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Abstract: Taking advantage of the analogy that can be drawn between the spatial and temporal 

propagations, we explore two-wave temporal interference in textbook cases such as Young’s 

double slits, Fresnel’s biprism and Billet’s bilens. We illustrate our approach by numerical 

simulations for short pulses propagating in dispersive optical fibers with parameters typical of 

those found in modern optical telecommunications. 
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1. Introduction 

Interferences of two optical waves are among the key effects used in modern optics with 

applications spanning from sensors development, detection of gravitational waves [1], navigation 

systems [2] or phase-encoded ultrafast communications [3] to cite a few. The observation of 

interferences has been central in the discovery of the wave nature of light [4] and famous 

experiments such as Thomas Young’s double slits paved the debates and advances of 

XIXth  century physics [5, 6]. Young’s slits are still the most famous textbook example found in 

physical optics courses [7, 8] although other devices involving two virtual sources of lights have 

also been developed during the XIXth century, to confirm Young’s conclusions and to increase the 

brightness of the resulting spatial interference pattern. In France, Augustin Fresnel (1788-1827) 

proposed to take advantage of a biprism [9, 10] whereas later, Felix Billet (1808-1882) and his 

assistant Jean-Baptiste-Victor Nodot, from the University of Dijon, imagined a setup made of a 

lens split into two parts that are slightly transversally offset [11, 12]. 

All those seminal experiments are essentially described in terms of space optics involving 

two optical waves. However, it is possible to find time domain counterparts using the well-known 

analogy between spatial diffraction and temporal dispersion [13-16]. This space/time duality has 

already been extremely fruitful and has stimulated numerous new concepts or interpretation in 

ultrafast optics such as temporal or spectral lenses [17-19], Talbot effect used for ultrafast sources 

[20], Fresnel lens [21], temporal telescope [22] or microscope [23], temporal pinhole camera [24]. 

Recently we used the space/time duality to demonstrate lenticular lenses [25] and to show that the 

Gouy phase shift has its spectral analog [19]. 

We propose here to explore this fascinating analogy by investigating the possibility of two-

wave temporal interferences as found in famous XIXth century experiments such as Young’s 

double slits, Fresnel’s biprism and Billet’s bilens. Going through these three experiments and their 

temporal counter parts we will highlight the physics at work, their similarity and their differences 

using temporal-frequency analysis. 
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2. Young’s double slits  

Let us first consider the simple case where a monochromatic plane wave with wavelength  

illuminates two identical 1D slits with aperture AS and separated by SS [see Fig. 1(a)]. In the context 

of Fresnel’s diffraction the resulting interference pattern IS(x) at distance D, can be easily derived 

as: 
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where T(x) is the complex transmission function that affects the input wave Uini, x is the transverse 

coordinate and kx the spatial frequency, k being the wave vector. F and F-1 are the direct and 

reciprocal Fourier transforms. The diffraction imprints a quadratic phase term in the momentum 

domain. For the sake of simplicity, we consider in the present manuscript Uini(x) = 1, i.e. the case 

of an incident plane wave, but other values of Uini can be equally taken to extend the present 

discussion such as, for instance, the case of punctual sources.  

In the context of Young’s double slits, T(x) can be expressed as  
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where  rect(x)  is the gate function. For a sufficiently large distance D (D>>), a non-localized 

spatial interference pattern appears with a typical interfringe distance S that linearly depends on 

D and can be calculated from a usual optical path length difference [8]: 
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Let us now consider a similar situation in the time domain. Thanks to advances in phase and 

intensity modulators (Fig. 1(b1)), an initial continuous wave can be temporally shaped with a 

transmission function T(t) into a sequence of two pulses of duration AT separated by ST . As the 

counterpart of spatial diffraction found in Young’s double slits experiment, we consider here 

temporal dispersion brought by a piece of single mode fiber with second order dispersion 
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coefficient 2. The dispersion occurring in the fiber leads to a temporal broadening of the pulses 

so that the temporal intensity profile can be predicted by [26]: 
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where t and f are the temporal and spectral variables respectively and D the propagation length in 

the fiber. Equation 4 is formally equivalent to Eq. 1 and, for a sufficiently long propagation 

distance D ( D>>LD=At
2/|2| ) non-localized interference fringes appear in the time domain. 

 

To perform simulations that correspond to a realistic situation, we consider two rectangular pulses 

with a duration AT = 25 ps being temporally spaced by ST = 200 ps [see Fig. 2(a)], such performance 

can be achieved using 40 GHz transmission optoelectronics. Propagation in a standard single mode 

fiber at 1550nm (C-band of telecom wavelengths) is considered with 2 = -20 ps/km. We neglect 

optical attenuation because of the low absorption found in telecom fiber (0.2 dB/km typically) 

such that propagation in several tens of kilometers can be studied without affecting the quality of 

the recorded pattern. We also neglect the effects of third order dispersion 3 as the ratio 3/2 is 

usually small for the fiber under investigation. 
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Figure 1 :  (a) Usual interferometric experiments and the location of the interferences fringes : Young’s double-slit 

experiment, Fresnel’s biprism and Billet’s bilens (panels 1, 2 and 3 respectively). (b) Standard telecommunication 

setups that may be used to create temporal interferences based on a single continuous wave that is intensity and phase 

modulated (b1)  or using a coherent sliced continuum (b2).  

 

Using Eq. 4, the evolution of the intensity profile of the pair of pulse (Fig. 2a) as a function the 

propagation distance D is displayed on Fig. 2(b1). The pulses temporally expand and overlap. In 

the overlapping region, sinusoidal beating appears and the period of oscillation increases upon 

propagation [see also Fig. 3(b)]. In order to visualize this process, it is beneficial to use time-

frequency representation (T-F) or spectrogram [27] that can be experimentally generated in a X-

FROG device [28]. This representation is provided in Fig. 3(a), the dispersion can be easily 

identified as spectral quadratic phase (i.e. a linear spectral chirp) and leads to a temporal 
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redistribution of the energy along the temporal axis. The T-F plot of the pulses becomes then tilted 

with a slope s being approximated in the far field by s = 1 / (2 D 2) [see blue dotted lines in 

Figs. 3(a)]. Therefore, after propagation distance D, and at a time t, two instantaneous frequencies 

f- and f+ are present in the pulse overlapping time region and can be associated in an anomalous 

dispersive fiber to the leading and trailing pulses respectively: 
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We can therefore deduce a temporal oscillation with a frequency f = f+- f- = ST |s| = ST/(2 D |2|)  

that is constant over the overlapping region given that the T-F plots of the pulses are parallel. We 

can therefore see that this temporal period of oscillation T = 2 D |2| / ST is in agreement with 

the usual interfringe expression taking into account the straightforward substitutions of  by 22 

and SS by ST. After 25 km of propagation (Fig. 3(a3)), temporal oscillations with a period of 15.7 ps 

can be directly recorded on high speed sampling oscilloscopes with a currently available 

bandwidth of 70 GHz. Furthermore, the optical spectrum can be easily recorded on an optical 

spectrum analyser (Fig. 3c). Note that upon further propagation, the temporal pattern will become 

a scaled replica of the optical spectrum [29]. The present results of temporal and intensity spectral 

profiles do not depend on the regime of propagation in the fiber (normal or anomalous). 
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Figure 2 :  (a) Temporal Young’s double slits: transmission function of the intensity modulator in the case of the 

generation of quasi-rectangular pulses or Gaussian pulses (solid black and grey dashed lines respectively). 

(b)  Longitudinal evolution of the temporal intensity profile in the case of rectangular temporal slits (b1) or Gaussian 

profiles (b2). The evolution of the temporal width a single Gaussian pulse (at –20 dB) is plotted with dashed blue line. 

 

From experimental perspectives, it can also be interesting to evaluate the case where the initial 

pulses obtained after amplitude modulation are not exactly rectangular but present a smoother raise 

and fall edges. In Fig 2(b2), we have considered initial Fourier transform Gaussian pulses with the 

same full width at half maximum (fwhm) duration as the previous rectangular waveforms. In this 

case, temporal ripples that appear between 5 and 10 km for the rectangular case are not present as 

there are related to the sidelobes of the sinc spectrum of the rectangular case that translate, through 

dispersion, into temporal pedestals. We also note that whereas the rectangular waveform slightly 

compresses in the early stage of propagation, the Gaussian pulse undergoes a uniform temporal 

broadening conserving its shape. The evolution of its width can therefore be analytically calculated 
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and evolves according to a (1+|2| z / T0
2)1/2 law where T0 is the 1/e half duration of the pulse 

intensity profile [26]. 

Let us also mention that, compared to spatial diffraction, fiber optics offers an additional 

degree of freedom: the dispersion can indeed be tuned and propagation in normal dispersion 

regime can erase the pattern resulting from propagation in the anomalous regime so that the initial 

waveform can be fully recovered. This forms the basis of optical dispersion-managed high speed 

transmissions [26]. From the practical point of view, variants of this temporal Young’s double-slit 

experiment has found applications in microscopy with the use of spectral focusing of two coherent 

pulses that are frequency shifted to enable the exploration of well-defined frequencies [30]. In the 

presence of Kerr media, interference patterns resulting from two sources have also been 

investigated in the spatial domain [31], similarly to studies carried out in the temporal domain with 

interference and formation of shock waves [32, 33]. 

 

 

Figure 3 : Temporal Young’s double slits: pulse characteristics viewed at different stages of propagation in the 

dispersive fiber : just after the modulation by the temporal double slits (a1), after 12.5 km of propagation (a2) and 

after 25 km of propagation (a3). Time-Frequency representation of the signal. Dashed blue lines represent the 

predictions of Eq. (4). (b) Temporal intensity profile. (c) Optical spectrum. 
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3. Fresnel’s biprism 

Let us now investigate the temporal equivalent of a Fresnel’s biprism. The Fresnel’s biprism 

consists of two thin prisms joint at their bases to form an isosceles triangle. A single wavefront 

impinges on both prisms; the left portion of the wavefront is refracted right while the right segment 

is refracted left [see Fig. 1(a2)]. In the region of superposition, interference occurs since two virtual 

sources overlap. The Fresnel’s biprism can be modeled by use of the following transmission 

function: 
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where AS is the length of the basis of the biprism, HS its height, and n the optical index of the 

material. tri is the triangular function with a fwhm of AS/2. The temporal equivalent of this 

transmission function is a combination of phase and amplitude modulation [see Fig. 4(a)] :  
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We consider here a large pulse (AT = 200 ps) in order to limit the impact of temporal broadening 

upon propagation and a maximum phase amplitude HT = 10 . The triangular phase can be 

generated either through RF waveform generators and phase modulators or photonic generators 

combined with cross-phase modulation experienced during propagation in a highly nonlinear fiber 

[34]. 
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Figure 4 :  (a) Temporal Fresnel’s biprism: Transmission function of the intensity and phase modulators (panels a1 

and a2 respectively). The direct temporal equivalent of the spatial Fresnel biprism is a quasi-rectangular long pulses 

modulated by triangular phase profile (solid black lines). It is compared here with a Gaussian long pulse (dash grey 

line) still with a triangular phase and with two transform-limited pulses (dotted grey lines) with different central 

frequencies and with a flat phase across the two pulses.         (b) Longitudinal evolution of the temporal intensity 

profile in the case of a rectangular pulse with triangular phase modulation (b1), Gaussian profile with triangular phase 

modulation (b2) or two transform limited pulses with different central frequencies (b3). The blue dashed lines in panel 

(b1) and (b3) represent the analytical prediction for zL and for the trajectory of the center of the Gaussian pulses 

respectively. 
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Results of the dispersive propagation of the wave are provided in Fig. 4(b1) where we observe the 

resulting temporal interference pattern. Contrary to the Young’s case, interferences are here 

localized (considering the propagation distance D). Spectrogram of Fig. 5 helps to understand the 

impact of the temporal biprism. The linear temporal phase modulation creates a constant frequency 

shift on each half of the pulse: the first half of the pulse is shifted towards f- = - HT /  AT whereas 

the other half is shifted towards the opposite frequency f+ = HT /  AT. Such property has already 

been exploited in ultrafast pulse processing for pulse doubling operation or frequency translation 

of a pulse [34-36]. Each part then travels with opposite relative speeds, the leading part travelling 

at a lower speed than the trailing one. This leads to a temporal overlap and the sinusoidal beating 

of the intensity profile [Fig. 5(b2)]. The beating frequency is here directly given by                                 

f = 2 HT /  AT   and contrary to temporal Young’s slit case, this value does not depend on the 

propagation distance D. Finally, when propagation length exceeds zL = AT
2 / (4 |2| HT), the f- and 

f+ structures temporally separate and the fringes disappear. Let us note here that contrary to the 

temporal Young’s slit case, sign of dispersion here matters and that for the present phase 

modulation, an anomalous dispersive fiber is mandatory. A dispersion managed system or a 

dispersion oscillating fiber may also provide the opportunity to observe those localized 

interference patterns periodically along propagation distance. 
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Figure 5 : Temporal Fresnel biprism: Pulse characteristics taken at different stage of propagation within the 

dispersive fiber: after the modulation of the Fresnel’s temporal biprism, after 12.5 km of propagation and after 25 km 

of propagation (subplots 1, 2 and 3 respectively)  (a) Time-Frequency representation of the signal. The blue dashed 

line represents the frequencies f+ and f-.  (b) Temporal intensity profile. (c) Optical spectrum. 

 

Instead of a rectangular intensity profile, it can also be interesting to test another pulse shape such 

as a Gaussian waveform with a fwhm temporal duration of 100 ps [see Fig. 4(a1), dashed grey 

line]. Results are plotted in Fig. 4(b2) and show similar trends as observed for the rectangular time 

modulation. Another interesting configuration that is experimentally accessible with fibers optics 

is to replace the linear phase modulation that shifts the instantaneous frequency of the pulses by 

the use of two coherent pulses with different operating wavelengths (two WDM channels spaced 

by f = 100 GHz with pulses with fwhm duration of 50 ps have been used) that are time interleaved 

[see Fig. 4(a1), dotted line; in our example, the initial temporal spacing is T0 = 137.5 ps]. Such 

pulses can be obtained from the frequency filtering of a continuum spectrum generated in a 

normally dispersive fiber [37] or in microresonators [38]. Results are displayed in Fig. 4(b3) : a 

similar pattern with a localized (considering the propagation distance D) zone of interferences, 

where the value of the interfringe, is fixed upon propagation is observed. The temporal spacing 
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between the two pulses evolves linearly according to  T(z) = | T0 + 2 2 f |. This last example 

grasps the physics at work and highlights the striking analogy between the temporal interferences 

between to pulses shifted in frequency (temporal Fresnel biprism) and the spatial interferences 

between two beam shifted in the k-space (spatial Fresnel biprism). 

As the continuum sliced WDM sources can handle several tens of channels [38, 39], it also 

opens the possibility of observe the controlled interference pattern of more than 2 sources. 

Similarly to the spatial domain where interferences from two directions have been studied to 

understand the nonlinear dynamics occurring in Kerr media [40], the temporal pattern created 

during the collision of structures can be significantly reshaped by self-phase modulation [37, 41]. 

 

4. Billet’s bilens 

We finally investigate the possibility to extend Billet’s bilens scheme to temporal imaging. A 

Billet’s bilens is a lens of aperture AS and focal distance fS that is split into two parts that are 

spatially offset by a quantity SS. The transmission function that can be associated to this device is 

therefore the following:  
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  (8) 

In the temporal domain, the impact of a spatial lens is reproduced by a parabolic phase modulation 

[14] so that we can use the phase and amplitude modulation plotted in Fig. 6(a) to mimic a Billet’s 
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bilens with a temporal aperture of AT = 200 ps, a delay ST = 50 ps between the two parts of the 

lens and an amplitude HT = 10 rad of the phase modulation: 
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  (9) 

The parabolic phase modulation can be imprinted by using an arbitrary waveform generator or by 

use of cross-phase modulation induced by parabolic shaped pulses [42]. Results of the dispersive 

propagation are plotted on Fig. 6(b1) where we can observe the non-localized fringes typical of 

the Billet’s interferences. Corresponding spectrograms are plotted in Fig. 7 and differ from the 

Fresnel’s biprism case. After the initial modulation stage, a leading structure is linearly chirped 

with a chirp slope of sin = HT / 4AT
2 and contains only negative instantaneous frequencies. The 

central frequency of this part is shifted by - HT ST / 4AT
2. On the contrary, the trailing structure 

exhibit only positive instantaneous frequencies. Under the action of anomalous dispersion, the 

slope of the chirp evolves upon propagation. In a first stage of propagation, the structures 

temporally compress (they are temporally focused) whereas their temporal centers also evolve 

towards the same direction with opposite relative velocities. Then the structures broaden and 

temporally separate. As the rate of temporal broadening is higher than the evolution of their 

temporal separation, an interference pattern is maintained. Similarly to the Young’s double slit 

case, the period of the oscillations of the temporal profile depends on the propagation distance and 

linearly increases. 
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Figure 6 :  Temporal Billet’s bilens: (a) Transmission function of the intensity and phase modulators (panels a1 and 

a2 respectively). The case of two quasi-rectangular pulses modulated by quadratic phase (solid black lines) is 

compared to the use of two Gaussian pulses (dash grey line) with a parabolic phase modulation and to the use of two 

Gaussian pulses having a sinusoidal phase modulation (dotted grey lines).      (b) Longitudinal evolution of the 

temporal intensity profile in the case of two rectangular pulses with parabolic phase modulation (b1), two Gaussian 

profiles with parabolic phase modulation (b2) or two Gaussian profiles with a sinusoidal phase modulation having a 

peak-to-peak amplitude of 8 rad and a frequency of 10 GHz (b3). 

 



 16 

Once again, it can be interesting to see if similar dynamics can be reproduced when considering a 

pair of Gaussian pulses with the same central wavelength but delayed by 125 ps [see Fig. 6(a1) 

dashed line]. The same parabolic phase is applied here. We note in Fig. 6(b2) that the same 

interference pattern as found in the rectangular case is reproduced. What can also be of 

experimental interest is to evaluate the possibility of replacing the parabolic phase modulation by 

a sinusoidal one. Indeed, a sinusoidal modulation is much easier to achieve as it requires less 

optoelectronics bandwidth and can be delivered by a widely available electric clock. As a sinusoid 

can be approximated in the vicinity of its maximum by a parabolic fit, this explains why sinusoidal 

phase modulation has often been involved in temporal lenses [17, 18]. Results obtained with 

Gaussian pulses used in combination with sinusoidal phase are summarized in Fig. 6(b3) and stress 

that, despite the temporal aberrations that a non-perfect parabolic modulation may induce, a similar 

interference pattern is observed. We can also note here that the amplitude of the required phase 

modulation is significantly reduced. 

 
 

Figure 7 : Pulse characteristics taken at different stages of propagation in the dispersive fiber: after the modulation of 

the Billet’s temporal bilens, after 12.5 km of propagation and after 25 km of propagation (subplots 1, 2 and 3 

respectively) (a) Time-Frequency representation of the signal. (b) Temporal intensity profile. (c) Optical spectrum. 
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5. Conclusions 

Taking advantage of the analogy that can be drawn between spatial and temporal propagations, we 

have explored temporal equivalent of the Young’s double slits, Fresnel’s biprism and 

Billet’s bilens that are three well-known two-wave interference cases. Using devices and 

technologies from optical telecommunications, we have simulated these experiments using as a 

key ingredient the dispersive propagation experienced in kilometer long standard optical fibers. 

Taking advantage of time-frequency representations, we have provided a clear interpretation of 

the temporal interference processes at work and we have numerically demonstrated temporal 

interferences in Young, Fresnel and Billet cases. For the sake of simplicity, we have based our 

discussion on incident plane waves, but the proposed approach could be readily extended to point 

sources by considering chirped input conditions. We have also checked numerically that other 

alternative such as Meslin experimental scheme made of longitudinally offset half-lenses [7, 43] 

could be reproduced in the temporal domain. 

The progress of arbitrary waveform generators associated with the increasing bandwidth of the 

optoelectronics detection enable the synthesis of phase and intensity waveforms with a higher 

complexity in a reconfigurable manner, similarly to the spatial light modulators for the control of 

diffraction pattern. The association of these novel optoelectronic modulation tools together with 

optical fibers appears as a flexible and viable approach to extend to the temporal domain the 

abundant literature dealing with the applications of two-wave interferences.  
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