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2 IRIT – CNRS, 118, route de Narbonne, 31062 Toulouse Cedex 09, France

nahla.benamor@gmx.fr, {dubois,prade}@irit.fr, gouider.hela@gmail.com

Abstract. Representing preferences into a compact structure has become an im-

portant research topic. Graphical models are of special interest. Indeed, they fa-

cilitate elicitation, exhibit some form of independence, and serve as a basis for

solving optimization and dominance queries about choices. The expressiveness of

the representation setting and the complexity of answering queries are then cen-

tral issues for each approach. This paper proposes an extensive overview of the

main graphical models for preference representation and provides a comparative

survey by emphasizing their main characteristics. We also indicate possible trans-

formations between some of these models. We contrast qualitative models such as

CP-nets and TCP-nets with quantitative ones such as GAI networks, UCP-nets,

and Marginal utility nets, and advocate π-Pref nets, recently introduced by the

authors, as an interesting compromise between the two types of models.

1 Introduction

Modeling preferences is essential in any decision analysis task. However, getting these

preferences becomes non trivial as soon as alternatives are described by a Cartesian

product of multiple features. Indeed, the direct assessment of a preference relation be-

tween these alternatives is usually not feasible due to its combinatorial nature. Fortu-

nately, the decision maker can express contextual preferences that exhibit some inde-

pendence relations, which allows us to be represent her/his preferences in a compact

manner. Moreover, graphical representations facilitate preference elicitation, as well as

the construction of an ordering from these contextual local preferences. This use of

graphical preference representations has been inspired by the success of Bayesian net-

works as a computationally tractable knowledge representation device [20].

Various graphical models have been proposed in the literature in order to cap-

ture preferences in an intuitive manner. We may roughly distinguish two classes: (i)

qualitative models where preferences are contextually expressed by comparisons be-

tween attributes values. Within these models, CP-nets [7] are the most popular and

well-developed compact representation setting for preferences; (ii) quantitative models,

where a numerical value function can be computed for comparing all possible choices,

such as GAI networks [19], UCP-nets [5], or marginal utility nets [10]. In general, these

models are mostly motivated by the easiness of elicitation. However, some of them still

suffer from various limitations: their expressive power may be somehow restricted, elic-

itation may be complex, or answering queries may require costly reasoning algorithms.
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This paper surveys most graphical models for preference representation. It enlarges

the only existing past overview [21]. For each model, we emphasize the independence

relation underlying it, study how it operates for defining an order between the choices

from the expressed preferences, and recall the computational complexity of dominance

and optimization algorithms. The paper is organized as follows. Sections 2 and 3 pro-

vide a presentation of the major qualitative or quantitative graphical models respec-

tively, allowing for a local processing of elementary preferences by exploiting some

structural independence relations carried by their graphical components. Section 4 pres-

ents a symbolic graphical model for preferences based on possibility theory and possi-

bilistic networks. This recent approach recently introduced by the authors, is halfway

between qualitative and quantitative models. Section 5 concludes with a summary and

a thorough comparative discussion.

2 Graphical preferential qualitative models

Let V = {A1, . . . AN} be a set of N variables. Each variable Ai has a domain D(Ai);
ai denotes any value of Ai. Ω = {ω1, . . . , ω|Ω|} denotes the universe of discourse,

which is the Cartesian product of all variable domains in V . Each element ωi ∈ Ω is

called a configuration. It corresponds to a complete instantiation of the variables in V .

If X ⊆ V , let D(X) refer to the Cartesian product of the domains of variables in X and

ω[X] denotes the restriction of variable ω to variables in X .

Semantically, preferences are defined by an order between the configurations (or

choices). Let � be a binary relation on Ω such that x � y means that “x is at least as

preferred as y”. Other relations can be derived from � as usual: ωi ∼ ωj iff ωi � ωj

and ωj � ωi; ωi ≻ ωj iff ωi � ωj but not ωj � ωi; ωi ± ωj iff neither ωi � ωj

nor ωj � ωi (non comparability). Ordering relations may be total (i.e. we can compare

any two configurations) or partial, strict (i.e. asymmetric) or weak. Preference relations

between different configurations ωi ∈ Ω can be expressed via some preference relations

over subsets of variables, and take advantage of (in)dependencies that exist between the

variables or subsets of variables. We denote by Pa(Ai) the set of parents of Ai, ui any

instantiation of Pa(Ai) and Y(Ai) = {Y1, . . . , Yn} the set of its children. Dn(Ai)
denotes its descendants and Co(Ai) = V/(Dn(Ai) ∪ Pa(Ai) ∪Ai) denotes the set of

non-descendents. We will use these notations for the rest of the paper.

In a preference model, two types of queries are commonly used: namely, optimiza-

tion queries for finding the optimal configuration(s) (i.e. those which are not dominated

by others) and dominance queries for comparing configurations. Besides, another im-

portant task is the elicitation of the model which corresponds to constructing the graph

and eliciting the user preferences. Most of practically used preferential graphical mod-

els are qualitative since they are easy to elicit. In the sequel, we detail two of the most

important ones, namely, Conditional Preference networks (CP-nets) and their extension

Tradeoffs-enhanced CP-nets.

2.1 Conditional Preference networks (CP-nets)

CP-nets, initially introduced in [7], are considered as an efficient model to manage

qualitative preferences. They are based on a preferential independence relation often
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referred to as a Ceteris Paribus assumption such that a partial configuration is preferred

to another everything else being equal. Formally, it is defined as follows:

Definition 1 (Preferential independence). Let V be a set of variables and W be a

subset of V . W is said to be preferentially independent from its complement Z = V \W
iff for any instantiations, z, z′, w, w′ we have:

(w, z) ≻ (w′, z) ⇔ (w, z′) ≻ (w′, z′) (1)

Preferential independence is asymmetric. Indeed, it might happen, e.g., for disjoint sets

X , Y and Z of variables that X is preferentially independent (Definition 1) from Y
given Z without having Y preferentially independent from X . This independence is at

a work in the graphical structure underlying CP-nets.

Definition 2 (CP-nets). A CP-net consists of a directed graph G = (V, E) where V de-

notes the set of nodes and E denotes the set of edges. A node corresponds to a variable.

Edges represent the preference dependencies between the variables. To each variable

Ai we associate a conditional preference table that corresponds to a total order be-

tween the values of Ai, ∀ui.

Here, preferences over values of a variable depend only on the parent(s) context,

and are preferentially independent from the rest of variables. In contrast with Bayesian

nets, CP-nets may be cyclic (without necessarily encoding inconsistent preferences).

Using the information in the CP-Tables and applying the Ceteris Paribus principle,

when one flips one variable value in a configuration one may obtain either an improved

configuration, or a worsened one. These swap pairs can be organized into a collection of

worsening (directed) paths with a unique root corresponding to the best configuration

and where the other path extremities are the worst ones. A CP-net is said to be satisfiable

if there exists at least one partial order of configurations that satisfies it. Note that, every

acyclic CP-net is satisfiable.

Example 1. Let us consider the simple CP-Net of Fig. 1(a), with 3 variables. The build-

  ab    : c ! ¬c 

a ¬ b  : ¬c ! c 

¬ ab   :¬c ! c 

¬a ¬ b: c ! ¬c     

    

a ! ¬a 

B A 

C 

b ! ¬b 

(a) (b) 

abc 

ab ¬c 

¬ab ¬c 

¬a¬b ¬c 

¬a¬bc 

¬abc 

a¬b ¬c 

a¬bc 

Fig. 1: An example of a CP-net (a)

and its worsening flips graph (b)

  ab    : c ! ¬c 

a ¬ b  : ¬c ! c 

¬ ab   :¬c ! c 

¬a ¬ b: c ! ¬c     

    

a ! ¬a 
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b ! ¬b 

(a) (b) 

abc 

ab ¬c 

¬ab ¬c 

¬a¬b ¬c 
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a¬b ¬c 

a¬bc 

Fig. 2: An example of a TCP-net (a)

and its worsening flips graph (b)

ing of the worsening flips graph (Figure 1(b)) leads to the partial ordering: abc ≻CP
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ab¬c ≻CP ¬ab¬c ≻CP ¬abc ≻CP ¬a¬bc ≻CP ¬a¬b¬c, ab¬c ≻CP a¬b¬c ≻CP

¬a¬b¬c, abc ≻CP a¬bc ≻CP ¬a¬bc. The best configuration is abc.

CP-nets have a unique optimal configuration. Finding it amounts to look for a config-

uration where all the conditional preferences are best satisfied. This can be found by a

simple forward sweeping procedure where, for each node, we assign the most preferred

value according to the parents context. For acyclic CP-nets, this procedure is linear w.r.t.

the number of variables [7]. In contrast, for cyclic ones answering this query needs an

NP-hard algorithm and may lead to more than one optimal configuration [17]. Domi-

nance queries are more complex. Using the information in the CP-Tables and applying

the Ceteris Paribus principle, when one flips one variable value in a configuration one

may obtain either an improved configuration, or a worsened one. These swap pairs can

be organized into a collection of worsening (directed) paths with a unique root corre-

sponding to the best configuration and where the other path extremities are the worst

ones. Thus, a configuration is preferred to another if there exists a chain (directed path)

of worsening flips between them [6]. Note that if for any variable Ai ∈ V , Ai is pref-

erentially independent from V \ Ai, then the CP-net graph is disconnected and many

configurations cannot be compared. Testing dominance is PSPACE-complete for un-

restricted CP-nets, NP-hard for acyclic ones, and quadratic for tree-structures [17]. In

general, the ordering induced by a CP-net is strict and partial, since several configura-

tions may remain non comparable (i.e. no worsening flips chain exists between them).

Clearly, acyclic CP-nets cannot exhibit any ties. Ceteris Paribus makes the preference

elicitation simple for CP-nets; the elicitation complexity is equal to O(Nk) such that N
is the number of nodes and k is the maximal number of parents [22].

However, in CP-nets, a parent preference tends to be more important than a child

one [6]. In other words, violating a preference associated with a father node is more im-

portant than violating a preference associated with a child one; this priority implicitly

given by the application of Ceteris Paribus may be debatable. For instance, in the previ-

ous example, configuration ab¬c is preferred to configuration ¬abc. Moreover, this kind

of priority is not transitive in the sense that CP-nets cannot always decide whether vio-

lating preferences of two children nodes is preferred to violating preferences associated

with one child and one grandson node respectively (which might have been expected

as being less damaging than violating two children preferences) [13]. This limitation is

problematic. Generally, CP-nets cannot express any partial preference ordering, see [4]

for counterexamples.

2.2 Tradeoffs-enhanced CP-nets (TCP-nets)

As mentioned above, the expressive power of CP-nets is limited. In particular, we are

unable to specify importance relations between variables, beside those implicitly im-

posed between parents and children. Tradeoffs-enhanced CP-nets (TCP-nets) [8] are an

extension of CP-nets that adds a notion of importance between the variables by enrich-

ing the network with new arcs. These arcs express importance relations for stating the

priority of a node over another (i.e.,“preference about the values of X is more important

than preference about the values of Y ”). Such priority statements may be conditioned on

the values of other variables, e.g., “if the variable Z has value z, the preference about
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values of X is more important than the preference about the values of Y .” Formally,

TCP-nets are annotated graphs with three types of edges and are defined as below.

Definition 3 (TCP-nets). A TCP-net G′ over a set V of variables is a CP-net G =
(V, E) augmented with two types of arcs:

1. A set of directed i-arcs (where i stands for importance). An i-arc〈
−−−−→
Ai, Aj〉 belongs

to G′ iff Ai is more important than Aj , which is denoted by Ai ⊲ Aj .

2. A set of undirected ci-arcs (where ci stands for conditional importance). A ci-
arc (Ai, Aj) belongs to G′ iff the relative importance of Ai and Aj is conditioned

on Z s.t. Z ⊆ V \{Ai, Aj}. Each ci-arc (Ai, Aj) is associated with a mapping

from a subset of D(Z) to total orders over the set {Ai, Aj}.

Let us turn to the expressive power of TCP-nets. TCP-nets are obey the preference

statements induced by Ceteris Paribus, since the ordering obtained is a refinement of

the CP-nets ordering. In fact, the refinement brought by TCP-nets cannot override the

implicit priority in favor of parents nodes. Indeed, in case one would add a i−, or a

ci− arc yielding a preference in favor of a son with respect to a parent (at least in some

context), one would face an inconsistency between a worsening I-flip and a worsening

CP-flip that act in opposite directions, thus we would have inconsistent TCP-nets.

The main issue for TCP-nets is the challenge of performing queries with this repre-

sentation. Some first proposals are presented in [9]. For consistent TCP-nets, the opti-

mization procedure works like CP-nets. Indeed, the relative importance relations do not

play a role in this case. The dominance problem can be also be treated as a search for

an improving flipping sequence, where the notion of flipping sequence is extended. In

fact, a flip corresponds either to a CP-flip like CP-nets or to an I-flip (“importance flip”).

Let ω and ω′ be two configurations, such that ω differs from ω′ in the value of exactly

two variables Aj and Ak, and such that ω[Aj ] ≻ ω′[Aj ] and ω[Ak] ≺ ω′[Ak] (given

the same values of Pa(Aj) and Pa(Ak) in ω and ω′). Then, a worsening I-flip from

ω to ω′ takes place when there is a priority of Aj over Ak when conditioned (or not)

on a subset of variables Z such that Z takes the same values in ω and ω′. However, no

general algorithm is known for dominance query since results in the context of CP-nets

do not seem to be immediately adaptable to TCP-nets.

Example 2. Let us consider the TCP-net in Figure 2(a). An unconditioned importance

a ⊲ b is added. Indeed, a new arc i-arc〈
−−→
A,B〉 is added with respect to the CP-net in

Figure 1(a). The ordering given by the worsening flips graph in Figure 2(b) is refined,

compared to the CP-net. Indeed, a¬b¬c ≻TCP−net ¬ab¬c and a¬bc ≻TCP−net ¬abc,
while these configurations comparable by I-flips, are not comparable in the CP-net, see

Figure 1(b). In place of the previous unconditioned importance statement, one may

exhibit an example of ci-arc (A,B) by stating that A is more important than B if C =
c, and B is more important than A if C = ¬c. Then, we would have a¬b¬c ≺TCP−net

¬ab¬c and a¬bc ≻TCP−net ¬abc.

As CP-nets, TCP-nets generally yield partial orderings. Precisely, from the same

preference statements, the orderings induced by TCP-nets are refinements of the order-

ing induced by CP-nets.
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Example 3. Let us consider the following preferences over variables A and B with

D(A) = {a,¬a} and D(B) = {b,¬b}: (i) In all cases a is preferred to ¬a; (ii) b is

preferred to ¬b. The CP-net view yields the order: ab ≻CP a¬b±CP ¬ab ≻CP ¬a¬b.
No CP-net yields the refined order ab ≻a¬b ≻¬ab ≻¬a¬b, while it can be represented

with a TCP-net, with the additional information “A is more important than B”.

3 Graphical preferential quantitative models

It is often convenient to have preferences expressed in numerical terms, since it enables

an easy comparison of possible choices. It is therefore interesting to consider quan-

titative graphical models for preferences. These latter are generally based on utility

functions corresponding to a mapping from the Cartesian product of variables domains

to numerical values, namely u : Ω 7→ R . These utilities corresponds to a total order-

ing s.t., for two configurations ω and ω′, ω ≻ ω′ (respectively ω ∼ ω′) if and only

if u(ω) > u(ω′) (respectively u(ω) = u(ω′)). In this section, we review the most

important quantitative graphical models based on these utilities.

3.1 Generalized Additive Independence networks (GAI-nets)

GAI-networks [19] are one of the first graphical quantitative preference models. They

rely on generalized additive independence decomposition (GAI decomposition, for short)

[16]. This independence allows to represent the preferences by a utility separable into a

sum of local utility functions. Each local utility pertains to a subset of variables and rep-

resents a total ordering between their possibles instantiations. Moreover, there may be

some interactions between these local utilities since the subsets of variables pertaining

to them can be non disjoint. Thus, these GAI-decompositions can express some general

interactions between attributes while preserving some decomposability of the model.

Definition 4 (GAI decomposition). Let C1, . . . , Ck be subsets of V s.t. V =
⋃k

j=1
Cj .

A utility function u(·) representing � over Ω is GAI-decomposable w.r.t. C1, . . . , Ck iff

∀ j ∈ [1, k], there exists a function uj : D(Cj) 7→ R s.t., ∀ ω ∈ Ω :

u(ω) =
k∑

j=1

uj(ω[Cj ]) (2)

These GAI decompositions can be represented by graphical structures called GAI net-

works. These latter are undirected graphs where each clique consists of a subset of vari-

ables. Between two cliques having some variables in common there exists a path linking

them. Each edge in the network is labeled by the intersection between the nodes.

Definition 5 (GAI-nets). A GAI network is an undirected graph G = (C, E) where C
denotes the set of cliques and E denotes the set of edges. G has two components:

– Graphical component: Each clique Cj ∈ C, is a set of variables such that Cj ⊆ V

and
⋃k

i=1
Ci = V ; For each edge (Ci, Cj) ∈ E , Ci∩Cj 6= ∅. Each edge is labeled

by Ci ∩ Cj;
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– Numerical component: To each clique Cj we associate a local utility function uj

that defines a complete preorder between the configurations in D(Cj).

The graphical structure of GAI-nets is similar to the notion of junction tree used for

Bayesian networks [20, 23]. Indeed, even for a GAI-net with a more general graph

structure, we can always construct a tree-structured network based on the triangulation

of the Markov network corresponding to it [18] (This transformation is NP-complete

[1]). Optimization queries look for the configurations having the maximal global utility

value. A standard algorithm for finding the optimal configurations has been proposed

for tree structured GAI networks. However, as mentioned above, this is not restrictive.

Optimization for GAI-nets corresponds to an adaptation of the belief propagation al-

gorithm used in Bayesian networks and its complexity is exponential to the number of

variables of the biggest clique. To compare two configurations ω and ω′ by a GAI-net,

we compute their corresponding utilities and compare them. Thus, the dominance test

for GAI is linear in the number of the cliques which is considered as an advantage

compared to the other models.

AB ADE AC A A 

u3(.) 

ac 

a ¬c 

¬ac 

¬a ¬c 

1.5 

1 

1.2 

0.2 

u1(.) 

ab 

a ¬b 

¬ab 

¬a ¬b 

0.7 

1.2 

1.8 

0.5 

u2(.) u2(.) 

ade 

ad ¬e 

a¬de 

a¬d¬e 

0 

1 

0.5 

0 

¬ade 

¬ad¬e 

¬a¬de 

¬a¬d¬e 

2 

1.2 

1.8 

0.4 

Fig. 3: An example of GAI network

Example 4. Let ω1 = abcde and ω2 = a¬bc¬d¬e be two configurations. From the

GAI-network G of Figure 3, we can compute the utilities of the configurations: ω1 is

equal to uG(ω1) = u1(ab) + u3(ac) + u2(ade)= 0.7 + 1.5 + 0 = 2.2, ω2 is equal to

uG(ω2) = u1(a¬b) + u3(ac) + u2(a¬d¬e)= 1.2 + 1.5 + 0 = 2.7. Thus uG(ω2) >
uG(ω1), and ω2 ≻GAI ω1.

GAI-nets rely on a weak form of symmetric independence which make the model

flexible enough to be applied to many situations. GAI-nets are not limited to the expres-

sion of Ceteris Paribus preferences as CP-nets, TCP-nets, or their numerical counter-

part, UCP-nets. Still there are cases of numerical preferences that are not representable

by a GAI-net [15]. With regard to elicitation, there is no method to construct the GAI

decompositions. In practice it is always assumed that an expert provided the GAI de-

composition and only the utilities are elicited. One may take advantage of the GAI

structure for designing an elicitation method based on “local” utility queries rather than

global queries over full configurations [12].

3.2 Utility CP-nets (UCP-nets)

Utility CP-nets (UCP-nets), introduced in [5], are an extension of CP-nets that replaces

the ordinal preference relations of CP-nets by utility factors. In fact, UCP-nets combine

the aspects of two preference models, namely, CP-nets and GAI-nets. Like GAI-nets,

utility is obtained from the sum of functions associated to groups of variables, defined
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here by a variable and its parents. Similarly to CP-nets, UCP-nets are directed and arcs

reflect the Ceteris Paribus independence.

Definition 6 (UCP-nets). A UCP-net is a directed graph G = (V, E) where V denotes

the set of nodes and E denotes the set of edges. It has two components:

– Graphical component: Each variable Ai ∈ V is represented by a node and directed

edges represent Ceteris Paribus dependencies;

– Numerical component: a set of factors fi(ai, ui), ∀ai ∈ D(Ai) and ∀ui, such that

the global utility of a configuration is defined by:

uG(a1, ..., aN ) =
N∑

i=1

fi(ai, ui) (3)

Example 5. The UCP-net G presented in Figure 4 has 3 variables V = {A,B,C}. For

instance, we can check that the configuration a¬b¬c is preferred to abc since uG(abc) =
5 + 2 + 2 = 9 < uG(a¬b¬c) = 5 + 10 + 6 = 21.

u(a) u(¬a) 

5 8 

u(.|.) c ¬c 

ab 

a ¬b 

¬ab 

¬a ¬b 

2 

0 

2 

9 

10 

6 

7 

2 

B A 

C 

u(b) u(¬b) 

2 10 

Fig. 4: An example of a UCP-net

A 

C B 

u(a) u(¬a) 

4 8 

u(.|.) a ¬a 

b 8 10 

¬b 11 2 

u(.|.) a ¬a 

c 3 7 

¬c 9 8 

D 

u(.|.) c ¬c 

d 2 3 

¬d 4 2 

Fig. 5: An example of a marginal utility net

The UCP-net formalism has a number of computational advantages. In particular, dom-

inance queries can be answered trivially since they amounts to computing the global

utilities and compare them, as in the above example. This can be done in linear time in

the number of variables (this contrasts with CP-nets where dominance testing is com-

putationally difficult). Optimization queries can also be answered directly, taking linear

time in the network size, where each node is instantiated to its maximal value given the

instantiation of it parents. This procedure, inherited from CP-nets, exploits the consider-

able power of Ceteris Paribus semantics. Thus, CP-nets are endowed with quantitative

utility information, and then the expressive power is enhanced and dominance queries

become computationally efficient. Moreover, when introducing directionality and the

Ceteris Paribus semantics to GAI relations, we allow utility functions to be expressed

more naturally and optimization queries to be answered more easily.

This model is intuitive to assess since, as CP-nets, it captures preference statements

that are naturally expressed by the user. However, in order to remain consistent with

CP-nets, utilities should be subject to constraints expressing the priority of father nodes

over child nodes. More precisely, let A be a variable with parents Pa(A) and children

Y(A) = {Y1, . . . , Yn} and let Zi be the subset of parents of Yi excluding A and any of

its parents in Pa(A). Let Z =
⋃

Zi and Pi be the subset of variables in Pa(A) that are

parents of Yi and where pi is an instantiation of Pi. The fact that the node corresponding

to variable A dominates its children given any instantiation u of Pa(A) is expressed by
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the requirement ∀ a1, a2 ∈ D(A) such that fA(a1, u) ≥ fA(a2, u), we should have

∀ z an instantiation of Z and ∀yi an instantiation of Y(A), fA(a1, u) − fA(a2, u) ≥∑
i fYi

(yi, (a2, pi, zi)) − fYi
(yi, (a1, pi, zi)). This expresses that for any variable A,

given an instantiation of its parents, the utility gain in choosing in this context a1 rather

than a2, should be more important than the maximum value of the sum of the possible

utility loss for its children over all possible instantiations of the other related variables.

This means that not every GAI decomposition can be represented by a UCP-net.

Thus, beside the difficulty encountered for learning utilities, added constraints should

be taken into account in order to remain consistent with the Ceteris Paribus principle.

3.3 Marginal utility networks

With the aim to define preference networks that resemble Bayesian networks, Brafman

and Engel [10, 11] introduce a notion of conditional independence (denoted CDIr)

using an arbitrarily fixed reference instantiation ωr. Indeed utility functions differ from

probability distributions in the fact there is no obvious analogue of marginalization for

utility; to cope with this difficulty, the authors propose to use reference instantiation

for fixing the values of the independent variables. Then, the utility satisfies additive

analogues of the Bayes and chain rules of Bayesian networks. Variables Ai and Aj are

CDIr if any difference in values among instantiations to Ai does not depend on the

current instantiation of Aj , for any possible instantiation to the rest of the variables.

Definition 7 (Reference configuration and the reference utility). Let

ωr =ar
1
, . . . , arN ∈Ω be a predetermined configuration and, X and Y be subsets of

V . The reference utility function ur is defined by ur(x) = u(xx̄r), s.t. X̄ = V \X is

fixed on the values of the reference configuration ωr. Its conditional form is defined by

ur(X|Y ) = ur(XY )− ur(Y ).

Definition 8 (Difference utility independence). Let Z and W be two subsets of V ,

s.t. Z ∩ W = ∅. Z and W are CDIr given X ⊆ V/(Z ∪ W ), denoted by CDIr(

Z, W |X), if for all assignments x, z′, z′′, w′, w′′ we have: ur(z
′w′) − ur(z

′′w′) =
ur(z

′w′′)− ur(z
′′w′′).

This type of independence (CDIr ) satisfies the foundations of graphoid theory [11],

that is, each variable is independent from its non descendants in the context of its parents

as for Bayesian nets. This leads to a preference representation by directed graphs.

Definition 9 (Marginal utility network). A marginal utility network is a directed graph

G = (V, E) where V is the set of nodes and E is the set of edges. G has two components:

– Graphical component: A node for each variable and edges correspond to condi-

tional (in)dependencies between variables such that, given a fixed configuration

ωr ∈ Ω, for any Ai ∈ V , CDIr(Ai, Co(Ai) |Pa(Ai)).
– Numerical component: Each node Ai is associated to a conditional utility table

(CUT) corresponding to the function ur(ai|uj) such that uj is an instantiation of

the parents Pa(Ai) of Ai. containing ∀ai ∈ D(Ai), ∀ui, ur(ai | uj).
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The utility of a configuration is then computed as uG(a1, ..., aN ) =
∑N

i=1
ur(ai|ui)

where ui is an instantiation of P (Ai). This is now exemplified.

Example 6. Let us consider preferences over four binary variables A, B, C and D
represented by the marginal utility network of Figure 5. Assume that ωr = abc¬d is the

reference configuration. Then, ur(abc)− ur(a¬bc) = ur(ab¬c)− ur(a¬b¬c). In fact,

(4 + 8 + 3 + 4) − (4 + 11 + 3 + 4) = (4 + 8 + 9 + 4) − (4 + 11 + 9 + 4). Thus,

CDIr(B,D|A). The utility of a configuration is the summation of all the local utilities.

For instance, uG(abcd) = ur(a) + ur(b|a) + ur(c|a) + ur(d|c) = 4 + 8+ 3+ 2 = 17
and uG(a¬b¬c¬d) = 4 + 11 + 9 + 2 = 26. Therefore, we have abcd ≺MU a¬b¬c¬d
since uG(abcd) < uG(a¬b¬c¬d).

Thanks to the strong similarity between Bayesian nets and marginal utility nets, adap-

tations of algorithms are possible. The authors in [11] have briefly mentioned two of

them. First, finding the Most Probable Explanation which is used as an optimization

query for finding the optimal configuration. Second, Constraint Belief Propagation for

finding the best configuration when particular combinations between the variables are

impossible. No method to answer dominance queries has been proposed, however the

algorithm used in GAI nets seems to be applicable in this case. Elicitation may be in-

spired from Bayesian nets [10].

Following also the idea of keeping close to Bayesian nets, it has been recently pro-

posed to use Ordinal Conditional Function networks (which are like Bayesian nets with

infinitesimal probabilities: the value n of the OCF is like the probability 10−n) for

describing preferences [14]. OCF-nets satisfy the local directed Markov independence

property. By enforcing the priority of father nodes over child nodes by suitable con-

straints, it is possible to build an OCF-net that induces a total order compatible with

the partial order of a given CP-net [14]. Besides, note that UCP-nets can be viewed as

particular cases of marginal utility nets where constraints should be added in order to

make them consistent with Ceteris Paribus.

4 Conditional Preference Possibilistic networks

Marginal networks are inspired from Bayesian networks. Similarly, one may use possi-

bilistic networks [2], a possibility theory counterpart to Bayes nets, for modeling pref-

erences rather than uncertainty (understanding the possibility degrees as satisfaction

levels). Possibility theory relies on the idea of a possibility distribution π, which is a

mapping from a universe of discourse Ω to the unit interval [0, 1], or to any bounded

totally ordered scale. Two forms of conditioning, respectively based on minimum and

product, make sense in possibility theory, leading to two types of chain rules. We may

then compute satisfaction values for configurations, taking advantage of Markov prop-

erty, and obtain a total order between configurations in both cases. In the absence of

available quantitative values, one may think of keeping the possibility degrees unspec-

ified (which also preserves the ability of representing partial orders). This led us to

propose a new graphical preference model based on possibilistic networks [3, 4], called

π-Pref nets. In a π-Pref net, for each variable Ai ∈ V , for each instantiation ui of

Pa(Ai), the preference order between the values of variable Ai is encoded by a local
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conditional possibility distribution expressed by symbolic weights. A symbolic weight

means a symbol representing a real number whose value is unspecified.

Definition 10 (π-Pref nets). A possibilistic preference network (π-Pref net) over a

set of variables V = {A1, . . . , AN} is a possibilistic network, i.e., a directed graph

G = (V, E), where each node Ai is associated with symbolic possibility distributions

conditioned ∀ui. It encodes the ordering between values ai and a′i in D(Ai) in each

context ui:

– If ai ≺ a′i then π(ai|ui) = α, π(a′i|ui) = β where α and β are non-instantiated

weights on (0, 1] called symbolic weights, and α < β ≤ 1;

– If ai ∼ a′i then π(ai|ui) = π(a′i|ui) = α where α ≤ 1;

– ∀ui, ∃ ai ∈ D(Ai) such that π(ai|ui) = 1.

In addition to the preferences encoded by a π-Pref net, additional a set C of equality

or inequality constraints between symbolic weights can be taken into account. Such

constraints may represent, for instance, the relative strength of preferences associated to

different instantiations of parent variables of the same variable. The satisfaction value of

each configuration is computed as the product of symbolic weights using the chain rule

associated with product-based conditioning, namely π(a1, ..., aN ) =
∏N

i=1
π(ai|ui)

where ui is an instantiation of Pa(Ai). In spite of the symbolic nature of expressions

just obtained, one may still compare some configurations thanks to properties of product

and constraints (e.g., α < 1, α× β < α, or, if β < γ ∈ C, α× β < α× γ). Obviously,

some expressions may remain incomparable, then only a partial order is obtained.

Example 7. Let Figure 6 represent a π-Pref net over 3 variables V = {A,B,C} and

C = {δ3 < δ1} represent the set of constraints. Consider two configurations ab¬c and

¬abc. Using the chain rule, we obtain their corresponding symbolic joint possibility

expressions: π(ab¬c) = 1 × 1 × δ1, π(¬abc) = α1 × 1 × δ3. Since δ3 < δ1, we can

deduce that ab¬c ≻πPref ¬abc. However, ab¬c ± ¬ab¬c since no constraint exists

between δ1 and α. These two configurations remain non compared.

π(a) π(¬a)

1 α

π(b) π(¬b)

1 β

BA

C

π(.|.) ab a¬b ¬ab ¬a¬b

c 1 δ2 δ3 1

¬c δ1 1 1 1

Fig. 6: An example of a π-Pref net

Each configuration ω = a1 . . . aN can be associated with a vector
→
ω= (α1, . . . , αN ),

where αi = π(ai|ui) and ui = ω[Pa(Ai)], e.g.,
→

¬abc= (α, 1, δ3). These vectors can

be compared using symmetric Pareto and results are exactly as the product [4].

In π-Pref nets, it is clear that the best configurations are those having a joint possibil-

ity degree equal to 1, due to the normalization of conditional possibility distributions.

We can always find an optimal configuration, starting from the root nodes where we

choose each time the most or one of the most preferred value(s). At the end of the pro-

cedure, we get one or several configurations having a possibility equal to 1. This proce-

dure is linear in the size of the network (using a forward sweep algorithm). Dominance
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queries are answered by comparing the symbolic vectors. Indeed, each configuration is

associated to a vector of symbolic weights where each component corresponds to the

satisfaction degree of a node (as illustrated in the above example). Symbolic vectors

are compared by symmetric Pareto ordering [4], which amounts to reordering them for

applying the constraints between weights as much as possible. The order obtained this

way is the same as the one yielded by the comparison of the product expressions. The

complexity of dominance queries is O(N !).
π-Pref nets may be considered as being halfway between qualitative and quantitative

models. This is due to the use symbolic weights. Indeed, π-Pref nets can be used in two

ways: symbolically, or in an instantiated manner. The use of product, even in the sym-

bolic case, adds a quantitative flavor. Moreover, symbolic possibilistic networks, using

a logarithmic transformation, may be equivalently represented as symbolic OCF-nets

[4]. Both π-Pref nets and OCF-nets share the same type of (Markovian) independence,

and lead exactly to the same orderings.

Lastly, a π-Pref net can be equivalently represented by a possibilistic logic base [4].

In [13], attempts at representing a CP-net ordering using a possibilistic logic framework

are reported. But, it may not be possible to build an exact logical representation due to

the particular behavior of CP-nets (see Section 2.1). [13] suggests that symmetric Pareto

and leximin orderings respectively lower and upper bound the CP-net ordering. It may

have counterparts in graphical models based on the Markov property as OCF-nets.

5 Discussion and concluding remarks

Figure 7 presents a classification of the preferential graphical models surveyed. Roughly

speaking, there are three classes: qualitative, quantitative and models that are halfway.

CP-net 

TCP-net 

mCP-net 
Marginal 

utility net 

PCP-net 

UCP-net 

GAI-net 

πPref-

net 

Qualitative graphical models Quantitative graphical models 

Mar

CUI-net 

OCF-net 

Fig. 7: Classification of preferential graphical models (Continuous arrows point to ex-

tensions of CP-nets and dashed lines are discussed later in the section)

A summary of the main differences and similarities between the models is given be-

low. These models can be further compared in terms of the underlying independence

relation (and expressiveness), and the ease of elicitation. Regarding the first issue, we

distinguish three situations: (i) Ceteris Paribus independence shared by CP-nets, and

its extensions. Models based on it are unable to express any possible ordering between

configurations. UCP-nets can represent some total orderings, at the expense of con-

straints added on utilities; (ii) Generalized additive independence used in GAI-nets, is

a weaker form of independence leading to an improved expressive power; (iii) Markov

independence, used by π-Pref nets, OCF-nets and marginal utility nets. In contrast with
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❳
❳
❳

❳
❳❳

Properties

Model
CP-nets TCP-nets GAI-nets UCP-nets Marginal util-

ity nets

π Pref-nets

Graphical component

Node: Variable Variable Cliques Variable Variable Variable

Edges: Directed Directed Undirected Directed Directed Directed

Preference table Conditional

pref. relation on

variables

Cond. pref. re-

lation + Impor-

tance relation

Utility func-

tions

Conditional

utility distribu-

tion

Conditional

utility distribu-

tion

Conditional

symbolic

possibility

distributions

Independence relation Ceteris Paribus Ceteris Paribus Generalized

Additive

Ceteris Paribus

+ GAI

Markovian Markovian

Ordering Partial Partial Total Total Total Partial/ Total

Queries Complexity

Optimization Linear Linear Exponential Linear Unknown Linear

Dominance NP-complete to

PSPACE

Unknown Linear Linear Unknown Linear to O(N!)

GAI, this kind of independence does not allow mutual dependencies between variables

due to the acyclicity constraint. Ceteris Paribus and Markov independence lead to dif-

ferent completion principles. With Ceteris Paribus, pairs of compared partial configu-

rations are completed with the same instantiation of the rest of the variables, while with

Markov-based nets, at first one takes the best instantiation for all dependent variables,

and, secondly, completes the other variables in the same manner in all possible ways.

Regarding elicitation, although quantitative models are convenient since providing

total orderings, they are not easy to assess (any difference in values may lead to different

orderings). In contrast, eliciting qualitative models is easier since it suffices to provide

contextual preference ordering. π-Pref nets enable a progressive elicitation since we

may add constraints between symbolic weights, or completely instantiate them.

Thanks to some resemblances between those models many transformations can be

considered and are depicted by dashed lines in Figure 7. UCP-nets are a restriction of

GAI-nets and a generalization of CP-nets. Indeed, a UCP-net structure can be trans-

formed into a junction tree such that for each clique we sum up the local utilities of

the variables belonging to it, just leading to a GAI net. However, due to the acyclic

restriction of UCP-nets and the necessary, commitment with Ceteris Paribus, not any

GAl-net can be represented by a UCP-net. Besides, when handled symbolically, π-Pref

nets and marginal utility nets lead to the same orderings. Indeed comparing configu-

rations is nothing but comparing vectors of weights. Therefore, product and addition

make no difference on symbolic weights. Transformation from π-Pref nets to GAI-nets

might also be considered since, as for Bayesian nets, possibilistic nets can be trans-

lated into junction trees. However, an important difference between these two settings

lie in the meaning of values. Both utilities and possibility degrees express levels of sat-

isfaction, but the latter are bounded. In GAI-nets, what really matters is the difference

between utilities. Thus, representing the same information in π-Pref nets is not possible;

one may only try to induce the same qualitative order between the configurations. The

opposite transformation is not obvious. In fact, it requires a two level transformation.

First, translating utilities to possibility degrees. Second, moving from a junction tree to

a possibilistic network. This procedure was never studied in the literature.

As can be seen, the advantages of the different models are a matter of trade-offs.

One may prefer one or another depending on the level of information available, the

expressiveness needed for the situation at hand, and the time available for eliciting

preferences. From a computational viewpoint, UCP-nets, instantiated π-Pref nets and

OCF-nets are the less demanding. On the other hand, elicitation and construction might
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be onerous for UCP-nets, GAI-nets and TCP-nets, while CP-nets and π-pref nets are

easy to elicit. Getting a total order may also be considered as important. Thus, one may

prefer models such as GAI-nets, OCF-nets and instantiated π-Pref nets in that respect.
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