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Abstract

We present a robust and computationally efficient numerical scheme for simulating steady elec-

trohydrodynamic atomization processes (electrospray). The main simplification assumed in this

scheme is that all the free electrical charges are distributed over the interface. Comparison of the

results with those calculated with a Volume-of-Fluid method showed that the numerical scheme

presented here accurately describes the flow pattern within the entire liquid domain. Experiments

were performed to partially validate the numerical predictions. The simulations reproduced accu-

rately the experimental shape of the liquid cone-jet, providing correct values of the emitted electric

current even for configurations very close to the cone-jet stability limit.

PACS numbers: 47.61.Jd, 47.65.-d, 47.55.-t, 47.15.-x
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I. INTRODUCTION

The use of electrostatic fields to spray liquids is a procedure that has been used since the

XVIIth century [1]. In the most typical configuration, the liquid is injected at a small flow

rate through a metallic needle where an electric potential of the order of kilovolts is imposed

with respect to a grounded electrode situated downstream. Although many electrospray

modes have been identified [2], the one which has attracted most attention is the cone-jet

mode, mainly due to its success as a continuous source of ions [3]. In this mode, the meniscus

adopts a stable quasi-conical shape from whose apex a stationary thin jet is ejected. The jet

eventually breaks up into droplets due to the capillary forces, which gives rise to a charged

mist.

All theories describing the physics behind the cone-jet mode distinguish three regions

[4, 5]: (i) the upstream meniscus region attached to the needle, where ohmic conduction

is the dominant mechanism of charge transport and the voltage drop is negligible; (ii) the

downstream jet region, where the relevant charge transport mechanism is surface convec-

tion; and (iii) an intermediate transition region (the cone neck), where the charge transport

mechanism evolves from conduction-dominant to convection-dominant. It is generally ac-

cepted that both the electric current circulating through the system and the jet’s diameter

are essentially governed by this neck region. Two theoretical approaches have been proposed

to model this critical region: one considers electrical relaxation phenomena in this region

[6], and the other assumes that the electric charges are relaxed over the entire interface,

including the cone neck region [4, 7, 8]. They propose different scaling laws for both the

jet’s size and issued electric current. Experimental data for the size of the resulting droplets

indicate that the jet’s diameter scales with the governing parameters as indicated by the

later theory [9]. However, there have as yet been no experimental data on the neck clearly

in favour of one or the other of these two approaches.

There have been several numerical studies of electrospray in the literature. The first

numerical simulation was due to Hartman et al. [10] who used a one-dimensional model to

reach steady cone-jet configurations by successive iterations. Their study focused on de-

scribing the meniscus and the neck regions. Yan et al. [11] refined that model by solving the

axisymmetric Navier-Stokes equations and incorporating grid adaptation into their calcula-

tions. An additional constraint imposed in these two studies, even though it is not common
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operational practice, is that the jet is forced to hit a flat grounded electrode located down-

stream. Higuera [12] examined numerically the neck region in order to analyze the electric

current circulating through the system. The presence of the needle and the breakup region

were obviated by using as up- and down-stream boundary conditions far-field asymptotic

behaviors for the conical meniscus [13, 14] and the jet [4], respectively. In all these studies,

the flow was assumed to be strictly steady, thus neglecting the growth of perturbations on

the free surface and the subsequent jet breakup. Collins et al. [15] proposed a more sophisti-

cated numerical scheme to study the entire electrohydrodynamic (EHD) tip streaming flow,

including the formation of the cusp, the emitted jet, and the resulting droplets. Despite the

disparity of the length scales present in this phenomenon, it was accurately described by

this numerical approach. Reznik et al. [16] studied the temporal evolution of an electrified

compound core-shell droplet towards the emission of a coaxial jet. All the aforementioned

numerical studies have in common that, in the bulk, the electrical relaxation time was short

as compared to any hydrodynamic time present in the process, and thus the liquid bulk was

free of electrical charges, which were only allowed to exist at the interface. Consequently,

the surface charge density σe was regarded as an unknown governed by the surface balance

equation [6]

d(2πFusσe)

ds
= 2πFKEni , (1)

where s is the distance along the interface, F and us are the interface radial position and

velocity, respectively,K is the liquid electrical conductivity, and Eni is the normal component

of the electric field on the inner side of the interface.

In the present work, a robust and computationally efficient numerical method is developed

to simulate steady EHD atomization processes. As in previous approaches [10–12, 15],

the electric charges are confined to the interface. The results are compared with those

calculated with Gerris, an open source free software library developed by Popinet [17, 18]

and extended by López-Herrera et al. [19] to study EHD phenomena. Experiments are

conducted to partially validate the numerical results. The cone-jet transition is examined

very close to the stability limit to assess the validity of the hypothesis on the charge behavior.

The rest of the paper is organized as follows. The problem is formulated in Sec. II.

Sections III and IV give the descriptions of the numerical schemes and the experimental

method, respectively. Finally, the results are presented and discussed in Sec. V.
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FIG. 1. (Color online) Sketch of the problem’s formulation. The rectangle (red online) denotes the

limits of the computational domain.

II. FORMULATION OF THE PROBLEM

The geometrical and electrical configurations considered in this work are represented

schematically in Fig. 1. A metallic needle of inner radius Ri and outer radius Ro is held

at a constant voltage V . The needle is brought face to face up close to a planar grounded

electrode located at a distance H ′. A liquid of density ρ, viscosity µ, electrical conductivity

K, and permittivity ε is injected through the needle at a constant flow rate Q. The flow

is fully developed inside the capillary, so that there is a parabolic Hagen-Poiseuille velocity

profile upstream at a distance Ln from the needle’s exit. The ambient medium is a perfect

dielectric gas of permittivity εo equal to that of the vacuum. The gas-liquid surface tension

is γ. Because of the small values of the Bond number and gas/liquid density and viscosity

ratios, the effects of gravity and the gas dynamics can be neglected.

The equations are made dimensionless with the inner radius Ri, the liquid density ρ,

the surface tension γ, and the applied voltage V , which yields the characteristic time and

velocity scales tc = (ρR3
i /γ)

1/2 and vc = Ri/tc, respectively. The dimensionless axisymmetric

incompressible Navier-Stokes equations for the liquid velocity v(r, z; t) and pressure p(r, z; t)
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fields are

(ru)r + rwz = 0, (2)

ut + uur + wuz = −pr + C[urr + (u/r)r + uzz] + χf r
e , (3)

wt + uwr + wwz = −pz + C[wrr + wr/r + wzz] + χf z
e , (4)

where t is the time, r/z is the radial/axial coordinate, u/w is the radial/axial velocity

component, χ = εoV
2/(Riγ) is the electric Bond number, and C = µ(ργRi)

−1/2 is the

Ohnesorge number. The subscripts t, r, and z here and henceforth denote the partial

derivatives with respect to the corresponding variables. The terms f r
e / f z

e stand for the

radial/axial volumetric electric force, f r
e

f z
e

 = ρe

 Er

Ez

− (Er + Ez)2

2

 βr

βz

 , (5)

where ρe is the volumetric charge density, Er/Ez is the radial/axial electric field, and β =

ε/εo is the relative permittivity.

In addition to the Navier-Stokes equations for the liquid flow, the electric potentials ϕi

and ϕo in both the inner (liquid) and outer (gas) domains must be calculated. They obey

the Poisson and the Laplace equations

ϕi
zz + ϕi

rr + ϕi
r/r = ρe/β, (6)

ϕo
zz + ϕo

rr + ϕo
r/r = 0, (7)

respectively.

Taking into account the kinematic compatibility and equilibrium of tangential and normal

stresses at the interface r = F (z), one gets the following equations:

Fzw − u = 0, (8)

C
(1− F 2

z )(wr + uz) + 2Fz(ur − wz)

(1 + F 2
z )

1/2
= χσeE

t, (9)

p+
FFzz − 1− F 2

z

F (1 + F 2
z )

3/2
− 2C[ur − Fz(wr + uz) + F 2

zwz]

1 + F 2
z

=
χ

2

[
(Eno)2 − β(Eni)2 + (β − 1)(Et)2

]
,

(10)

where σe is the surface charge density, Et is the tangential component of the electric field,

and Eni and Eno are the normal components of the electrical field on the inner and outer
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sides of the interface, respectively. The right-hand sides of Eqs. (9) and (10) are the Maxwell

stresses resulting from the accumulation of free electric charges at the interface and the jump

of permittivity across this surface.

The electrical field and the surface charge density can be calculated from the inner ϕi

and outer ϕo electric potentials, and the free surface shape F :

Eni =
Fzϕ

i
z − ϕi

r√
1 + F 2

z

, (11)

Eno =
Fzϕ

o
z − ϕo

r√
1 + F 2

z

, (12)

Et =
−Fzϕ

o
r + ϕo

z√
1 + F 2

z

=
−Fzϕ

i
r + ϕi

z√
1 + F 2

z

, (13)

σe = Eno − βEni, (14)

Note that the continuity of the electric potential across the interface, ϕi = ϕo, has been

taken into account in Eq. (13). The interfacial equations are completed by imposing the

surface charge conservation at the free surface r = F (z) [Eq. (1)] [20]:

Fzu+ w

1 + F 2
z

σez −
σe

1 + F 2
z

[
ur + F 2

zwz − Fz(uz + wr)
]
= αEni, (15)

where α = β [ρR3
i K

2/(γε2)]
1/2

is the dimensionless electrical conductivity.

We shall assume that all characteristic times of hydrodynamic nature are long as com-

pared to the electrical relaxation time (Saville’s leaky dielectric model Saville [21]). There-

fore, the volumetric charge density ρe is zero, and the liquid conductivity K is constant

over the entire liquid domain. Also, the liquid electrical permittivity is assumed to be ho-

mogeneous, and thus the volumetric dielectrophoretic force proportional to the permittivity

gradient is zero. In this case, the electrical effects on the liquid dynamics are exclusively

associated with the Maxwell stresses at the interface.

As mentioned above, a Hagen-Poiseuille velocity profile is assumed at the entrance of the

liquid domain z = 0:

u = 0, w = 2ve(1− r2), (16)

where ve = Q/(πR2
i vc) is the dimensionless mean velocity. At the needle wall, the electric

potential is fixed and the liquid does not slip, i.e.,

ϕi = ϕe = 1 and u = w = 0. (17)
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We impose the standard regularity conditions

ϕi
r = u = wr = 0 (18)

on the symmetry axis, and the outflow conditions

uz = wz = Fz = (σe)z = 0 (19)

at the right-hand end ze = (H + Ln)/Ri of the computational domain (the red rectangle in

Fig. 1).

For the configuration considered in this work, Gañán-Calvo et al. [22] found the following

analytical solution for the far-field electric potential:

ϕ1(r
′, z′) =

−Kv

log(4H ′/Ri)
log

{
[r′2 + (1− z′)2]1/2 + (1− z′)

[r′2 + (1 + z′)2]1/2 + (1 + z′)

}
, (20)

where r′ and z′ are cylindrical coordinates with origin at the intersection between the sym-

metry axis and the grounded planar electrode (see Fig. 1), and Kv is a dimensionless con-

stant which depends on the ratio H ′/Ri. We take advantage of this solution to limit the

calculations to the meniscus and the jet, leaving aside the charged spray. Specifically, we

assume that the electric potential matches the analytical solution ϕ1 at the boundary r = re

(re ≡ Re/Ri). A logarithmic drop of voltage

ϕ2 = 1− [1− ϕ1(re, z
′

e)] log r/ log re, z
′

e ≡ (H ′ + Ln)/Ri, (21)

is applied at the boundary z = 0 and 1 < r < re. Finally, the condition

ϕz = (ϕ1)z (22)

is considered for the right-hand end z = ze of both the liquid and gas computational domains.

III. NUMERICAL PROCEDURES

We solved the problem formulated in the previous section with two numerical schemes:

a tracking interface technique proposed in this work, and an adaptation of the Volume-of-

Fluid (VoF) method developed by Popinet [17, 18] and extended by López-Herrera et al.

[19] to study EHD phenomena.
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A. The proposed method

Since we search for steady solutions, we drop any time dependence in the Navier-Stokes

equations (2)-(4). As mentioned in Sec. II, we assume that the characteristic electric time is

much shorter than any hydrodynamic time, and hence all the electrical charges are confined

to the free surface (ρe = 0). In this case, the electric conductivity K can be regarded as

constant. Because the liquid electrical permittivity is also assumed to be homogeneous, the

electric forces vanish in the bulk domain, and enter into the problem through the Maxwell

stresses in the free surface boundary conditions.

A tracking interface technique was implemented to capture the steady liquid-gas inter-

face position, r = F (z). We solved the nonlinear system of equations formed by the bulk

equations (2)-(7), the interface equations (8)-(15), and the rest of the boundary conditions

(16)-(17). In this way, one obtains the spatial dependence of the meniscus-jet shape F , the

velocity and pressures fields (u,w, p) in the liquid domain, the surface charge density σe,

and the inner and outer potential fields, ϕi and ϕo. The current intensity I is the sum of

the contributions due to the bulk conduction (Ib) and surface convection (Is), calculated at

any axial position z along the cone-jet as

Ib(z) = 2π

∫ F (z)

0

αEiz(r, z)rdr, Is(z) = 2πσe(z)vs(z), (23)

where vs is the dimensionless liquid velocity at the interface. All these quantities are deter-

mined as functions of the five dimensionless control parameters C, ve, β, χ, and α.

A boundary-fitted coordinate system [23] was used to calculate the solution. Both the

liquid and the gas domains were mapped onto the fixed rectangular domain (0 ≤ η(l,g) ≤

1, 0 ≤ ξ ≤ ze) by means of the coordinate transformations (ηl = r/F, ξ = z) and (ηg =

(r − F )/(re − F ), ξ = z) for the liquid and gas domains, respectively. The liquid and gas

domains were discretized using nηl and nηg Chebychev spectral collocation points [24] along

the ηl and ηg axes, respectively, while the axial direction ξ was discretized using nξ uniformly

distributed points. We used fourth-order central finite differences to get the axial derivatives

except close to the ξ-boundaries, where second-order upwind finite differences were applied.

All the simulations presented here were done with nηl = 11, nηg = 20, and nξ = 160.

The equations in the discretized domain yielded a system of (4nηl + nηg)× nξ +2nξ non-

linear equations which was solved iteratively using a trust-region method [25] implemented
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in the Matlab subroutine Fsolve. The initial guess for the iterations was obtained as

follows. For given values of C, β, χ, and α, we first set a sufficiently high liquid velocity

ve. Because a quasi-cylindrical jet is expected in this case, the equations were solved with

u = 0, w = 2ve(1 − r2), F = 1, and ϕi = ϕe = 1 as the initial guess. Once the algorithm

converged to a solution, the control parameter space was explored using a continuation tech-

nique. The algorithm showed itself to be robust and computationally efficient. It converged

to the sought solution for all the cases considered in less than 1 hour running on an Intel

Xeon(R) X5670@2.93Ghz processor.

B. The VoF method

We also performed simulations using the open source fluid simulation engine Gerris [26].

Gerris is a VoF method originally conceived to deal with the time-dependent incompressible

Euler equations [17]. It has since been improved and extended considerably to suit problems

arising in such diverse fields as multiphase [18], geostrophic [27], granular [28], and EHD

[19] flows. The VoF method treats immiscible fluids as a single one with spatially varying

properties through the interface. Therefore, the balance equation (1) for the surface charge

density can not be explicitly considered. To circumvent this difficulty, the VoF method

solves the evolution equation (A.8) (see Appendix) for the volumetric charge density ρe

with K =const. It simulates a transient regime which eventually reaches the steady cone-

jet state of electrospray (provided that this state is stable for the selected values of the

governing parameters). We have verified that the steady states reached in the simulations

were consistent with the leaky-dielectric model, i.e., all the charges were confined in a very

thin layer next to the interface. In this regard, one can assert that the numerical method

converged to the steady solution of the leaky-dielectric model.

We set as initial condition a planar interface located inside the capillary tube. As time

proceeds, the meniscus protrudes and a jet emerges by the action of electric forces. The

simulation is continued until a stable meniscus-jet is obtained. The grid is adapted at every

time-step according to the charge distribution and the interface curvature. The minimum

and maximum cell sizes at the last stage of the simulation were hmin = 3.91 × 10−3 and

hmax = 0.03125, respectively. More details of the method are given elsewhere [19]. The

algorithm converged to the sought solution in about 72 hours running on an Intel Xeon(R)
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X5670@2.93Ghz processor.

IV. EXPERIMENTAL METHOD

A. Experimental setup

The experimental setup is shown schematically in Fig. 2. The liquid was injected at a

constant flow rate Q by a stepper motor through a capillary (A) of inner (outer) radius

Ri = 100 (Ro = 110) µm located in front of a metallic plate at a distance H ′ = 1 mm. The

plate had an orifice (B) of 350 µm in diameter located in front of the capillary. The plate

covered the upper face of a metallic cubic cell (C). We used a high-precision orientation

system (D) and a translation stage (E) to ensure the correct alignment of these elements,

and to set the capillary-to-orifice distance H ′. An electric potential V was applied to the

end of the feeding capillary through a DC high voltage power supply (bertan 205B-10R)

(F), and the cubic cell was used as ground electrode. A liquid meniscus was formed in

the open air and stretched by the action of the electric field. A microjet tapered from the

meniscus tip and moved vertically towards the plate orifice. A prescribed negative gauge

pressure (about 10 mbar) was applied in the cubic cell by using a suction pump to produce

an air stream coflowing with the jet. Both the liquid jet and the coaxial air stream crossed

the plate orifice, which prevented liquid accumulation on the metallic plate. In this way, all

the electric charges were collected in the cubic cell. Because the full scale of typical electric

current measurements was in the nanoampere range, special care was taken for electrical

shielding and grounding. The electric current I transported by the liquid jet was measured

using a picoammeter (keithley model 6485) (G) connected to the cell. It must be noted

that the mechanical effects associated with the gas stream were negligible (the air speed was

smaller than about 10% of that of the liquid at the orifice, and the density and pressure

drops in the gas stream were smaller than about 2%). In addition, air ionization effects were

less probable than in quiescent air because charges in the gas that could cause ionization

cascades were flushed by the gas stream.

Digital images of 1280× 960 pixels were acquired using a CCD camera (AVT Stringay

F-1125B) (H) equipped with optical lenses (an OPTEM HR 10X magnification zoom-

objetive and an Optem ZOOM 70XL set of lenses with variable magnification from 0.75×
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FIG. 2. Schematic diagram of the experimental setup.

to 5.25×) (I) providing a frame covering an area of about 443× 332 µm. The magnification

obtained was approximately 346 nm/pixel. The numerical aperture of the optical system

was about 0.3. The camera could be displaced both horizontally and vertically using a

triaxial translation stage (J) to focus the liquid meniscus. The fluid configuration was

illuminated from the back by cool white light provided by an optical fiber (K) connected

to a stroboscopic light source to reduce the image exposure time to about 3 µs. A frosted

diffuser (L) was positioned between the optical fiber and the microjet to provide uniform

lighting. To check that the fluid configuration was axisymmetric, we also acquired images

of the liquid meniscus using an auxiliary CCD camera (not shown in Fig. 2) with an optical

axis perpendicular to that of the main camera. All these elements were mounted on an

optical table with a pneumatic anti-vibration isolation system (M) to damp the vibrations

coming from the building.

Experiments were conducted with 1-octanol (Panreac 99% ps) (ρ = 827 kg/m3, µ =

0.0081 kg/ms, γ = 0.0266 N/m, K = 9 × 10−7 S/m, β = 10). The surface tension was de-

termined using the Theoretical Image Fitting Analysis (TIFA) method [29]. The electrical

conductivity was measured by applying a voltage difference between the ends of a cylindrical

borosilicate capillary full of the working liquid, and then measuring the resulting electric

current. The viscosity, density, and electrical permittivity were taken from the manufac-

turer’s specifications. By way of illustration, Fig. 3 shows the image of a jet produced by

the experimental setup described above with Q = 0.5 ml/h and V = 1.6 kV.
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FIG. 3. 1-octanol jet produced by the experimental setup described in the text. The left (right)

image was acquired with the auxiliary (working) CCD camera.

B. Image processing technique

We shall here briefly describe the main aspects of the image processing technique used to

precisely determine the free surface position. Details of the procedure are given elsewhere

[30, 31]. The contours of the free surface in the image were detected using a two-stage

procedure. In the first stage, a set of pixels probably corresponding to the contour being

sought was extracted using Otsu’s method [32]. The accuracy of Otsu’s method is limited

to the pixel size. In the second stage, the accuracy of the detected contours was improved to

the sub-pixel level by analyzing the gray intensity profile along the direction normal to the

contour. Fitting the sigmoid (Boltzmann) function [33] to the gray intensity values allowed

us to obtain a continuous function in the transient region of the gray profile. The contour

point was found by applying the local thresholding criterion. The number of resulting

contour points was approximately equal to the number of pixels of the image along the

vertical direction. Once the left xl and right xr contours had been detected, they were rotated

to their vertical position (the rotation angle was less than 2◦ in all the cases analyzed), and

the symmetry axis was found. Small non-axisymmetric perturbations of the free-surface

were ignored by considering the axisymmetric contour F = (xr − xl)/2. This quantity was

compared with the numerical results.
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FIG. 4. Free surface position and streamlines calculated with the tracking interface technique [solid

line and (a)] and VoF method [symbols and (b)] for C = 0.18, β = 10 , α = 15.3 , χ = 10, and

ve = 0.02.

V. RESULTS AND DISCUSSION

Numerical simulations of the problem formulated in Sec. II were conducted with the

tracking interface technique proposed in this work (Sec. IIIA), and a VoF method [17,

18] (Sec. III B). The following set of geometrical parameters was considered in all the

simulations: re = 6.67, Ln/Ri = 1.77, H/Ri = 9.4, and H ′/Ri = 40 (for which Kv = 0.56).

In addition, the needle width was set to zero (Ri = Ro) in the proposed method, while the

valueRo/Ri = 1.22 were selected in the VoF technique to improve the algorithm convergence.

Figure 4 shows a comparison between the two numerical methods for the set of parameters

C = 0.18, β = 10, α = 15.3 , χ = 10, and ve = 0.0182, for which a stable meniscus-jet

configuration was reached. The two methods predict almost the same free surface shape,

and show the existence of a recirculation cell inside the liquid meniscus. This recirculation

pattern is caused by the action of the shear Maxwell stresses at the free surface, which drag

along that surface an amount of liquid that can not be exhausted by the thin emitted jet.

This flow structure is characteristic of low-viscosity liquids electrosprayed at small flow rates

[34], and has also been observed in coflowing systems for the low Q-range [35, 36].

We also checked our tracking numerical method against experiment for two different

cases. Figure 5 shows the results for the free surface position F (z) of a 1-octanol meniscus-

jet produced by applying a voltage V = 1600 V while injecting liquid at Q = 0.5 and 1 ml/h.
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These flow rates are close to the minimum value Qmin ∼ γεo(ρK)−1 = 1.14 ml/h for which

the cone-jet mode is stable [4, 8, 37]. Indeed, we were not able to produce a stable 1-octanol

jet for Q < 0.5 ml/h. The corresponding dimensionless parameters are C = 0.182, β = 10,

α = 15.3, χ = 10, and ve = 0.00913 and 0.0182 for Q = 0.5 and 1 ml/h, respectively. There

is remarkable agreement between the experimental and numerical contours. The average

deviation between them was less than 0.6 µm in both cases. The simulations captured

perfectly the reduction of the jet radius when the flow rate was reduced by half. It is worth

emphasizing that the agreement between the numerical and the experimental results for these

limiting configurations shows the validity of the charge relaxation hypothesis [4, 7, 8, 37]

over the entire parameter space.
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m
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FIG. 5. Free surface position F (z) of a 1-octanol meniscus-jet produced with V = 1600 V, and

Q = 0.5 ml/h (circles and solid line) and Q = 1 ml/h (triangles and dashed line). The symbols and

lines correspond to the experiments and proposed numerical method, respectively. Here, F and z

stand for the corresponding dimensional quantities, and the z axis is the upward vertical axis with

origin at the bottom of the experimental image.

Optical diffraction renders the present fluid configuration almost opaque. Therefore, it

is quite difficult to get information on the flow pattern inside the meniscus by standard

experimental techniques, such as micro-PIV or dye-injection. On the contrary, numerical

simulations allow not only the visualization of the recirculation cell taking place for small

Q, but also the quantification of its size as Q decreases. Figure 6 illustrates this capability

of the proposed numerical method.
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(a) (b)

FIG. 6. Streamlines plotted on the corresponding experimental images for a 1-octanol meniscus-jet

produced with V = 1600 V, and Q = 0.5 ml/h (a) and Q = 1 ml/h (b).

One of the most relevant quantities in electrospray is the electric current I transported

by the jet. A proof of the consistency of our simulations is the global conservation of electric

charge, which implies that the total electric current I = Ib + Is should remain constant

along the meniscus-jet. Figure 7 shows the axial distribution of the current intensities

associated with the bulk conduction and the surface convection, as well as the total value,

for the experimental case with Q = 0.5 ml/h. The values were made dimensionless with

the characteristic intensity I0 = (ε0γ
2/ρ)1/2 [4, 8]. As has been noted in theoretical works

[4, 8, 12], bulk conduction is the dominant mechanism of charge transport in the meniscus,

while surface convection is dominant in the jet region. The neck can be seen as the region

where the transition between these two mechanisms takes place. The dimensionless intensity

I/I0 measured in the experiments was 1.4, reasonably close to the numerical prediction 1.2

and the scaling law I/I0 = 2.6(Q/Q0)
1/2 = 1.7 [8].

To summarize, a robust and efficient simulation method has been proposed to simulate

steady EHD phenomena. Calculations were greatly simplified in this method by assuming

that the electric charges are accumulated within an infinitely thin layer at the interface,

and then electric forces result from the Maxwell stresses at that surface exclusively. The

validity of the discretization scheme has been shown by comparing the results with those

obtained with a much more sophisticated VoF method. We have also shown that the charge

relaxation simplification is correct in the electrospray cone-jet mode. The free surface po-

sition of the meniscus-jet was measured very precisely in experiments with 1-octanol. The

comparison between the numerical predictions for the liquid contour and the experimental

results confirmed the validity of the proposed method. The numerical method also provided
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FIG. 7. Axial distribution of the total intensity (circles) and the contributions associated with

the bulk conduction (triangles) and the surface convection (squares) calculated by the proposed

method for the experimental case with Q = 0.5 ml/h. The shape of the meniscus jet (solid line)

is also plotted to show where the transition between conduction and convection of charges takes

place.

correct values of the emitted electric current even for configurations very close to the cone-jet

stability limit.

Appendix: Equations of the VoF method

In this appendix, we derive the equations solved by the VoF method from the Taylor-

Melcher leaky-dielectric model [21] . The starting point is the Maxwell electrostatic equa-

tions

∇ · (ϵE) = ρe , (A.1)

∇× E = 0 , (A.2)

the Navier-Stokes equations

∇ · v = 0, (A.3)

ρ
Dv

Dt
= −∇p− 1

2
E · E∇ϵ+∇ · (ϵE)E+ µ∇2v , (A.4)

and the equations for the conservation of neutral and charged species

Dn(k)

Dt
= ∇ · [−ω(k)ez(k)n(k)E+ ω(k)kBT∇2n(k)] + r(k) . (A.5)

16



Here, n(k), r(k), z(k), and ω(k) are the concentration, production rate by chemical reaction,

valence, and mobility of the kth species, respectively, while kB, e, and T are the Boltzmann

constant, the electron charge, and fluid temperature, respectively.

The charge density ρe can be calculated as

ρe =
∑
k

ez(k)n(k) . (A.6)

A conservation equation for this variable can be readily derived by adding the equations

(A.5) for the different species:

Dρe
Dt

= ∇ ·

[
−

(∑
k

ω(k)e2z(k)2n(k)

)
E

]
+ ekBT

∑
k

z(k)ω(k)∇2n(k) +
∑
k

ez(k)r(k) . (A.7)

In Eq. (A.7), migration due to thermal diffusion (the second term of the right-side of the

equation) can be neglected as compared to electromigration, provided that ℓeEo/(kBT ) ≫ 1

(ℓ and Eo are the characteristic length and electric field, respectively). In electrospray,

ℓ ∼ (γε2o/ρK
2)1/3 and Eo ∼ (γ/εoℓ)

1/2 [4], which yields ℓeEo/(kBT ) ≃ 8× 103 for 1-octanol.

Therefore, thermal diffusion is negligible for the configurations considered in the present

work.

The production rates r(k) depend on the concentrations of the species and the chemical

kinetics of the reactions occurring in the system. Note that these reactions can be extremely

complex and, in some occasions, unknown. In fact, the rates r(k) depend on each other

because the production/destruction of some species implies the destruction/production of

others. Therefore, care in the modelling of the chemical reactions must be taken to prevent

overdetermination. Nevertheless, three scenarios are simple enough to be easily modeled.

The first is the unipolar injection, where a single species generated at an upstream electrode

migrates through the fluid with zero production rate. The second one is the evolution of

strong electrolytes. In this case, neutral species are fully dissociated and chemical reactions

are absent (r(k) = 0). The last case is the evolution of a binary z-z electrolyte analyzed by

Saville [21]. Three species are diluted in the fluid: the neutral, the ionic, and the counter-

ionic. In the forward reaction, the neutral species dissociate producing the same amount of

ions and counterions, while in the recombination reaction the ionic and counter-ionic species

disintegrate at the same rate to produce the neutral one. The source/sink term
∑

k ez
(k)r(k)

in Eq. (A.7) vanishes in the three cases described above.
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Taking into account these considerations, Eq. (A.7) reduces to the expression

Dρe
Dt

= ∇ · (−KE) , K =
∑
k

ω(k)e2z(k)2n(k) . (A.8)

In the leaky-dielectric model [21], all characteristic times of hydrodynamic nature in the

bulk are much longer than the electrical relaxation time. Therefore, the volumetric charge

density ρe is assumed to be zero, and electrical charges are only allowed to exist at the

interface. Therefore, Eq. (A.8) reduces to

∇ · (KE) = 0 . (A.9)

It must be noted that Saville [21] keeps the bulk electric forces in Eq. (A.4) although, strictly

speaking, they should be removed. Our VoF method solves Eqs. (A.1)-(A.4) and (A.9) with

K =const.
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[37] A. M. Gañán-Calvo, J. Fluid Mech. 507, 203 (2004).

20


