
HAL Id: hal-01445300
https://hal.science/hal-01445300

Preprint submitted on 24 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How the structure of precedence constraints may change
the complexity class of scheduling problems

D Prot, Odile Bellenguez-Morineau

To cite this version:
D Prot, Odile Bellenguez-Morineau. How the structure of precedence constraints may change the
complexity class of scheduling problems. 2017. �hal-01445300�

https://hal.science/hal-01445300
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

How the structure of precedence constraints may change the

complexity class of scheduling problems.

D. Prot · O. Bellenguez-Morineau

Received: date / Accepted: date

Abstract This survey aims at demonstrating that the structure of precedence constraints plays a

tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard

when considering general precedence constraints, while they become polynomially solvable for particular

precedence constraints. Add to this, the existence of many very exciting challenges in this research area

is underlined.

Keywords Scheduling · Precedence constraints · Complexity

1 Introduction

Precedence constraints play an important role in many real-life scheduling problems. For example, when

considering the scheduler of a computer, some operations have to be finished before some others begin.

Other classical examples can be found in the book of Pinedo (Pinedo [2012]). In the most general cases,

precedence constraints can be represented by an arbitrary directed acyclic graph. Nevertheless, in some

cases, it is possible for precedence constraints to take a particular form. For example, if a problem includes

only precedence constraints related to assembling steps, precedence constraints can be represented by a
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particular directed acyclic graph called intree. The fact that the precedence graph takes a particular form

may transform the complexity of the problem. Most of the time, adding precedence constraints makes

problem harder, since the empty graph is included in many graph classes. Yet, it may make the problem

easier if it is not the case, for example for the class of graphs of bounded width. For this reason, the

idea of this survey is to consider the complexity results in scheduling theory according to the structure

of precedence constraints.

We assume that the reader is conversant with the theory of NP-completeness, otherwise the book

by Garey and Johnson [1979] is a good entry point. We will discuss, in the conclusion of this paper, the

parameterized complexity. The reader can refer to the book of Downey and Fellows [2012] if needed.

Lenstra and Rinnooy Kan [1978] offer a large set of complexity results for scheduling problems with

precedence constraints. Graham et al. [1979] and Lawler et al. [1993] propose two surveys of complex-

ity results for scheduling problems, but they are not necessarily focused on precedence constraints. For

complexity results with the most classical precedence constraints (i.e., chains, trees, series-parallel and

arbitrary precedence constraints), the reader can refer to the book by Brucker [2007], and/or to the

websites Dürr [2016] and Brucker and Knust [2009]. Note that this website has been recently updated

in order to include most of the results discussed in this article. Möhring [1989] proposes a very inter-

esting survey dedicated to specific partial ordered sets, and studies their structure. Some applications

to scheduling are also presented. Since this survey was conducted, many results arised in scheduling

theory for specific precedence graphs, we hence believe that a new survey would be beneficial for the

scheduling community. We restrict our field on purpose to complexity results and do not talk about

approximations results (Williamson and Shmoys [2011]), despite the fact that many results arised in this

field recently in scheduling theory, such as Svensson [2011] and Levey and Rothvoss [2016]. We believe

that it is important to limit the scope of the survey, in order to be as complete as possible in a given

field.

The paper is organized as follows: In Section 2, we introduce all the specific types of precedence

constraints that will be studied in this paper, while scheduling notations are recalled in Section 3.



3

Section 4 is dedicated to single-machine scheduling problems, and Sections 5 and 6 are respectively

dedicated to non-preemptive and preemptive parallel machines scheduling problems. Each of these three

sections is based on the following structure: we first give the polynomial results, then the NP-hard cases

and last the most interesting open problems. Finally in Section 7 we give some concluding remarks.

2 Special types of precedence constraints

In this section we introduce, for the sake of completeness, the special types of precedence constraints that

have already been studied in scheduling theory. Precedence constraints between jobs are easily modelled

by a directed acyclic graph and we will use it as long as possible. Nevertheless,precedence relations may

also be treated as partially ordered set (poset) in the terminology of order theory, and some definitions

at the end of this section are much easier to understand from this point of view.

First, let us recall some basic graph theory definitions. Let G = (X,A) be a directed acyclic graph,

where X denotes the set of vertices and A, the set of arcs.

A directed acyclic graph is a collection of chains if each vertex has at most one successor and at

most one predecessor. An inforest (resp. outforest) is a directed acyclic graph where each vertex has at

most one successor (resp. predecessor). An intree (resp. outtree) is a connected inforest (resp. outforest).

We call forest (resp. tree) a graph that is either an inforest or an outforest (resp. either an intree or an

outtree). An opposing forest is a collection of inforests and outforests.

For each vertex x ∈ X, we can compute its level h(x) which corresponds to the longest directed path

starting from x in G. The height of a DAG, denoted h(G), corresponds to the number of levels - 1 in

this graph, as illustrated with Figure 1. Directed acyclic graphs of bounded height correspond to directed

acyclic graphs where the height is bounded by a constant.

Definition 1 (Level order graph) A directed acyclic graph is a level order graph if each vertex of a given

level l is a predecessor of all the vertices of level l − 1 (see Figure 2).
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Fig. 1 The height of a DAG
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Fig. 2 A level order graph

Series-parallel graphs (sp-graph) are defined in many ways, we use the inductive definition of Lawler

[1978].

Definition 2 (sp-graph) A graph consisting of a single vertex is a sp-graph. Given two sp-graphs G1 =

(X1, A1) and G2 = (X2, A2), the graph G = (X1 ∪ X2, A1 ∪ A2) is a sp-graph (this is called parallel

composition). Given two sp-graphs G1 = (X1, A1) and G2 = (X2, A2), the graph G = (X1 ∪ X2, A1 ∪

A2 ∪X1 ×X2) is a sp-graph (this is called series composition).

An example is given in Figure 3. Note that sp-graph can also be defined by the forbidden subgraph of

Figure 4.
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A divide-and-conquer-graph (DC-graph) is a special sp-graph built using symmetries. It can be used

to model divide-and-conquer algorithms (for example binary search, merge sort, number multiplication...)

and is formally defined as follows:

Definition 3 (DC-graph) A single vertex is a DC-graph; given two vertices s and t and k DC-graphs

(X1, A1), . . . , (Xk, Ak), the graph (∪nk=1Xk ∪ {s} ∪ {t},∪nk=1 (Ak ∪ (s×Xk) ∪ (Xk × t))) is a DC-graph.

This definition is illustrated with Figure 5.
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Definition 4 (Interval order graph) The interval order for a collection of intervals on the real line is the

partial order corresponding to their left-to-right precedence relation, so that the interval order graph is

the Hasse diagram of an interval order. such that for any two vertices x and y, (x, y) ∈ A ⇐⇒ ex ≤ sy.

An example is given in Figure 6. Papadimitriou and Yannakakis [1979] show that interval order

graphs can also be defined by the forbidden induced subgraph presented in Figure 7. Larger classes of

graphs were defined by forbidden subgraphs, such as quasi-interval order graphs and over-interval order

graphs (respectively in Moukrim [1999] and Chardon and Moukrim [2005]), the quasi-interval order

graphs being strictly included in over-interval order graphs. The corresponding forbidden subgraphs are

drawn in Figures 8 and 9.
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To ease the reading, the following definitions will be given within the order theory paradigm. We

will hence talk about a partial order set P = (X,�P ) rather than a directed acyclic graph G = (X,A)

to describe the precedence graph, and a partial order �P corresponds to the precedence constraints.

Definition 5 (Antichain) Given a partial order set P = (X,�P ), an antichain is a subset S of X such

that any two elements of S are incomparable.

Definition 6 (Width) Given a poset P = (X,�P ), the width of a poset is the size of a maximum

antichain.
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By extension, for a given directed acyclic graph G = (X,A) we define the width of the graph to be

the width of the corresponding poset, denoted by w(G).

The Am−order (first introduced in Moukrim and Quilliot [1997]) contains the over-interval order for

any integer m ≥ 2 and is defined in the following way:

Definition 7 (Am−order) Let P = (X,�P ) be a poset. For any two antichains A and B of size at

most m, let us define the four sets : max(A,B) = {x ∈ A ∪ B|∃y ∈ A ∪ B, y �P x}, min(A,B) = {x ∈

A ∪B|∃y ∈ A ∪ V, x �P y}, max(A,B) = (A ∩B) ∪max(A,B), and min(A,B) = (A ∩B) ∪min(A,B).

�P is an Am order if and only if there do not exist two antichains A and B of size m at most, such

that |max(A,B)| ≥ m+ 1 or |min(A,B)| ≥ m+ 1.

We call Am−order graph a directed acyclic graph for which the set of arcs corresponds to an

Am−order.

Definition 8 (Linear extension) Given a partial order �P over a set X, a linear extension of �P over

X is a total order respecting �P .

Definition 9 (Dimension) The dimension of a poset P = (X,�P ) is the mimimum number t of linear

extensions �1, . . . ,�t such that x �P y ⇐⇒ ∀l ∈ 1..t, x �l y. In other words, if x||y (x and y are

incomparable in �P ), then there are at least two linear extensions, one with x � y and another one with

y � x.

An interesting point is that series-parallel graphs are strictly included in directed acyclic graphs of

dimension 2.

The fractional dimension of a poset is extending the notion of dimension (see Brightwell and Schein-

erman [1992]).

Definition 10 (Fractional dimension) For any integer k, t(k) denotes the minimum number of linear

extensions such that for any two incomparable elements x and y, there are at least k extensions with

x � y and k with y � x. The fractional dimension is the limit {t(k)/k} as k tends to +∞.
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The diagram in Figure 10 provides a better overview of the existing inclusion between the different

classes.
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Fig. 10 Hasse diagram for different classes of directed acyclic graphs
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3 Scheduling notation

In this paper, we will use the standard α|β|γ notation introduced in Graham et al. [1979], and updated

in Brucker [2007]. We define below the different notations used all along the paper.

The α-field is used for the machine environment. α = 1 corresponds to a single machine problem; if

α = Pm, there is a fixed number m of identical parallel machines. If this number is arbitrary, it is noted

α = P . Similarly, if α = Qm (resp. α = Q), it corresponds to a fixed (resp. arbitrary) number of uniform

parallel machines, i.e., each machine i has a speed si and the processing time of a job j on machine i is

equal to pj/si.

The field β ⊂ {β1, β2, β3, β4} describes the jobs characteristics, the possible entries that we will deal

with are the following ones:

– β1 ∈ {pmtn, ◦} : pmtn means that preemption is allowed, i.e., a job may be interrupted and finished

later. If β1 = ◦, preemption is forbidden.

– β2 describes the precedence constraints. If β2 = ◦, there is no precedence constraint, whereas β2 =

prec means that the precedence graph is a general directed acyclic graph. This field can take many

values according to the structure of the directed acyclic graph, as presented in the previous section.

For sake of completeness, all the acronyms are recalled hereinafter: chains, intree, outtree, opp.forest

(opposing forest), io (interval order graph), qio (quasi-interval order graph), oio (over-interval order

graph), sp − graph (series-parallel graph), DC − graph (divide-and-conquer graph), lo (level order

graph), h(G) ≤ k (directed acyclic graph with height bounded by k), dim ≤ k (directed acyclic graph

with dimension bounded by k), fdim ≤ k (directed acyclic graph with fractional dimension bounded

by k), w(G) ≤ k (directed acyclic graph with width bounded by k).

It appears there that classical literature often abuses of terms intree and outtree to handle in fact

inforest and outforest, that can be mixed in opp.forest for some problems.

– β3 ∈ {rj , ◦} : if β3 = rj , each job j has a given release date. If β3 = ◦, the release date is 0 for each

job.
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– β4 represents the processing time of a job j. If β4 = ◦, there is one processing time pj for each job

j. If pj = p, all the jobs have the same processing time p. When pj = 1, we use the acronym UET

which stands for Unit Execution Time. In some cases, the processing time may increase or decrease

with either the position of the job or the starting time of the job. If the job is in position r on a

machine, the processing time will be noted p
[r]
j . If the processing time is depending of the starting

time t of the job, it will be written p
(t)
j .

The γ−field is related to the objective function of the problem. Let Cj be the completion time of

job j. The makespan is defined by Cmax = maxj Cj and the total completion time by
∑

j Cj . It is

clear that, in general, makespan and total completion time are not equivalent. Nevertheless, for some

problems, we can show that there exists an ideal schedule, which both minimizes makespan Cmax and

total completion time
∑
Cj . Due-date related objectives are also studied; if dj is the due date of job j,

then the lateness of job j is defined by Lj = Cj − dj . The tardiness is Tj = max(0, Cj − dj) and the unit

penalty Uj is equal to one if Cj > dj and to zero otherwise. We then can define the maximum lateness

Lmax = maxLj , the total tardiness
∑
Tj , the total number of late jobs

∑
Uj . A weight wj may also

exist for each job j, leading to the corresponding objective functions: the total weighted completion time∑
wjCj , the total weighted tardiness

∑
wjTj and the total weighted number of late jobs

∑
wjUj . All

the functions presented so far are regular functions, i.e., they are non-decreasing with Cj .

4 Single machine problems

For single machine problems, most of the interesting results for this survey are related to the total

weighted completion time
∑
wjCj . It is mainly due to the fact that 1|chains, pj = 1|

∑
Uj (see Lenstra

and Rinnooy Kan [1980]) and 1|chains, pj = 1|
∑
Tj (see Leung and Young [1990]) are already NP-hard,

while 1|prec, rj |Cmax is solvable in polynomial time. Nevertheless, as we will see in Section 4.3, there

are some interesting open problems for other criteria when considering preemption.
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4.1 Polynomial cases

Lawler [1978] uses Sidney’s theory (Sidney [1975]) to derive a polynomial-time algorithm to solve problem

1|sp− graph|
∑
wiCi. The most important results are based on the concept of a module in a precedence

graph G = (N,A): A non-empty subset M ⊂ N is a module if, for each job j ∈ N −M , exactly one of

the three conditions holds: 1. j must precede every job in M , 2. j must follow every job in M , 3. j is

not constrained to any job in M . Using this concept leads to a very powerful theorem stating that there

exists an optimal sequence consistent with any optimal sequence of any module.

A large improvement on this problem has been done recently, by using order theory and by proving

that the problem is a special case of the vertex cover problem. More precisely, in Correa and Schulz

[2005] the authors conjecture that 1|prec|
∑
wjCj is a special case of vertex cover and prove that,

under this conjecture, the problem 1|prec|
∑
wjCj is polynomial if the precedence graph is of dimension

2. In Ambühl and Mastrolilli [2009], the authors prove the conjecture and hence the result provided

in Lawler [1978] is considerably extended (since series-parallel graphs are strictly included in DAGs of

dimension 2).

Using the same methodology as in Lawler [1978], Wang et al. [2008] extend these results to the case

where jobs are deteriorating, i.e., processing times are an increasing function of their starting time, and

they show that 1|sp − graph, p(t)j = pj(1 + at)|
∑
wjCj and 1|sp − graph, p(t)j = pj + αjt|Cmax can be

solved in a polynomial time, where pj , a, and αj are positive constants and t is the starting time of the

job. The same framework is used in Wang and Wang [2013] for position-dependent processing times, and

the authors show that 1|sp− graph, p[r]j = aj + bjr|Cmax and 1|sp− graph, p[r]j = aj − bjr|Cmax, where

r is the position of the job, aj and bj positive constants, are polynomially solvable. Gordon et al. [2008]

propose a more general framework than the one introduced in Wang et al. [2008], that was first presented

in Monma and Sidney [1979]. They extend it to different models with deterioration and learning, that

were aimed at minimizing either the total weighted completion time or the makespan, with series-parallel

precedence constraints.
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4.2 Minimum NP-hard cases

The problem 1|prec|
∑
wjCj is known to be NP-hard (see Lenstra and Rinnooy Kan [1978]). In order

to identify for which precedence graph the problem may be polynomially solvable, we present here the

minimal (with respect to precedence constraints) NP-hard cases: the problem is still NP−hard even if

the precedence graph is:

– of indegree at most 2 (see Lenstra and Rinnooy Kan [1978]). Note that this result also stands with

equal weights (i.e., wj = 1)

– of bounded height (proof is straightforward by using the transformation proposed in Lawler [1978]).

– an interval order graph (see Ambühl et al. [2011]). This is a strong difference with parallel machine

results for which interval order graphs provide often polynomial algorithms, as we will see in the

dedicated section.

– of fractional dimension (see Definition 10) greater or equal to 3 (see Ambühl et al. [2011]).

4.3 Open problems

The problem 1|prec|
∑
wiCi has been widely studied, and the boundary between polynomial and NP-

hard cases is globally well-defined. However, there are still boundaries to defined, as illustrated by the

following examples. First, if the fractional dimension fdim of the precedence graph lies in interval ]2, 3[,

the problem is open (it is polynomially solvable if fdim ≤ 2 since the fractional dimension of a DAG

is less than or equal to the dimension of this DAG and the problem is solvable in polynomial time if

the precedence graph is of dimension 2). This is an interesting question but the gap is rather limited. A

wider open question is when we consider the problem with equal weights, i.e., 1|prec|
∑
Ci. The problem

is still NP-hard, even if the precedence graph is of indegree at most 2 (see Lenstra and Rinnooy Kan

[1978]). Nevertheless, we may hope that the problem becomes polynomial for precedence graphs with

dimension larger than two. It is also possible that the problem is solvable in polynomial time if the
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precedence graph is an interval order graph, and even for larger classes like quasi-interval order graphs

and over-interval order graphs.

For the criteria related to tardiness Tj and unit penalty Uj , it is surprising to see that preemptive

problems with precedence constraints have not been studied yet. More precisely, Tian et al. [2006]

have shown that 1|pmtn, rj , pj = p|
∑
Tj is solvable in polynomial time, but it is still open whether

adding precedence constraints leads this problem to be NP-hard or not; the problem remains also open

when considering the more general criterion
∑
wjTj . The same outline appears when considering unit

penalty: 1|rj ; pmtn; pj = p|
∑
wjUj is solvable in polynomial time (with an algorithm in O(n10) by

Baptiste [1999], and in O(n4) by Baptiste et al. [2004b]); nevertheless, nothing has been shown when

adding precedence constraints to the problem. The first research avenue is to study this problem including

Chains as a first step and determine whether the problem is polynomial or not.

5 Parallel machines without preemption

When considering non-preemptive scheduling problems, whatever the structure of precedence graphs, we

will mainly focus on problems with equal processing times, since problems P2||Cmax and P2|chains|
∑
Cj

are already NP-hard (see Lenstra et al. [1977] and Du et al. [1991]).

5.1 Polynomial cases

Makespan criterion and arbitrary number of machines

Three seminal works on parallel machines with precedence constraints are the approaches of Hu [1961],

Papadimitriou and Yannakakis [1979] and Möhring [1989] in which the authors are respectively dealing

with trees, interval order graphs and graphs of bounded width.

In Hu [1961], the author proves that problem P |tree, pj = p|Cmax is polynomially solvable by a list

scheduling algorithm where the highest priority is given to the job with the highest level (this strategy

is called HLF, for Highest Level First). It is unlikely to find a precedence graph that strictly includes
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trees for which the problem is solvable in polynomial time, since it was proven in Garey et al. [1983]

that scheduling opposing forest is NP-hard. The hardness of the latter problem is mainly due to the

arbitrary number of machines, since it is solvable in polynomial time for any fixed number of machines.

In Papadimitriou and Yannakakis [1979], the authors prove that problem P |io, pj = p|Cmax is poly-

nomially solvable by a list scheduling algorithm where the highest priority is given to the job with the

largest number of successors. This result has been improved twice; first Moukrim [1999] shows that the

same algorithm gives an optimal solution if interval order graphs are replaced by quasi-interval order

graphs, that properly contains the former. Chardon and Moukrim [2005] show that the same result

does not stand for over-interval order graphs, but the Coffman-Graham algorithm (see Coffman Jr and

Graham [1972]) can be applied to solve problem P |oio, pj = p|Cmax to optimality.

In Möhring [1989], the author studies the problem with bounded width, equal processing times and

the makespan criterion. He shows that the problem can be solved in polynomial time by using dynamic

programming on the digraph of order ideals. Middendorf and Timkovsky [1999] proposed their own

approach to solve the problem P |w(G) ≤ k, rj , pj = 1|f for any regular function f . More precisely, their

algorithm consists in searching a shortest path in the related transversal graph.

When adding release dates, the problem is already NP-hard for intrees, yet it is solvable in poly-

nomial time for outtrees (see Brucker et al. [1977], and Monma [1982] for a linear algorithm for the

latter problem). Note that there is a strong relationship between scheduling with release dates and

Cmax criterion and scheduling with Lmax, by simply looking at the schedule in the reverse way, and

reversing the precedence constraints. Hence problems P |intree, pj = p|Lmax is polynomially solvable

and P |outtree, pj = p|Lmax is NP-hard.

Kubiak et al. [2009] recently opened new perspectives, since they show that P |DC − graph, pj =

p|Cmax is solvable in polynomial time. They more precisely proved that the Highest Level First strategy

(used in Hu [1961]) solves the problem to optimality when the precedence graph is a divide-and-conquer

graph (see Definition 3).
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Makespan criterion and fixed number of machines

Let us now focus on the case where the number of machines is fixed. Recall that the problem Pm|prec, pj =

p|Cmax is still open (this problem is known as [OPEN8] in the book by Garey and Johnson [1979]) for

m ≥ 3, and it was solved for m = 2 in Coffman Jr and Graham [1972]. For opposing forests, Garey

et al. [1983] propose an optimal polynomial algorithm (of complexity O(nm
2+2m−5 logn)) that con-

sists in a divide and conquer approach, that uses the HLF algorithm as a subroutine. A new algorithm

with complexity O(n2m−2 logn) has been proposed by Dolev and Warmuth [1985], who also show that

the problem is polynomially solvable for level order graphs (that are strictly included in series-parallel

graphs). Dolev and Warmuth [1984] solve the case where the precedence graph is of bounded height by

proposing an algorithm of time complexity O(nh(m−1)+1). Recently, Aho and Mäkinen [2006] show that

Pm|prec, pj = p|Cmax is solvable in polynomial time when the precedence graph is of bounded height

and the maximum degree is bounded. This result is in fact a special case of the one proposed in Dolev

and Warmuth [1984].

Other criteria and/or machine environment

The other well-studied criterion for parallel machine environment is the total completion time
∑
Cj .

One of the reasons for that is that, for some problems, it is equivalent to solve the total completion

time and the makespan since they admit an ideal schedule. For example, ideal schedules exist when

considering two machines, arbitrary precedence constraints and equal processing times, hence problem

P2|prec, pj = p|
∑
Cj is polynomially solvable with CG-algorithm (see Coffman Jr and Graham [1972]).

When adding release dates, Baptiste and Timkovsky [2001] show that P2|prec, rj , pj = 1|
∑
Cj is solv-

able in polynomial time by reducing it to a shortest path problem.

For an arbitrary number of machines, if the precedence graph forms an outtree and the processing

times are UET, the same result holds and hence P |outtree, pj = p|
∑
Cj is solvable in polynomial time.

Note that problem P3|intree, pj = p|
∑
Cj is not ideal, see Huo and Leung [2006] for a counterexam-
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ple. Nevertheless, for any fixed number of machines, problem Pm|intree, pj = p|
∑
Cj is solvable in

polynomial time (see Baptiste et al. [2004a]). Adding release dates maintains the same property: the

algorithm proposed in Brucker et al. [2002] solves simultaneously problems P |outtree, rj , pj = 1|Cmax

and P |outtree, rj , pj = 1|
∑
Cj . An improvement of this algorithm has been proposed in Huo and Leung

[2005].

For interval order graphs, Möhring [1989] notices that P |io, pj = p|
∑
Cj is solvable in polynomial

time since the proof of the algorithm for P |io, pj = p|Cmax (in Papadimitriou and Yannakakis [1979])

only uses swaps between tasks, and this property is verified by the makespan and the total completion

time. It has been noticed recently that the same result holds for overinterval orders (that properly

contain interval orders), the problem admits also an ideal solution, so P |oio, pj = p|
∑
Cj is solvable in

polynomial time (see Wang [2015]).

When considering uniform parallel machines, only few results are available; problem Q2|chains, pj =

p|Cmax is solvable in polynomial time (see Brucker et al. [1999]). If one processor is going b times faster

than the other (with b an integer), the problem Q2|tree, pj = p|Cmax is also polynomially solvable

(see Kubiak [1989]); the problem is also ideal, and hence Q2|tree, pj = p|
∑
Cj is also solvable in

polynomial time.

5.2 Minimum NP-hard cases

The interesting results for this survey are the NP-hardness of P |prec, pj = p|Cmax and P |prec, pj =

p|
∑
Cj (see Lenstra and Rinnooy Kan [1978]). Note that the proof for the two problems also holds when

the precedence graph is of bounded height, and that the problem P |opp.forest, pj = p|Cmax is also NP-

hard (see Garey et al. [1983]). When adding release dates, the corresponding problem is already NP-hard

for intrees, for both the makespan and the total completion time (see Brucker et al. [1977]). Finally, what

may not be obvious is that even if P ||Cmax is strongly NP-hard, the problem P |w(G) ≤ K|Cmax is
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solvable in pseudo-polynomial time (Middendorf and Timkovsky [1999]). This results is due to the fact

that the class of empty graphs is not included in bounded-width graphs class.

5.3 Open problems

For an arbitrary number of machines and the makespan criterion, the boundary between polynomially

solvable and NP-hard problems seems very sharp, we believe that the efforts should not be focused

on these problems. When the number of machines is fixed, this boundary is much larger. Surprisingly,

to the best of our knowledge, no other structures of precedence graphs than the ones introduced in

previous section have been studied for problem Pm|prec, pj = p|Cmax. In our opinion, it could be a

good opportunity to work on more general precedence graphs on this problem, to be able to arbitrate

if Pm|prec, pj = p|Cmax is solvable in polynomial time or NP-hard. The most natural extension in our

opinion is to consider series-parallel graphs, since it is a generalization of opposing forests, level order

graphs and DC-graphs, for which the problem is polynomially solvable.

For the total completion time criterion, the two most intriguing problems are P |intree, pj = p|
∑
Cj

and P |outtree, rj , pj = p|
∑
Cj . For the former problem, the interest lies in the fact that there exists an

ideal schedule for outtree precedences, but not for intree precedences. Nevertheless, we do believe that

this problem admits an optimal polynomial algorithm. For the latter problem, an algorithm exists for

pj = 1 (i.e., release dates are multiple of the processing time, see Brucker et al. [2002]), and hence the

gap to pj = p seems small.

For a fixed number of uniform parallel machines and the makespan criterion, the set of open problems

is wide, since the only polynomial algorithm is for Q2|chains, pj = p|Cmax (Brucker et al. [1999]), and

the problem Qm|prec, rj , pj = p|Lmax is still open. The same behavior occurs for the total completion

time: Dessouky et al. [1990] proved that Qm|rj , pj = p|
∑
Cj is solvable in polynomial time, and problem

Qm|prec, rj , pj = p|
∑
Cj is still open. We hence believe that this set of problems deserves a deeper
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study. A first approach may consist in trying to adapt the algorithms available for identical parallel

machines.

6 Parallel machines with preemption

Timkovsky shows very strong links between preemption and chains, including the fact that a large set of

scheduling problems with preemption can be reduced to problems without preemption, with UET tasks,

and where each job is replaced by a chain of jobs (see Theorem 3.5 in Timkovsky [2003]). This interesting

result can be applied in many cases, but does not hold for the total completion time criterion. Moreover,

according to the structure of the precedence graph, the resulting graph may not have the same structure.

For example, an intree where each job is replaced by a chain of jobs remains an intree, whereas it does

not hold for interval order graphs (two independent jobs will be replaced by two chains of parallel jobs,

which is not an interval order graph). That is why we will examine more precisely what happens in this

section.

6.1 Polynomial cases

Makespan criterion

Since P |tree, pj = p|Cmax is polynomially solvable (see Hu [1961]), by Timkovsky’s result, so is P |pmtn, tree|Cmax.

The first polynomial algorithm for this problem is proposed in Muntz and Coffman Jr [1970] with a run-

ning time of O(n2). An algorithm in O(n logm) was then proposed in Gonzalez and Johnson [1980].

Note that the latter algorithm produces at most O(n) preemptions whereas the former may obtain a

schedule with O(nm) preemptions. Lawler [1982] studies the case with release dates and outtree, and

shows that it can be solved in O(n2) with a dynamic priority list algorithm (i.e., priorities may change

according to what has already been scheduled).

Timkovsky’s result can not be applied to precedence graphs such as interval order graphs. Yet, it was

proven that the problem is also solvable in polynomial time for this precedence structure; first, Sauer and



19

Stone [1989] show it for a fixed number of machines Pm|pmtn, io|Cmax by using a linear programming

approach based on the set of jobs scheduled at each instant. Later Djellab [1999] proposes another linear

program that solves the problem for an arbitrary number of machines, i.e., P |pmtn, io|Cmax. For a fixed

number m of machines, Moukrim and Quilliot [2005] extend the result of Sauer and Stone [1989], by

proposing an linear programming approach for Am−order graphs (which properly contain interval order

graphs).

Other criteria and/or machine environment

Du et al. [1991] explain that P2|pmtn, chains|
∑
Cj is strongly NP-hard by showing that preemption

is useless for this problem, that is why we will only focus on the UET case for the total completion time

criterion. Chardon and Moukrim [2005] prove that P2|pmtn, prec, pj = p|
∑
Cj is solvable in polynomial

time by adapting the Coffman-Graham algorithm. Their algorithm finds an ideal schedule. By proving

that preemption is redundant, Baptiste and Timkovsky [2001] prove that P2|pmtn, outtree, rj , pj =

1|
∑
Cj is solvable in polynomial time. When the precedence graph is an intree, Coffman Jr et al. [2012]

prove that the problem is not ideal, and Chen et al. [2015] provide a deep analysis of the structure of

preemption. Using the same methodology than Baptiste and Timkovsky [2001], Brucker et al. [2002] show

that the problem is solvable in polynomial time with an outtree and an arbitrary number of machines.

Moreover, they provide a O(n2) algorithm, that admits a O(n logn) implementation according to Huo

and Leung [2005]. Lushchakova [2006] slightly improves the result of Baptiste and Timkovsky [2001] and

proposes an algorithm of complexity O(n2) for the problem P2|pmtn, outtree, rj , pj = p|
∑
Cj .

6.2 Minimum NP-hard cases

For the makespan criterion, Ullman [1976] shows that P |pmtn, prec, pj = p|Cmax is NP-hard. For the

total completion time criterion, if we carefully look at the NP-hardness proof of P |prec, pj = p|
∑
Cj

in Lenstra and Rinnooy Kan [1978], we can see that preemption is useless for the instance constructed
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in the reduction and hence the preemptive version is still NP-hard for precedence graphs of bounded

height:

Theorem 1 P |pmtn, prec, pj = p|
∑
Cj is NP-hard even if the precedence graph is of bounded height.

Proof. We just need to modify slightly the proof in the reduction from Clique of Lenstra and Rin-

nooy Kan [1978].

Clique : G = (V,E) is an undirected graph and k an integer. Does G have a clique on k vertices?

Let us recall this reduction; we denote by v (resp. e) the number of vertices (resp. edges) of G. We

also define following parameters: l =
k(k−1)

2 , k′ = v − k and l′ = e − l (we use the notations of the

original article). We construct an instance of P |pmtn, prec, pj = p|
∑
Cj with m = max{k, l+ k′, l′}+ 1

machines and n = 3m jobs:

– for each vertex i ∈ V , there is a job Ji.

– for each edge [i, j] ∈ E, there is a job J[i,j].

– dummy jobs Jh,t with h ∈ Dt, t ∈ {1, 2, 3}, D1 = {1, . . . ,m − k}, D2 = {1, . . . ,m − l − k′}, D3 =

{1, . . . ,m− l′}.

There are precedence constraints between any job Jg,t and Jh,t+1, for any g ∈ Dt, h ∈ Dt+1, t = 1, 2.

Moreover, for any edge [i, j] ∈ E, there is a precedence between Ji and J[i,j]. Finally, the question is

whether there is a schedule such that
∑
Cj ≤ 6m.

Clearly, if Clique has a solution, so is the scheduling problem:

– dummy jobs Jh,t are scheduled during the time-interval [t− 1, t],

– the k jobs corresponding to the vertices of the clique are scheduled during the first period,

– the l jobs corresponding to the edges of the clique, and the k′ jobs corresponding to the remaining

vertices are scheduled at the second period,

– all the remaining jobs are scheduled at the third period.

This solution has a total completion time of exactly 6m. Note that it does not use preemption, and is

such that Cmax = 3.
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Conversly, let us prove that if there is a schedule such that
∑
Cj ≤ 6m, then there is a clique of size

k. First, we can easily prove that if there is a schedule such that
∑
Cj ≤ 6m, then there is a schedule

such that Cmax ≤ 3. Indeed, if there exists a job j∗ such that Cj∗ > 3, then in the best case (i.e., if

there is no precedence constraint), we have
∑
Cj ≥ 1 ∗m+ 2 ∗m+ 3 ∗ (m− 1) + Cj∗ > 6m. We hence

know that there is no idle time and that the dummy jobs Jh,t are scheduled during interval [t− 1, t]. To

conclude, we just need to see that if there is no clique of size k then, whatever the schedule on interval

[0, 1] without idle time, the number of eligible jobs at time 1 is strictly less than k′+ l, which implies an

idle time and hence no schedule such that Cmax ≤ 3.

�

6.3 Open problems

Preemptive parallel machine scheduling problems did not receive as much attention as their non-preemptive

counterpart, hence the set of open problems is wider.

For the makespan objective and an arbitrary number of machines, when the precedence graph is an

interval order graph, it is known to be solvable in polynomial time, as in the UET non-preemptive case.

Since for the UET non-preemptive problem, new classes strictly including interval order graphs (namely

quasi-interval order graphs and over-interval order graphs) have led to polynomial algorithms, the same

question arises for P |pmtn, qio|Cmax and P |pmtn, oio|Cmax.

When the number of machines is fixed, there is a wide set of open problems, sinceQm|pmtn, prec, rj |Lmax

is the maximal open problem. A good challenge may be for example to try to fix the complexity of

Pm|pmtn, prec, pj = p|Cmax, or at least to try to find new precedence graphs for which the problem is

polynomial, by taking advantage of the fact that tasks are UET (even if it may not always be helpful

with preemption).

For the total completion time criterion, P |pmtn, outtree, pj = p|
∑
Cj is maximal polynomially

solvable, and we just show that P |pmtn, prec, pj = p|
∑
Cj is NP-hard even if the precedence graph
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is of bounded height. It could be interesting to consider other structures of precedence graph to derive

polynomial algorithms. In a similar way, Baptiste et al. [2004a] show that P |pmtn, pj = p|
∑
Tj is

solvable in polynomial time, and adding precedence constraints makes the problem NP-hard, but there

is no other result available in the literature, it hence would be interesting to search for new polynomial

cases by testing different precedence graphs.

For the problem P2|pmtn, prec, rj , pj = 1|
∑
Cj , the gap is even wider: it is polynomial if the

precedence graph is an outtree (see Baptiste and Timkovsky [2001]) but all the other cases are open,

from P2|pmtn, intree, rj , pj = 1|
∑
Cj to P2|pmtn, prec, rj , pj = 1|

∑
Cj .

7 Conclusion

In this paper, we surveyed the complexity results for scheduling problems with precedence constraints,

and we have seen that single machine scheduling problems have been much more studied than others.

This looks quite normal since the single machine problem is the scheduling problem that is the closest to

order theory. Nevertheless, we show that there still are a few open problems for the single machine case.

We believe that the most interesting problems for which the complexity is open lie in the parallel machine

case; more precisely, we do conjecture that Pm|sp− graph, pj = p|Cmax is solvable in polynomial time;

this result will be a large breakthrough since series-parallel graphs are most of the time studied for single

machine problems.

Another approach to understand the complexity of scheduling problems is to deal with the param-

eterized complexity (see Downey and Fellows [2012]). There are only very few results on parameterized

complexity of scheduling problems. One can cite Fellows and McCartin [2003] who show that, if the

precedence graph is of bounded width w (it is equal to the size of a maximum antichain), then problem

1|prec|
∑
Tj ≤ k is FPT when parameterized by (w, k). The most recent result on the subject is that

P ||Cmax is FPT for parameter pmax = max pj (see Mnich and Wiese [2014]). A good graph measure

is a powerful tool for parameterized complexity. For general (undirected) graphs, the creation of the
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treewidth (see Robertson and Seymour [1986]) helped to discover many results in graph theory, includ-

ing the Courcelle’s theorem (Courcelle [1990]). For directed graphs, and more specifically DAGs, none

of the existing measures (see Ganian et al. [2014]) is satisfactory. In our opinion, a major breakthrough

will be achieved when one will be able to find a good measure on directed acyclic graphs.
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Christoph Ambühl and Monaldo Mastrolilli. Single machine precedence constrained scheduling is a

vertex cover problem. Algorithmica, 53(4):488–503, 2009.
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Rolf H. Möhring. Computationally tractable classes of ordered sets. In Ivan Rival, editor, Algorithms

and Order, volume 255 of NATO ASI Series, pages 105–193. Springer Netherlands, 1989.

Clyde L. Monma. Linear-time algorithms for scheduling on parallel processors. Operations Research, 30

(1):116–124, 1982.

Clyde L. Monma and Jeffrey B. Sidney. Sequencing with series-parallel precedence constraints. Mathe-

matics of Operations Research, 4(3):215–224, 1979.

Aziz Moukrim. Optimal scheduling on parallel machines for a new order class. Operations research

letters, 24(1):91–95, 1999.

Aziz Moukrim and Alain Quilliot. A relation between multiprocessor scheduling and linear programming.

Order, 14(3):269–278, 1997.



28

Aziz Moukrim and Alain Quilliot. Optimal preemptive scheduling on a fixed number of identical parallel

machines. Operations research letters, 33(2):143–150, 2005.

Richard R. Muntz and Edward G. Coffman Jr. Preemptive scheduling of real-time tasks on multiprocessor

systems. Journal of the ACM (JACM), 17(2):324–338, 1970.

Christos H. Papadimitriou and Mihalis Yannakakis. Scheduling interval-ordered tasks. SIAM Journal

on Computing, 8(3):405–409, 1979.

Michael L. Pinedo. Scheduling: theory, algorithms, and systems. Springer Verlag New York, 2012.

Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of

algorithms, 7(3):309–322, 1986.

N.W. Sauer and M.G. Stone. Preemptive scheduling of interval orders is polynomial. Order, 5(4):

345–348, 1989.

Jeffrey B. Sidney. Decomposition algorithms for single-machine sequencing with precedence relations

and deferral costs. Operations Research, 23(2):283–298, 1975.

Ola Svensson. Hardness of precedence constrained scheduling on identical machines. SIAM Journal on

Computing, 40(5):1258–1274, 2011.

Z. Tian, C.T. Ng, and T.C.E. Cheng. An O(n2) algorithm for scheduling equal-length preemptive jobs

on a single machine to minimize total tardiness. Journal of Scheduling, 9(4):343–364, 2006.

Vadim G. Timkovsky. Identical parallel machines vs. unit-time shops and preemptions vs. chains in

scheduling complexity. European Journal of Operational Research, 149(2):355–376, 2003.

J.D. Ullman. Complexity of sequencing problems. In J.L. Bruno, E.G. Coffman, Jr., R.L. Graham, W.H.

Kohler, R. Sethi, K. Steiglitz, and J.D. Ullman, editors, Computer and Job/Shop Scheduling Theory.

John Wiley & Sons Inc., 1976.

Ji-Bo Wang and Jian-Jun Wang. Single-machine scheduling with precedence constraints and position-

dependent processing times. Applied Mathematical Modelling, 37(3):649–658, 2013.

Ji-Bo Wang, C.T. Ng, and T.C.E. Cheng. Single-machine scheduling with deteriorating jobs under a

series–parallel graph constraint. Computers & Operations Research, 35(8):2684–2693, 2008.



29
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Appendix A: List of results

For an easier reading of all the complexity results that are reviewed in this survey, we proposed a synthesis

in the following tables. In each table, we write the polynomial cases, some open cases (the ones that

seem the most promising in our opinion) and the NP-hard problems.



31

Problem Complexity Reference

1|sp− graph|
∑
wjCj P Lawler [1978]

1|dim ≤ 2|
∑
wjCj P Ambühl and Mastrolilli [2009]

1|sp− graph, p(t)j = pj(1 + at)|
∑
wjCj P Wang et al. [2008]

1|sp− graph, pj(t) = pj + αjt|Cmax P Wang et al. [2008]

1|sp− graph, p[r]j = aj + bjr|Cmax P Wang and Wang [2013]

1|sp− graph, p[r]j = aj − bjr|Cmax P Wang and Wang [2013]

1|sp− graph, p[r]j = pjr|Cmax P Gordon et al. [2008]

1|sp− graph, p[r]j = pjγ
r−1|

∑
Cj with γ ≥ 2 or 0 < γ < 1 P Gordon et al. [2008]

1|sp− graph, p(t)j = pj(1− at)|
∑
wjCj P Gordon et al. [2008]

1|sp− graph, p(t)j = pj + at|
∑
Cj P Gordon et al. [2008]

1|sp− graph, p(t)j = pj − at|
∑
Cj P Gordon et al. [2008]

1|pmtn, rj , pj = p|
∑
Tj P Tian et al. [2006]

1|pmtn, rj , pj = p|
∑
wjUj P Baptiste [1999]

1|2 < fdim < 3|
∑
wjCj Open

1|io|
∑
Cj Open

1|pmtn, chains, rj , pj = p|
∑
Tj Open

1|pmtn, prec, rj , pj = p|
∑
wjTj Open

1|pmtn, chains, rj , pj = p|
∑
Uj Open

1|pmtn, prec, rj , pj = p|
∑
wjUj Open

1|prec, pj = p|
∑
wjCj NP-hard Lawler [1978]

1|prec|
∑
Cj NP-hard Lawler [1978]

1|indegree ≤ 2|
∑
Cj NP-hard Lenstra and Rinnooy Kan [1978]

1|h(G) ≤ k|
∑
wjCj NP-hard Lawler [1978]

1|io|
∑
wjCj NP-hard Ambühl et al. [2011]

1|fdim ≥ 3|
∑
wjCj NP-hard Ambühl et al. [2011]

1|chains, pj = 1|
∑
Uj NP-hard Lenstra and Rinnooy Kan [1980]

1|chains, pj = 1|
∑
Tj NP-hard Leung and Young [1990]

Table 1 Complexity results for single machine problems
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Problem Complexity Reference

P |tree, pj = p|Cmax P Hu [1961]

P |outtree, pj = p|
∑
Cj P Hu [1961]

Pm|opp.forest, pj = p|Cmax P Garey et al. [1983]

Pm|lo, pj = p|Cmax P Dolev and Warmuth [1985]

P |io, pj = p|Cmax P Papadimitriou and Yannakakis [1979]

P |io, pj = p|
∑
Cj P Möhring [1989]

P |qio, pj = p|Cmax P Moukrim [1999]

P |oio, pj = p|Cmax P Chardon and Moukrim [2005]

P |oio, pj = p|
∑
Cj P Wang [2015]

P |outtree, rj , pj = p|Cmax P Brucker et al. [1977]

P |DC − graph, pj = p|Cmax P Kubiak et al. [2009]

Pm|h(G) ≤ k, pj = p|Cmax P Dolev and Warmuth [1984]

P |w(G) ≤ k, rj , pj = 1|f P Middendorf and Timkovsky [1999]

P2|prec, pj = p|Cmax P Coffman Jr and Graham [1972]

P2|prec, pj = p|
∑
Cj P Coffman Jr and Graham [1972]

P2|prec, rj , pj = 1|
∑
Cj P Baptiste and Timkovsky [2004]

Q2|chains, pj = p|Cmax P Brucker et al. [1999]

Pm|intree, pj = p|
∑
Cj P Baptiste et al. [2004a]

P |outtree, rj , pj = 1|
∑
Cj P Brucker et al. [2002]

Qm|rj , pj = p|
∑
Cj P Dessouky et al. [1990]

Pm|sp− graph, pj = p|Cmax Open

Pm|prec, pj = p|Cmax Open

P |intree, pj = p|
∑
Cj Open

P |outtree, rj , pj = p|
∑
Cj Open

Qm|prec, rj , pj = p|Lmax Open

Qm|prec, rj , pj = p|
∑
Cj Open

P2||Cmax NP-hard Lenstra et al. [1977]

P2|chains|
∑
Cj NP-hard Du et al. [1991]

P |opp.forest, pj = p|Cmax NP-hard Garey et al. [1983]

P |h(G) ≤ k, pj = p|Cmax NP-hard Lenstra and Rinnooy Kan [1978]

P |intree, rj , pj = p|Cmax NP-hard Brucker et al. [1977]

P |h(G) ≤ k, pj = p|
∑
Cj NP-hard Lenstra and Rinnooy Kan [1978]

P |intree, rj , pj = 1|
∑
Cj NP-hard Lenstra

Table 2 Complexity results for parallel machine problems without preemption
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Problem Complexity Reference

P |pmtn, tree|Cmax P Muntz and Coffman Jr [1970]

P |pmtn, outtree, rj |Cmax P Lawler [1982]

P |pmtn, io|Cmax P Djellab [1999]

Pm|pmtn,Am|Cmax P Moukrim and Quilliot [2005]

P2|pmtn, outtree, rj , pj = 1|
∑
Cj P Baptiste and Timkovsky [2001]

P2|pmtn, outtree, rj , pj = p|
∑
Cj P Lushchakova [2006]

P |pmtn, outtree, rj , pj = 1|
∑
Cj P Brucker et al. [2002]

P2|pmtn, prec, pj = 1|
∑
Cj P Coffman et al. [2003]

Pm|pmtn, qio, pj = p|Cmax Open

Pm|pmtn, oio, pj = p|Cmax Open

Pm|pmtn, lo, pj = p|Cmax Open

Pm|pmtn, sp− graph, pj = p|Cmax Open

Pm|pmtn, prec, pj = p|Cmax Open

Qm|pmtn, prec, rj |Lmax Open

P2|pmtn, intree, rj , pj = 1|
∑
Cj Open

P2|pmtn, prec, rj , pj = 1|
∑
Cj Open

P |pmtn, prec, pj = p|Cmax NP-hard Ullman [1976]

P2|pmtn, chains|
∑
Cj NP-hard Du et al. [1991]

P |pmtn, h(G) ≤ k, pj = p|
∑
Cj NP-hard [this paper]

P2|pmtn, chains, pj = 1|
∑
wjCj NP-hard Du et al. [1991]

P2|pmtn, chains, pj = 1|
∑
Uj NP-hard Baptiste et al. [2004a]

Table 3 Complexity results for parallel machine problems with preemption


