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The effect of viscosity on jet formation for bubbles collapsing near solid boundaries is
studied numerically. A numerical technique is presented which allows the Navier-Stokes
equations with free-surface boundary conditions to be solved accurately and efficiently.
Good agreement is obtained between experimental data and numerical simulations for
the collapse of large bubbles. However, it is shown that compressible and thermal effects
must be taken into account in order to describe the energy dissipation occurring during
jet impact correctly. A parametric study of the effect of viscosity on jet impact velocity is
undertaken. The jet impact velocity is found to decrease as viscosity increases and above
a certain threshold jet impact is impossible. We study how this critical Reynolds number
depends on the initial radius and the initial distance from the wall. A simple scaling law
is found to link this critical Reynolds number to the other non-dimensional parameters
of the problem.

1. Introduction

Violent collapse of bubbles in asymmetrical geometries occur in a number of situations
of practical interest including cavitation, shock-wave and laser lithotripsy. When close
enough to a solid boundary these collapses are usually associated with high-speed jet
formation. While jet formation for cavitation bubbles was demonstrated experimentally
as early as 1961 (Naudé & Ellis 1961) there is still debate regarding the importance of jet
impact as the main mechanism for cavitation damage. The first explanation was given
by Rayleigh (1917) who considered the high pressure caused by the collapse to be the
main damaging mechanism. An alternative explanation was given by Kornfeld & Suvorov
(1944) who suggested the jet formation effect which was experimentally demonstrated by
Naudé & Ellis. Benjamin & Ellis (1966) then concluded that jet formation and impact
was important and probably the main factor for cavitation damage. Recently, however,
a number of experiments have cast doubt on this explanation. In these investigations,
the damages were found to be distributed around a circumference and not on the axis
of symmetry as would be the case if jet impact was the main factor for cavitation dam-
age (Tomita & Shima 1986). Philipp & Lauterborn conclude that the main mechanism
for cavitation damage are the high-pressures and temperatures reached inside a bubble
collapsing very close to the solid boundary (Philipp & Lauterborn 1998).

A number of points regarding bubble collapse in bounded domains thus remain open
questions. However, the analytical study of the problem of bubble collapse in the vicinity
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of a solid boundary is very difficult. Consequently, apart from the perturbation approach
of Rattray (1951), most of the results were obtained using numerical solutions of bound-
ary integral formulations (Plesset & Chapman 1971; Blake et al. 1993). These methods
rest on the surface integration of a potential solution for the fluid flow and can be used
only for vanishing viscosities or vanishing advection terms (Stokes flow). In all the stud-
ies so far the effect of viscosity has thus been neglected. While good agreement was
found between numerical and experimental results, due to obvious practical considera-
tions experiments are usually performed with large bubbles (millimeter sized). In these
cases, viscosity is unlikely to play a major role and inviscid calculations give good results.
However, one can ask how these results would scale for smaller bubbles where viscosity
is likely to come into play (cavitating bubbles are likely to be much smaller than one
millimeter). Experiments with very small bubbles are more difficult to perform and an-
alytical approaches including viscous effects are even more intricate, but we believe that
the use of an appropriate numerical technique can give useful insights.

In this article, we describe an original numerical technique which allows the resolution
of the incompressible Navier-Stokes equations in axisymmetric coordinates with free-
surface boundary conditions. We then present the results of first comparisons between
our numerical results and experiments for bubble collapse and jet formation near a wall.
Then, because the code is fast enough to allow a parametric study of the influence
of viscosity on jet formation and evolution, we present a phase diagram function of the
independent non-dimensional parameters illustrating the effect of viscosity on the impact
velocity.

2. Numerical technique

We present a numerical method for solving the axisymmetric Navier-Stokes equations
with free-surface boundary conditions. While this has been done in the past, the methods
used either made crude assumptions about free-surface boundary conditions (Harlow &
Welch 1965; Chan & Street 1970; Nichols & Hirt 1971; Hirt & Nichols 1981) or used
boundary fitted grids (Blanco & Magnaudet 1995; Legendre 1996). Our method is based
on a finite volume formulation using both a fixed grid and a front-tracking approach. The
free-surface is tracked using surface points (markers) connected with cubic splines. This
allow us to deal with surface integral terms appearing in the finite volume formulation
correctly. Moreover, this method is not limited to simple geometries and can deal effi-
ciently with large deformations of the interface. This technique constitutes an extension
of the two-fluid approach of Popinet & Zaleski (1999).

2.1. The explicit equations

The incompressible Navier-Stokes equations for an axisymmetric flow in cylindrical co-
ordinates can be written as

19(rvy) N v,

r or 9z 0 2
2
6(;:« +%6(gi,«) +8(grzv:) :_Z_TJF%%JP%_%, (2.2)
where ® = p/p, p is constant and the components of the stress tensor are defined as
s, = 2,00 (2.4)

or
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FIGURE 1. Finite volume discretisation.
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where v is the kinematic viscosity.

2.2. Finite volume formulation

In order to obtain a finite volume formulation necessary for numerical analysis, we first
need to integrate the equations over an arbitrarily moving domain. Let us call the domain
Q and 012 its boundary. u is the velocity of the boundary 0f). Integrating over Q yields
the integral equations

9 / rdrdz —l—/ r(vy — uy) dr —/ r(vy —u) dz =0, (2.8)
ot Jo o9 o)

2/ vpr dr dz —l—/ rop (v, — uy) dr — / rvp(vr —up) dz = (2.9)
ot Jo 89 a0
/ ‘brdz—l—/@drdz—i—/ rSZ,«dr—/ rSMdz—/Sggdrdz,
aQ Q a0 aQ Q
2 / v,r dr dz +/ rv. (v, —uy) dr —/ rv, (v, — up) dz = (2.10)
ot Jo 20 20

—/ dr dr-l-/ rS.. dr—/ rS., dz.
Q Q Q

Then, considering a square finite volume centered at (z;,r;) of side h, we seek the
integral formulation above for the v, component of the velocity. In the general case of
a free-surface flow problem this control volume can be cut by the interface. In this case
the volume of integration is a piece of the square Q with boundary ABCDEA (Figure
1). The velocity u of the boundary is 0 on ABUBCUDEUEA and v on CD. Equation
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(2.9) can then be written

2/ vpr dr dz -I-/ rv,v, dr —/ rv? dz = (2.11)
ot Jq BCUEA ABUDE
/ (I>rdz-|-/ (I>rdz-|-/tI>drdz+
ABUDE cD Q
/ rS., dr -I-/ rS., dr —
BCUEA cD

/ rSpe dz —/ rSpr dz — / Spg dr dz.
ABUDE oD Q

We then assume that the different quantities needed are defined either at the center
(zi,r;) of the cell or at the center of the cell faces (z;,7; = h/2) and (2z; & h/2,r;), in
a typical staggered grid fashion (Peyret & Taylor 1983). We also make the assumption
that quantities defined at the center of the cell are constant over the whole cell whereas
the quantities defined on the cell faces are constant on these faces. Introducing the cell
faces area s/, 547, cell area a®/ and cell volume ¢/ defined as the area of the cell faces,
area or volume of the cell occupied by the fluid, in the general case we obtain

% [(cv,)™ ] + (520,02 )20 — (5 0,0,) 720 4 (2.12)

(Srvz)i’j+l/2 _ (srvf)i’jflﬂ —

(5,®)0I71/2 — (5,802 4 (a®)HI —l—/ Or dz +

int
(5:82n) /27 — (5.8.,) 71/ +/ rS. dr +
int

(SrSrr)i7j+1/2 - (STSTT)i7j_1/2 - / rSrT dz — (CLSHH)i7j7

int

where fint denotes the integration along the piece of interface contained in Q. The equa-
tion for the z component of the velocity, obtained in a very similar manner is

Noting that

O [lev)9] + (s:2) /29 — (s02)"=1/29 (213)

(srvrvz)i7j+1/2 _ (srvrvz)i’j_l/Q -

(5.®) 7120 — (5,3)F1/2 —/ $r dr +

int

(5:8..)F1/20 — (5.8,.) /% +/ rS.. dr +

int

(SrSzr)i’j+1/2 - (STSZT)i’j71/2 - / TSZ” dz.

int

2/ r dr dzz/ TUy dr—/ U, dz, (2.14)
ot Jo 2! 2!

(2.8) can be rewritten as

/ rv, dr —/ rv, dz =0, (2.15)
09 Gle!
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which yields the discrete volume incompressibility condition

(s20:) 120 — (s,0,)11/%0 +/ rv, dr + (2.16)

int

(spvp) 212 — (g0, 012 / rv, dz = 0.

int

2.3. The Discrete Pressure Equation

We use a projection method to solve the incompressibility condition. The Poisson-like
equation for the pressure can be expressed as a function of the numerical divergence of
the temporary velocity field v*. The velocity field at time n + 1 is obtained from the
relations

vhi = (v)H + zi [(57@)”7_1/2 _ (sré)””‘l/? + (a@)”] .
ct

At

i

o = (1) 4+ S5 [(ss) 2 — sy /2]

We make the assumption that the two components of the velocity vary linearly from one
side of the cell to the other, yielding the expressions for the velocity in a (z;,r;) cell

va(2)h = (2 = 2z )i = (2 = g o)l VP, (2.17)
ve(r)h = (r — T]'_l/g)’l}f.’j+1/2 —(r— rj_i_l/g)vf,’jflﬂ. (2.18)

The integrals along the section of interface in the (2;,7;) cell can be computed as

/ rv, dr = (2.19)
int; ;
U;’+1/2,j Uifl/lj
/ r(z - zi,1/2) dr — / T(Z - Zi+1/2) dr,
h int; ; h int; j
/ rv, dz = (2.20)
int; ;
U:;,j+1/2 U£7J’—1/2

A /mti,]- r(r—rj_1/2) dz — A /mti,]- r(r—rjy12) dz.

If we assume that ®/+1/2 = (&% 4 $»/+1) /2, the incompressibility condition (2.16) can
be written as

1 i j i—1/2,5 ij iyj—
7 (02T — (Lot 2 (022 ()] 4 (221)
e (R O e Rl (G R Y |
o y y

— [(ast /)12 — (as, je) 7112 =

(528)7+19 (5L fe) H1/2 +

(qu))ifl,j(slz/c)ifl/lj + (I)i’j+1(szﬂ/c)i’j+1/2 <Si,j+1 _ %ai,j+1/2> +

@1,]—1 ! i,j—1/2 i,j—1 - oij—1/2
(s /e (5= 4 Saa=102)
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FIGURE 2. Mesh and discretisation of the velocity and pressure fields. The marker points and the
connecting cubic splines are represented. The light arrows are extrapolated values of the velocity
field. The squares indicate the location of the pressure nodes where the pressure equation is
solved.

where s/, and s, are defined as

e PN |
(s’z)lil/zﬂ — s;ﬂ/“ + = / (2 = Ziz1)2) dr, (2.22)
int; j
. o 1
(5;«)2’7i1/2 = S?Jﬂ/z 1 / r(r —rjz1/2) dz. (2.23)
int; j

2.4. Numerical method of resolution

The Poisson-like pressure equation (2.21) is solved using multigrid-accelerated Gauss-
Seidel relaxation (Press & Teukolsky sep/oct 1991).

The interface is discretised using a set of marker points linked by cubic splines. This
description allows the precise knowledge of the position and curvature of the interface
required in order to include the surface tension terms and all the other surface integral
terms appearing in (2.12), (2.13) and (2.21).

As in all free-surface codes (Harlow & Welch 1965; Chan & Street 1970; Nichols &
Hirt 1971; Hirt & Nichols 1981), the most delicate point is the treatment of free-surface
boundary conditions. The pressure on the interface on the fluid side is given by

p=p;+0k+ pun.D.n, (2.24)

where p; is the pressure in the bubble, o the surface tension coefficient, x the curvature,
it the dynamic viscosity, n the normal to the interface and D the deviatory part of
the stress tensor. This boundary condition is used directly when calculating the surface
integral pressure contribution to (2.12) and (2.13).

Since we use a fixed grid to solve the Navier-Stokes equations, we need to extrapolate
the velocity field far enough inside the bubble to get the velocity values necessary for
the marker points advection and for the resolution of the Navier-Stokes equations on the
fluid boundary (Figure 2). Moreover, this must be done while fulfilling the zero tangential
stress interface boundary condition

t.D.n =0, (2.25)

where t is the tangent to the interface. Given a point P near the interface, we assume
that locally around P the velocity field can be described as u = ug + A - x where x is
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the position vector and A is a 2 x 2 matrix. For this particular velocity field equation
(2.25) can be expressed as e;;t;n; = 0 with
[‘)ui + 8uj

E;; —
Y 6xj al‘l

= Aij + Aji. (2.26)

Given a set of N points in the vicinity of P and a vector ¢ tangent to the interface, ug
and A can be found by minimisation of the function

N
L= Z(UO + A -x, — lln)2 + /\eijtmj, (227)
n=1
where ) is a Lagrange multiplier. The set of points is chosen as on Figure 3. Line L has
direction n(I) and goes through points P and I. A small number of points (typically
five) is chosen around L by minimisation of the cost function

S d(P;, L)? + ¢d(Pi, P)?, (2.28)

where d is the Euclidean distance and ¢ is a geometrical parameter usually set to 1/2.

The marker points are advected using bilinear interpolation and a redistribution is done
at every time step to ensure a uniform distribution as the bubble deforms. The average
distance between markers is of the order of the grid size. As underlined by Popinet &
Zaleski (1999) the computational cost of the marker part of the algorithm scales as 1/n
where n is the number of grid points along one dimension and is then negligible for
reasonable domain sizes.

2.5. Validation tests

The time evolution of the radius of a spherically symmetric bubble surrounded by an
incompressible fluid is described by the Rayleigh—Plesset equation (Plesset & Prosperetti
1977). As we are interested in bubbles oscillating radially, it is important to obtain a
good agreement between direct numerical simulations and the numerical solution of the
Rayleigh—Plesset equation. In the test case illustrated on Figure 4, a bubble with an
equilibrium radius Ry = 5 pm is set in a fluid initially at rest. The initial radius of the
bubble is 10 um. A constant pressure is applied on three sides of the simulation domain
(the fourth side being the axis of symmetry) and the velocity gradient is set to zero on
these three sides. The physical parameters are as follows: dynamic viscosity p = 0.001
kg/ms, surface tension coefficient ¢ = 0.07 kg/s?, p = 1000 kg/m?, p,, = 10° Pa. The
pressure in the bubble is given by a polytropic law of the form p(R) = po(Ro/R)>" with
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FIGURE 4. Free radial oscillations of a bubble of 5 ym equilibrium radius.

~ = 7/5. The bubble oscillates radially while keeping its spherical shape. The amplitude
of the oscillations decreases due to viscous damping. The agreement between the direct
numerical simulation and the numerical solution of the Rayleigh—Plesset equation is
excellent. The relative quadratic error between the two solutions illustrated is smaller
than one percent.

It is important to note that to obtain such an agreement it is necessary to minimize
the influence of the boundary conditions in the simulation. This is done by using very
large simulation domains. The ratio between the domain size and the bubble diameter is
160. By using the adaptive multidomain technique presented in the following section the
computational cost is still reasonable (approximately one hour on a Pentium 350 MHz
for a base grid of 128 x 64).

This simulation is also a good validation test for the extrapolation technique presented
in the previous section. The pressure jump on the free-surface due to the normal compo-
nent of the viscous stress controls the viscous damping of the solution. A 2% variation
in viscosity leads to solutions of the Rayleigh—Plesset equation varying by 1.3%. Given
the 1% error that we obtain, we can conclude that local derivatives of the velocity field
near the interface differ by less than 2%.

However this test does not involve any deformation of the interface and the influence
of surface tension is limited to a constant pressure jump. A second simple test where the
driving force is surface tension is illustrated on Figure 5. A slightly ellipsoidal bubble
is set in a liquid initially at rest. Under the influence of surface tension the bubble
shape oscillates around its spherical equilibrium position. The parameters are as follows:
equivalent radius R = 5 x 10~* m, surface tension coefficient o = 0.07 kg/s?, kinematic
viscosity v = 5 x 1075 m? /s, p = 1000 kg/m?. In order to limit the effect of confinement
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FIGURE 5. Temporal evolution of the second mode of deformation of a slightly ellipsoidal
bubble set in a liquid initially at rest.

the ratio between the size of the domain and the bubble diameter is 240. The diameter
of the bubble is about 128 grid points and the multidomain technique is used.

The temporal evolution of the relative amplitude of the second mode of deformation
is illustrated together with two theoretical solutions. The first one is the classical normal
mode analysis of Lamb (1932). It supposes a stationary regime of oscillation and does
not take into account transient effects such as the diffusion of vorticity in the liquid. The
second solution is a numerical inversion of a Laplace transform obtained by Prosperetti
(1980) taking into account transient effects. This solution is exact for this problem in the
limit of a vanishing amplitude of oscillation. The agreement between the numerical simu-
lation and Prosperetti’s theory is excellent with a relative quadratic error of 0.4% for the
first eight periods of oscillation. It is also interesting to note that the difference between
the approximate normal mode solution and Prosperetti’s solution is significant. This test
further confirms that vorticity generation at the free surface is accurately described by
our interpolation technique.

3. Comparison with experiments

In order to assess the applicability of our numerical method to real cases, we wanted
to compare our results with experimental measurements. Lauterborn and collaborators
have developed an elegant technique to generate highly reproducible bubbles near solid
boundaries (Lauterborn & Bolle 1975; Lauterborn & Ohl 1997; Philipp & Lauterborn
1998). The high speed photographic series of Figure 6 illustrate one of these experiments.
A focused short laser pulse is fired in water near a solid wall, a gas bubble is then formed
and expands, eventually reaches a maximum radius and then collapses violently. A jet is
formed near the point of minimum radius and penetrates the re-expanding bubble.

The main problem we are confronted with is the choice of initial conditions for the
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numerical simulation. In fact, neither the initial radius (or initial pressure), nor the
equilibrium radius (or gas content) of the bubble are known. We have chosen to use
initial conditions given by the fit of the classical Rayleigh—Plesset equation (Plesset &
Prosperetti 1977) to the measured time-evolution of the radius. The experimental time
evolution has been measured directly using a digital version of the photographic series
and image processing techniques.

The numerical simulation uses a 512x512 grid. The maximum bubble radius reaches 50
grid points. The bottom boundary of the domain is a free-sliding solid wall (the normal
component of the velocity is zero, there is no constraint on the tangential component)
and the right boundary is the axis of symmetry. On the top and left walls the pressure is
constant and set to the ambient pressure (gravity is neglected). No constraint is imposed
on the velocity. The dynamic viscosity for water is 1072 kg/ms, the surface tension
coefficient for an air-water interface o = 0.072 kg/s?> and the density of the liquid is
1000 kg/m3. The process is assumed to be adiabatic and the gas pressure is given by
p = po(V/Vh)” where V is the volume of the bubble, Vj = 4.78 x 1072 m3, py = 100 072
Pa and v = 7/5. The surrounding fluid is initially at rest and the initial radius of the
bubble is 0.4 mm.

Simulation results are shown on Figure 6 with the same spatial layout and inter-
frame time. Figure 7 illustrates the temporal evolution of the equivalent radius (defined
as 3V1/3 /4m) together with the evolution measured experimentally and given by the
Rayleigh—Plesset calculation. The agreement between the experiment and the numerical
result is relatively good with initial jet formations qualitatively and quantitatively simi-
lar. Both the experiment and the simulation clearly show the jet impacting and deforming
the opposite side of the bubble, while the jet is stretched by the bubble expansion. The
jet velocity is well reproduced by the numerical model, the tip of the deformed bubble
touching the wall at approximately the same time. Another interesting feature revealed
by the numerical simulation is the “splashing” effect of the jet impact with the forma-
tion of an axisymmetric rim expanding with the bubble (Figure 8). This observation is
very similar to results reported by Blake et al. (1997, 1998) using a boundary integral
technique.
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FIGURE 6. Comparison between a high-speed photographic series of a bubble collapsing near a
wall (Lauterborn & Ohl 1997) and a direct numerical simulation. Sampling rate is 75 000 frames
per second.
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However, we can see both on Figures 6 and 7 that the rebound of the bubble is much
larger in the numerical simulation than that observed in the experiment. The Rayleigh—
Plesset equation gives a result comparable to the numerical calculation. This would
indicate that the effects of fluid compressibility, in particular the emission of acoustic
and shock waves, which are not taken into account by our incompressible code or by the
Rayleigh—Plesset equation, are an important source of energy dissipation. Moreover, the
very simple equation of state chosen to describe the gas contained in the bubble does not
take into account heat transfer and phase change at the interface between the liquid and
the gas.

4. Numerical study of the influence of viscosity on jet formation and
evolution

While interesting for validation purposes, the previous result is of limited interest due
to the small influence of viscosity on the fast collapse of relatively big bubbles. For this
type of simulation, a boundary integral code with a viscous boundary layer approximation
would probably give good results (Plesset & Chapman 1971; Blake et al. 1993). For this
reason, we have chosen to focus our attention on the influence of viscosity on jet formation
and evolution for moderate Reynolds numbers.

In order to study the influence of viscosity, we first need to find which characteristic
parameters control the problem. We assume that the pressure in the gas is described by
a polytropic law of the type

o = ()7, (4.0

where R is the radius of the bubble, Ry is the equilibrium radius, ps is the ambient

pressure and v is a polytropic exponent. We can chose Ry as a length scale and \/pR3/peo

as a time scale. The Rayleigh-Plesset equation (Plesset & Prosperetti 1977) describes

the evolution of the radius and can be written in non-dimensional form as

- R, 20,

R.R, + “R?> +4v,—= =R % -1 - =%,

x4 Ux 2 * *R* * R*

where the x denotes non-dimensional quantities. The set of characteristic coefficients is

then

(4.2)

_ v p _

Te= Ry poo, 7= Ropoo

where ¢ is the surface tension coefficient, v the kinematic viscosity and p the density. We

need to add the coefficients characteristic of the initial conditions. The relative initial

radius @« = Rjp;/Rp and the relative initial distance from the boundary 8 = H/Ryy,

where H is the distance from the center of the bubble to the solid wall. Thus we have

five independent parameters: a;, 3, 7, Vs, 0. In order to simplify the study, we will neglect

surface tension (o, = 0) and assume that the gas is diatomic and the process adiabatic
(v =7/5). A Reynolds number is defined as Re = 1/v,.

In order to resolve the small scale which can occur for high compression ratios correctly
we have used an adaptive hierarchy of grids. Each grid has a fixed number of points
(12864 in all the results illustrated here) but is half the size of its parent. A typical
setup is shown on Figure 9. Grids are added or removed as the bubble shrinks and grows.
Moreover, this technique allows the use of relatively large simulation domains in order
to minimise the influence of the boundary conditions.

Figures 10, 11 and 12 illustrate the influence of the Reynolds number on jet formation

and v, (4.3)
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&

FIGURE 9. Example of the hierarchy of grids used to deal accurately and efficiently with large
variations in bubble radius.

and impact velocity. For high Reynolds numbers (Figure 10) the initial jet velocity is high
and the impact occurs shortly after jet formation. For low Reynolds numbers (Figure 12),
the initial jet velocity is small and the velocity of rebound of the opposite wall of the
bubble is large enough to prevent any impact. For intermediate Reynolds numbers (Figure
11), the initial velocity of the jet is comparable to the velocity of rebound of the opposite
wall, the jet is stretched by the expansion of the bubble, the impact is delayed and the
impact velocity is small. The critical Reynolds number Re,. is defined as the Reynolds
number for which the impact velocity is zero. If the Reynolds number is smaller than
Re., the jet never impacts the other side of the bubble.

This transition is illustrated differently on Figures 13 and 14. The lower curves (thick
lines) represent the time evolution of the position of the south pole (closer to the wall)
for the different Reynolds numbers shown in the legend. The thin lines are the time
evolution of the north pole and the upper curves describe the evolution of the position
of the point farther away from the solid wall. The upper and lower curves describe the
global dynamics of the bubble: collapse until ¢ & 2 followed by a re-expansion and motion
of the center of gravity toward the wall. The thin lines describe the jet dynamics. Initially
there is no jet and these curves are indistinguishable from the upper curves. At the time
of curvature inversion occurring at the north pole and corresponding to jet formation
the curves separate (Figure 14). The jet continues to penetrate inside the bubble and
eventually hits the other side. If viscosity is too high the jet is slowed down and never
makes it to the south pole.

As can be seen on Figure 11, when Re is close to Re. the jet becomes very thin and
the impact occurs late in the cycle of oscillation. If we want to find the value of Re. with
a reasonable accuracy, we need to use a very fine grid in order to model correctly the
flow inside the jet. Such high resolutions would be impractical for a parametric study of
Re.(a, 8). We therefore sought an alternative and more easily computable definition of
Re..
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FIGURE 10. Time evolution of a bubble collapsing near a wall at high Reynolds number. The
wall is along the bottom side of the box. Not all the simulation domain is shown. Interframe
time is 0.243. Re = 29.906, o = 2.023, 3 = 2.625.

Do D

FIGURE 11. Time evolution of a bubble collapsing near a wall at intermediate Reynolds
number. Interframe time is 0.303. Re = 24.519, a = 2.023, 8 = 2.625.

Figure 15 illustrates the time evolution of the relative velocity between the top and
bottom poles for various values of Re. The relative velocity is chosen to be positive during
collapse and negative during expansion. The black dots indicate the instant of impact
and the white dots indicate the instant of jet formation (curvature changes sign at the top
pole). As the Reynolds number decreases the impact is delayed and the impact velocity
decreases. For values of Re close to Re., the curve has two extrema: a maximum relative
velocity is reached near the end of the collapse and a minimum relative velocity occurs
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FIGURE 12. Time evolution of a bubble collapsing near a wall at low Reynolds number.
Re = 18.413, a = 2.023, 8 = 2.625.

not long after jet formation. Moreover, near the critical Reynolds number, the relative
velocity at impact is seen to be close to its minimum value. Therefore we take the value
of Re for which the minimum relative velocity is zero as an alternative definition of Re.
(i.e. at some point close to the beginning of jet formation the tip of the jet is moving
exactly as fast as the bubble is re-expanding).

Figure 16 confirms that both definitions give close values for Re. (17.15 and 17.77
for the impact and the minimum relative velocity respectively). Moreover, the impact
velocity is strongly dependent on the Reynolds number near the critical value. This new
criterion is much easier to test numerically since we only need the value of the minimum
velocity and do not need to solve the jet impact directly.

The curves on Figure 17 have been obtained for various values of a (shown in the
legend). Each value of Re. is found using a bisection technique. On average, five simu-
lations are necessary to find a value of Re. with a 3% accuracy (each simulation takes
approximately fifteen minutes on a PC). As the value of 3 increases, it becomes more
difficult to form a jet and viscous effects play a more important role: the value of Re.
increases. On the other hand when « increases, the collapse velocity is larger and viscous
effects tend to be smaller: the value of Re. decreases.

The curves of Figure 17 can be rescaled as shown on Figure 18. The black curves on
Figure 17 are the rescaled versions of the interpolating curve of Figure 18. The agreement
is excellent, and the discrepancies observed in particular for high values of 8 for a = 2.023
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F1GURE 13. Time evolution of the position of the poles as a function of the Reynolds number
indicated in the legend. o = 1.754, 8 = 1.5.

and a = 1.921 can be attributed to the formation of thin jets which are difficult to resolve
accurately.

We have obtained this scaling empirically by measuring numerically the correlation
C(n,¢) between the transformed point sets, where the transformation is: § — §/a" and
Re. — Re./ af. As illustrated on Figure 19, the maximum correlation is obtained for
values of n and ( close to 3 and 1/2 respectively.
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FIGURE 14. Detail of Figure 13.
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FIiGURE 15. Relative velocity between the top and bottom pole of a collapsing bubble as a
function of time for various values of the Reynolds number (indicated in the legend). The white
squares and black dots mark the time of jet formation (curvature changes sign) and jet impact
respectively. o = 2.023, 8 = 2.625.
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FIGURE 16. Relative impact velocity and minimum of the relative velocity as a function of the
Reynolds number. Taking as critical Reynolds number the value of the Reynolds for which the
minimum relative velocity is zero gives a good approximation of the Reynolds number for which
the jet impact velocity is zero. « = 1.754, 3 = 1.5.
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FIGURE 17. Value of the critical Reynolds number Re. as a function of the relative distance
to the solid wall 3. Each curve corresponds to a different value of the relative initial radius «
(indicated in the legend).
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FIGURE 18. Rescaled version of Figure 17. The black line is an interpolating polynomial.



Bubble collapse near a solid boundary: influence of viscosity 21
5

4

1.6

1.2

0.8

0.4

0.0 ‘ ‘
2.7 2.8 2.9 3.0 3.1 3.2 3.3

n

FIGURE 19. Numerical evaluation of the correlation C(n, () between the rescaled point sets of
Figure 17.
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5. Theory

In what follows we describe a theory based on the approximation of a relatively large
Reynolds number and a large initial bubble radius o and distance to the wall 8. Thus in
our estimates we first neglect the viscous effects. Then we discuss stability and viscous
corrections.

5.1. Velocity condition

The asymmetrical bubble collapse that heralds jet formation is influenced by the presence
of the wall. While the approximately spherical bubble shrinks in size, its center of mass
is attracted towards the wall by the image bubble. As the bubble approaches the wall,
a momentum () is gained mostly by the liquid phase surrounding it, the so-called added
mass momentum. In equations

4

Q = _§7TR3ap

& ’
where we have used the dimensionless variables as in (4.2) but where as in what follows
we dropped the x subscripts for simplicity. The added-mass momentum may be expressed
in terms of the vertical position of the bubble z,(t) as

(5.1)

Q= C’MgwRSéb, (5.2)

where C)s is the added mass coefficient, approximately Cps = 1/2 at high Reynolds
numbers. To estimate conditions for jet formation and impact, we distinguish two effects:
the stability or instability of the near-spherical bubble motion, and the possible mismatch
between the time scale of the rebound and the time scale of the jet traversing the bubble.
The first condition is a jet formation condition, while the second is a sufficient velocity
condition. We begin with the jet impact.

In what follows, we first investigate the spherical collapse, then the effect of the image
bubble. We neglect viscosity. As in the numerics, surface tension is left aside. Then
Equation (4.2) becomes

RR + SRZ’ =R —1. (5.3)

This equation integrates to

. 2 2
Ey=RR>+ ——R " + -R*. 5.4
0 + 33 +3 (5.4)
We have R = R,, at minimum radius and R = « at maximum radius. Assuming o > 1
we have Ey = 2a and

R ~ [(v — 1)a] ™. (5.5)

This formula is a good approximation for high Re as confirmed by Figure 20 where we
have plotted the ratio of the maximum to minimum radius «/R,, for different values of
«a and Re. All the simulations we have performed are represented which also shows the
small influence of B on the compression ratio.

In what follows we omit «y-dependent prefactors. A full solution may be found for the
inviscid motion in the form of an integral, but we shall only need some basic asymptotic
features of the solution at large . We have a time scale during which the radius remains
close to R,, and the typical acceleration is R,,. From (5.3)

Ry ~ R;31 (5.6)
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F1GUurE 20. Ratio between the maximum (initial) radius « and the equivalent minimum radius
R,, as a function of the Reynolds number and for the different values of « indicated in the
legend. Theoretical values in the inviscid case given by equation (5.5) are represented by the
dashed lines.

and thus
243 - 3y+1
tm ~ 337, Ry ~a-T. (5.7)

We set the reference time ¢t = 0 at the point of minimum radius. There is the well-known
outer solution for |t| ~ 1 of the form

R~ |t[*/%a?/?, (5.8)

and an inner solution for |¢| Sty . We are now in position to integrate the added-mass
equation (5.1). The pressure gradient may be estimated from the pressure field associated
with the image bubble. From Bernouilli’s equation the dominant term is, in dimensionless
units
1R’R 1R’R!

22
At large 8 and at distance H (still in dimensionless units) from the wall the leading order
is

(5.9)

R’R
Vol ~ =75 (5.10)
Thus
0 P2 pi
R°R

—Q

Using the inner and outer scalings, we find that the leading order contribution comes
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from the outer solution (5.8), thus, since 8 = H/«a we get
Q~ B2 (5.12)

The jet forms at time 0 near minimum radius. A kind of equipartition principle leads to
assume that it gets half the added mass momentum, on a spatial scale of the order of
R,,. Thus the jet velocity Vy is given by
Vs~ Q/RS, (5.13)
and thus
3
Vy~ Cra-18 2. (5.14)
We have measured the jet velocity directly from the data: the results, although relatively
noisy are consistent with the above scaling for Re > 100 with a prefactor C'y ~ 0.05. We
can now state our first condition for the impact of the jet: the time that the jet takes to
traverse the bubble must be shorter than the small time scale t,,. For if it were otherwise,

the south and north pole of the bubble would separate ever faster, while the jet, due to
viscous effect, would slow down. In equations, the critical velocity is of the order

Vi~ Rp/tm, (5.15)
which leads to

BaT 7T~ L (5.16)
A ~-dependent numerical constant is bound to appear on the right hand-side. For v = 7/5
we thus have

Ba~2® = . (5.17)

—21/8 1/2

In a graph having Sa on the horizontal axis and Re/a'/* on the vertical axis, the
inviscid dynamics yield a vertical line, to the right of which there is no jet impact.

5.2. Viscous effects

What happens when a small viscosity is added? Most of our estimates involve only the
autonomous dynamics, without the image bubble forcing. All these estimates are affected
by corrections of the form vf(a) were f(«a) is some a-dependent expression. The exact
expressions are complex since they involve the integrals of the inviscid motion. However
the added-mass momentum remains proportional to 52, except for the fact that the
pressure gradient could now involve additional terms. However, the fluid velocity around
the bubble, imposed by incompressibility, is . = RR?/r> on which the viscous term vV?u
vanishes (viscosity comes about in the Rayleigh—Plesset equation only because of surface
terms). Thus the pressure field created by the image bubble remains the one computed.
Keeping now v = 7/5, all the corrections amount to
oys _op HO) o L
ﬂOL —O()+ Re +O(R€2)
Thus the impact condition, dependent on three variables a, 8 and Re may be collapsed
onto a single graph in the variables z = 3a~2'/% and y = Re/f(a). In that graph the
impact condition asymptotes to the vertical inviscid condition, in a manner consistent
with our numerical finding (Figure 21). In the numerical data, f(a) ~ a'/? provides a
good fit (although there is some uncertainty on the exponent, see Figure 19). At this
time we have not found a convincing theoretical argument yielding f(«). It is possible
that f(a) combines several effects that yield an effective scaling law in the range of «
considered.

(5.18)
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FIGURE 21. A graphical summary of our scaling theory. Curve I is the asymptotic limit at
small viscosity, separating a region where the velocity of the jet is too small for impact from a
region of large enough velocity. With viscosity, the separation appears as curve II. Jet formation
is possible if there is instability, it occurs above curves I1Ia,b,c. However these curves are not
scaling with 3, thus each f yields a different curve. From our numerical results, there is good
reason to assume that all curves of type III are below curve II, so the stability condition is not
relevant.

5.3. Jet formation condition

The jet formation arises through an instability of the Rayleigh—Taylor type: as the bubble
wall is accelerated towards the heavier, liquid phase, it becomes instable to deviations
from sphericity. Viscosity may prevent that instability provided that the time scale for
viscous diffusion ¢, = R2, /v is smaller than the time scale associated with the Rayleigh—
Taylor instability. For plane waves of wave number k the growth rate s is s = (gk)'/2.
Here the most dangerous mode has k ~ 1/R,, and g is R,, so the time scale of the
instability is ¢,,,. The condition ¢,, ~ t, then yields ¢, = (Ryn/Ron)Y/? .

Equating the viscous and acceleration time scales ¢, and %, yields a critical condition

for jet formation:

Re ~ a7 | (5.19)
In the diatomic case vy = 7/5 this yields Re = o'/, Notice that scaling does not
involve § (the influence of B on the exponential growth phase of the instability yields
logarithmic corrections.). Thus in the variables of our scaling diagram, retaining the
theoretical value of the previous section for the exponent of z, z = fa~2"/8 and y = %
we have y = (z/f)?*/?'. This is almost a straight line and may have some connection
with the lower part of our numerical-experimental curve.

5.4. Discussion

We find two conditions to observe jet impact, one of sufficient velocity and one of stability.
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The critical lines for the two conditions are shown on Figure 21. As 3 decreases, the
stability condition moves up. However, our numerics show that it does not intersect the
sufficient velocity condition: near the critical Re, the jet always forms and what is relevant
is the time it needs to reach the other side of the bubble. Thus in the sufficient velocity
condition is the only relevant one. However, with surface tension added, it is possible
that the jet formation condition could become relevant.

An interesting consequence of our theory is that it runs counter to a conventional point
of view. It is generally considered that the more spherical the bubble, the later the jet
develops and thus the stronger jet impact is. This is not consistent with our asymptotic
scaling. In our theory 8 controls bubble sphericity: the further the bubble is from the
wall, the more spherical it remains at least initially. But at large 3 the jet velocity is small
(Equation (5.14)). It is still true that for very early jet formation, 1) the momentum of
the image bubble may not have enough time to be fully transmitted to the jet, and 2)
impact may happen way before R,,;, which would reduce the jet velocity.

6. Conclusions

We have presented an original numerical technique to solve accurately the Navier-
Stokes equations with free-surfaces. This method is not limited to simple geometries
or small interface deformations. Particular emphasis has been put on the accurate de-
scription of free-surface boundary conditions. Validation tests have shown an excellent
agreement with the Rayleigh-Plesset equation and a theoretical solution obtained by
Prosperetti for the small amplitude shape oscillation of an ellipsoidal bubble.

Direct comparisons between high-speed photographic series and numerical simulations
of bubble collapse near a solid boundary have shown a good qualitative and quantitative
agreement while giving access to the details of the process. However, the simulations
also show that viscous dissipation alone can not explain the strong damping of radial
oscillations observed in the experiments. Acoustic and thermal dissipation—not taken
into account in the present code—should be included in order to capture correctly the
dynamics of the process after the first rebound. A simple solution would be to use a more
sophisticated model equation for the pressure in the bubble.

A detailed parametric study of the influence of viscosity has demonstrated the existence
of a critical value of the Reynolds number below which jet impact is no longer possible.
A simple scaling law is shown to relate the value of this critical Reynolds number to two
other non-dimensional parameters controlling the problem: the relative stand-off distance
and the relative initial radius of the bubble.

We have presented a simple theory which describes correctly the overall characteristics
of the phase diagram we obtain. In particular, we demonstrate the existence of a vertical
asymptote in the parameter space of the rescaled non-dimensional control parameters.
This provides a simple upper-bound for the domain in which jet impact is possible,
independently of the Reynolds number.

A number of further studies would be possible and useful. In order to reduce the
number of free parameters in the problem, we have neglected surface tension and chosen
a constant polytropic exponent for the gas law. A simple analysis of the effect of surface
tension is to compute a time scale related to surface tension near R,,. If this time scale
is longer than ¢,, then surface tension is negligible with respect to the only time scale
appearing in the analysis of stability and jet velocity. The relevant dimensionless number
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is, going back to our first notations:

U*tfn

N = :
Ry,

(6.1)

Using the above estimates, for v = 7/5 , N = o,a~"/* = [0/(Ropso)](Rar/Ro)~'/*. Tt is
interesting to apply this to the strong compression ratios in sonoluminescent air bubbles,
which are very small. For a 5 micron air bubble, with « = 10, N ~ 0.008. For typical
experiments on bubble collapse with larger (1 mm) bubbles, N is even smaller. So for
several practical applications neglecting surface tension is justified.

On the other hand, a parametric study of the influence of the polytropic exponent
would allow to confirm the generality of the scaling laws we have found numerically
and predicted theoretically. Moreover, while adequate for describing the general picture,
the simple theory we propose is not able to explain the fact that the scaling we find
numerically is clearly valid not only in the inviscid limit but across the whole range of
Reynolds numbers we investigated. This remains an open question.

From a more practical point of view, it would be interesting to investigate how our
phase diagram for jet impact influences our understanding of cavitation damage for real
distributions of bubble sizes in experiments of hydrodynamic cavitation. If a majority of
cavitation bubbles fall in the zone of the phase diagram where no jet impact is possible
then cavitation damage would most probably be due only to the overpressure caused by
the bubble collapse.
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