �m is set in a 
uid initially at rest. The initial radius of the

bubble is 10 �m. A 
onstant pressure is applied on three sides of the simulation domain

(the fourth side being the axis of symmetry) and the velo
ity gradient is set to zero on

these three sides. The physi
al parameters are as follows: dynami
 vis
osity � = 0.001

kg/ms, surfa
e tension 
oeÆ
ient � = 0:07 kg/s

2

, � = 1000 kg/m

3

, p

1

= 10

5

Pa. The

pressure in the bubble is given by a polytropi
 law of the form p(R) = p

0

(R

0

=R)

3


with
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Figure 4. Free radial os
illations of a bubble of 5 �m equilibrium radius.


 = 7=5. The bubble os
illates radially while keeping its spheri
al shape. The amplitude

of the os
illations de
reases due to vis
ous damping. The agreement between the dire
t

numeri
al simulation and the numeri
al solution of the Rayleigh{Plesset equation is

ex
ellent. The relative quadrati
 error between the two solutions illustrated is smaller

than one per
ent.

It is important to note that to obtain su
h an agreement it is ne
essary to minimize

the in
uen
e of the boundary 
onditions in the simulation. This is done by using very

large simulation domains. The ratio between the domain size and the bubble diameter is

160. By using the adaptive multidomain te
hnique presented in the following se
tion the


omputational 
ost is still reasonable (approximately one hour on a Pentium 350 MHz

for a base grid of 128� 64).

This simulation is also a good validation test for the extrapolation te
hnique presented

in the previous se
tion. The pressure jump on the free-surfa
e due to the normal 
ompo-

nent of the vis
ous stress 
ontrols the vis
ous damping of the solution. A 2% variation

in vis
osity leads to solutions of the Rayleigh{Plesset equation varying by 1.3%. Given

the 1% error that we obtain, we 
an 
on
lude that lo
al derivatives of the velo
ity �eld

near the interfa
e di�er by less than 2%.

However this test does not involve any deformation of the interfa
e and the in
uen
e

of surfa
e tension is limited to a 
onstant pressure jump. A se
ond simple test where the

driving for
e is surfa
e tension is illustrated on Figure 5. A slightly ellipsoidal bubble

is set in a liquid initially at rest. Under the in
uen
e of surfa
e tension the bubble

shape os
illates around its spheri
al equilibrium position. The parameters are as follows:

equivalent radius R = 5� 10

�4

m, surfa
e tension 
oeÆ
ient � = 0:07 kg/s

2

, kinemati


vis
osity � = 5� 10

�6

m

2

/s, � = 1000 kg/m

3

. In order to limit the e�e
t of 
on�nement
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Figure 5. Temporal evolution of the se
ond mode of deformation of a slightly ellipsoidal

bubble set in a liquid initially at rest.

the ratio between the size of the domain and the bubble diameter is 240. The diameter

of the bubble is about 128 grid points and the multidomain te
hnique is used.

The temporal evolution of the relative amplitude of the se
ond mode of deformation

is illustrated together with two theoreti
al solutions. The �rst one is the 
lassi
al normal

mode analysis of Lamb (1932). It supposes a stationary regime of os
illation and does

not take into a

ount transient e�e
ts su
h as the di�usion of vorti
ity in the liquid. The

se
ond solution is a numeri
al inversion of a Lapla
e transform obtained by Prosperetti

(1980) taking into a

ount transient e�e
ts. This solution is exa
t for this problem in the

limit of a vanishing amplitude of os
illation. The agreement between the numeri
al simu-

lation and Prosperetti's theory is ex
ellent with a relative quadrati
 error of 0.4% for the

�rst eight periods of os
illation. It is also interesting to note that the di�eren
e between

the approximate normal mode solution and Prosperetti's solution is signi�
ant. This test

further 
on�rms that vorti
ity generation at the free surfa
e is a

urately des
ribed by

our interpolation te
hnique.

3. Comparison with experiments

In order to assess the appli
ability of our numeri
al method to real 
ases, we wanted

to 
ompare our results with experimental measurements. Lauterborn and 
ollaborators

have developed an elegant te
hnique to generate highly reprodu
ible bubbles near solid

boundaries (Lauterborn & Bolle 1975; Lauterborn & Ohl 1997; Philipp & Lauterborn

1998). The high speed photographi
 series of Figure 6 illustrate one of these experiments.

A fo
used short laser pulse is �red in water near a solid wall, a gas bubble is then formed

and expands, eventually rea
hes a maximum radius and then 
ollapses violently. A jet is

formed near the point of minimum radius and penetrates the re-expanding bubble.

The main problem we are 
onfronted with is the 
hoi
e of initial 
onditions for the
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numeri
al simulation. In fa
t, neither the initial radius (or initial pressure), nor the

equilibrium radius (or gas 
ontent) of the bubble are known. We have 
hosen to use

initial 
onditions given by the �t of the 
lassi
al Rayleigh{Plesset equation (Plesset &

Prosperetti 1977) to the measured time-evolution of the radius. The experimental time

evolution has been measured dire
tly using a digital version of the photographi
 series

and image pro
essing te
hniques.

The numeri
al simulation uses a 512�512 grid. The maximum bubble radius rea
hes 50

grid points. The bottom boundary of the domain is a free-sliding solid wall (the normal


omponent of the velo
ity is zero, there is no 
onstraint on the tangential 
omponent)

and the right boundary is the axis of symmetry. On the top and left walls the pressure is


onstant and set to the ambient pressure (gravity is negle
ted). No 
onstraint is imposed

on the velo
ity. The dynami
 vis
osity for water is 10

�3

kg/ms, the surfa
e tension


oeÆ
ient for an air-water interfa
e � = 0:072 kg/s

2

and the density of the liquid is

1000 kg/m

3

. The pro
ess is assumed to be adiabati
 and the gas pressure is given by

p = p

0

(V=V

0

)




where V is the volume of the bubble, V

0

= 4:78� 10

�9

m

3

, p

0

= 100 072

Pa and 
 = 7=5. The surrounding 
uid is initially at rest and the initial radius of the

bubble is 0.4 mm.

Simulation results are shown on Figure 6 with the same spatial layout and inter-

frame time. Figure 7 illustrates the temporal evolution of the equivalent radius (de�ned

as 3V

1=3

=4�) together with the evolution measured experimentally and given by the

Rayleigh{Plesset 
al
ulation. The agreement between the experiment and the numeri
al

result is relatively good with initial jet formations qualitatively and quantitatively simi-

lar. Both the experiment and the simulation 
learly show the jet impa
ting and deforming

the opposite side of the bubble, while the jet is stret
hed by the bubble expansion. The

jet velo
ity is well reprodu
ed by the numeri
al model, the tip of the deformed bubble

tou
hing the wall at approximately the same time. Another interesting feature revealed

by the numeri
al simulation is the \splashing" e�e
t of the jet impa
t with the forma-

tion of an axisymmetri
 rim expanding with the bubble (Figure 8). This observation is

very similar to results reported by Blake et al. (1997, 1998) using a boundary integral

te
hnique.
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Figure 6. Comparison between a high-speed photographi
 series of a bubble 
ollapsing near a

wall (Lauterborn & Ohl 1997) and a dire
t numeri
al simulation. Sampling rate is 75 000 frames

per se
ond.
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Figure 7. Temporal evolution of the equivalent radius of the bubble as given by experimental

measurements, numeri
al simulation and the Rayleigh{Plesset equation.

Figure 8. Jet formation and impa
t.
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However, we 
an see both on Figures 6 and 7 that the rebound of the bubble is mu
h

larger in the numeri
al simulation than that observed in the experiment. The Rayleigh{

Plesset equation gives a result 
omparable to the numeri
al 
al
ulation. This would

indi
ate that the e�e
ts of 
uid 
ompressibility, in parti
ular the emission of a
ousti


and sho
k waves, whi
h are not taken into a

ount by our in
ompressible 
ode or by the

Rayleigh{Plesset equation, are an important sour
e of energy dissipation. Moreover, the

very simple equation of state 
hosen to des
ribe the gas 
ontained in the bubble does not

take into a

ount heat transfer and phase 
hange at the interfa
e between the liquid and

the gas.

4. Numeri
al study of the in
uen
e of vis
osity on jet formation and

evolution

While interesting for validation purposes, the previous result is of limited interest due

to the small in
uen
e of vis
osity on the fast 
ollapse of relatively big bubbles. For this

type of simulation, a boundary integral 
ode with a vis
ous boundary layer approximation

would probably give good results (Plesset & Chapman 1971; Blake et al. 1993). For this

reason, we have 
hosen to fo
us our attention on the in
uen
e of vis
osity on jet formation

and evolution for moderate Reynolds numbers.

In order to study the in
uen
e of vis
osity, we �rst need to �nd whi
h 
hara
teristi


parameters 
ontrol the problem. We assume that the pressure in the gas is des
ribed by

a polytropi
 law of the type

p(R) = p

1

�

R

0

R

�

3


; (4.1)

where R is the radius of the bubble, R

0

is the equilibrium radius, p

1

is the ambient

pressure and 
 is a polytropi
 exponent. We 
an 
hose R

0

as a length s
ale and

p

�R

2

0

=p

1

as a time s
ale. The Rayleigh{Plesset equation (Plesset & Prosperetti 1977) des
ribes

the evolution of the radius and 
an be written in non-dimensional form as

R

?

�

R

?

+

3

2

_

R

2

?

+ 4�

?

_

R

?

R

?

= R

�3


?

� 1�

2�

?

R

?

; (4.2)

where the ? denotes non-dimensional quantities. The set of 
hara
teristi
 
oeÆ
ients is

then

�

?

=

�

R

0

r

�

p

1

; �

?

=

�

R

0

p

1

and 
; (4.3)

where � is the surfa
e tension 
oeÆ
ient, � the kinemati
 vis
osity and � the density. We

need to add the 
oeÆ
ients 
hara
teristi
 of the initial 
onditions. The relative initial

radius � = R

M

=R

0

and the relative initial distan
e from the boundary � = H=R

M

,

where H is the distan
e from the 
enter of the bubble to the solid wall. Thus we have

�ve independent parameters: �, �, 
, �

?

, �

?

. In order to simplify the study, we will negle
t

surfa
e tension (�

?

= 0) and assume that the gas is diatomi
 and the pro
ess adiabati


(
 = 7=5). A Reynolds number is de�ned as Re = 1=�

?

.

In order to resolve the small s
ale whi
h 
an o

ur for high 
ompression ratios 
orre
tly

we have used an adaptive hierar
hy of grids. Ea
h grid has a �xed number of points

(128�64 in all the results illustrated here) but is half the size of its parent. A typi
al

setup is shown on Figure 9. Grids are added or removed as the bubble shrinks and grows.

Moreover, this te
hnique allows the use of relatively large simulation domains in order

to minimise the in
uen
e of the boundary 
onditions.

Figures 10, 11 and 12 illustrate the in
uen
e of the Reynolds number on jet formation
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Figure 9. Example of the hierar
hy of grids used to deal a

urately and eÆ
iently with large

variations in bubble radius.

and impa
t velo
ity. For high Reynolds numbers (Figure 10) the initial jet velo
ity is high

and the impa
t o

urs shortly after jet formation. For low Reynolds numbers (Figure 12),

the initial jet velo
ity is small and the velo
ity of rebound of the opposite wall of the

bubble is large enough to prevent any impa
t. For intermediate Reynolds numbers (Figure

11), the initial velo
ity of the jet is 
omparable to the velo
ity of rebound of the opposite

wall, the jet is stret
hed by the expansion of the bubble, the impa
t is delayed and the

impa
t velo
ity is small. The 
riti
al Reynolds number Re




is de�ned as the Reynolds

number for whi
h the impa
t velo
ity is zero. If the Reynolds number is smaller than

Re




, the jet never impa
ts the other side of the bubble.

This transition is illustrated di�erently on Figures 13 and 14. The lower 
urves (thi
k

lines) represent the time evolution of the position of the south pole (
loser to the wall)

for the di�erent Reynolds numbers shown in the legend. The thin lines are the time

evolution of the north pole and the upper 
urves des
ribe the evolution of the position

of the point farther away from the solid wall. The upper and lower 
urves des
ribe the

global dynami
s of the bubble: 
ollapse until t � 2 followed by a re-expansion and motion

of the 
enter of gravity toward the wall. The thin lines des
ribe the jet dynami
s. Initially

there is no jet and these 
urves are indistinguishable from the upper 
urves. At the time

of 
urvature inversion o

urring at the north pole and 
orresponding to jet formation

the 
urves separate (Figure 14). The jet 
ontinues to penetrate inside the bubble and

eventually hits the other side. If vis
osity is too high the jet is slowed down and never

makes it to the south pole.

As 
an be seen on Figure 11, when Re is 
lose to Re




the jet be
omes very thin and

the impa
t o

urs late in the 
y
le of os
illation. If we want to �nd the value of Re




with

a reasonable a

ura
y, we need to use a very �ne grid in order to model 
orre
tly the


ow inside the jet. Su
h high resolutions would be impra
ti
al for a parametri
 study of

Re




(�; �). We therefore sought an alternative and more easily 
omputable de�nition of

Re




.



Bubble 
ollapse near a solid boundary: in
uen
e of vis
osity 15

Figure 10. Time evolution of a bubble 
ollapsing near a wall at high Reynolds number. The

wall is along the bottom side of the box. Not all the simulation domain is shown. Interframe

time is 0.243. Re = 29:906, � = 2:023, � = 2:625.

Figure 11. Time evolution of a bubble 
ollapsing near a wall at intermediate Reynolds

number. Interframe time is 0.303. Re = 24:519, � = 2:023, � = 2:625.

Figure 15 illustrates the time evolution of the relative velo
ity between the top and

bottom poles for various values of Re. The relative velo
ity is 
hosen to be positive during


ollapse and negative during expansion. The bla
k dots indi
ate the instant of impa
t

and the white dots indi
ate the instant of jet formation (
urvature 
hanges sign at the top

pole). As the Reynolds number de
reases the impa
t is delayed and the impa
t velo
ity

de
reases. For values of Re 
lose to Re




, the 
urve has two extrema: a maximum relative

velo
ity is rea
hed near the end of the 
ollapse and a minimum relative velo
ity o

urs
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Figure 12. Time evolution of a bubble 
ollapsing near a wall at low Reynolds number.

Re = 18:413, � = 2:023, � = 2:625.

not long after jet formation. Moreover, near the 
riti
al Reynolds number, the relative

velo
ity at impa
t is seen to be 
lose to its minimum value. Therefore we take the value

of Re for whi
h the minimum relative velo
ity is zero as an alternative de�nition of Re




(i.e. at some point 
lose to the beginning of jet formation the tip of the jet is moving

exa
tly as fast as the bubble is re-expanding).

Figure 16 
on�rms that both de�nitions give 
lose values for Re




(17.15 and 17.77

for the impa
t and the minimum relative velo
ity respe
tively). Moreover, the impa
t

velo
ity is strongly dependent on the Reynolds number near the 
riti
al value. This new


riterion is mu
h easier to test numeri
ally sin
e we only need the value of the minimum

velo
ity and do not need to solve the jet impa
t dire
tly.

The 
urves on Figure 17 have been obtained for various values of � (shown in the

legend). Ea
h value of Re




is found using a bise
tion te
hnique. On average, �ve simu-

lations are ne
essary to �nd a value of Re




with a 3% a

ura
y (ea
h simulation takes

approximately �fteen minutes on a PC). As the value of � in
reases, it be
omes more

diÆ
ult to form a jet and vis
ous e�e
ts play a more important role: the value of Re




in
reases. On the other hand when � in
reases, the 
ollapse velo
ity is larger and vis
ous

e�e
ts tend to be smaller: the value of Re




de
reases.

The 
urves of Figure 17 
an be res
aled as shown on Figure 18. The bla
k 
urves on

Figure 17 are the res
aled versions of the interpolating 
urve of Figure 18. The agreement

is ex
ellent, and the dis
repan
ies observed in parti
ular for high values of � for � = 2:023
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Figure 13. Time evolution of the position of the poles as a fun
tion of the Reynolds number

indi
ated in the legend. � = 1:754, � = 1:5.

and � = 1:921 
an be attributed to the formation of thin jets whi
h are diÆ
ult to resolve

a

urately.

We have obtained this s
aling empiri
ally by measuring numeri
ally the 
orrelation

C(�; �) between the transformed point sets, where the transformation is: � ! �=�

�

and

Re




! Re




=�

�

. As illustrated on Figure 19, the maximum 
orrelation is obtained for

values of � and � 
lose to 3 and 1/2 respe
tively.
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ated in the legend). The white
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k dots mark the time of jet formation (
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t
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ity as a fun
tion of the

Reynolds number. Taking as 
riti
al Reynolds number the value of the Reynolds for whi
h the

minimum relative velo
ity is zero gives a good approximation of the Reynolds number for whi
h

the jet impa
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5. Theory

In what follows we des
ribe a theory based on the approximation of a relatively large

Reynolds number and a large initial bubble radius � and distan
e to the wall �. Thus in

our estimates we �rst negle
t the vis
ous e�e
ts. Then we dis
uss stability and vis
ous


orre
tions.

5.1. Velo
ity 
ondition

The asymmetri
al bubble 
ollapse that heralds jet formation is in
uen
ed by the presen
e

of the wall. While the approximately spheri
al bubble shrinks in size, its 
enter of mass

is attra
ted towards the wall by the image bubble. As the bubble approa
hes the wall,

a momentum Q is gained mostly by the liquid phase surrounding it, the so-
alled added

mass momentum. In equations

_

Q = �

4

3

�R

3

�p

�z

; (5.1)

where we have used the dimensionless variables as in (4.2) but where as in what follows

we dropped the ? subs
ripts for simpli
ity. The added-mass momentum may be expressed

in terms of the verti
al position of the bubble z

b

(t) as

Q = C

M

4

3

�R

3

_z

b

; (5.2)

where C

M

is the added mass 
oeÆ
ient, approximately C

M

= 1=2 at high Reynolds

numbers. To estimate 
onditions for jet formation and impa
t, we distinguish two e�e
ts:

the stability or instability of the near-spheri
al bubble motion, and the possible mismat
h

between the time s
ale of the rebound and the time s
ale of the jet traversing the bubble.

The �rst 
ondition is a jet formation 
ondition, while the se
ond is a suÆ
ient velo
ity


ondition. We begin with the jet impa
t.

In what follows, we �rst investigate the spheri
al 
ollapse, then the e�e
t of the image

bubble. We negle
t vis
osity. As in the numeri
s, surfa
e tension is left aside. Then

Equation (4.2) be
omes

R

�

R+

3

2

_

R

2

= R

�3


� 1: (5.3)

This equation integrates to

E

0

= R

3

_

R

2

+

2

3
 � 3

R

�3
+3

+

2

3

R

3

: (5.4)

We have R = R

m

at minimum radius and R = � at maximum radius. Assuming � � 1

we have E

0

=

2

3

� and

R

m

� [(
 � 1)�℄

1

1�


: (5.5)

This formula is a good approximation for high Re as 
on�rmed by Figure 20 where we

have plotted the ratio of the maximum to minimum radius �=R

m

for di�erent values of

� and Re. All the simulations we have performed are represented whi
h also shows the

small in
uen
e of � on the 
ompression ratio.

In what follows we omit 
-dependent prefa
tors. A full solution may be found for the

invis
id motion in the form of an integral, but we shall only need some basi
 asymptoti


features of the solution at large �. We have a time s
ale during whi
h the radius remains


lose to R

m

and the typi
al a

eleration is

�

R

m

. From (5.3)

�

R

m

� R

�3
�1

m

(5.6)
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Figure 20. Ratio between the maximum (initial) radius � and the equivalent minimum radius

R

m

as a fun
tion of the Reynolds number and for the di�erent values of � indi
ated in the

legend. Theoreti
al values in the invis
id 
ase given by equation (5.5) are represented by the

dashed lines.

and thus

t

m

� �

2+3


2�2


;

�

R

m

� �

3
+1


�1

: (5.7)

We set the referen
e time t = 0 at the point of minimum radius. There is the well-known

outer solution for jtj � 1 of the form

R � jtj

2=5

�

3=5

; (5.8)

and an inner solution for jtj

<

� t

m

. We are now in position to integrate the added-mass

equation (5.1). The pressure gradient may be estimated from the pressure �eld asso
iated

with the image bubble. From Bernouilli's equation the dominant term is, in dimensionless

units

p = �

1

2

_

R

2

R

r

�

1

2

_

R

2

R

4

r

4

: (5.9)

At large � and at distan
e H (still in dimensionless units) from the wall the leading order

is

jrpj �

_

R

2

R

H

2

: (5.10)

Thus

Q �

Z

0

��

_

R

2

R

4

H

2

dt: (5.11)

Using the inner and outer s
alings, we �nd that the leading order 
ontribution 
omes
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from the outer solution (5.8), thus, sin
e � = H=� we get

Q � �

3

�

�2

: (5.12)

The jet forms at time 0 near minimum radius. A kind of equipartition prin
iple leads to

assume that it gets half the added mass momentum, on a spatial s
ale of the order of

R

m

. Thus the jet velo
ity V

J

is given by

V

J

� Q=R

3

m

(5.13)

and thus

V

J

' C

J

�

3



�1

�

�2

: (5.14)

We have measured the jet velo
ity dire
tly from the data: the results, although relatively

noisy are 
onsistent with the above s
aling for Re > 100 with a prefa
tor C

J

' 0:05. We


an now state our �rst 
ondition for the impa
t of the jet: the time that the jet takes to

traverse the bubble must be shorter than the small time s
ale t

m

. For if it were otherwise,

the south and north pole of the bubble would separate ever faster, while the jet, due to

vis
ous e�e
t, would slow down. In equations, the 
riti
al velo
ity is of the order

V

J

� R

m

=t

m

; (5.15)

whi
h leads to

�

2

�

�3

2





�1

� 1: (5.16)

A 
-dependent numeri
al 
onstant is bound to appear on the right hand-side. For 
 = 7=5

we thus have

��

�21=8

= C

0

: (5.17)

In a graph having ��

�21=8

on the horizontal axis and Re=�

1=2

on the verti
al axis, the

invis
id dynami
s yield a verti
al line, to the right of whi
h there is no jet impa
t.

5.2. Vis
ous e�e
ts

What happens when a small vis
osity is added? Most of our estimates involve only the

autonomous dynami
s, without the image bubble for
ing. All these estimates are a�e
ted

by 
orre
tions of the form �f(�) were f(�) is some �-dependent expression. The exa
t

expressions are 
omplex sin
e they involve the integrals of the invis
id motion. However

the added-mass momentum remains proportional to �

�2

, ex
ept for the fa
t that the

pressure gradient 
ould now involve additional terms. However, the 
uid velo
ity around

the bubble, imposed by in
ompressibility, is u =

_

RR

2

=r

2

on whi
h the vis
ous term �r

2

u

vanishes (vis
osity 
omes about in the Rayleigh{Plesset equation only be
ause of surfa
e

terms). Thus the pressure �eld 
reated by the image bubble remains the one 
omputed.

Keeping now 
 = 7=5, all the 
orre
tions amount to

��

�21=8

= C

0

+

f(�)

Re

+O(

1

Re

2

): (5.18)

Thus the impa
t 
ondition, dependent on three variables �; � and Re may be 
ollapsed

onto a single graph in the variables x = ��

�21=8

and y = Re=f(�). In that graph the

impa
t 
ondition asymptotes to the verti
al invis
id 
ondition, in a manner 
onsistent

with our numeri
al �nding (Figure 21). In the numeri
al data, f(�) ' �

1=2

provides a

good �t (although there is some un
ertainty on the exponent, see Figure 19). At this

time we have not found a 
onvin
ing theoreti
al argument yielding f(�). It is possible

that f(�) 
ombines several e�e
ts that yield an e�e
tive s
aling law in the range of �


onsidered.
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Figure 21. A graphi
al summary of our s
aling theory. Curve I is the asymptoti
 limit at

small vis
osity, separating a region where the velo
ity of the jet is too small for impa
t from a

region of large enough velo
ity. With vis
osity, the separation appears as 
urve II. Jet formation

is possible if there is instability, it o

urs above 
urves IIIa,b,
. However these 
urves are not

s
aling with �, thus ea
h � yields a di�erent 
urve. From our numeri
al results, there is good

reason to assume that all 
urves of type III are below 
urve II, so the stability 
ondition is not

relevant.

5.3. Jet formation 
ondition

The jet formation arises through an instability of the Rayleigh{Taylor type: as the bubble

wall is a

elerated towards the heavier, liquid phase, it be
omes instable to deviations

from spheri
ity. Vis
osity may prevent that instability provided that the time s
ale for

vis
ous di�usion t

v

= R

2

m

=� is smaller than the time s
ale asso
iated with the Rayleigh{

Taylor instability. For plane waves of wave number k the growth rate s is s = (gk)

1=2

.

Here the most dangerous mode has k � 1=R

m

and g is

�

R

m

so the time s
ale of the

instability is t

m

. The 
ondition t

m

� t

v

then yields t

g

= (R

m

=

�

R

m

)

1=2

.

Equating the vis
ous and a

eleration time s
ales t

g

and t

�

yields a 
riti
al 
ondition

for jet formation:

Re � �

3
�2

2�2


: (5.19)

In the diatomi
 
ase 
 = 7=5 this yields Re = �

�11=4

. Noti
e that s
aling does not

involve � (the in
uen
e of � on the exponential growth phase of the instability yields

logarithmi
 
orre
tions.). Thus in the variables of our s
aling diagram, retaining the

theoreti
al value of the previous se
tion for the exponent of x, x = ��

�21=8

and y =

Re

�

1=2

we have y = (x=�)

22=21

. This is almost a straight line and may have some 
onne
tion

with the lower part of our numeri
al-experimental 
urve.

5.4. Dis
ussion

We �nd two 
onditions to observe jet impa
t, one of suÆ
ient velo
ity and one of stability.
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The 
riti
al lines for the two 
onditions are shown on Figure 21. As � de
reases, the

stability 
ondition moves up. However, our numeri
s show that it does not interse
t the

suÆ
ient velo
ity 
ondition: near the 
riti
al Re, the jet always forms and what is relevant

is the time it needs to rea
h the other side of the bubble. Thus in the suÆ
ient velo
ity


ondition is the only relevant one. However, with surfa
e tension added, it is possible

that the jet formation 
ondition 
ould be
ome relevant.

An interesting 
onsequen
e of our theory is that it runs 
ounter to a 
onventional point

of view. It is generally 
onsidered that the more spheri
al the bubble, the later the jet

develops and thus the stronger jet impa
t is. This is not 
onsistent with our asymptoti


s
aling. In our theory � 
ontrols bubble spheri
ity: the further the bubble is from the

wall, the more spheri
al it remains at least initially. But at large � the jet velo
ity is small

(Equation (5.14)). It is still true that for very early jet formation, 1) the momentum of

the image bubble may not have enough time to be fully transmitted to the jet, and 2)

impa
t may happen way before R

min

whi
h would redu
e the jet velo
ity.

6. Con
lusions

We have presented an original numeri
al te
hnique to solve a

urately the Navier-

Stokes equations with free-surfa
es. This method is not limited to simple geometries

or small interfa
e deformations. Parti
ular emphasis has been put on the a

urate de-

s
ription of free-surfa
e boundary 
onditions. Validation tests have shown an ex
ellent

agreement with the Rayleigh-Plesset equation and a theoreti
al solution obtained by

Prosperetti for the small amplitude shape os
illation of an ellipsoidal bubble.

Dire
t 
omparisons between high-speed photographi
 series and numeri
al simulations

of bubble 
ollapse near a solid boundary have shown a good qualitative and quantitative

agreement while giving a

ess to the details of the pro
ess. However, the simulations

also show that vis
ous dissipation alone 
an not explain the strong damping of radial

os
illations observed in the experiments. A
ousti
 and thermal dissipation|not taken

into a

ount in the present 
ode|should be in
luded in order to 
apture 
orre
tly the

dynami
s of the pro
ess after the �rst rebound. A simple solution would be to use a more

sophisti
ated model equation for the pressure in the bubble.

A detailed parametri
 study of the in
uen
e of vis
osity has demonstrated the existen
e

of a 
riti
al value of the Reynolds number below whi
h jet impa
t is no longer possible.

A simple s
aling law is shown to relate the value of this 
riti
al Reynolds number to two

other non-dimensional parameters 
ontrolling the problem: the relative stand-o� distan
e

and the relative initial radius of the bubble.

We have presented a simple theory whi
h des
ribes 
orre
tly the overall 
hara
teristi
s

of the phase diagram we obtain. In parti
ular, we demonstrate the existen
e of a verti
al

asymptote in the parameter spa
e of the res
aled non-dimensional 
ontrol parameters.

This provides a simple upper-bound for the domain in whi
h jet impa
t is possible,

independently of the Reynolds number.

A number of further studies would be possible and useful. In order to redu
e the

number of free parameters in the problem, we have negle
ted surfa
e tension and 
hosen

a 
onstant polytropi
 exponent for the gas law. A simple analysis of the e�e
t of surfa
e

tension is to 
ompute a time s
ale related to surfa
e tension near R

m

. If this time s
ale

is longer than t

m

then surfa
e tension is negligible with respe
t to the only time s
ale

appearing in the analysis of stability and jet velo
ity. The relevant dimensionless number
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is, going ba
k to our �rst notations:

N =

�

?

t

2

m

R

3

m

: (6.1)

Using the above estimates, for 
 = 7=5 , N = �

?

�

�1=4

= [�=(R

0

p

1

)℄(R

M

=R

0

)

�1=4

. It is

interesting to apply this to the strong 
ompression ratios in sonolumines
ent air bubbles,

whi
h are very small. For a 5 mi
ron air bubble, with � = 10, N � 0:008. For typi
al

experiments on bubble 
ollapse with larger (1 mm) bubbles, N is even smaller. So for

several pra
ti
al appli
ations negle
ting surfa
e tension is justi�ed.

On the other hand, a parametri
 study of the in
uen
e of the polytropi
 exponent

would allow to 
on�rm the generality of the s
aling laws we have found numeri
ally

and predi
ted theoreti
ally. Moreover, while adequate for des
ribing the general pi
ture,

the simple theory we propose is not able to explain the fa
t that the s
aling we �nd

numeri
ally is 
learly valid not only in the invis
id limit but a
ross the whole range of

Reynolds numbers we investigated. This remains an open question.

From a more pra
ti
al point of view, it would be interesting to investigate how our

phase diagram for jet impa
t in
uen
es our understanding of 
avitation damage for real

distributions of bubble sizes in experiments of hydrodynami
 
avitation. If a majority of


avitation bubbles fall in the zone of the phase diagram where no jet impa
t is possible

then 
avitation damage would most probably be due only to the overpressure 
aused by

the bubble 
ollapse.
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