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Abstract. Sugeno integrals are aggregation functions defined on a qual-
itative scale where only minimum, maximum and order-reversing maps
are allowed. Recently, variants of Sugeno integrals based on Gödel impli-
cation and its contraposition were defined and axiomatized in the setting
of bounded chain with an involutive negation. This paper proposes a
more general approach. We consider totally ordered scales, multivalued
conjunction operations not necessarily commutative, and implication op-
erations induced from them by means of an involutive negation. In such
a context, different Sugeno-like integrals are defined and axiomatized.

Keywords: Sugeno integral, conjunctions, implications, multifactorial
evaluation

1 Introduction and prerequisites

In a recent paper [4], we introduced variants of Sugeno integrals based on Gödel
implication and its contraposition using an involutive negation. It models qual-
itative aggregation methods that extend min and max, based on the idea of
tolerance threshold beyond which a criterion is considered satisfied. These new
aggregation operations have been axiomatized in [5] in the setting of a com-
plete bounded chain with an involutive negation. In the present paper, we try
to cast this approach in a more general totally ordered algebraic setting, using
multivalued conjunction operations that are not necessarily commutative, and
implication operations induced from them by means of an involutive negation.

We adopt the terminology and notations usual in multi-criteria decision mak-
ing, where some alternatives are evaluated according to a common set C =
{1, . . . , n} = [n] of criteria. A common evaluation scale L is assumed to pro-
vide ratings according to the criteria: each alternative is thus identified with a
function f ∈ LC which maps every criterion i of C to the local rating fi of the
alternative with regard to this criterion. We assume that L is a totally ordered
set with 1 and 0 as top and bottom, respectively (L may be the real unit inter-
val [0, 1] for instance). For any a ∈ L, we denote by aC the constant alternative
equals to a on C. In addition, we assume that L is equipped with a unary order
reversing involutive operation t 7→ 1 − t, that we call negation.

We denote by ∧ and ∨ the minimum and maximum operation on L. These
two aggregation schemes can be slightly generalised by means of importance
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levels or priorities πi ∈ L, on the criteria i ∈ [n]. Suppose πi is increasing with
the importance of i. A fully important criterion has importance weight πi = 1.
In the following, we assume πi > 0 for every i ∈ [n], i.e., there is no useless
criterion. In this section, we also assume πi = 1, for some criterion i (the most
important one). It is a kind a normalization assumption that ensures that the
whole scale L is useful, and that is typical of possibility theory. These importance
levels can interact with each local evaluation fi in different manners. Usually,
a weight πi acts as a saturation threshold that blocks the global score under
or above a certain value dependent on the importance level of criterion i. Such
weights truncate the evaluation scale from above or from below. The rating fi is
taken into acount in the form of either (1−πi)∨fi ∈ [1−πi, 1], or πi∧fi ∈ [0, πi].
A fully important criterion can alone bring the whole global score to 1 or to 0.
The weighted minimum and maximum operations then take the following forms:

MINπ(f) =
n
∧

i=1

(

(1 − πi) ∨ fi
)

; MAXπ(f) =
n
∨

i=1

(πi ∧ fi). (1)

It is well-known that if the evaluation scale L is reduced to {0, 1} (Boolean
criteria) then letting Af = {i : fi = 1} be the set of criteria satisfied by alter-
native f , the function Π : Af 7→ MAXπ(f) =

∨

{πi : i ∈ Af} is a possibility
measure on C [12] (i.e, a set function Π that satisfies Π(A∪B) = Π(A)∨Π(B)
for every A,B ⊆ C), and N : f 7→ MINπ(f) =

∧

{1 − πi : i 6∈ Af} is a necessity
measure [3] (i.e., a set function N that satisfies N(A ∩ B) = N(A) ∧N(B) for
every A,B ⊆ C). Note that the well-known duality property Π(A) = 1 −N(A),
where A denotes the set complement of A in C, immediately generalizes to the
scale L in the following way:

MAXπ(f) = 1 −MINπ(1 − f). (2)

There are two possible lines of action to extend the definition of the aggre-
gation operations in (1):

– Replacing possibility and necessity measures by more general monotonic set
functions that attach weights to groups of criteria.

– Extending the rating modification schemes using more general conjunctions
and implications.

Sugeno integral The first extension leads to modeling relative weights of the
sets of criteria via a capacity, which is an order-preserving map γ : 2C → L that
satisfies γ(∅) = 0 and γ(C) = 1. The conjugate capacity γc of γ is defined by
γc(A) = 1 − γ(A) for every A ⊆ C. The Sugeno integral [11], of an alternative f

can be defined by means of several expressions, among which the two following
normal forms [9]:

∫

γ

f =
∨

A⊆C

(

γ(A) ∧
∧

i∈A

fi
)

=
∧

A⊆C

(1 − γc(A)) ∨
∨

i∈A

fi. (3)
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These expressions, which generalise the conjunctive and disjunctive normal forms
in logic, can be simplified as follows:

∫

γ

f =
∨

a∈L

γ({i : fi ≥ a}) ∧ a =
∧

a∈L

γ({i : fi > a})) ∨ a. (4)

Moreover, for the necessity measure N associated with a possibility distribution
π, we have

∫

N
(f) = MINπ(f); and for the possibility measure Π associated

with π, we have
∫

Π
(f) = MAXπ(f).

There is a duality relation between Sugeno integrals with respect to conjugate
capacities, extending (2):

∫

γ

f = 1 −

∫

γc

(1 − f). (5)

Two alternatives f, g ∈ LC are said to be comonotone if for every i, j ∈ [n], if
f(i) < f(j) then g(i) ≤ g(j) and if g(i) < g(j) then f(i) ≤ f(j). By means of
this notion, Sugeno integral can be characterized as follows:

Theorem 1 ([1]). Let I : LC → L. There is a capacity γ such that I(f) =
∫

γ
f

for every f ∈ LC if and only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. I(a ∧ f) = a ∧ I(f), for every a ∈ L and f ∈ LC.
3. I(1C) = 1.

Equivalently, conditions (1-3) can be replaced by conditions (1’-3’) below.

1’. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2’. I(b ∨ f) = b ∨ I(f), for every a ∈ L and f ∈ LC.
3’. I(0C) = 0.

The existence of these two equivalent characterisations is due to the possibility
of writing Sugeno integral in conjunctive and disjunctive forms (3) equivalently.

Generalized rating modification The second extension yields weighted min
and max operations of the form

MIN→
π (f) =

n
∧

i=1

πi → fi; MAX⊗
π (f) =

n
∨

i=1

πi ⊗ fi, (6)

where → is an implication connective, and ⊗ a conjunction, understood as multi-
valued connectives that coincide with Boolean implication and conjunction when
restricted to {0, 1}. In order to preserve the duality property (2), these opera-
tions must be related by a property that we call semi-duality, defined by the
equation a → b = 1 − (a⊗ (1 − b)), or equivalently a⊗ b = 1 − (a → (1 − b)).
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One may then consider both generalizations together and define, given a pair
of semi-dual implication → and conjunction ⊗, the integrals

∫ ⊗
and

∫→
by

∫ ⊗

γ

f =
∨

A⊆C

(

γ(A) ⊗
∧

i∈A

fi
)

;

∫ →

γ

f =
∧

A⊆C

(γc(A) →
∨

i∈A

fi), (7)

for every capacity γ and every f ∈ LC . In what follows, we refer to expressions
of the form

∫→

γ
as co-integrals. The assumption of semi-duality ensures that the

duality equation (5) holds between integrals and co-integrals.
Sugeno integral is a particular instance of (7), since the minimum ∧ and the

Kleene-Dienes implication →K defined as a →K b := (1 − a) ∨ b exchange by
semi-duality. So, Equation (3) actually states that

∫

γ

f =

∫ ∧

γ

f =

∫ →K

γ

f

for every capacity γ and every f ∈ LC . It means that integrals and co-integrals
defined by means of the operation ∧ and →K , respectively, coincide. As we shall
see in the sequel, this is not generally the case.

2 Variants of Sugeno integrals: an example.

Let us recall previous results [4] in the qualitative setting of a complete bounded
totally ordered set L = (L,∧,→G, 0, 1) where →G is the Gödel implication de-
fined by residuation of ∧:

a →G b := sup{x : a ∧ x ≤ b} =

{

1 if a ≤ b

b otherwise.
(8)

As previously, L is equipped with an involutive operation 1 − ·. The following
(non-commutative) conjunction, introduced in [2] is defined by semi-duality:

a⊗G b := 1 − (a →G (1 − b)) =

{

b if a > 1 − b,

0 otherwise.
(9)

The qualitative integral
∫ ⊗G

γ
and co-integral

∫→G

γ
have simplified expressions

that extend those of Sugeno integrals, assuming f1 ≤ · · · ≤ fn:

∫ ⊗

γ

f =
n
∨

i=1

γ({i, · · · , n}) ⊗ f(i) =
∨

a∈L

γ({f ≥ a}) ⊗ a (10)

∫ →

γ

(f) =
n
∧

i=1

γc({1, · · · , i}) → f(i) =
∧

a∈L

γc({f ≤ a}) → a. (11)

Note also that if N is a necessity measure and Π is a possibility measure,
then

∫→G

N
= MIN→G

π and
∫ ⊗G

Π
= MAX⊗G

π . However we cannot exchange N

and Π in those results.



Generalized Sugeno Integrals 5

As ⊗G is not commutative, there is an alternative definition for those aggrega-
tion operations, replacing ⊗G by the operation ⊗GC defined by a⊗GC b := b⊗Ga,
and the operation →G by the implication →GC associated with ⊗GC by semi-
duality (i.e., the operation →GC is the contrapositive version of →G):

a →GC b := 1 − (a⊗GC (1 − b)) = (1 − b) →G (1 − a) =

{

1 if a ≤ b,

1 − a otherwise.

Properties (11)-(10) hold for
∫→GC

γ
f and

∫ ⊗GC

γ
f as well as for their reduc-

tions to a form of weighted min and max for necessity and possibility measures.
Noticeably, the integral and co-integral based on Gödel implications and their

associated semi-dual conjunctions do not coincide. We have proved [4] that

∫ ⊗G

γ

f ≥

∫ →G

γ

f and

∫ ⊗GC

γ

f ≥

∫ →GC

γ

f, (12)

but the inequalities may be strict. For instance,
∫→G

γ
(f) = 1 if for all A ⊆ C,

there is some i ∈ A such that fi ≥ γc(A), and
∫ ⊗G

γ
(f) = 1 if there is some subset

A ⊆ C such that γ(A) > 0 and fi = 1 for every i ∈ A.
Some characterization theorems for these variants of Sugeno integrals have

been obtained [5]:

Theorem 2. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫ ⊗G

γ
f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗G a) = λ(A) ⊗G a for every

a ∈ L and every A ⊆ C.

In that case, we have γ = λ.

Theorem 3. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫→G

γ
f for every f ∈ LC if and only if

1. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity ρ : 2C → L such that I(1A →G a) = ρ(A) →G a for every

a ∈ L.

If these conditions are satisfied then γ = ρc.

Similar theorems hold [5] for
∫ ⊗GC

γ
(f) and

∫→GC

γ
(f). The above results suggest

that it is possible to find a more general algebraic structure to define generalized
Sugeno integrals, while keeping the same properties.

Note that the three implications and conjunctions in the above setting are
related in the following way. We consider the three following transformations
that can be applied to any operation ⋆ on a bounded totally ordered set with
involutive negation L = (L,∨,∧, 1 − ·, 0, 1):
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– Residuation: aRes(⋆)b :=
∨

{a : a ⋆ b ≤ c} if this supremum exists,
– Semi-duality: aS(⋆)b := 1 − a ⋆ (1 − b),
– Contraposition: aC(⋆)b := (1 − b) ⋆ (1 − a).
– Argument exchange: aA(⋆)b := b ⋆ a

Note that semi-duality and contraposition are involutive transformations. More-
over the diagram in Fig. 1 commutes [2].

a ∧ b a →G b (1− b) →G (1− a)✲Res ✲C

(1− a) ∨ b

SS

a⊗G b

S S S S Res

✻

b⊗G a

✻

❄

✻

❄

✻

❄
✛ ARes

Fig. 1. Connectives induced by the minimum on a finite chain

In the sequel, we focus on generalized Sugeno integrals on a finite total order
equipped with a conjunction that is not necessarily commutative, and the co-
integral obtained by semi-duality. For simplicity, the word “q-integral” is used
here in the sense of generalized Sugeno integrals on a qualitative scale.

3 Sugeno-like q-integrals based on left-conjunctions

We consider a bounded complete totally ordered value scale (L, 0, 1,≤), equipped
with an operation ⊗ called left-conjunction, which has the following properties:

– the top element 1 is a left-identity: 1 ⊗ x = x,
– the bottom element 0 is a left-anihilator 0 ⊗ x = 0,
– the maps x 7→ a⊗ x, x 7→ x⊗ a are order-preserving for every a ∈ L.

It follows that a ⊗ 0 = 0 for every a ∈ L (0 is an anihilator on both sides),
and so, a left-conjunction coincides with a Boolean conjunction on {0, 1}; but
we assume neither associativity nor commutativity. The following operations are
examples of left-conjunctions.

– T-norms on [0, 1], in particular ∧, the product t-norm, the  Lukasiewicz t-
norm and the nilpotent minimum ∧ defined by a∧b = 0 if a + b ≤ 1 and
a∧b = a ∧ b otherwise.

– Weak t-norms [8], i.e., left conjunctions such that a⊗ 1 ≤ a.
– The non-commutative Gödel conjunction ⊗G previously introduced, and the

non-commutative conjunction ⊗rTC defined by a ⊗rTC b = 0 if a = 0, and
a⊗rTC b = b if a 6= 0 (see [5]).

– Pseudo-multiplications used by Klement et al. [10] in the definition of univer-
sal integrals. A pseudo-multiplication has genuine identity 1 and anihilator
0 (on both sides).
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Definition 1. Let ⊗ be a left-conjunction on L and γ : 2C → L be a capacity.
The q-integral

∫ ⊗

γ
is the mapping

∫ ⊗

γ
: LC → L defined by

∫ ⊗

γ

f =
∨

A⊆C

(

γ(A) ⊗
∧

i∈A

fi
)

, for all f ∈ LC .

We show that q-integrals can be characterized similarly as in Theorem 2. In
the following when we consider f ∈ LC , (·) denotes a permutation on the set
of criteria such that f(1) ≤ · · · ≤ f(n) and we let A(i) = {(i), · · · , (n)} with the
convention A(n+1) = ∅.

Lemma 1. If f ∈ LC then f =
∨n

i=1 1A(i)
⊗ f(i).

Proof. For any i, k ∈ [n], f(i) ≤ fk if k ∈ A(i). It follows that 1A(i)
(k)⊗f(i) = 0 if

fk < f(i) and f(i) otherwise; hence
∨n

i=1 1A(i)
(k)⊗f(i) =

∨

{f(i) | f(i) ≤ fk} = fk.

Proposition 1.
∫ ⊗

γ
f =

∨n
i=1 γ(A(i)) ⊗ f(i).

Proof.
∫ ⊗

γ
f =

∨

A⊆C γ(A) ⊗
∧

i∈A fi. Let us denote
∧

i∈A fi by fiA . It follows

that A ⊆ A(iA) which entails γ(A) ≤ γ(A(iA)) and γ(A) ⊗ fiA ≤ γ(A(iA)) ⊗ fiA .

Lemma 2. For every capacity γ, the map
∫ ⊗

γ
: LC → L is order-preserving.

Proof. Directly from the assumption that the map x 7→ a⊗x is order-preserving.

Lemma 3.
∫ ⊗

γ
f =

∨

a∈L γ({f ≥ a}) ⊗ a.

Proof. We use Proposition 1. Let a ∈ L \ {f1, . . . , fn}.
If a > f(n) then γ({f ≥ a}) ⊗ a = 0 ⊗ a = 0.
If a < f(1) then γ({f ≥ a}) ⊗ a = γ({f ≥ f(1)}) ⊗ a ≤ γ({f ≥ f(1)}) ⊗ f(1).
If f(i−1) < a < f(i) then γ({f ≥ a})⊗a = γ({f ≥ f(i)})⊗a ≤ γ({f ≥ f(i)})⊗f(i).

Lemma 4. For any comonotone f, g ∈ LC, we have
∫ ⊗

γ
(f ∨ g) =

∫ ⊗

γ
f ∨

∫ ⊗

γ
g.

Proof. The inequality
∫ ⊗

γ
(f ∨ g) ≥

∫ ⊗

γ
f ∨

∫ ⊗

γ
g follows from Lemma 2. Let

us prove the other inequality. Let a ∈ L. For any two comonotone functions
f, g ∈ LC we have either {f ≥ a} ⊆ {g ≥ a} or {g ≥ a} ⊆ {f ≥ a}.
If {f ≥ a} ⊆ {g ≥ a} then {f ∨ g ≥ a} = {f ≥ a} ∪ {g ≥ a} = {g ≥ a} and
γ({f ∨ g ≥ a}) ⊗ a = γ({g ≥ a}) ⊗ a ≤

(

γ({g ≥ a}) ⊗ a
)

∨
(

γ({f ≥ a}) ⊗ a
)

.

By symmetry, the inequality is also true when {g ≥ a} ⊆ {f ≥ a}; hence
∫ ⊗

γ
(f ∨ g) ≤

∨

a∈L

(

(

γ({g ≥ a}) ⊗ a
)

∨
(

γ({f ≥ a}) ⊗ a
)

)

=
∫ ⊗

γ
f ∨

∫ ⊗

γ
g.

Lemma 5. For every f ∈ LC and every ℓ ∈ {1, . . . , n−1}, the maps 1A(ℓ)
⊗f(ℓ)

and
∨n

i=ℓ+1 1A(i)
⊗ f(i) are comonotone.

Proof. We represent both maps as vectors of components ordered according
to (1), . . . , (n), so that A(ℓ) = {(ℓ), . . . , (n)}. In consequence, 1A(ℓ)

⊗ f(ℓ)(i) =
∨n

i=ℓ+1 1A(i)
⊗ f(i)(i) = 0 if i ≤ ℓ while 1A(ℓ)

⊗ f(ℓ)(i) = f(ℓ) and
∨n

i=ℓ+1 1A(i)
⊗

f(i)(i) = f(i) if i > ℓ. Hence it is easy to check that the two maps are comonotone.
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Lemma 6. For any capacity γ, any B ⊆ C and any a ∈ L we have
∫ ⊗

γ
(1B⊗a) =

γ(B) ⊗ a. In particular
∫ ⊗

γ
1C = 1.

Proof.
∫ ⊗

γ
f =

∨n
i=1 γ(A(i)) ⊗ f(i), where f = 1B ⊗ a. Note that 1B(i) ⊗ a = a

if i ∈ B and 1B(i) ⊗ a = 0 otherwise. So, there is j such that B = A(j) =

{(j), . . . , (n)}. So we get
∫ ⊗

γ
(1B ⊗ a) =

∨n
i≥j γ(A(i)) ⊗ a, and the maximum is

attained for i = j. Further,
∫ ⊗

γ
1C =

∫ ⊗

γ
1C ⊗ 1 = γ(C) ⊗ 1 = 1.

We can now prove our first characterization result.

Theorem 4. Let I : LC → L be a mapping and ⊗ a left-conjunction. There is a
capacity γ such that I(f) =

∫ ⊗

γ
f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗ a) = λ(A) ⊗ a for every

a ∈ L and every A ⊆ C.

In that case, we have γ = λ.

Proof. Necessity is obtained by previous Lemmas. For sufficiency, assume that
I is a mapping that satisfies conditions 1 and 2 and let f ∈ LC . We have I(f) =

I(
∨n

i=1 1A(i)
⊗ f(i)) =

∨n
i=1 I(1A(i)

⊗ f(i)) =
∨n

i=1 λ(A(i)) ⊗ f(i) =
∫ ⊗

λ
f .

Note that we have used all properties of left-conjunctions in our proof of the
previous result. Moreover, contrary to universal integrals,

∫ ⊗

γ
1A = γ(A) ⊗ 1 6=

γ(A), generally, since 1 is not an identity on the right. To get the property
∫ ⊗

γ
1A = γ(A), it is enough to assume the left-conjunction ⊗ is commutative.

The set function γ̂(A) = γ(A)⊗1 generally differs from γ. The following counter-

example shows that we may have γ̂(A) 6= γ(A) and
∫ ⊗

γ
6=

∫ ⊗

γ̂
.

Example 1. C = {1, 2}, L = [0, 1] and ⊗G is the Gödel conjunction. We have
a ⊗G 1 = 0 if a = 0 and 1 otherwise so a ⊗G 1 6= a if a < 1. Let us consider γ

such that γ({1}) = 0 and γ({2}) = 0.1. If f is defined by f1 = 0 and f2 = 0.8

we obtain
∫ ⊗G

γ
f = (1⊗G 0)∨ (0.1⊗ 0.8) = 0.8 and

∫ ⊗G

γ̂
f = 1 since γ̂({2}) = 1.

In the case when the functional I is maxitive, we prove the following:

Theorem 5. Assume that ⊗ is a left conjunction that is right-cancellative, that
is, for every a, b, c ∈ L, if a⊗ c = b⊗ c then a = b. Let I : LC → L be a mapping.
There is a possibility measure Π such that I(f) =

∫ ⊗

Π
f for every f ∈ LC if and

only if I satisfies the following properties:

1. I(f ∨ g) = I(f) ∨ I(g), for any f, g ∈ LC.
2. There is a capacity λ : 2C → L such that I(1A ⊗ a) = λ(A) ⊗ a for every

a ∈ L and every A ⊆ C.

In that case, we have Π = λ.
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Proof. A q-integral with respect to a possibility measure satisfies the requested
properties. Let us prove the converse. According to the previous theorem, there
exists a capacity λ such that I(1A ⊗ a) = λ(A) ⊗ a for all a. For all a 6=
0, (1A ⊗ a) ∨ (1B ⊗ a) = (1A∪B ⊗ a) by the order-preservingness property;
so (λ(A) ⊗ a) ∨ (λ(B) ⊗ a) = λ(A ∪ B) ⊗ a. Again by order-preservingness,
(λ(A)⊗ a)∨ (λ(B)⊗ a) = (λ(A)∨λ(B))⊗ a hence the cancellativeness property
allows us to conclude λ(A ∪B) = λ(A) ∨ λ(B).

The above result also holds for commutative conjunctions (so, for triangular
norms), and also pseudo-multiplications, since in that case I(1A) = I(1A⊗1C) =
Π(A)⊗1 = Π(A). But it does not hold for the Gödel conjunction, nor the other
non-commutative conjunction mentioned above.

4 Integrals defined with a right-conjunction

We consider a binary operation ⊗C defined by a ⊗C b := b ⊗ a where ⊗ is a
left-conjunction. Clearly, a ⊗C 1 = a, a ⊗C 0 = 0, 0 ⊗C a = 0, and the maps
x 7→ a⊗Cx and x 7→ x⊗Ca are order-preserving. We call ⊗C a right-conjunction.
The associated q-integral is

∫ ⊗C

γ

f =
∨

A⊆C

(
∧

i∈A

fi ⊗ γ(A)).

It generally differs from
∫ ⊗

γ
f [4]. Using the results presented in Section 3

it is easy to prove that if f ∈ LC , then f =
∨n

i=1 f(i) ⊗C 1A(i)
where for every

ℓ ∈ {1, . . . , n−1}, the maps f(ℓ)⊗C1A(ℓ)
and

∨n
i=ℓ+1 f(i)⊗C1A(i)

are comonotone.

Since x 7→ x ⊗C a is increasing,
∫ ⊗c

γ
f =

∨n
i=1 γ(A(i)) ⊗C f(i), and since

x 7→ a ⊗C x is increasing, the map
∫ ⊗C

γ
: LC → L is order-preserving for every

capacity γ. Moreover we have
∫ ⊗C

γ
f =

∨

a∈L(a ⊗ γ({f ≥ a})) and for any

comonotone f, g ∈ LC we have
∫ ⊗C

γ
(f ∨ g) =

∫ ⊗C

γ
(f) ∨

∫ ⊗C

γ
(g).

For every capacity γ, every A ⊆ C and every a ∈ L, it holds

∫ ⊗C

γ

(a⊗C 1A) =
∨

B⊆C

γ(B) ⊗C

∧

i∈B

(a⊗C 1A(i)) =
∨

B⊆C

∧

i∈B

(1A(i) ⊗ a) ⊗ γ(B).

We have
∧

i∈B(1A(i) ⊗ a) = a if B ⊆ A and
∧

i∈B(1A(i) ⊗ a) = 0 otherwise, so

∫ ⊗C

γ

(a⊗C 1A) =
∨

B⊆A

a⊗ γ(B) = a⊗ γ(A).

In particular, as 1⊗a = a, we have
∫ ⊗C

γ
1A = γ(A), and so

∫ ⊗C

γ
(a⊗C 1A) =

a⊗
∫ ⊗C

γ
1A. We are ready to prove the following characterization result.
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Theorem 6. Let I : LC → L be a mapping and ⊗C a right-conjunction. There
is a capacity γ such that I(f) =

∫ ⊗C

γ
f for every f ∈ LC if and only if

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC.

2. For every A ⊆ C and every a ∈ L we have I(1A ⊗C a) = I(1A) ⊗C a.

3. I(1C) = 1.

In that case γ is defined by γ(A) = I(1A) for every A ⊆ C.

Proof. The proof that I(f) =
∨n

i=1 I(1A(i)
)⊗C f(i) is similar to that of Theorem

4. Then we must prove that the set function λ : A 7→ I(1A) is a capacity. We
do have that λ(C) = 1, and λ(∅) = I(0) = I(0 ⊗C 1C) = 0 ⊗ λ(C) = 0. Finally,
for every A ⊆ B, as 1 ⊗C 1A ≤ 1 ⊗C 1B ,we get by conditions 1 and 2 that
λ(A) = λ(A) ⊗ 1 = I(1 ⊗C 1A) ≤ I(1 ⊗C 1B) = 1 ⊗ λ(B) = λ(B).

Note that if the maxitivity condition 1 is extended to any pair of mappings f ,
g, then I(1B) = Π(B) and I(f) = MAX⊗C

π (f) =
∨n

i=1 fi ⊗ πi. The contra-
posed Gödel conjunction ⊗GC and the right conjunction associated with the
conjunction ⊗rTC introduced above are examples of right-conjunctions.

5 Q-cointegrals defined from left-conjunctions

As L is equipped with an involutive negation t 7→ 1 − t, we can define an
implication → from ⊗ by semi-duality: a → b := 1−(a⊗(1−b)). This implication
satisfies the following very usual properties:

– a → 1 = 1, 0 → b = 1 and 1 → b = b,

– → is decreasing according to its first argument,

– → is increasing according to the second one.

Under property 1 → b = b, implication → is called a border implication. The
implication → and the conjunction ⊗ exchange via semi-duality.

The following implication operations satisfy the properties presented above.

– S-implications obtained from triangular norms by semi-duality, among them,
the Kleene-Dienes implication, the  Lukasiewicz implication a → L b = max(1−
a + b, 0), the nilpotent implication induced by the nilpotent minimum a →
b = 1 if a ≥ b and (1 − a) ∨ b otherwise, Reichenbach implication (induced
by product).

– Implications obtained from triangular norms by residuation Res, among
which the Gödel and  Lukasiewicz implications, the nilpotent implication,
Goguen implication (induced by product). Operations of the form ⊗ =
S(Res(⋆)), where ⋆ is a left-continuous t-norm, are (generally non-commutative)
left-conjunctions instrumental in the construction of Section 4.

– a →XC b = 1 if a = 0, and b if a 6= 0 [5].
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Definition 2. Let → be a border implication as defined above on L and γ : 2C →
L be a capacity. The q-cointegral

∫→

γ
: LC → L is the mapping

∫ →

γ

f =
∧

A⊆C

(

γc(A) →
∨

i∈A

fi
)

, for all f ∈ LC .

Using semi-duality, q-cointegrals can be expressed in terms of q-integrals.

Proposition 2.
∫→

γ
(f) = 1 −

∫ ⊗

γc(1 − f).

As in [5], using semi-duality, we derive the following results from Section 4.
For any f ∈ LC , we have f =

∧n
i=1 1A(i+1)

→ f(i) where for every ℓ ∈

{1, . . . , n − 1}, the maps 1A(ℓ+1)
→ f(ℓ) and

∧n
i=ℓ+1 1A(i+1)

→ f(i) are comono-

tone. Also,
∫→

γ
(f) =

∧n
i=1 γ

c(A(i+1)) → f(i) =
∧

a∈L γc({f ≤ a}) → a.

Moreover we have the following characterisation result.

Theorem 7. Let I : LC → L be a mapping. There is a capacity γ such that
I(f) =

∫→

γ
f for every f ∈ LC if and only if the following properties are satisfied.

1. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC.
2. There is a capacity ρ : 2C → L such that I(1A → a) = ρc(A) → a, ∀a ∈ L.

In that case ρ = γ.

We can run a similar study for q-cointegrals induced by a right-conjunction.
They use implications that differ from the above ones by the property a → 0 =
1 − a that replaces 1 → b = b, i.e. these implications reconstruct the involutive
negation.

Remark 1. The equality (3) between the q-cointegral and the q-integral, in the
case of conjunction ∧ and its semi-dual (1−a)∨b does not extend to conjunction-

based q-integrals. For example only the inequality (12):
∫ ⊗

γ
f ≥

∫→

γ
f holds for

(⊗,→) ∈ {(⊗G,→G), (⊗GC ,→GC)} [4]. This inequality cannot even be gener-
alised to other conjunctions. For example, for the nilpotent minimum and the
nilpotent maximum (a∨b = a ∨ b, if a ≤ 1 − b and 1 otherwise) the relations

a∧b ≤ a ∧ b and a ∨ b ≤ a∨b imply the opposite inequality
∫ ∧

γ
f ≤

∫⇒

γ
f , where

⇒ is S(∧), but
∫ ∧

γ
f 6=

∫⇒

γ
f .

Example 2. Consider C = {1, 2}, L = [0, 1], a capacity γ defined by γ({1}) =

γ({2}) = 0 and f such that f1 = 0.5 and f2 = 0.5; then
∫ ∧

γ
f = 0.5 <

∫⇒

γ
f = 1.

Remark 2. The diagram on Fig. 1 holds for transforms of many more operations
⋆ than ∧. Fodor [8] has shown that the existence of Res(⋆) is a necessary and
sufficient condition for the square on the left-hand side to commute. The whole
diagram commutes if and only if moreover ⋆ is commutative. Res(⋆) exists for
left and right conjunctions. So from any q-integral based on a left-conjunction ⊗,
one can generate two q-cointegrals (based on Res(⊗) and S(⊗)), and another q-
integral based on Res◦S(⊗) = S ◦Res(⊗). We can do likewise for the associated
right-conjunction A(⊗).
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Remark 3. The q-cointegral-like expression defined on a complete residuated
lattice in [6] is based on an anticapacity ν i.e., a set function such that ν(∅) = 1,
ν(C) = 0 and A ⊆ B implies ν(A) ≥ ν(B). For all f ∈ LC , it takes the form:
∮→

ν
f =

∧

A⊆C

∨

i∈A(fi → ν(A)), for all f ∈ LC . It is what we call a desintegral
in [4] as it is decreasing with fi.

6 Conclusion

In this paper, we have proposed a very general setting for generalized forms of
Sugeno integrals where the inside operation is either a not-necessarily commuta-
tive multivalued conjunction or a multivalued implication. The properties in the
algebraic setting were chosen to be minimal in order to preserve representation
theorems by means of comonotonic minitive or maxitive functionals: integrals
are maxitive, while cointegrals are minitive and differ from each other, in con-
trast with the case of standard Sugeno integrals. One remaining open problem
is to find necessary and sufficient conditions for a conjunction ⊗ to ensure the
equality between integrals and their semi-dual cointegrals.
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