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Abstract

The breakup of a charged liquid column is studied numerically using Volume-
OF-Fluid (VOF) for a range of timescales where electrokinetic phenomena
may become significant, i.e when the time to breakup becomes comparable or
shorter than the diffusion and the electrosmotic migration times of charged
species. Here we propose a conservative method to deal with the diffusion of
a tracer in VOF schemes when the diffusion is limited to one of the phases.
The method consists in weighing the diffusivity with the value of the volume
fraction computed from the analytically reconstructed interface. In this way,
the interface is made impermeable to the tracer, which is conservatively kept
within one of the phases. The performance of this method is first tested
by comparing simple configurations with existing analytical solutions. In
the cases when the diffusion, electrosmotic motion and hydrodynamic singu-
larities compete, the results indicate that, after breakup, charges distribute
between droplets differently from models assuming homogeneous and con-
stant electrical conductivities (i.e. no electrokinetic effects). However, such
departure does not alter the main hydrodynamic balances leading to well-
established scaling laws of breakup.
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PACS: 47.61.Jd, 47.65.-d, 47.55.-t, 47.15.-x

1. Introduction

Electrokinetic effects in liquids determine bulk charge distributions when
existing ionic species in solution respond to applied electric fields, but may
also contribute to the global mechanical behavior of the system when free
surfaces and interfaces are present. For ordinary values of surface tension,
these effects naturally take place when the length scales of the system are
below the millimetric scale, and particularly at the micro- and nano-scale in
general microfluidic systems.

Among these systems, electrospray is probably the most studied and ex-
ploited natural example of global hydrodynamic consequences of electroki-
netic effects in the presence of free surfaces. The extensive literature on
the physics and biochemical analysis applications of electrospray amounts to
more than 105 papers and a vast, complex network of citations. However, as
puzzling as it may be, this network does not necessarily reflect a complete
or sufficient scientific understanding. This may be a consequence of the fast
growth rate of this publication network, compared to the average rate of
general scientific knowledge assimilation.

In particular, while the basics of electrokinetics were established early,
a detailed analysis of relevant publications up to the present day reveals
striking understanding gaps in the real sequence of electro-physical processes
taking place at the smallest scales: not only in cone-jet electrospray but also
in many other phenomena such as the breakup of charged capillary liquid
jets. These sequences determine the macroscopic outcome of electrospray
in terms of issued charges per unit time and characteristic length scales of
liquid emissions (droplets or particles). Interestingly, one may also observe
how basic inconsistencies and customary assumptions become fossilized in
the foundations of an ample literature.

Fernández de la Mora & Loscertales [1] postulated a set of scaling laws
for the electric current and characteristic scales of liquid emission in the form
of a jet issued from Taylor cones. These scaling laws were derived from the
assumption that electrokinetic migration, or free charge relaxation towards
the surface, was halted (or “frozen”) at the apex of the cone as the jet scale
was reached. A more relaxed version assuming that the jet scale emerged
where the relaxation times of free charges became comparable to hydrody-
namic residence times led to identical results. Even earlier, Gañán-Calvo,

2



et al. [2] suggested the opposite assumption (i.e. short electrical relaxation
times compared to hydrodynamic ones) to reach alternative scaling laws,
subsequently revisited in [3, 4, 5, 6] and numerically confirmed in [7]. Both
extreme assumptions and corresponding models recognize electrokinetic ef-
fects as the ultimate reason for the appearance of driving forces deriving from
Maxwell bulk stresses in the presence of interfaces. However, their extreme
nature, the striking relative proximity of their results, and the inextricably
indirect way to experimentally verify their validity have hardly been of help
to build true and deep scientific knowledge in the community. In particular,
the early introduction in the former model [1, 8] of a fitting function f(ε),
where ε is the electric permittivity of the liquid relative to vacuum, helped
many subsequent authors to fit this model to their experimental results (e.g.
[9, 10] among hundreds of works).

The rapid evolution of computational power and the increase in efficiency
and precision of numerical schemes and methods have paved the way to the
widespread but bold idea of tackling scientific conundrums like the one above
via numerical simulation. In reality, the physics of fluid motions at the micro-
scopic scale exhibits many features making their study particularly appealing
to numerical modeling and simulation. In general, the small scale gener-
ally characterizing fluid motions in microfluidic systems limits the relative
weight of convective effects compared to diffusion. This feature, reflected in
moderate to small Reynolds number values, provides the adequate traits for
full numerical simulation, where a high predictive power and accuracy has
already been demonstrated. In general, the Lab-On-Chip (LOC) research
community has a background in biology-related issues and are less familiar
with engineering aspects such as numerical simulation and its advantages.
Indeed, Boy et al. [11] wrote that their focus article on available compu-
tational methods for LOC systems, could serve “... to convince the LOC
community that computation is a valuable tool and should be increasingly
used over the next decade ...”. In particular, numerical simulations allow
researchers to determine in a rapid step how a design decision can affect the
performance of a particular device. This way the development cost would
drastically drop by reducing the number of prototyping iterations [11].

More recently, Wörner [12] exhaustively classified and described the foun-
dations of the diverse numerical methods for two-phase flows and performed
a complete review on the state of the art of numerical procedures to deal with
challenging problems such as moving boundaries, Marangoni effects and sur-
factants, or heat and mass transfer across the interfaces. In spite of the
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strong predictive capabilities developed in this field, two-phase micro-flow
problems involving the behavior of ionic species under the action of elec-
tric fields require an even deeper degree of physical insight. Contrary to
what might initially appear, these problems are ubiquitous in fields handling
several fluid phases at microscopic scales in predictive and consistent ways,
which range from modern chemical engineering, biophysics, pharmaceutical
research, to modern food processing, to name a few. Several instruments
based on electrokinetic phenomena like the ζ-potential have even been de-
veloped [13]. However, those problems have traditionally been tackled fol-
lowing drastic electrokinetic simplifications that either assume (i) complete
relaxation of all free charges at free surfaces, where bulks are neutral with
homogeneous electrical conductivities (i. e., the leaky dielectric model of
Melcher & Taylor [14, 15], which entails having hydrodynamic times long
compared to electrical relaxation), or (ii) the other extreme case where the
liquids are assumed dielectric [16, 17]. However, following the rationale of
basic electrokinetics, the liquid electrical conductivity [15] can no longer be
considered a homogeneously distributed value in the liquid bulk when charge
relaxation is compromised by hydrodynamic motion. Therefore, the cus-
tomary assumption of a constant liquid conductivity and liquid bulk electric
neutrality would be inconsistent if one aims to compare numerical results
based on that assumption with scaling laws such as the one in [1, 8].

Moreover, the electrokinetic phenomena appearing in many electrohy-
drodynamic problems in the microfluidics field are strongly related to the
presence of the electric double layers (EDL) that appear on interfaces when
they are brought into contact with electrolytes [13, 18]. The thickness of
the EDL, λD, is in the nanometric scale and can be very different from the
characteristic length Lo of the system being investigated. For example, in
electrosmotic pumping the characteristic width of the impulsion channel is
typically of the order of dozens of microns. In contrast, the EDLs present at
the channel walls are nanometric. The ionic channels present in biological
membranes are also of nanometric size [19, 20]. Consequently, very different
numerical approaches have been developed depending on the particular elec-
trokinetic system considered. In the case where the EDL can be assumed
thin, λD � Lo, a detailed EDL resolution can be avoided by either using the
Helmholtz–Smoluchowski slip velocity or by using techniques like matched
asymptotic expansions [21]. At the other extreme, for λD ≥ Lo, the elec-
trokinetic systems are best described by considering all the individual atomic
interactions, for example using molecular dynamics (MD) simulations [22].
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Between the aforementioned limits, the continuum approach in which ions
are not treated as microscopic discrete entities but as continuous charged
species densities [20] is the proper choice.

Some of the ways used to manipulate droplets and bubbles in fluidic mi-
crosystems have their origin in electrokinetic phenomena like electrosmosis or
electrophoresis [23]. For instance, a dielectric fluid of negligible conductivity
like an oil can be continuously pumped through a channel by electrosmotic
means by adding a suitable layer on an electrolyte [24, 25]. Hence, investi-
gations on the physics of electrokinetic effects on fluid-fluid interfaces such
as the recent work of Pascall & Squires [26] are of great interest. This work
explains the physical reasons by which electrokinetics effects are enhanced at
liquid/liquid interfaces. In this context, the work of Zholkovskij et al. [27]
sheds light on the deformation of suspended droplets under an imposed axial
electric field. The model of Zholkovskij et al. keeps the ionic nature of the
charge and provides an analytical solution for the deformation. Interestingly,
they show how the classic expressions obtained by Allan & Mason [17] for
pure dielectric fluids and by Taylor[28] using the leaky-dielectric model are
limit cases of the more general electrokinetic model. In the same manner,
the work of Zholkovskij et al. can be used as a very complete benchmark for
testing numerical models of two-phase electrokinetic problems [29].

In the present paper, we will focus on the numerical treatment of two-
phase problems involving physical phenomena of electrokinetic nature using
a Volume-Of-Fluid (VOF) method. In particular, our contribution here aims
at the development of an accurate, efficient tool to deal with these general
electrokinetic problems where the characteristic times associated to either
the electrokinetics or the hydrodynamics can be comparable, with the ulti-
mate objective to tackle the existing conundrum in electrospray physics and
the electrohydrodynamic emission of extremely small charged droplets and
particles from Taylor cone-jets. To this end, we use as foundation the open
source code Gerris [30]. Gerris, originally conceived as an incompressible
Navier-Stokes equations solver [31], also includes adaptive mesh capabilities,
an accurate surface tension model [32] and an electrohydrodynamic (EHD)
solver [33]. Thanks to its versatility, ease of use, free project character and
accuracy, its uses are widespread. In particular it has been employed with
remarkable success for simulating EHD problems such as electrospraying in
the cone-jet mode under the hypothesis of constant conductivity (bulk ionic
equilibrium)[34] and tip streaming ejection from an electrified pendant drop
[35].
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2. Equations

For the sake of simplicity, in this work we assume that the electrolytes
are fully dissociated, i.e. there are no bulk sources/sinks of ions. The con-
servation equations of the ionic species then take the form,

cit +∇ · (ciu) = ∇ ·
(
ωikBT∇ci − eωizi ciE

)
(1)

with ci the concentration (number of ions per unit volume) of the ionic i-
species, u the fluid velocity, ωi the mobility of that ion, e the elementary
electron charge, zi the valence (with its sign) of that ionic specie, kB the
Boltzmann constant, T the temperature and E the electric field. The above
equation (1) expresses that the concentration of the i-species varies in time
as a consequence of advection, migration under an electric field (last term on
the r.h.s.) and transport by diffusion (first term on the r.h.s.)[15].

The electrical potential ,ϕ, depends on the distribution of all the charged
species by means of the Poisson equation,

∇ · (εE) = ∇ · (−ε∇ϕ) = q, since q =
∑
i

ezici (2)

where ε is the electric permittivity and q the volume charge density.
The set of equations given by Eqs. (1) and (2) leads to the Poisson-

Nernst-Planck (PNP) model. This is precisely the model adopted in this
work. In addition to the PNP model, the Navier-Stokes equations for the
incompressible fluid motion need to be included,

∇ · u = 0, (3)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · Tv + Fe + σκδsn (4)

where ρ is the fluid density, σ the surface tension coefficient, κ the interface
curvature, n the normal to the interface. δs is the Dirac delta and Tv is the
viscous stress tensor given by,

Tv = 2µD , (5)

where µ is the viscosity and D the deformation tensor, D = 1
2
(∇u +∇uT ).

The bulk electric forces Fe can be derived from the electrostatic Maxwell
stress tensor

Te = ε

(
EE− E2

2
I

)
(6)
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by applying the divergence operator

Fe = ∇ · Te = ρeE−
1

2
E2∇ε. (7)

The first term represents the electric forces exerted on the free charges present
in the fluid, while the second term represents the electric forces exerted on
the induced electric dipoles.

The set of equations is completed, in a VOF approach, by incorporating
an additional variable, the volume fraction φ(x, t), that serves to track the
interface position

∂φ

∂t
+∇ · (uφ) = 0 (8)

Thus, the entire two-phase fluid domain, formed by a fluid “o” immiscible
with a fluid “e”, is treated as a single fluid with properties that depend on
the position (through the volume fraction φ) at each instant,

χ = χo φ+ χe (1− φ) , (9)

where χ stands for any of the relevant fluid properties, ρ, µ, ε, ...

3. Numerical scheme

The fluid domain is, for simplicity, formed by two immiscible fluids with
homogeneous properties: a perfect dielectric whose properties are labeled
with the subscript “o” and a fully dissociated z : z binary electrolyte solution
(subscript “e”). In addition, variables and equations are made dimensionless
using the fluid density ρe, the bulk concentration co, a characteristic length
L, the surface tension σ and the permittivity εo. The above scaling leads to
the following dimensionless parameters where we will use the superscripts +
and − for the cation and the anion, respectively:

• Dimensionless ion diffusivities, D+(−) = ω+(−)kBT
LU

with U the capillary
velocity U = (σ/ρeL)1/2 . Note that these dimensionless diffusivities
are the inverse of the corresponding Peclet numbers Pe+(−) = 1/D+(−).

• A number γ, which measure the relative importance of the characteris-
tic electric field to the one created by electrokinetics, γ = EcLez/(kBT ),
with Ec = (σ/εoL)1/2. Dimensionless ion specific conductivities can be
written as, Λ+(−) = D+(−)γ.

7



Interface

C

c

cC

ufDt

uf cf

W

F=0

LE=LEF=LE ; DE=DEF=DE

F=1

Migration
Flux

(a) (b)
LE=LEF=0 ; DE=DEF=0

Figure 1: Sketch of an interfacial cell

• The Ohnesorge number, Cµ = µe/
√
σLρe.

• The dimensionless Debye parameter, K = L/λD, with λD =
√

εekBT
2e2z2co

the Debye length.

• Ratios of the relevant fluid properties. In particular, densities, R =
ρo/ρe; viscosities, M = µo/µe and electrical permittivities S = εe/εo.

From now on, all variables will be non-dimensional (but we will use the same
symbols as in the previous section).

3.1. Conservation of ionic species

Obviously, the conservation equation (1) is only applicable in regions of the
domain where the free ions move, i.e. regions occupied by the liquid solvent.
The concentration ci is defined as the amount (number of ions) of the i-
species per unit volume of solvent. Also, any concentration ci per unit of
spatial volume can be expressed anywhere in the computational domain just
by weighting it with the volume fraction of the solvent φ ci, which is more
suitable for numerical methods treating two-phase flows as a single fluid with
a variable property φ. To this end, Berry et al. [29] combined (1) and (8) to
derive

(c±φ)t +∇ · (c±φu) = ∇ ·
(
φD±∇c±

)
∓∇ ·

(
Λ±φc±E

)
(10)
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where the interface is assumed impenetrable to ions. A physical interpreta-
tion of the factor φ in the migration terms of the r.h.s. of (10) is as a weighted
diffusivity/conductivity (D̄± = φD± / Λ̄± = φΛ±) that nullifies the migra-
tion fluxes across boundaries out of the solvent phase (see sketch (a) of figure
1). In the present case, it is used as the control volume for the spatial integra-
tion in cell C (see figure 1, sketch (b)). The flux of species due to advection
is computed with a procedure analogous to the one used for the volume of
fluid phase [32]. A similar procedure has been adopted in [29]. As is sketched
in figure 1.b, the procedure relies on computing the volume of fluid crossing
the cell frontier ∂C (the dark grey area in the sketch) from the analytically
reconstructed interface. Then, in order to calculate the amount of the species
that leaves the cell, that volume of fluid simply has to be weighted by the
value of concentration at the cell face (c±)f . These face values are calculated
from the cell concentration and slope-limited concentration gradients.

In the spirit of using variables defined in the entire domain, the diffusivity
term in (10) is split in two,

∇ · (φD±∇c±) = ∇ · [D±∇(c±φ)]−∇ · (D±c±∇φ) , (11)

which gives the following form of the equation for the species

(c±φ)t +∇ · (c±φu) = ∇ · [D±∇(c±φ)]︸ ︷︷ ︸
term A

−∇ · (D±c±∇φ)︸ ︷︷ ︸
term B

∓∇ ·
(
Λ±φc±E

)︸ ︷︷ ︸
term C

, (12)

where the diffusivity and conductivity are now defined in the entire fluid
domain and are treated like the other fluid properties.

In Gerris, the space is discretised using an octree scheme where the un-
known variables are located at the center of each cubic discretisation volume,
and are interpreted as the average values of the variable in the cell. In this
octree scheme, the degree of refinement of the domain is often referred by
its level. Level zero correspond to a unique cell occupying the entire square
domain. Each increment of the level corresponds to a generation of new 4 (8
in 3D) cells by splitting the previous (parent) once. Thus, the cell’s width
depends on the level, L, as h = 2−L.
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In a cell of size h, the average flux added/extracted by pure diffusion
(term A) can be computed as

h

∫
C
∇ · [D±∇(c±φ)] =

∫
∂C
D±∇(c±φ) · n

=
∑
f

(D±)f∇f (c±φ), (13)

where ∇f (c±φ) is the normal gradient at the cell faces computed from center
values at the cell of interest and its neighbors [31]. (D±)f is the diffusivity
value at the cell face. We compute it by averaging the diffusivity of the cells
sharing the face of interest and by weighting this value by the factor φf ,
(D±)f = D±av φ

f . The weighting factor φf is the value of the volume fraction
at the face, computed from the analytically reconstructed interface. This
weighting factor represents the ratio of the face wetted by the the solvent
phase (for example, in the sketch 1.b, for the upper face φf = 0 while for
the lower face φf = 1). The weighting factor ensures that interfaces are
impenetrable to ions in a way similar to solid fractions for regions occupied
by solids [31]. In this way, the concentrations will remain conservatively in
the solvent phase. The correction term B of (12) has a diffusion-like structure
and is computed as term A. The same holds for term C since we compute
it from the electric potential ϕ, ∇ · (Λ±φc±E) = −∇ · (Λ±φc±∇ϕ). An
alternative approach to the calculation of term C could be to assimilate it
into the advection term [29].

3.2. Time integration procedure

The time discretization scheme consists in a time-splitting pressure-correction
method. The time stepping integration procedure is briefly outlined below
(readers can find more detailed descriptions elsewhere [31, 32, 36]). First,
anion concentrations and the volume fraction are advanced to a mid-step,
n+ 1/2,

φn+ 1
2
− φn− 1

2

∆t
+∇ · (φnun) = 0 (14)

c±
n+ 1

2

− c±
n− 1

2

∆t
+∇ · (c±nun) = ∇ ·

(
D±∇c±

n+ 1
2

∓ Λ±c±nEn

)
(15)
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Then the values of the fluid properties are updated,

ρn+ 1
2

= φn+ 1
2

+R(1− φn+ 1
2
)

µn+ 1
2

= Cµ[φn+ 1
2

+M(1− φn+ 1
2
)]

εn+ 1
2

= S φn+ 1
2

+ (1− φn+ 1
2
),

(16)

as well as the electric potential,

∇ · (εn+ 1
2
∇ϕn+ 1

2
) =

1

2

SK2

γ
(c+
n+ 1

2

− c−
n+ 1

2

) . (17)

The prediction-diffusion step is performed by solving the equation

ρn+ 1
2

∆t
u∗ −∇ · (µn+ 1

2
D∗) = ∇ · (µn+ 1

2
Dn) + (σκδsn)n+ 1

2

+ (Fe)n+ 1
2

+ ρn+ 1
2

[un
∆t
− un+ 1

2
· ∇un+ 1

2

]
, (18)

to determine the auxiliary velocity ũ∗. In the above expression, the velocity
advection term un+ 1

2
· ∇un+ 1

2
is estimated by means of the Bell-Colella-Glaz

second-order unsplit upwind scheme [31]. The projection-correction step is
then carried out by solving the Poisson equation,

∇ ·

(
∆t

ρn+ 1
2

∇pn+ 1
2

)
= ∇ · u∗ , (19)

and by numerically computing the divergence-free velocity field for the new
instant n+ 1, un+1 = u∗ −∇pn+1/2 ∆t/ρn+1/2.

The surface tension forces are computed using the Continuum-Surface-
Force (CSF) approach [37]. It is well known that the CSF approach can cause
parasitic currents. However, it is possible to avoid them by using a balanced-
force description of the surface tension and pressure gradient together with
an accurate curvature estimate [31]. The curvature is calculated using a
generalised height-function technique which allows consistent and accurate
estimations even at low interface resolutions.

The time integration scheme is explicit with a timestep limited by the
onset of capillary, advection or diffusion instability. The most stringent lim-
itation depends on the parameters of the problem. Note that viscosity does
not appear in the list above since the viscous term is calculated implicitly.
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4. Results and discussion

4.1. Deformation of suspended electrolytic droplets

An uncharged liquid z : z electrolyte droplet of radius a is suspended in
a pure dielectric unbounded liquid atmosphere. Both fluids are immiscible
with surface tension σ, and, for the sake of simplicity, have the same density
and viscosity. The droplet, by the action of an imposed axial electric field,
E∞, deforms to adopt a stationary prolate/oblate form depending on the
ratio of the droplet radius to the Debye length, K = a/λD and on the ratio
of the inner to the outer electrical permittivity S = εi/εo,

d

CaE
=

9

16
×

(S − 1)
{
S [2−K2/(K cothK − 1)]

2 − 1
}

+K2S

[2(S − 1) + SK2/(K cothK − 1)]2
(20)

where d is the degree of the deformation of the droplet given by d = (a‖ −
a⊥)/(a‖ + a⊥), and a‖ and a⊥ are the semi-axes parallel and normal to the
external field. CaE is the electric capillary number, CaE = aεoE

2
∞/σ. The

above expression is valid in the limit of small CaE since it has been obtained
by linearization. Expressions for different configurations, for example a di-
electric droplet surrounded by a z : z electrolytes, can be found in Zholkovskij
et al. [27]. This problem has been proposed as a benchmark by Berry et al.
[29]. In these simulations, we have set to one the Ohnesorge number, Cµ,
and ion diffusivities D+ and D−. The fluid domain is a square box of width
W = 30a. In the computations we have used the symmetry of the problem;
the lower side of the square box has been set as the axis of symmetry. On
the other boundaries we impose slip conditions for the velocity. We have
used adaptation to refine the cells close to the interface as it deforms. The
smaller cells have been used at the interface while further away the size of
the cell has been increased to level L = 4 (which is equivalent to cells of
width h = W 2−L = 1.875 a). We have first checked the convergence with
the grid by refining the minimum cells successively to a/h = 8.53, 17.06 and
34.12 (or equivalently, levels L = 8, 9 and 10) for K = 0.1 and K = 0.6.
In these preliminary tests we have set the permittivity ratio S = 10. The
results of this test are summarized in table 4.1. At level L = 8, the grid is
too coarse, with relative errors larger than 10%. Increasing the resolution by
a level suffices to decrease the relative error by an order of magnitude, with
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Table 1: Convergence of the degree of deformation, d, with the dimensionless grid size
(droplet radius a divided by the minimum cell size) with S = 10, CaE = 0.025. Parameter
K is K = 0.1 and K = 6.0. The theoretical result of (20), dt for these values of K are
0.007929 and 0.0134289, respectively. The ratio of the Debye length to the minimum cell
size, λD/h is also shown.

Grid (a/h) (λD/h) Deformation, d absolute error relative error (%)

K=0.1 (dt= 0.007929)
8.53 85.33 0.0053095 2.61913 10−3 33.03
17.06 170.67 0.0072116 0.71701 10−3 9.04
34.12 341.33 0.0074005 0.52816 10−3 6.66

K=6.0 (dt= 0.0134289)
8.53 1.42 0.0122269 1.20197 10−3 8.95
17.06 2.84 0.0133152 0.11367 10−3 0.85
34.12 5.69 0.0134749 0.04603 10−3 0.34

a value close to the theoretical solution given by equation (20) for K = 6.0.
However for K = 0.1 a refinement of one level (from 8 to 9) is not so effective.
In this case, the relative error decreases approximately 3.6 times, instead of
a decade. In both cases, little is gained with further refinement.

We have also checked if a similar agreement could be obtained for different
values of the permittivity ratio S and of the dimensionless Debye parameter
K. To this end, we have plotted the droplet deformation d as a function
of K for electrical permittivity ratios S = 2 and S = 10 (figure 2), keeping
the maximum level equal to 9. The other parameters are kept constant (as
previously given). Figure 2 shows that the agreement is good for K values
of the order unity, but deteriorates for low K values. The total amount of
either anions and cations is very well conserved in all the simulations: in the
least conservative case, the variation of the total amount of species between
the first and last computational step does not exceed 10−3%.

4.2. Breakup of liquid, charged capillary columns

Uncharged liquid columns are unstable to perturbations because of sur-
face tension. Capillary instabilities grow until a pinch-off occurs and droplets
(often a primary and a satellite) are formed. Due to industrial implications,
this phenomenon has been extensively studied since the XIX century pio-
neering works of Savart [38], Plateau[39] and Rayleigh[40]. Much work has

13



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.1  1  10

d

K

Analytical (S=10)
Analytical (S=2)

Level = 9

Figure 2: Deformation d as a function of the Debye parameter K for permittivity ratios
S = 2 and 10. Continuous lines correspond to the theoretical values given by (20). Symbols
correspond to numerical simulations carried out with a minimum cell size equal to a/h =
17.06 (L=9). Calculations have been carried out setting Cµ = D+ = D− = 1 and
CaE = 0.025. The ratios of density and viscosity, R and M , are both set to one.
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been conducted to analyze for instance, the influence of the viscosity or the
surrounding ambient fluid on the size of the droplets or on the dynamics
of the pinch-off process. The reader is referred to [41, 42] for a complete
overview of the state-of-the-art.

The problem is enriched if electric forces are added. A wide variety of
electrical conditions emerge: the fluid could behave, for example, as a perfect
conductor, a perfect dielectric, or in a milder situation, as a leaky-dielectric
fluid; or some external electric field could be superimposed. Thus, a myriad
of papers on these electrified ligaments can be found. Most of them are de-
voted to linear stability analysis [43, 44, 45, 46, 47, 48, 49], some to numerical
non-linear analysis [50, 51, 52, 53] and a few to experimental analysis [54, 55].
To our knowledge, the work of Conroy et al. [56] is the only one considering
electrokinetic effects in the breakup of charged threads. This work focuses on
the effect of the presence at the interface of a positive insoluble surfactant in-
teracting with ionic species. A slenderness hypothesis and the Debye-Huckel
limit are used to simplify the problem.

In the present work, a net charge is induced in a slender, perfectly cylin-
drical column by applying a difference of voltage V between the column of
diameter A (which is used as characteristic length in this problem) and a
grounded concentric electrode of radius R∞ = 15A. The surrounding ambi-
ent is a perfect dielectric fluid with negligible dynamical effect on the column,
i.e. a gas. The net charge is due to a small imbalance in the concentration
of the fully dissociated z : z binary electrolyte, |c+ − c−| 6= 0.

Since the present study is restricted to axisymmetric perturbations, we
use cylindrical coordinates, (z, r; t). Initially, the concentrations of the charged
species are uniformly distributed. Also, to trigger the breakup process, a si-
nusoidal, small perturbation of the interface is imposed,

f(z; 0) = 1 + ε sin(κw z)
c+(z, r; 0) = B+

c−(z, r; 0) = B−
(21)

where f is the dimensionless interface position and ε and κw are the amplitude
and wavenumber of the perturbation respectively. B+ and B− are the initial
concentrations of the cations and the anions.

As in the above problem of the deformation of the droplet, the degree of
electrification is measured by the capillary electric number, CaE, which in
this case is defined as CaE = AεoE

2
o/σ with Eo the outer electric field at the

interface of the column and εo the permittivity of the surrounding medium.
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CaE is related to the average charge density induced in the fluid. Thus CaE
can be written in terms of the initial species concentration as

CaE =
K4S2

16γ2
(B+ −B−)2 . (22)

CaE is also called the Taylor number[47].
To sum up, the following set of free dimensionless characteristic parame-

ters govern the problem:

(1) for the perturbation, ε and κw;

(2) for the charged species, D+, D−, γ and K;

(3) for the electrical conditions, B+, B− and R∞/A; and

(4) for the fluid properties, Cµ, S, R and M .

Since we focus mainly on electrokinetic effects, most of the free parameters
in this study are kept fixed: ε = 0.1, κw = 0.6283, Cµ = 0.05, R = M = 10−2

and S = 10. Additionally, in order to have a more pronounced electrokinetic
effect, we assume that the cation is of smaller size than the anion. Hence, we
set a higher diffusivity for the cation than for the anion, D+ = 7 and D− = 1.
Also the difference of mobilities will allow to investigate the influence of the
polarity in the breakup. In particular we set B+ = 1.01 and B− = 0.99 to
study the case of positive polarity, and we swap the values for the case of
negative polarity, B+ = 0.99 and B− = 1.01. The only free parameter we
allow to vary is K. γ is calculated from (22) with CaE = 0.125. To fix CaE
rather than γ yields a proper comparison between the cases since the degree
of electrification is the most affecting factor, after the Ohnesorge number, in
the breakup process [51].

In the simulations we use the axisymmetric character of the problem
and the symmetry existing in the axial direction. Hence, the simulation
domain occupies only half a wave length in the z direction and in the radial
direction from the axis of symmetry up to the grounded electrode (see fig.
3). Consistently the following boundary conditions are used,

• At the axis of symmetry, ur(z, 0; t) = 0, v(z, 0; t) = 0 and ϕr(z, 0; t) = 0
.

• At the left and right extremes, u(±π/(2κw), r; t) = 0, vz(±π/(2κw), r; t) =
0 and ϕz(±π/(2κw), r; t) = 0 .
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Figure 3: Simulation domain and boundary conditions of the problem of the charged
column breakup.
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Figure 4: Percentage of the anions and cations that go to the satellite droplet as a function
of the Debye parameter, K. Rounded and square symbols denote the cation and anion
species, respectively. Continuous (dashed) lines denote positive (negative) polarity results.
Green and blue lines correspond to D+ = 7× 10−3, D− = 10−3, while red and cyan lines
have been calculated using less realistic values D+ = 7, D− = 1

• At the grounded electrode, u(z,R∞/A; t) = 0,
v(z, R∞/A; t) = 0 and ϕ(z,R∞/A; t) = 0 .

with u and v the axial and radial velocity.
Simulations have been carried out using a double adaptation refinement

criteria, based on the gradient of the volume fraction, φ, and on the maximum
curvature of the interface κmax. The first criterion allows to guarantee that
the interface is always defined with a minimum grid size of h/A ' 0.0097
(equivalent to 9 levels of refinement). The second criterion is introduced to
get a good description of the pinching region as time proceeds. This second
criterion ensures that the cell size ∆ is small enough to verify ∆κmax < 0.2.
The levels are allowed to increase up to a level 14 (h/A ' 3.05×10−4) before
breakup. Once breakup has occurred the curvature criterion is relaxed by
reducing the maximum level to 10.

In figure 4 we plot the amount of each species (expressed as the percentage
of the initial one seeded in the column) that goes to the satellite droplet either
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for positive and negative polarity and for two pair of values of diffusivities,
D+ = 7 × 10−3 and D− = 10−3 (green and blue lines) and D+ = 7 and
D− = 1 (red and cyan lines). The first electrokinetic effect observed is
that the symmetry with respect to the polarity set is broken, as expected:
continuous lines corresponding to positive polarity are in all the cases above
the dashed lines of negative polarity. The asymmetry is particularly intense
for low diffusivities (D+ = 7 × 10−3 and D− = 10−3). Note that in this
case (low diffusivities) even the amount of anion in the satellite is larger
for positive polarity than for negative polarity (i.e. continuous-square line
above the dashed-square one). For the high diffusivity pair (D+ = 7 and
D− = 1) we can distinguish roughly three regions: region I (K < 2), region
II ( 2 < K < 20) and region III (K > 20). In region I, the gap between the
amount of anion and cation, which is proportional to the net charge, is greatly
reduced as K is lowered. Electrokinetic effects become manifest when the
polarity is switched: the charged species concentration in the satellite decays
more quickly for negative polarity (cyan curve) than for positive polarity (red
curve). For instance, for K = 0.5 the amount of charged species is about
2.8% for negative polarity, while it is about 3.3% for positive polarity. In
region II, the amount of charged species is roughly a plateau, ranging from
3.3% for cations with negative polarity up to 3.7% for anions with positive
polarity. Besides, region III is characterized by a continuous (almost linear)
growth with K of the concentration of all charged species, irrespective of
the polarity. For more realistic values of the diffusivity (D+ = 7 × 10−3

and D− = 10−3), region II can not be distinguished: the transition from
regions I (nearly equal concentrations of anion and cation) to III (continuous
growth of the amount of charge with K) takes place around K=5 without
an intermediate plateau. It is worth noticing that small differences of ion
concentration in the satellite (note that the y axis goes from 2.5% to 5%)
yield big differences in its net charge (see fig. 7).

In figure 5 we show the dimensionless relative bulk conductivity at an
instant before pinching forK = 0.5 ((a) and (b) subplot) andK = 20 ((c) and
(d)). The polarity is positive and the dimensionless diffusivity pair (D+, D−)
is (7.0, 1.0) in both cases. The conductivity shown has been weighted with
the initial homogeneous one given by Eq. (25). In both cases the relative
conductivity is not homogeneous in the bulk, with the maximum and the
minimum of the conductivity of the same order independently of the value
of K; about 15% higher and 1.5% lower with respect to the initial weighting
factor, respectively. The location of the maximum values is more interesting.
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Figure 5: Dimensionless relative bulk conductivity, (c+D+ + c−D−)/(B+D+ + B−D−),
for an instant before pinching. (a) and (b) corresponds to K = 0.5; (c) and (d) to
K = 20. In (b) and (d) the pinch-off region is enlarged. The polarity is positive. The
electric isopotential lines are also represented. Colorscale for (a) and (b) ranges from
1.1515 to 0.9886 while for (c) and (d) the range goes from 1.1277 to 0.9857. Dimensionless
diffusivities are D+ = 7, D− = 1 in all cases.
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For K = 20 the maximum values are located in the vicinity of the interface,
where the net charge accumulates. In contrast, for K = 0.5, the maximum
conductivity is located in the neck where the charges are accumulated by a
relatively intense electric field. This intense electric field is a consequence
of the sudden difference of electric potential that occurs through the neck
region as indicated by the electric isopotential lines in figure 5(b).

In the pinch-off process of an uncharged jet, the minimum radius hmin
scales with time as hmin ∝ (to − t)n where to is the breakup time [42]. The
exponent n depends on the relevant forces acting on the pinching process.
Surface tension, viscosity and density establish a threshold value h∗min such
that the balance is between surface tension, viscous and inertia forces. While
the instantaneous value of hmin is such that hmin > h∗min, the balance is
applied between surface tension forces and inertia, and the exponent n takes
the value n = 2/3. As time approaches pinch-off and hmin < h∗min, viscous
forces overcome inertia and the pinch-off evolves linearly (n = 1) [57]. In
figure 6 we plot the time evolution of the minimum radius for the same
conditions used in figure 5. One can observe that the scalings of the last
stages of the breakup are not altered by electrokinetic effects, independently
of the width of the relative Debye length, measured by the dimensionless
Debye parameter K. A similar behaviour is found in charged capillary jets
in which electrokinetic effects are absent [52].

4.3. Discussion and conclusion. The validity of the customary electrohydro-
dynamic, homogeneous conductivity assumption

In this section we finally analyze the validity of a general assumption
made by many in the field of electrohydrodynamics and, in particular, by all
investigators in the field of electrospray: the homogeneity of the electrical
conductivity throughout the liquid domain. Thus, for comparison purposes
we write down the equation for the charge density, q, that is obtained by
combination of the equations of the cation and the anion,

qt +∇ · (qu) =
K2S

2γ
∇ · (D+∇c+ −D−∇c−)

−∇ ·
(
D+c+ +D−c−

2
K2SE

)
(23)

It is customary in the electrohydrodynamic field to neglect the diffusion term
since, in most cases, it is negligible compared to the electrical migration. In
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Figure 7: Percentage of the net charge going to the satellite droplet as a function of the
Debye parameter, K. The net charge predicted by the EHD model given by Eq. (24) is
also plotted (dash-dot line). Thick lines for D+ = 7 × 10−3, D− = 10−3, thin lines for
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addition, the concentrations of species tend to remain almost uniform in
the bulk. It is thus sensible (and customary) to assume a constant electric
conductivity. With the above characteristic simplifications (23) becomes

qt +∇ · (qu) = −∇ · (αSE) , (24)

where α is the relaxation parameter[47] that measures the relative impor-
tance of charge conduction to advection. For α � 1 the perfect conductor
limit is reached. On the other hand, if α � 1, the “glued charge” limit is
attained [47]. Comparing (23) and (24) the following relationship between
dimensionless parameters arise,

α =
D+B+ +D−B−

2
K2 . (25)

In figure 7 we compare the results with no assumptions on the electrical
conductivity (i.e., we let each species move according to their mobility under
the applied electric field) and using simplifying equations 24 and 25 with
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homogeneous electrical conductivity (i. e. that of the liquid in the absence
of electrokinetic effects). Thus, we plot the net charge in the satellite droplet
(again, as the percentage of the initial amount) either for positive and nega-
tive polarity from the general model. It is clear from figure 7 that the effect
of polarity is negligible in the net charge in the droplets. It can be observed
that the amount of charge in the satellite increases rapidly with K, reaching
a limit value of about 20%. This is because the average conductivity is pro-
portional to K2. With low values of the conductivity the main mechanism
governing the movement of the charged species is convection, while the diffu-
sion and the electrical migration are less important. Therefore, both species,
the cation and the anion, are moved analogously, the concentrations are sim-
ilar and the net charge is small. The presence of a stagnation point in the
liquid bulk is also important since it acts like a barrier to the convection of
the species. This stagnation point is a consequence of the outward pumping
of the fluid occurring in the pinch-off area. On the other hand, the results of
the simplified EHD model given by Eq. (24) for different values of α are also
plotted in figure 7. K is calculated from α with Eq. (25). Similar trends of
lower net charge for low values of K are observed for the EHD model; how-
ever this charge is significantly overpredicted compared to that calculated
with the electrokinetic model, with errors as large as 100% for low K values.
These results are a warning for those using theoretical models in the field
of electrospray physics in the limits of very small issued flow rates, and in
particular when a first spout is issued from an electrified interface [58].

In conclusion, a general electrokinetic model and numerical procedure to
tackle electrohydrodynamic problems has been presented with some illus-
trations of its validity and accuracy. In the cases when the diffusion, elec-
trosmotic motion and hydrodynamic singularities compete, the general elec-
trokinetic model yields results significantly different from customary models
assuming homogeneous electrical conductivities with values equal to those
of the liquids in the absence of electrokinetic effects. In particular, at the
macroscopic level the net charge of the droplets could be overestimated spe-
cially if diffusion effects are not negligible. With the simulations (and free)
tool we developed, a better insight on the distribution of charged species is
gained. This is particularly valuable for the characterization of processes or
techniques in which electrospray is operated with extremely small flow rates,
such as in mass spectrometry. However, such differences are not sufficient to
alter the already established asymptotic behavior of the minimum radius of
the capillary liquid jet as the breakup time approaches.
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[3] A. M. Gañán-Calvo, Cone-jet analytical extension of Taylor’s electro-
static solution and the asymptotic universal scaling laws in electrospray-
ing, Phys. Rev. Lett. 79 (1997) 217–220.
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