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Abstract

Two-dimensional, non-linear, Boussinesq, non-hydrostatic simulations of internal
solitary waves breaking and running up uniform slopes have been performed using
an adaptive, finite volume fluid code “Gerris”. It is demonstrated that the Gerris
dynamical core performs well in this specific but important geophysical context.
The “semi-structured” nature of Gerris is exploited to enhance model resolution
along the slope where wave breaking and run-up occur. Comparison with labora-
tory experiments reveals that the generation of single and multiple turbulent surges
(“boluses”) as a function of slope angle is consistently reproduced by the model,
comparable with observations and previous numerical simulations, suggesting as-
pects of the dynamical energy transfers are being represented by the model in two
dimensions. Adaptivity is used to explore model convergence of the wave breaking
dynamics, and it is shown that significant cpu memory and time savings are possible
with adaptivity.

Key words: Internal wave breaking; modelling.

1 Introduction1

Breaking internal solitary waves (ISWs) are considered to be important con-2

tributors to the energy required for mixing in the coastal zone (see, e.g., the3
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review by Helfrich and Melville (2006) and references therein). This is sup-4

plemented by recent observations (Bourgault et al 2007) of a train of ISWs5

impacting a coastline; integral to the study is a model comparison since it6

is noted that the general nature and predictability of ISWs remain largely7

unquantified. Furthermore, parameterisation of such energetic overturning for8

large scale models is hampered without detailed process scale modelling allied9

to field work. To that end this paper considers how high resolution modelling10

of such processes might be efficiently obtained using adaptive simulation tech-11

niques.12

In a previous paper (Popinet and Rickard, 2007) an extension of an existing13

adaptive fluid code “Gerris” (Popinet, 2003 and 2006) for use with geophysical14

flows was described. The main issue was to demonstrate (via a series of test15

cases) that an “A-grid” formulation in Gerris comprising spatially collocated16

variables that allows for the use of adaptivity would not seriously compromise17

geophysical requirements (in particular geostrophic balance); the nature of the18

spatial operations (“approximate projection method”) was shown to introduce19

a small amount of damping to the inertia-gravity waves while leaving the large20

scale flows relatively unhindered. Popinet and Rickard (2007) showed that21

Gerris was more than competitive in this regard in comparison to other non-22

standard ocean models. The test cases also demonstrated how the finite volume23

grid structure provided a significant advantage when it came to resolution and24

representation of the interaction with boundaries.25

Although Popinet and Rickard (2007) showed the potential for a three di-26

mensional geophysical extension of Gerris, the adaptivity was limited to the27

horizontal plane only, with depth projection through vertical z-level stacked28

layers. Furthermore, most of the test cases focussed on the horizontal geophys-29

ical responses of the model. In this paper the aim is to look in more detail30

at the vertical properties, in particular the integration of Boussinesq accelera-31

tions into the model in the context of non-hydrostatic simulations of internal32

solitary wave (ISW) breaking as an overall “assessment” of Gerris in the spirit33

suggested by Berntsen et al (2006). In this paper adaptivity operates in both34

the horizontal and vertical, removing the limitation of stacked layers.35

Adaptive methods have long been recognised as potentially allowing efficient36

access to the multi-scale nature of geophysical flows. Examples for structured37

models include Blayo and Debreu (1999), and Burchard and Beckers (2004)38

and Hanert et al (2006) for vertical processes, Behrens (2005) in the context39

of atmospheric flows, and for unstructured models Piggott et al (2008) and40

references therein. The examples and tests in Piggott et al (2008) illustrate41

the adaptive potential, including both two and three dimensional flows, and42

the issues described (particularly geophysical scale pressure interacting with43

buoyancy) are those considered for the “semi-structured” Gerris here and by44

Popinet and Rickard (2007).45
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The approach we will take with Gerris is that of Bourgault and Kelley (2004)46

(as advocated by Berntsen et al, 2006) in that a non-hydrostatic model in-47

tended for use at coastal scales first be validated against existing observa-48

tional data, in this instance the laboratory experiments of Helfrich (1992) and49

Michallet and Ivey (1999). Confidence in a model at these scales provides for a50

potential benchmark when assessing model performance at geophysical scales.51

The motivation for this paper is to demonstrate that the collocated Gerris52

A-grid can indeed function readily with vertical Boussinesq accelerations and53

viscosity included. For the inter-model comparisons a “standard run” (see54

later) is used in order to allow reasonable coverage of the parameter space. In55

these standard runs the semi-structured Gerris grid is used to provide for en-56

hanced (but fixed) resolution along the sloping surface where boundary layers57

are anticipated to evolve. A series of simulations will also be used to explore the58

resolution dependence of the model solutions (both fixed and adaptive grids),59

and to quantify the relative efficiency of the adaptivity. The comparisons show60

that Gerris represents an efficient modelling tool for the investigation of the61

nature of bolus generation, propagation, and eventual decay as a result of the62

ISW breaking.63

2 Problem definition and model tests64

In this study the coordinates are (x, y, z, t), where (x, y) and z are the horizon-
tal and vertical coordinates, respectively, and t is time. With the Boussinesq
approximation, the incompressible, non-hydrostatic equations in a Cartesian
reference frame become,

∂tU + U · ∇U = −
1

ρ0

∇p −
ρ′

ρ0

g + ν∇2U (1)

for momentum,

∇ · U = 0 (2)

for continuity,

∂tρ + U · ∇ρ = K∇2ρ (3)

for density ρ(x, y, z, t) = ρ0 + ρ′(x, y, z, t) for constant ρ0, with U ≡ (u, v, w)65

the components of the velocity, and the vector g = (0, 0,−1)g with g the66

constant acceleration due to gravity.67

The initial model density ρ(x, y, z, t = 0) = ρ0 + ρ′(x, y, z) is set with ρ0 =
1000.0 kgm−3, and

ρ′(x, y, z) =
∆ρ

2

(

1 + tanh

[

z − zi − ζ(x)

∆h

])

, (4)
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where,

ζ(x) = 2ai sech
2

(

x

2W

)

, ai W
2 =

4(d−d+)2

3(d− − d+)
, (5)

where x is the distance from the left hand edge of the domain. With ζ = 0,68

equation 4 establishes a pycnocline of characteristic width ∆h centred about a69

distance zi below the top of the domain, with ∆ρ defining the change in density70

across the pycnocline. For finite ζ a perturbation of amplitude 2ai is added (see71

the sketch in Figure 1). The aim is to establish an ISW of amplitude a0 = ai72

propagating toward the slope. The profile mimics the initial conditions in the73

Helfrich (1992) and Michallet and Ivey (1999) experiments, and uses functional74

forms considered by Segur and Hammack (1982), Bogucki and Garrett (1993),75

and Bourgault and Kelley (2003).76

Insert Figure 1 here77

The numerical scheme used by the adaptive model to solve these equations is78

described in Appendix A. Most of the details have been presented previously79

(e.g. Popinet (2003), and Popinet and Rickard (2007)); however, the intro-80

duction of the Boussinesq terms interacting with viscosity in this particular81

context represents a new extension of the adaptive model, and so it is relevant82

to summarise the numerics.83

For the present experiments, no normal flux conditions apply to the side and84

bottom surfaces. No-slip boundary conditions apply on the bottom boundary85

(both the level run-up of length LR in Fig. 1, and the slope), while free slip86

conditions apply to the left hand boundary. There is no bottom friction. The87

top boundary is a rigid lid. Unlike Bourgault and Kelley (2007) we do not88

consider the impact of a sidewall friction that they are able to use in their89

laterally-averaged model. To that end our runs are purely two dimensional90

(i.e., the “free-slip side walls” as described by Bourgault and Kelley (2007)).91

2.1 Model “standard run”92

To be able to explore the parameter space observed by Helfrich (1992) and93

Michallet and Ivey (1999), and to be able to provide comparison with other94

model solutions, a “standard run” (see below) is defined. Adaptivity will be95

used later to explore convergence properties of our solutions. The impact of the96

use of adaptivity in Gerris will be more completely explored in a companion97

paper examining the lock-release experiment (O’Callaghan et al, 2009, pers98

comm).99

For reference, a “standard run” will use constant viscosity and diffusivity100

values of 1.0 × 10−6 m2s−1, and will not use adaptivity. Spatially, most of the101

domain will be covered with a level of resolution of 7, i.e., the grid spacing102
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(the same in the x and z directions) will be “H” the depth of the fluid (see103

Figure 1) divided by 27, so that in this case with H = 0.15 m, the grid spacing104

is 1.17×10−3 m. At this level of resolution, Gerris has grid spacing comparable105

to that used by Berntsen et al (2006) and Bourgault and Kelley (2007). In106

anticipation of boundary layers along the slope, the semi-structured Gerris grid107

is exploited to give a level of resolution of 9 there. This spatial distribution is108

fixed in time for the standard runs.109

The timestep in Gerris is dynamically adjusted in order to verify the CFL con-110

dition to satisfy advection scheme stability. A maximum timestep of 1.5×10−3 s111

is used, and for all but the runs with the finest grids suffices. For example, for112

the adaptive runs described later that allow maximum levels of resolution of113

10, 11, and 12, the timestep drops to around 80, 60, and 40 per cent, respec-114

tively, relative to the maximum timestep, generally over the last 30 per cent115

of the test run time reflecting the increase of activity during wave breaking116

allied to on-going grid refinement.117

Gerris maintains second order accuracy for spatial operators by a consistent118

grid mapping from the high resolution grid along the slope to the relatively119

coarser grid covering most of the domain (see Popinet, 2003 for details). An120

example of how the grid is laid out next to the sloping boundary is illustrated121

in Fig. 2. Note that the lower boundary in Fig. 2 is that given by the line122

showing the slope. Gerris uses a “cut-cell” technique to determine the best123

boundary fit within a cell, and boundary fluxes are calculated normal to this124

boundary (see A.3).125

Insert Figure 2 here126

The standard model test runs are initialised using the parameters describing127

model experiment (d) in Table 1, in particular having a slope of 0.217, and an128

initial pycnocline depth of zi = 0.024m below the upper rigid lid of the model.129

2.2 Model test : transport coefficient variation130

Confidence in our standard model set-up was obtained from a convergence131

test where the initial grid resolution is the same, but the viscosity and diffu-132

sivity coefficients are changed. Here, the diffusivity and viscosity coefficients133

are set equal to one another, giving a Prandtl number (the ratio of viscos-134

ity to diffusivity) of 1 for the present set of experiments. This will go some135

way to demonstrating that the implicit viscous and diffusive effects from the136

numerical discretisation are not dominating the overall model solution at the137

transport values used in the majority of the runs reported.138

Figure 3 shows density contours at time 7.5 s into each run for different values139
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of the diffusivity and viscosity coefficients. As the coefficients are reduced from140

Fig. 3(a) to (d) it is apparent that the model solution at this time is different in141

each case. In Fig. 3(a) the relatively large coefficients overly diffuse the density142

profile over the time of the ISW propagation. Figure 3(b) is the reference case,143

showing contours comparable to Bourgault and Kelley (2004) (see their Figure144

10), with lighter fluid being drawn down towards the slope as the wave breaks.145

Upstream, downslope flow has compressed the pycnocline onto the slope itself;146

this downstream flow then separates where it meets the upslope flow of denser147

water, resulting in the circulation driving the lighter fluid down toward the148

slope.149

Insert Figure 3 here150

A further reduction in the diffusivity and viscosity coefficients results in Fig.151

3(c). The first thing to note is that the pycnocline to the left of the breaking152

wave is tighter than that in Fig. 3(b); even in our standard case there has been153

some diffusion acting to spread the initial profile. The upstream pycnocline154

is also tighter and further down the slope than Fig. 3(b), suggesting that the155

downslope flow has been relatively intensified. It is also clear that the top of156

the breaking wave is now able to overshoot, forming a loop of lighter material157

ahead of the upslope flow of dense material. As a result, the lighter fluid being158

drawn down behind the wave appears more restricted.159

The final reduction in the diffusivity and viscosity coefficients gives the con-160

tours in Fig. 3(d); the upstream downslope flow now appears even greater,161

such that the upstream pycnocline extends even further down the slope. It162

would seem that the overshoot of lighter fluid is being drawn by this down163

slope flow under the wave in such a way that instead of the upslope flow of164

denser fluid recirculating clockwise, it is now forced up and around counter-165

clockwise instead. The overall change in the solution from Fig. 3(c) to (d)166

shows that the model is still responding to changes in the coefficients, rather167

than being dominated by the numerical truncation errors.168

2.3 Model test : impact of adaptivity169

Using adaptivity, solution convergence for a specific case of a model initialised170

as the standard run can be explored. Now each of the model initial condi-171

tions are the same, but the maximum allowable level of resolution is changed172

for each run. This strategy assesses solution dependence on the grid resolu-173

tion. Adaptivity is based on resolution of selected spatial scales, e.g., vorticity174

norms, tracer gradients, as quantified by equations (A.13) and (A.14), respec-175

tively. As a run proceeds, these spatial scales are diagnosed, and if deemed176

to be under-resolved, a grid refinement then operates until either the spatial177
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scales are resolved or the maximum allowable resolution has been reached. The178

scheme also allows for coarsening so as not to waste resources as gradients relax179

(except along solid boundaries where resolved scales must not change). The180

refinement preserves the space and time second order accuracy of the model.181

The parameters determining this time-adaptive behaviour then become extra182

model convergence parameters, in this case the maximum allowable resolution183

and the parameter ǫ in the adaptivity criteria, where equations A.13 and A.14184

define ǫ in section A.4 in the Appendix. For the majority of adaptive runs, a185

single value of ǫ = 5.0×10−2 is used, and the adaptive criteria are here applied186

to the density and vorticity. In cases of multiple adaptative criteria, cells are187

refined whenever they violate either of the refinement criteria, and coarsened188

whenever all the coarsening criteria are met.189

An example is shown in Fig. 4. Standard run density contours at time 7.5 s190

into the run are shown in Fig. 4(a). An adaptive run that is initialised exactly191

as for the standard run, but is allowed to adapt up to a maximum level of192

resolution of 12 (based on the local density gradient and/or the vorticity), is193

shown at the same time in Fig. 4(b). The difference between these frames is194

contoured in Fig. 4(c). By comparing Figs. 4(a) and (b), it is apparent that195

the adaptive run results in some different features, notably the tightening of196

the contours for the downslope flow as it is forced to rotate around the denser197

fluid, the extended counter-clockwise roll-up of lighter fluid, and the sharper198

finger to its right. Figure 4(c) contours the density differences; these differences199

range from −16 to 10 kgm−3 relative to the constant background density of200

1000 kgm−3, so there are percentage changes of around 1% or so. Since the201

majority of contours between Figs. 4(a) and (b) are similar, it would seem202

that most of these changes represent a shift in position of features, rather203

than gross amplitude errors. Regardless, it is clear that the standard run is204

different when adaptivity in time is used.205

Insert Figure 4 here206

To illustrate the relationship between the adaptivity and the dynamics, Fig. 5207

contours the resolution levels underlying the solution in Fig. 4(b). The range208

of levels chosen for this solution range from 7 (the coarsest) to 12 (the finest).209

The dynamically evolving resolution is determined by the refinement criteria,210

and the maximum allowed level of resolution. For this instance, these criteria211

combine to cover the wave breaking region with levels 8 to 10, with most of the212

domain remaining at the original value of 7. The level 10 regions are further213

extended to cover the boundary layers along the slope to resolve the evolving214

flows.215

Insert Figure 5 here216

To better quantify the convergence consider the above experiment run out to217
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7.5 s using adaptive runs that allow for maximum levels of refinement of 10, 11,218

and 12. In these runs the initial grid is at level 7 nearly everywhere, except for219

close to the solid boundary where the maximum level is set. At each timestep220

the adaptive criteria are checked, and if violated grid refinement takes place.221

The maximum differences in density and speed at time 7.5 s for the adap-222

tive sequence for (10 − standard, 11 − 10, 12 − 11) were (16.6, 3.5, 2.5) kgm−3
223

and (4.8, 1.06, 0.6) cms−1, respectively. The runs were still converging as the224

maximum level of resolution was increased, but there has been a relatively225

significant change between refinement levels 10 and 11.226

Adaptivity is only useful if it proves to be more efficient than the equivalent227

non-adaptive run initialised everywhere with the finest resolution obtained228

in the adaptive run, and if the adaptive and constant resolution solutions229

converge. To that end constant resolution versions have been run as above230

to time 7.5 s using initial uniform levels of refinement of 5 to 10. For these231

two dimensional runs, the total cpu memory increases by 4 for each increase232

in level, here 1 Mb for level 5 up to 1002 Mb for level 10. For the single cpu233

workstations used in this study, levels 11 and 12 at regular resolution exceeded234

the resources, and could not be run. However, cpu timings showed that for235

each level change, the cpu increases by around 5, going from 0.007 days for236

level 5 to 10.3 days for level 10, so that levels 11 and 12 would require at least237

50 and 250 days, respectively, to get to time 7.5 s.238

In comparison, the adaptive run with maximum level of 10 requires 0.79 days239

to reach time 7.5 s, and uses a maximum of 45 Mb of memory. For refinements240

up to 11 and 12, the cpu times and maximum memories are 2.2 and 4.9 days,241

and 57 and 81 Mb, respectively. For each maximum level change, the cpu242

time increases by between 2 and 3, not only due to memory increases but also243

because the timestep starts to decline to satisfy the advective CFL condition244

for the finest resolution. In comparison to its constant resolution counterpart245

(recalling the values for 11 and 12 are conservative estimates), the adaptive246

run uses factors of 22, 70, 198 and 13, 23, 50 less for memory and cpu time,247

respectively, for levels 10, 11, and 12. In terms of total numbers of grid cells,248

the adaptive runs use maximums of 116974, 145203, and 197613 for levels249

10, 11, and 12, respectively, factors of 23, 76, and 222 times less than the250

respective constant resolution runs, reflecting the memory changes.251

So, if the adaptive run at a given level is accessing all the scales of its constant252

resolution counterpart, then it’s clear that the adaptivity will provide great253

cpu time efficiency, here increasing up to a factor of 50. These gains are case254

dependent, and will increase as the volume of fine scales reduces compared255

to the domain volume. As Fig. 5 shows, the high resolution region is mainly256

confined to the wave breaking zone.257

Without an analytic solution, model consistency is checked using convergence.258
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The maximum density and speed differences for (6 − 5) down to (10 − 9) for259

the constant resolution runs were260

(34.0, 28.0, 20.0, 16.0, 8.0) kgm−3 and (14.0, 11.0, 8.0, 3.7, 3.2) cms−1
261

for density and speed, respectively. As with the adaptive sequence above, con-262

vergence is clear. Finally, taking the level 10 constant resolution solution as263

a reference, the differences between it and the standard run and the level 10,264

11, and 12 adaptive runs are265

(15.0, 5.0, 4.0, 4.0) kgm−3 and (4.7, 1.05, 1.05, 1.5) cms−1
266

for density and speed, respectively. Again, convergence is clear, but some sat-267

uration as the adaptive models are accessing some finer scales.268

Could we have started with a relatively low level of resolution and then allowed269

adaptivity to fill in evolving scales as required? In general no, as the initial270

conditions and the boundaries need to be adequately resolved at the outset;271

adaptivity cannot in general compensate for initially unresolved scales implied272

by the boundaries or initial stratification. For a uniform medium at rest with273

regular boundaries, this strategy works well (see Popinet (2006) for examples),274

and maximises the adaptive gain. In these ISW simulations, under resolution275

of the initial stratification will result in cumulative errors later in time. The276

resolution of the standard run is perhaps a compromise between adequately277

capturing the initial scales, and spanning the parameter space in reasonable278

time.279

In summary, these model tests show that;280

(1) the implicit viscosity and diffusivity of the numerical discretisation is281

not dominating the overall solution for values of 1 × 10−6 m2s−1 for the282

viscosity and diffusivity for the standard run;283

(2) differences of around 1 per cent remain in the density as a result of under284

resolution when not using the adaptivity in time for the standard run;285

(3) adaptivity can provide factors of up to 50 times saving in cpu time relative286

to the equivalent constant resolution run at the maximum resolution of287

the adaptive run. This scaling arises here because the wave breaking288

volume is comparatively compact, and the efficiency of the adaptive grid289

scheme in Gerris.290

To explore a wider parameter space, model results using the standard run291

configuration are compiled and discussed. To provide comparison with the292

Helfrich (1992) and Michallet and Ivey (1999) observations, and the numerical293

results of Bourgault and Kelley (2007), slopes as shallow as 0.034 relative to294

the standard run’s of 0.217 will be simulated. The shallowest slope requires295

a domain 5 times larger and needs to run for at least 5 times as long as the296

standard run in order to capture the wave breaking. From a resource point,297

adaptive runs may have been feasible, but given that the percentage differences298

might be around 1 per cent, and that the wider context is testing the Gerris299
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dynamical core, the standard run configuration will be presented. As we shall300

see, experimentally observed turbulence at the time of wave breaking does not301

occur in the simulations, and so there is clear scope for future adaptive runs302

to capture finer scales and the third dimension.303

3 Model Results304

In this section, model results from the experiments listed in Tables 1 and 2305

are described. The intention is to compare Gerris to the laboratory experi-306

ments of Helfrich (1992) and Michallet and Ivey (1999). Comparisons with307

the laterally-averaged non-hydrostatic model of Bourgault and Kelley (2007)308

(as described in Bourgault and Kelley (2004)) are also made. Each run in this309

section is initialised as per the standard run in terms of grid resolution, with310

no adaptivity, and with diffusivity equal to viscosity of 1.0 × 10−6 m2s−1.311

The phenomena of interest are the wave breaking process and subsequent312

turbulent vortex (“bolus”) generation, bolus propagation, and the energetics313

resulting from the wave breaking, in particular what proportion of the incom-314

ing energy flux is reflected (and hence how much is left for mixing processes315

up-slope).316

3.1 Wave breaking turbulence317

In the Michallet and Ivey (1999) experiments they identify instability associ-318

ated with three-dimensional motion. This instability and subsequent turbu-319

lence is apparent in the sequence of frames in their Figure 3, from the time that320

the initial wave breaks until later as the bolus runs upslope. Helfrich (1992)321

similarly identifies an initial patch of wave instability (or “break point”) from322

shadowgraphs, and consequently defines the position of this break point to be323

the “maximum offshore location of the initial patch of turbulence”.324

Gerris does not produce such instability or turbulence as the initial wave325

breaking takes place, in common with Bourgault and Kelley (2004). Even as326

the model resolution and viscosity and diffusivity are varied (see Figs. 3 and 4327

for example), the pycnocline to the left of the breaking wave remains relatively328

coherent, with none of the clear filamentary structure seen in Michallet and329

Ivey (1999). The most likely explanation – as proffered by Bourgault and330

Kelley (2004) – is that the two dimensional models are missing important331

three-dimensional processes.332

This is not to imply that the model pycnocline is not “dynamic”. Indeed, as the333
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slope is reduced and the number of boluses increases, a complex structure of334

vortices and density develops from which each bolus emerges (not shown). As335

the overturning and wave breaking processes diminish so does the pycnocline336

complexity, slowly returning toward a stable, final structure.337

We identify a model break point by comparison with Figures 3c and 4a in338

Michallet and Ivey (1999), and their observation that “the first sign of breaking339

seems to be a gravitational instability, following the separation of the flow in340

the lower layer”. Diagnosis of model flow vectors and vorticity allied to density341

contours shows when the lower layer flow first separates from the slope, leading342

to the formation of a clear counter-clockwise circulation beneath the wave; this343

we identify as our break point. Beyond this point, the counter-clockwise vortex344

intensifies and enlarges, such that at later times a bolus is formed; this follows345

the sequence of Figures 3c to 3e and 4a to 4c in Michallet and Ivey (1999).346

3.2 Bolus Identification347

Using model experiment 2 in Table 1 as an example, Figure 6 shows a snapshot348

at time 37.5 seconds into the run. In Fig. 6(a) for density contours there349

are three distinct and discrete features with core densities labelled as 1016.0350

and 1028.0 kgm−3 above that of the surrounding material. Following Helfrich351

(1992), each of these counts as a bolus since they exist beyond the undisturbed352

pycnocline-slope intersection (indicated by the horizontal line in the model353

domain in each frame). Note that the vertical scale is stretched four times354

relative to the horizontal for clarity.355

Insert Figure 6 here356

Figure 6(b) shows horizontal flow, with positive (up-slope flow) contours within357

each bolus (with peak values of 4.0 and 5.0 cms−1), and negative (down-slope358

return flow) contours extending from just above each bolus to the model do-359

main rigid lid at the top (indicated by the 2.0 cms−1 contour). This shows that360

these density anomalies are not stationary. Lastly, Fig. 6(c) contours vorticity,361

showing discrete structures for each bolus comprising a positive vorticity “cap”362

indicating local counter-clockwise circulation (labelled with the 1.34 s−1 con-363

tours) overlying negative vorticity locally clockwise circulation (the −3.34 s−1
364

contours).365

However, the Helfrich (1992) experiments showed that boluses are generated366

below the undisturbed pycnocline-slope intersection as a result of the ISW367

breaking process. In Fig. 6 signatures of a fourth bolus are apparent within368

the bound of the pycnocline-slope intersection; there is discrete density (but369

not as obvious as those further up the slope indicated by the 1032 kgm−3
370

contour), there is upslope flow of around 3.0 cms−1 with return downslope flow371
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above, and a consequent positive vorticity cap with less clear negative vorticity372

below. This is typical of the model bolus structure below the pycnocline-slope373

intersection – and particularly so for the emergence of subsequent boluses after374

the first one – in that the bolus signatures tend to be less distinct.375

Nevertheless, by identifying each new bolus in terms of its density, upslope376

flow, and vorticity, it is possible to build up a picture of their history from close377

to initial wave breaking until they are well up the slope. An example of such a378

time history is plotted in Fig. 7 for model experiment 2 showing the evolution379

of four boluses moving upslope, the first identified with crosses, the second380

squares, the third and fourth triangles and diamonds, respectively. Each bolus381

trajectory is plotted in terms of its position relative to the pycnocline-slope382

intersection (x/XBP = 0) as a function of time. The character of these trajec-383

tories compare well with those described and plotted by Helfrich (1992) for his384

Figure 8, in particular the fact that each bolus is generated for x/XBP < 0 (the385

horizontal dashed line), that subsequent boluses first appear further up the386

slope than their predecessors, and that boluses can be overtaken and absorbed387

by boluses following on from behind.388

Insert Figure 7 here389

In summary, bolus identification in these two dimensional model runs can be390

done using density (relative to local background values), zonal velocity, and/or391

vorticity signatures. Bolus identification below the undisturbed pycnocline-392

slope intersection is undoubtedly messy, especially for any subsequent boluses,393

but by tracking backwards from where they emerge identification can be made.394

These techniques have been used to compile the bolus statistics for the model395

experiments in this paper.396

3.3 First Bolus Evolution397

Typical evolution of the first bolus from close to its emergence until propaga-398

tion well upslope is illustrated in Figs. 8 and 9, again for model experiment 2399

in Table 1. Figure 8 shows contours of density, while Figure 9 combines con-400

tour lines of vorticity with velocity vectors (the latter at a relatively coarser401

level of resolution of 6 for clarity) to show the circulation. In each figure the402

frames (a), (b), (c), and (d) are at times 22.5, 27.0, 30.0, and 37.5 seconds403

into the run, respectively. The size of each frame is proportional to the height404

of the bolus at that time (with the bolus heights detailed in the Fig. 8 cap-405

tion for reference). Frames (a) and (b) are for bolus positions downslope of406

the undisturbed pycnocline-slope intersection, while frames (c) and (d) are407

upslope.408

Insert Figure 8 here Insert Figure 9 here409
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The initial model bolus tends to have three elements clearly delineated in410

the density and flow fields. This overall structure is contained by the strong411

downslope flow ahead of the bolus that separates at its front, then passes412

over the top of the bolus, with re-circulation at the back of the bolus. The413

three bolus elements comprise two counter-clockwise rotating cells (at the414

back and front), with a clockwise rotating cell between them. Note that the415

velocity vectors have been thinned for clarity. However, the vorticity contours416

are based on the full resolution, and the tightening of contours close to the417

slope show the presence of boundary layers.418

Dense upslope flowing fluid is drawn into the back of the bolus, and entrains419

with lighter fluid being circulated around the left-most vortex. This fluid then420

circulates and mixes within the core of the bolus. Note that this mixing process421

continues to dilute the density within the bolus as it propagates upslope, such422

that the maximum density in frame (a) of 1047.0 kgm−3 steadily reduces to423

1017.0 kgm−3 by frame (d) in Fig. 8.424

A characteristic bolus height and base length can be obtained from the evolv-425

ing bolus structure. The height is the maximum distance from the slope up to426

where the down slope flow vectors intersect the density contours at the bolus427

top, locating the transition between the core bolus and background densities.428

As this density difference reduces as the bolus propagates upslope, the transi-429

tion sharpness declines, but the bolus top is still indentifiable via flow vectors.430

Similarly, bolus base length can be defined in terms of the distance between431

the upward flow at the bolus leading nose to downward flow at the bolus rear432

edge. Again, these locations can be correlated with density gradients to iden-433

tify the bounds of a single bolus. The solid lines on frames (b) in Figs. 8 and 9434

illustrate these definitions. It is clear that the overall dimensions of the bolus435

change, with general shrinkage in both height (going from 0.03 m in frame (a)436

to 0.0144 m by frame (d)) and base length (from 0.05 m in (a) to 0.03 m in437

(d)) as the bolus progresses upslope.438

It is also clear that the bolus three cell structure changes as it moves upslope.439

It would seem that the cell at the front of the bolus shrinks (most evidently in440

density), and that the left-most vortex seems to extend over the middle vortex441

such that at the later times the typical cap structure in vorticity is obtained.442

This is perhaps in response to the change in flow field. Note that in frames (a)443

and (b) in Fig. 9 the velocity vectors show that there is downslope flow into444

the nose of the bolus. However, in frames (c) and (d), where the bolus is now445

moving beyond the undisturbed pycnocline-slope intersection, this downslope446

flow disappears to be replaced by upslope flow. The bolus structure at these447

later times is consistent with that seen in other models (e.g. Härtel et al (2000)448

and Venayagamoorthy and Fringer (2007)), and similar to gravity current head449

structures described by Simpson (1972, 1997).450
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3.4 Model bolus validation451

The bolus properties examined by Helfrich (1992) in his experiments for a
parameter space dependent on the initial densities, pycnocline depths, and
slope angle, can be diagnosed from Gerris to provide for a more quantitative
evaluation of the model. While particular experiments of Helfrich (1992) are
not modelled directly, the observational space in terms of the parameter λ will
be explored, where

λ = (kL)−1, k−1 =

√

√

√

√

4(d+d−)2

3(d+ − d−)a0

, (6)

where L, d+, and d− are defined in Fig. 1, and a0 is the maximum displacement452

of the incoming wave. All of the model experiments in Tables 1 and 2 will be453

used and plotted against their reference label, i.e., 1-4 and a-i. Note that454

experiments 1-4 and a-d are parallel in every regard except the initial depth455

of the pycnocline; this then changes the respective value of λ.456

Figure 10 plots breaking location in terms of a0/dBP as a function of λ for457

comparison with Helfrich’s (1992) Figure 6. Both show a tendency for an458

increase of a0/dBP as λ decreases. For the larger range of λ used here, the459

model suggests that the breaking location actually saturates as λ increases.460

The model values for a0/dBP are typically 0.2 or so higher than those found461

in the experiments. As described earlier, identifying the break point in the462

model is difficult due to the lack of an initial patch of instability seen in the463

experiments.464

Insert Figure 10 here465

The number of boluses in each experiment as a function of λ is shown in Fig.466

11 for comparison with Helfrich’s (1992) Figure 9. The model captures the467

dependence with λ well, showing a typical increase in the number of boluses468

as λ decreases. Furthermore, the multiple-bolus characteristics shown in Fig.469

7 fit that seen and discussed by Helfrich (1992) with respect to his Figure 8.470

Note that the model results do not suggest an absolute scaling with respect471

to λ. Rather, for each sequence of “similar” experiments, i.e., 1-4, a-d, e-i, the472

scaling with λ indeed holds, but the number of boluses for a given λ can vary.473

Insert Figure 11 here474

The initial height of the first bolus in Fig. 12 compares favourably with Hel-475

frich’s (1992) result in his Figure 10, both covering the range 1 to 2 over the476

values of λ sampled. The agreement is relatively good given the uncertainties477

in estimating the time and then the actual first bolus height (see the definitions478

and error estimates quoted by Helfrich).479
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Insert Figure 12 here480

Frames (a)-(c) in Fig. 13 show the first bolus aspect ratios (H/lb) as a function481

of distance for the model experiments for comparison with Figure 11 in Helfrich482

(1992). The major consistent difference across the models is their tendency to483

have the aspect ratio somewhat larger than observed; Helfrich shows values484

in the range 0.2 to 0.4 (given his estimated uncertainties), whereas the model485

aspect ratios are typically in the range 0.4 to 0.8. Helfrich also notes a tendency486

for the aspect ratio to increase with distance; this general tendency is not so487

apparent in the model, but there are certainly individual instances where this488

does occur.489

Insert Figure 13 here490

The decay of the first bolus height with distance is shown in Fig. 13(d)-(f) for491

comparison with Helfrich’s (1992) Figure 12. The near linear decay observed492

by Helfrich is reproduced by nearly all of the model experiments. In some of493

the model experiments (particularly in Fig. 13(f)) the bolus height is seen to494

increase at early times in the bolus evolution; again uncertainties in timing of495

measurements between the observations and models may contribute to these496

differences.497

3.5 Energy Reflectance498

As a final consideration, comparisons with energy reflectance results from499

Bourgault and Kelley (2007) are made, specifically their free slip sidewall re-500

sults shown in their Figure 6. Bourgault and Kelley (2007) covered all of the501

Michallet and Ivey (1999) experiments in compiling their results. In this study502

we have focussed on specific experiments labelled e-i in Table 2 corresponding503

to experiments 4, 8, 12, 7, and 13, respectively, from Table 1 in Michallet and504

Ivey (1999); results from the latter are reproduced in Table 3. The Gerris wave505

amplitudes (a0) in Table 2 match fairly well, although they tend to typically be506

a few percent less than measured. The comparison for the characteristic length507

Lw shows that the model responded a little more erratically, with slight over-508

estimates for shorter Lw but with relatively larger underestimates for longer509

Lw (experiments h and i).510

For direct comparison with the model results of Bourgault and Kelley (2007),
the energy reflectance “R” was diagnosed, where

R = ER/E0, (7)

where E0 and ER (as defined by equations 7 and 8 in Bourgault and Kelley
(2007)) are the energy fluxes measured at the base of the slope for the initial
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incoming and first reflected waves, respectively. The reflectance provides an
important measure of the likely amount of mixing induced by the breaking
of these waves, and scaling their behaviour for parameterisation in larger and
climate scale models remains relevant. To validate their model, Bourgault and
Kelley (2007) compared the dependence of their model R in terms of the
Iribarren number (Iribarren and Nogales (1949) ξ where,

ξ = s/
√

(a0/Lw), (8)

where s is the slope, for the Michallet and Ivey (1999) experiments. Bourgault
and Kelley (2007) found their free slip sidewall model R values are typically 0.1
larger than the equivalent experimental values. They showed that by including
no slip sidewalls close agreement with the laboratory experiments could be
obtained. In terms of the free slip sidewall runs, Bourgault and Kelley (2007)
performed a curve fit to their results and obtained a parameterisation of the
form,

R = 1 − e−ξ/ξ0 , (9)

where a least squares fit returns ξ0 = 0.78 ± 0.02.511

The results from the Gerris experiments are summarised in Figure 14 showing512

R as a function of ξ.513

Insert Figure 14 here514

The Gerris results for R show that experiments e, f, g, and h have reflectance515

estimates close to those of Bourgault and Kelley (2007) (the bold curve), and516

with a similar dependence on ξ. The only anomaly is experiment i, which falls517

closer to the Michallet and Ivey (1999) R value.518

For comparison, Fig. 15 plots the individual energy fluxes as a function of time519

used to calculate the reflectances for model experiments e to i. The bold curve520

for experiment f in Fig. 15(b) compares favourably with that from Figure 3 in521

Bourgault and Kelley (2007), and indeed the value obtained for R is close to522

that found in their model. Note that the character of each energy flux curve523

changes with slope, the density jump ∆ρ, and the depth of the pycnocline zi,524

so that the incoming energy flux and first return pulse can be relatively close525

or widely separated in time from each other.526

Insert Figure 15 here527

It is encouraging that the tendency for increasing R with ξ is reproduced by528

Gerris and generally in close agreement with Bourgault and Kelley (2007)529

model results. The only outlier is experiment i. In terms of differences, it530

is clear that the time history of energy flux for experiment i has quite a531

narrow time separation between the incoming and first return pulse relative532

to the other experiments. Experiment i also has a significantly larger value of533
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λ (equation 6) than all the other experiments (see Tables 1 and 2). It is clear,534

however, that further runs will be needed to cover the full range of Michallet535

and Ivey (1999) experiments in order to assess and understand how anomalous536

the experiment i reflectance result is.537

4 Conclusion538

Multi-scale, non-hydrostatic simulations of geophysical flows represent a sig-539

nificant computational challenge. In this paper the potential of an adaptive (in540

space and time) model, Gerris, is explored, in terms of validation against lab-541

oratory scale experiments, and against other models benchmarked in a similar542

fashion. Gerris combines a tree-based structure with a finite-volume discretisa-543

tion for efficient adaptivity, thereby allowing for local refinement over fine scale544

features without the need for excessive refinement over less dynamic parts of545

the domain. The ability of Gerris to handle largely horizontal geophysical pro-546

cesses was demonstrated in Popinet and Rickard (2007). This paper extends547

that work by looking in more detail at vertical processes.548

The flexible grid structure of Gerris allows for selective refinement in the model549

domain. Here this property is exploited to allow for increased refinement along550

the sloping boundary to better resolve evolving boundary layers. For most of551

the runs in this paper this spatially non-uniform grid is fixed in time (for552

our so-called “standard runs”) in order to be able to span the parameter553

space of interest, and to allow comparison with previously published model554

output. Similarly, the diffusivity and viscosity coefficients have been restricted555

for comparison purposes. All the runs in this paper were done on single CPU556

workstations, but note that Gerris is fully parallelised.557

For the adaptive runs, efficiency can be measured by comparison with a version558

comprising constant resolution equal to the finest resolution of the adaptive559

run. By this measure the adaptive run requires some 10 to 50 times less cpu560

time, and up to 22 to 200 times less memory (dependent on maximum allowed561

resolution) than the constant resolution run for the breaking waves. This gain562

is clearly problem dependent, as it will be proportional to the volume fraction563

in which the finest scales arise.564

The general dynamical features of internal solitary waves breaking on uniform565

slopes reported by Helfrich (1992) and Michallet and Ivey (1999) are repro-566

duced by Gerris, especially given the experimental uncertainties, and the fact567

that the model simulations are two-dimensional and use a rigid lid rather than568

a free surface as a top boundary condition. The absence of turbulent genera-569

tion at the time of wave breaking in the models has been attributed to the lack570

of a third dimension (and so will require future simulations). Nevertheless, the571
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overall correspondence between the model and observations suggests that the572

major energy conversion processes involved in wave breaking leading to bolus573

generation can be largely captured in two dimensions. Some of the detailed574

diagnostics show that the model gets the general time evolution correct, but575

that amplitudes can be wrong (for instance, in terms of the bolus aspect ratio).576

For the tests in this paper we have limited ourselves to two dimensions, and577

so have not further explored the issues of side wall interactions considered by578

Bourgault and Kelley (2007). The latter find that they need to introduce side579

wall friction effects into their model in order to reproduce the experimentally580

obtained energy reflectance values of Michallet and Ivey (1999). Furthermore,581

Bourgault and Kelley (2007) find that the Helfrich (1992) reflectance values582

are 0.1 to 0.4 smaller again than Michallet and Ivey (1999); the reasons for583

this are unclear, but Bourgault and Kelley (2007) suggest that again side-584

wall effects have an influence, as well as the different Helfrich (1992) tank585

geometry. Given these uncertainties should we expect to be able to reproduce586

the Helfrich (1992) bolus evolution results with our present numerical exper-587

iments? Perhaps not, but the similarities between the model and experiment588

suggest that perhaps the lateral effects are not dominating the wave breaking589

process; nevertheless, more complete answers will have to wait for fully three590

dimensional simulations.591

Aspects of bolus evolution are revealed by the model. The boluses are gener-592

ated below the undisturbed pycnocline-slope intersection, and while the bolus593

is on this part of the slope, the model suggests a three cell structure to the594

bolus in which denser up-slope flowing material is mixed into the bolus in-595

terior with the lighter down-slope flowing fluid. As the bolus moves upslope596

toward the undisturbed pycnocline-slope intersection and beyond it, the bolus597

changes from three to two cells, eventually forming a structure similar to typ-598

ical gravity current heads. This bolus evolution is consistent across the range599

of model parameters explored.600

In terms of Gerris as a geophysical tool, it is encouraging that Gerris performs601

well in comparison to other non-hydrostatic geophysical models such as that of602

Bourgault and Kelley (2004, 2007), and the Massachusetts Institute of Tech-603

nology general circulation model (Marshall et al., 1997) and the Bergen Ocean604

Model (Berntsen (2000)) which are both discussed in Berntsen et al (2006) in605

terms of wave breaking tests. Adaptivity is presently enabled by collocation of606

prognostic variables, making the Gerris dynamical core unusual with regard to607

other geophysical models. The tests in this paper and previously (Popinet and608

Rickard (2007)) continue to suggest that Gerris and its adaptivity represents609

an efficient alternative to simulate multi-scale, non-hydrostatic flows.610

With isotropic adaptivity, there will be no vertical stacked layers in general.611

Unresolved processes such as vertical mixing, convection etc are parameterised612
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locally down each vertical column in many global scale models. The loss of613

this vertical structure means parameterisation amendment will be required614

in order to convert purely vertical schemes to more general forms. Further,615

selection rules will be needed to separate when and where the adaptive model616

is actually resolving or not these small scale processes. The challenge will be617

to efficiently incorporate such parameterisations without endangering other618

adaptivity gains (as discussed by Pain et al (2005) for unstructured models).619

Whether adaptivity coupled with a pressure solver for non-hydrostatic flows620

can maximise the available computational resources needs further study. A621

stumbling block is likely to be the convergence properties of the pressure622

solver in the presence of excessive grid aspect ratios, since typical geophysical623

systems have horizontal scales much larger than in the vertical. This issue624

has recently been discussed by Matsumura and Hasumi (2008) who suggest625

that there are potential acceleration techniques that can make non-hydrostatic626

multi-grid Poisson inversions competitive with their hydrostatic equivalents;627

this provides further encouragement as a multi-grid pressure solver is integral628

to Gerris.629

In this paper, density is treated as the only independent tracer. Future tests630

with Gerris will need to examine more closely an oceanic equation of state631

linking potential temperature and salinity tracers to the in-situ density. Fur-632

thermore, as the model is applied to larger geophysical systems, the potential633

for inaccuracies in the discretisation of the horizontal hydrostatic pressure634

gradient (especially across a grid that is adapting in the vertical) may exist635

and will need to be quantified. In the present laboratory scale experiments636

the influence of such errors is small; maintaining accuracy will become more637

critical for larger systems.638
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Appendix644

A Numerical discretisation of adaptive model645

The details of the numerical scheme are described in Popinet (2003) and we646

will only give a summary of the overall procedure.647

A.1 Temporal discretisation648

A staggered in time discretisation of the density and pressure leads to the
following formally second-order accurate time discretisation of the momentum,
continuity, and density equations (1), (2) and (3), respectively,

Un+1 − Un

∆t
+ Un+

1

2

· ∇Un+
1

2

= −
1

ρ0

∇pn+
1

2

−
ρ′

n+
1

2

ρ0

g +
ν

2
∇2 (Un + Un+1) ,

(A.1)
ρ′

n+
1

2

− ρ′

n− 1

2

∆t
+ ∇ · (ρ′

nUn) = 0, (A.2)

∇ · Un = 0. (A.3)

This system is further simplified using a classical time-splitting projection
method (Chorin, 1968) to give,

U ⋆ − Un

∆t
+ Un+

1

2

· ∇Un+
1

2

= −
ρ′

n+
1

2

ρ0

g +
ν

2
∇2 (Un + U ⋆) , (A.4)

ρ′

n+
1

2

− ρ′

n− 1

2

∆t
+ ∇ · (ρ′

nUn) = 0, (A.5)

Un+1 = U ⋆ −
∆t

ρ0

∇pn+
1

2

, (A.6)

∇ · Un+1 = 0, (A.7)

which requires the solution of the Poisson equation

∇ ·

[

∆t

ρ0

∇pn+
1

2

]

= ∇ · U ⋆ (A.8)

This equation is solved efficiently using the quad/octree-based multilevel solver649

described in detail in Popinet (2003).650

The discretised momentum equation (A.4) can be re-organised as

1

∆t
U ⋆ −

ν

2
∇2U ⋆ =

ν

2
∇2Un −

ρ′

n+
1

2

ρ0

g +
1

∆t
Un − Un+

1

2

· ∇Un+
1

2

, (A.9)
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where the right-hand-side depends only on values at time n and n+1/2. This651

Helmholtz-type equation for U ⋆ can be solved efficiently using a variant of the652

multilevel Poisson solver. The resulting Crank–Nicolson discretisation of the653

viscous terms is formally second-order accurate and unconditionally stable.654

The velocity advection term Un+
1

2

· ∇Un+
1

2

and the density advection term655

∇ · (ρ′

nUn) are estimated using the Bell–Colella–Glaz second-order unsplit656

upwind scheme (Bell et al 1989, Popinet 2003). This scheme is stable for cfl657

numbers smaller than one.658

A.2 Spatial discretisation659

Space is discretised using a graded quadtree partitioning (octree in three di-660

mensions). Second order accuracy is maintained in spatial operators, including661

all boundaries. We refer the reader to Popinet (2003) and references therein662

for a more detailed presentation of this data structure.663

All the variables (components of the momentum, pressure and passive tracers)664

are collocated at the centre of each square in 2d (resp. cubic in 3d) discreti-665

sation volume. Consistent with a finite-volume formulation, the variables are666

interpreted as the volume-averaged values for the corresponding discretisation667

volume. The choice of a collocated definition of all variables makes momentum668

conservation simpler when dealing with mesh adaptation (Popinet, 2003). It669

is also a necessary choice in order to use the Godunov momentum advection670

scheme of Bell, Colella and Glaz (Bell et al 1989), and it simplifies the imple-671

mentation of the Crank–Nicolson discretisation of the viscous terms; however672

one has to be careful to avoid the classic problem of decoupling of the pressure673

and velocity field.674

To do so, an approximate projection method (Almgren et al 2000, Popinet675

2003) is used for the spatial discretisation of the pressure correction equa-676

tion (A.6) and the associated divergence in the Poisson equation (A.8). In a677

first step the auxiliary cell-centred velocity field U c
⋆ is computed using equa-678

tion (A.9). An auxiliary face-centred velocity field U f
⋆ is then computed using679

averaging of the cell-centred values on all the faces of the Cartesian discreti-680

sation volumes. When faces are at the boundary between different levels of681

refinement of the quad/octree mesh, averaging is performed so as to guar-682

antee consistency of the corresponding volume fluxes (see Popinet (2003) for683

details).684

The divergence of the auxiliary velocity field appearing on the right-hand-side
of equation (A.8) is then computed for each control volume as the finite-volume
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approximation

∇ · U ⋆ =
1

∆

∑

f

U f
⋆ · n

f , (A.10)

with nf the unit normal vector to the face and ∆ the length scale of the685

control volume.686

After solving equation (A.8), the pressure correction is applied to the face-
centred auxiliary field

U
f
n+1 = U f

⋆ −
∆t

ρ0

∇fpn+
1

2

, (A.11)

where ∇f is a simple face-centred gradient operator (consistent at coarse/fine687

volume boundaries, see section 4.1 of Popinet 2003). The resulting face-centred688

velocity field U
f
n+1 is exactly non-divergent by construction. This velocity field689

is used to compute the momentum and density advection terms Un+
1

2

·∇Un+
1

2

690

and ∇ · (ρ′

nUn) so that the resulting scheme conserves mass and momentum691

exactly.692

The cell-centred velocity field at time n + 1 is obtained by applying a cell-
centred pressure correction

U c
n+1 = U c

⋆ −

∣

∣

∣

∣

∣

∆t

ρ0

∇fpn+
1

2

∣

∣

∣

∣

∣

c

, (A.12)

where the ||c operator denotes averaging over all the faces delimiting the con-693

trol volume. The resulting cell-centred velocity field U c
n+1 is approximately694

divergence-free.695

A.3 Representation of solid boundaries696

Solid boundaries are represented using the Cartesian cut-cell scheme described697

in Popinet (2003). This scheme uses surface- and volume- fluid fractions to ob-698

tain a spatially second-order accurate representation of the solid boundaries699

irrespective of their orientation relative to the underlying Cartesian discretisa-700

tion. This scheme has been shown in Popinet (2003), and Popinet and Rickard701

(2007) to compare very favourably with the simpler first-order accurate mask-702

ing commonly used in Cartesian ocean models.703

A.4 Adaptivity704

The overall scheme allows for space and time-varying spatial resolution. To705

simplify the implementation the sizes of neighbouring cells can not vary by706
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more than a factor of two (this is sometimes referred to as restricted or graded707

quad/octree).708

One of the advantages of the quad/octree disctretisation is that mesh refine-709

ment or coarsening are cheap and can be performed at every timestep if nec-710

essary with a minimal impact on overall performance (usually less than 1% of711

computation time). Interpolation of quantities on newly refined or coarsened712

cells is also relatively simple and is done conservatively both for momentum713

and density.714

Several refinement criteria can be used simultaneously depending on the prob-715

lem. Combinations of the following criteria have been used in this article:716

Vorticity
|∇ × U |∆

max(|U |)
< ǫ, (A.13)

with ∆ the mesh size and ǫ a user-defined threshold. This criterion will717

ensure that a finer resolution is used in areas of high vorticity. The threshold718

parameter ǫ can be interpreted as the maximum angular deviation from a719

straight path – due to the local vorticity ∇ × U – of a massless particle720

travelling at speed max(|U |) across a cell of size ∆. The threshold ǫ is721

usually set to a small value, typically 10−2.722

Gradient
|∇c|∆ < ǫ, (A.14)

with c a field variable. Note that the value of ǫ can be chosen differently if723

required for each adaptative criteria.724
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LIST OF FIGURES802

(1) Experimental and model set-up. Horizontal dashed line is initial undis-803

turbed centre of the pycnocline, with solid line illustrating initial con-804

ditions for model perturbed pycnocline. Slope gradient is “s”, such that805

s = H/LS = d−/L. For reference, horizontal distance from slope bottom806

to left hand domain edge is LR.807

(2) Grid layout on slope for standard run (see text). Largest squares show808

volumes associated with coarsest grid at level of resolution of 7. As the809

boundary set here by the slope (the solid line) is approached, the resolu-810

tion is increased by halving the grid size until the maximum resolution811

(here level 9) is reached. Gerris is finite volume, and accounts for cell812

changes in volume where cut by the boundary in order to return the813

correct boundary fluxes.814

(3) Density contours at time 7.5 s for viscosity and diffusivity values of (a)815

6.75 × 10−5, (b) 1.0 × 10−6, (c) 1.5 × 10−7, and (d) 1.5 × 10−8 m2s−1 for816

model experiment “d” in Table 1 in the (x, z)-plane. The height of each817

frame is 0.075 m.818

(4) Density contours at time 7.5 s for (a) standard run (see text), (b) adapting819

to a maximum level of resolution of 12, and (c) frame(b) - frame(a) in820

the (x, z)-plane. The height of each frame is 0.075 m.821

(5) Contours of resolution levels for frame (b) in Fig. 4 from lowest resolution822

at level 7 to finest resolution at level 12.823

(6) Contours at time 37.5 s for model experiment 2 in Table 1 of (a) density,824

(b) x component of velocity, and (c) vorticity in the (x, z)-plane, with825

contour intervals of (a) 4.0kgm−3, (b) 0.01ms−1, and (c) 4.67s−1. The826

height of each frame is 0.072 m. Vertical scale is four times the horizontal827

scale for clarity. Vertical lines locate root cells at horizontal spacing of 0.15828

m, and horizontal line inside model domain locates initial undisturbed829

pycnocline.830

(7) Multiple bolus trajectories plotted in terms of its position relative to the831

pycnocline-slope intersection (x/XBP = 0) as a function of time for model832

experiment 2 (see Table 1). Four boluses are shown moving upslope, the833

first identified with crosses, the second squares, the third and fourth trian-834

gles and diamonds, respectively. Horizontal dashed line locates horizontal835

position of undisturbed pycnocline-slope intersection.836

(8) Density contours for first bolus for model experiment 2 in Table 1 at837

(times (seconds), normalised positions x/XBP ) (a) (22.5, -0.28), (b) (27.0,838

-0.07), (c) (30.0, 0.06), and (d) (37.5, 0.31), respectively. Bolus trajectory839

shown as crosses in Figure 7. Contour interval for density in kgm−3 for840

frames (a,b) is 4.0, for frame (c) is 3.0, and for (d) is 2.0. Maximum841
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(density, bolus height, length, speed) is (a) (1047, 0.03, 0.05, 0.11), (b)842

(1035, 0.022, 0.033, 0.084), (c) (1032, 0.017, 0.03, 0.07), and (d) (1017,843

0.0144, 0.024, 0.047) (kgm−3, m, m, ms−1), respectively. Bold lines on844

frame (b) indicate bolus height and length.845

(9) Vorticity contours and velocity vectors for first bolus for model experi-846

ment 2 in Table 1. Velocity vectors scaled proportional to the maximum847

speed in each frame, and the contour interval for vorticity is 5.0s−1. All848

other details for frames (a)-(d) are the same as in the caption for Fig. 8.849

Bold lines on frame (b) indicate bolus height and length.850

(10) Breaking location (criterion) as a function of λ. Characters identify indi-851

vidual experiments 1 to 4 and a to i in Tables 1 and 2.852

(11) Number of boluses in a breaking event as a function of λ. Characters853

identify individual experiments 1 to 4 and a to i in Tables 1 and 2.854

(12) Initial height of first bolus scaled by a0 (maximum displacement of the855

interface) as a function of λ. Characters identify individual experiments856

1 to 4 and a to i in Tables 1 and 2.857

(13) First bolus aspect ratio H/lB (frames (a)-(c)) and first bolus height858

(frames (d)-(f)) as a function of upslope distance for model experiments859

as labelled in Tables 1 and 2. Dashed line in frames (d)-(f) indicates linear860

decay of bolus height with distance.861

(14) Reflection coefficient R against Iribarren number ξ for the dots (model)862

and Michallet and Ivey (1999) experiments (crosses). Size of boxes and863

crosses at each point indicate estimated error bounds. The bold curve864

is the best fit to model by Bourgault and Kelley (2007) for the free slip865

sidewalls.866

(15) Energy flux (W/m) against time (seconds) for model experiments (e) to867

(i) in Table 2.868
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Table 1
Initial conditions for eight test model experiments. For each of these model experi-
ments H = 0.15 m, LR = 0.05 m (see Figure 1), ρ0 = 1000 kgm−3, and ai = 0.027
m, ∆ρ = 47.0 kgm−3, ∆h = 0.0035m, d+ = zi, and d− = 0.15 − zi (see equations
4 and 5 ). Pairs of experiments differ only in their initial zi value, which changes
subsequent a0 and λ model values.

Model Label slope zi (m) a0 model (cm) λ model

1,a 0.034 0.05, 0.024 2.7, 2.6 0.053, 0.018

2,b 0.05 0.05, 0.024 2.8, 2.7 0.077, 0.026

3,c 0.128 0.05, 0.024 2.8, 2.6 0.198, 0.083

4,d 0.217 0.05, 0.024 3.0, 2.9 0.32, 0.12
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Table 2
Model conditions for five selected experiment numbers (in brackets) from Michallet
and Ivey (1999). For each of these model experiments H = 0.15 m, LR = 1.0 m,
(see Figure 1), ρ0 = 1000 kgm−3, and ∆ρ is used in equation 4.

Model Label (Expt) slope zi (m) ∆ρ (kgm−3) a0 (cm) Lw (cm) ξ λ

e (4) 0.069 0.033 20.0 2.8 31.0 0.23 0.054

f (8) 0.169 0.0255 40.0 2.6 28.0 0.55 0.098

g (12) 0.214 0.024 12.0 2.7 24.0 0.64 0.113

h (7) 0.169 0.0495 40.0 2.0 41.0 0.77 0.3

i (13) 0.214 0.06 44.0 1.8 46.0 1.08 0.64
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Table 3
Experimental data for five selected experiment numbers from Michallet and Ivey
(1999). Variation in experimental Iribaren number ξ is based on range of internal
wave amplitudes a0, and a 5% error estimate in Lw by Michallet and Ivey (1999).

Expt a0 (cm) Lw (cm) ξ

4 3.0 30.0 0.21 - 0.22

8 2.8 24.0 0.48 - 0.51

12 2.5 - 3.1 24.0 0.58 - 0.67

7 2.0 46.0 0.79 - 0.83

13 1.6 - 2.0 56.0 1.1 - 1.3
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Fig. 1. Experimental and model set-up. Horizontal dashed line is initial undisturbed
centre of the pycnocline, with solid line illustrating initial conditions for model
perturbed pycnocline. Slope gradient is “s”, such that s = H/LS = d−/L. For
reference, horizontal distance from slope bottom to left hand domain edge is LR.
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Fig. 2. Grid layout on slope for standard run (see text). Largest squares show
volumes associated with coarsest grid at level of resolution of 7. As the boundary
set here by the slope (the solid line) is approached, the resolution is increased by
halving the grid size until the maximum resolution (here level 9) is reached. Gerris
is finite volume, and accounts for cell changes in volume where cut by the boundary
in order to return the correct boundary fluxes.
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Fig. 3. Density contours at time 7.5 s for viscosity and diffusivity values of (a)
6.75 × 10−5, (b) 1.0 × 10−6, (c) 1.5 × 10−7, and (d) 1.5 × 10−8 m2s−1 for model
experiment “d” in Table 1 in the (x, z)-plane. The height of each frame is 0.075m.34



Fig. 4. Density contours at time 7.5 s for (a) standard run (see text), (b) adapting to
a maximum level of resolution of 12, and (c) frame(b) - frame(a) in the (x, z)-plane.
The height of each frame is 0.075m.
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Fig. 5. Contours of resolution levels for frame (b) in Fig. 4 from lowest resolution
at level 7 to finest resolution at level 12.
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Fig. 6. Contours at time 37.5 s for model experiment 2 in Table 1 of (a) density,
(b) x component of velocity, and (c) vorticity in the (x, z)-plane. The height of each
frame is 0.072m. Vertical scale is four times the horizontal scale for clarity. Vertical
lines locate root cells at horizontal spacing of 0.15 m, and horizontal line inside
model domain locates initial undisturbed pycnocline.
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Fig. 7. Multiple bolus trajectories in time for model experiment 2 (see Table 1).
Four boluses are shown moving upslope, the first identified with crosses, the sec-
ond squares, the third and fourth triangles and diamonds, respectively. Horizontal
dashed line locates horizontal position of undisturbed pycnocline-slope intersection.
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Fig. 8. Density contours for first bolus for model experiment 2 in Table 1 at (times
(seconds), normalised positions x/XBP ) (a) (22.5, -0.28), (b) (27.0, -0.07), (c) (30.0,
0.06), and (d) (37.5, 0.31), respectively. Bolus trajectory shown as crosses in Figure
7. Contour interval for density in kgm−3 for frames (a,b) is 4.0, for frame (c) is
3.0, and for (d) is 2.0. Maximum (density, bolus height, length, speed) is (a) (1047,
0.03, 0.05, 0.11), (b) (1035, 0.022, 0.033, 0.084), (c) (1032, 0.017, 0.03, 0.07), and
(d) (1017, 0.0144, 0.024, 0.047) (kgm−3, m, m, ms−1), respectively. Bold lines on
frame (b) indicate bolus height and length.
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Fig. 9. Vorticity contours and velocity vectors for first bolus for model experiment
2 in Table 1. Velocity vectors scaled proportional to the maximum speed in each
frame, and the contour interval for vorticity is 5.0s−1. All other details for frames
(a)-(d) are the same as in the caption for Fig. 8. Bold lines on frame (b) indicate
bolus height and length.
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Fig. 10. Breaking location (criterion) as a function of λ. Characters identify indi-
vidual experiments 1 to 4 and a to i in Tables 1 and 2.
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Fig. 11. Number of boluses in a breaking event as a function of λ. Characters identify
individual experiments 1 to 4 and a to i in Tables 1 and 2.
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Fig. 12. Initial height of first bolus scaled by a0 (maximum displacement of the
interface) as a function of λ. Characters identify individual experiments 1 to 4 and
a to i in Tables 1 and 2.

43



      
 

0.0

0.2

0.4

0.6

0.8

H
/l b 1 1

1 1
1

1
1

1

2
2

2 2

2
2

2
2

3
3 3 3

3
33

4
4 4

4 4

4
4

(a)

      
 

0.0
0.2

0.4

0.6

0.8

1.0

1.2
1.4

H
/H

0

1
1

1
1 1 1 11

2

2

2 2 2222

3

3
3

3
3 33

4

4
4

4
4 4

4
(d)

      
 

0.0

0.2

0.4

0.6

0.8

H
/l b

b
b

b
b

b b

b
b

c
c

c

c
c c c

c
c

d

d

d
d

d

d d
a a a a a a a a aa

a
a

a
a

(b)

      
 

0.0
0.2

0.4

0.6

0.8

1.0

1.2
1.4

H
/H

0
b

b

b b
b

b b b

c

c c
c

c c
c c c

d

d
d d

d
d

d

a
a

a
a

a a
a a aaaaaa(e)

0.0 0.2 0.4 0.6 0.8 1.0
x/Xmax

0.0

0.2

0.4

0.6

0.8

H
/l b

f

f
f

f

f
f

g
g g

g

g

g

g
g

i i

i
i i i

i
i

e e e

e e
e

e
eee

ee

h

h
h h

h h
h

h h

h
h

h

h

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x/Xmax

0.0
0.2

0.4

0.6

0.8

1.0

1.2
1.4

H
/H

0

f
f

f

f

f

f

g

g g

g

g g
g g

i

i i

i

i

i
i

i

e e

e

e e
e

e eeeee

h
h

h

h

h h

h
h

h
h h

hh(f)

Fig. 13. First bolus aspect ratio H/lB (frames (a)-(c)) and first bolus height (frames
(d)-(f)) as a function of upslope distance for model experiments as labelled in Tables
1 and 2. Dashed line in frames (d)-(f) indicates linear decay of bolus height with
distance.
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Fig. 14. Reflection coefficient R against Iribarren number ξ for the dots (model) and
Michallet and Ivey (1999) experiments (crosses). Size of boxes and crosses at each
point indicate estimated error bounds. The bold curve is the best fit to model by
Bourgault and Kelley (2007) for the free slip sidewalls.
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Fig. 15. Energy flux (W/m) against time (seconds) for model experiments (e) to (i)
in Table 2.
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