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Abstract

Estimating the shape and appearance of a three dimensional object from flat images is

a challenging research topic that is still actively pursued. Among the various techniques

available, Photometric Stereo (PS) is known to provide very accurate local shape recovery,

in terms of surface normals. In this work, we propose to minimise non-convex variational

models for PS that recover the depth information directly. We suggest an approach based

on a novel optimisation scheme for non-convex cost functions. Experiments show that

our strategy achieves more accurate results than competing approaches.

1 Introduction

Photometric 3D-reconstruction techniques are often formulated as inverse problems: given an

image I, one seeks a depth map z that best explains the observed grey levels of the data. To

this end we use the image irradiance equation (IIE) I(u,v) =R(z(u,v);s,ρ) where (u,v) ∈ Ω

represents pixel coordinates over the reconstruction domain Ω ⊆R
2. This model describes the

interactions between the surface z and the lighting s; ρ representing the reflectance parameters

(e.g. the albedo), which can be either known or considered as hidden unknown parameters.

For the sake of simplicity, we will consider only Lambertian reflectance without shadows,

and we assume that the lighting of a photographed scene is directional and known.

The Shape-from-Shading (SfS) problem consists in solving the IIE over Ω. Unfortunately,

this is an ill-posed problem, even with simple reflectance models such as Lambertian re-

flectance with known albedo. To eliminate the inherent ambiguities of classic SfS, several

images Ii, i ∈ {1, . . . ,m}, can be considered under different lightings si, i ∈ {1, . . . ,m}. PS

consists in finding a depth map z that best explains all IIEs:

Ii(u,v) =R(z(u,v);si,ρ), i ∈ {1, . . . ,m} (1)

In this work, we aim at obtaining the solution z of the PS problem, see Figure 1 for an account.

We will show that estimating the optimal solution necessarily involves non-trivial optimisation

c© 2016. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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Example input image

for PS

ER = 13.78

Classic PS with integration

ER = 3.50

Our method

Figure 1: From a set of m ≥ 3 images (cf. left), classic PS provides an albedo and a normal

map which best explain the input images in the sense of a local, pointwise estimation. In

a second step, the smooth depth map is estimated by integration. Yet, the final surface is

not the best explanation of the images, as indicated by the reprojection error ER (c.f. energy

in (5)) (middle). We display this using white for 2.5 · 10−3 and black for zero. Instead of

this local procedure, we propose to minimise the reprojection criterion in terms of the depth

and the albedo, through global non-convex optimisation. Not only the images are better

explained (right), but we also demonstrate that the 3D-reconstruction results are improved (cf.

Section 4).

methods, even with the simplest models for the reflectance function R (Lambertian, without

shadows) and the deviations from this model (additive, zero-mean, Gaussian noise). We

propose a numerical framework to approximate an optimal solution, which can be used

to refine classic PS results. Our approach relies on matrix differential theory for analytic

derivations and on recent developments in non-convex optimisation.

2 Construction of our method and related work

Following Woodham [27] it is known that, provided m ≥ 3 input images and non-coplanar

calibrated lightings are given, all surface normals can be estimated without ambiguity. In

addition, the reflectance parameters (e.g. the albedo) can also be estimated. This is usually

achieved by minimising the difference between the given data (the input images) and the

reprojection according to the estimated normal and albedo:

min
n,ρ

{

E local
R

(n,ρ; I) :=
1

m
∑∑
(u,v)∈Ω

m

∑
i=1

Φ
(
Ii(u,v)−R

(
n(u,v);si,ρ(u,v)

))

}

(2)

with an estimator Φ. As a result, one obtains an approximation of the normal n(u,v) and the

albedo ρ(u,v) at each position (u,v). These estimates are the optimal local explanations of

the image, in the sense of the estimator Φ. Yet, the estimated normal field is in general not

integrable. Thus, the depth map that can be obtained by integration is not an optimal image

explanation, but only a smooth explanation of the noisy normal field, cf. Figure 1.

Instead of this pointwise joint estimation of the normal and the albedo, it is possible to

employ photometric ratios: dividing the i-th by the j-th IIE in (1), one obtains a homogeneous

linear system in each normal vector that does not depend on the albedo. The least squares

estimate of Wu et al. [29] yields the Maximum Likelihood (ML) estimate if the ratios are

corrupted by additive, zero-mean, Gaussian noise. However, any noise hypothesis should be

made on the images, and not on their ratios. Since the ratio of two Gaussian random variables
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follows a Cauchy distribution [7], approaches based on ratios only provide the best linear

unbiased estimate (BLUE), which is not the optimal (efficient) estimator. Besides, there is no

reason why the estimated normal field should be integrable.

As indicated, the normal field computed by this type of local PS approaches does not need

to be integrable. Hence, the integration task is usually formulated as another optimisation

problem, aiming at minimising the discrepancy between the estimated normal field and that

of the recovered surface. Assuming orthographic projection, the relation between the normal

n(u,v) and the depth z(u,v) is given by:

n(u,v) :=
1

√

‖∇z(u,v)‖2 +1
[−∇z(u,v), 1]⊤ where ∇z = (zu,zv)

⊤ (3)

Then the best smooth surface explaining the computed normals can be estimated either by

solving (3) by means of an eikonal-type equation [1], or by solving the variational problem:

min
z

{

Einteg (z;n) := ∑∑
(u,v)∈Ω

Ψ

(∥
∥
∥
∥

∇z(u,v)−
[
−n1(u,v)/n3(u,v)
−n2(u,v)/n3(u,v)

]∥
∥
∥
∥

2
)}

(4)

where Ψ is again some estimator function (see [4, 6] for some discussion).

One may realise that, at this stage of the process chain of PS with integration, the images

are not considered anymore. Thus, the final surface is in general not optimal in the sense of

the reprojection criterion. Regularising the normal field before integration [23, 30] may also

ensure integrability, but since such methods only use the normal field, and not the images,

they can obviously not guarantee optimality with respect to the reprojection either.

Global PS approaches solve the latter problem as they represent a way to ensure that

the recovered surface is optimal with respect to the reprojection criterion. Moreover, it is

possible to solve the system (1) directly in terms of the depth [3]: this ensures both that the

recovered surface is regular, and that it is optimal with respect to the reprojection criterion,

calculated from the depth map z and not from a non-integrable estimate of its gradient. Some

PDE-based PS approaches have been recently proposed, and were shown to ease the resolution

in particularly difficult situations such as pointwise lightings, specular reflectance [26] and

multi-view PS [5]. To ensure robustness, such methods can be coupled with variational

methods [13, 22, 25]. In other words, the criterion which should be considered for ensuring

optimality of a surface reconstruction by PS is not the local criterion (2), but rather:

min
z,ρ

{

ER (z,ρ; I) :=
1

m
∑∑
(u,v)∈Ω

m

∑
i=1

Φ
(
Ii(u,v)−R

(
z(u,v);si,ρ(u,v)

))

}

(5)

A theoretical analysis of the choice Φ(x) = |x|, in the continuous setting, can be found in [2].

Numerical resolution methods based on proximal splittings were more recently introduced

in [21]. Yet, this last work relies on an “optimise then discretise” approach which would

involve non-trivial oblique boundary conditions (BC), replaced there for simplicity reasons

by Dirichlet BC. Obviously, this represents a strong limitation which prevents working with

many real-world data where this BC is rarely available.

The normal vectors ni defined as in (3) and involved in the reflectance function R have

unit length. As a consequence, the optimisation problem (5) is non-linear and non-convex.

The ratio procedure described earlier can be used: it simultaneously eliminates the albedo

and the non-linear terms, cf. [5, 22, 25, 26] and obviously removes the bias due to non-

integrability. But let us recall that it is only the BLUE estimate, and also not the optimal one.
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To guarantee optimality, it is necessary to minimise the non-linear, non-convex energy, i.e.

without employing ratios.

Solving (5) is a challenging problem. Efficient strategies to find the sought minimum

are scarce. Recently Ochs et al. [17] proposed a novel method to handle such non-convex

optimisation problems, called iPiano. A major asset of the approach is the extensive con-

vergence theory provided in [16, 17]. Because of this solid mathematical foundation we

explore the iPiano approach in this work. The scheme makes explicit use of the derivative of

the cost function, which in our case involves derivatives of matrix-valued functions, and we

will employ as a technical novelty, matrix differential theory [11, 12] to derive the resulting

scheme.

3 Non-convex discrete variational model for PS

In this section we describe details of our discrete framework for estimating both the depth

and the (Lambertian) reflectance parameters over the domain Ω.

3.1 Assumptions on the PS model

We assume m ≥ 3 grey level images Ii, i ∈ {1, . . . ,m}, are available, along with the m

lighting vectors si ∈R
3, assumed to be known and non-coplanar. We also assume Lambertian

reflectance and neglect shadows, which leads to the following well-known model:

R
(
n(u,v);si,ρ

)
:= ρ (u,v)

〈
si ,n(u,v)

〉
, (u,v) ∈ Ω, i = 1, . . . ,m (6)

where ρ(u,v) is the albedo at the surface point conjugated to pixel (u,v), considered as a

hidden unknown parameter. Let us note that real-world PS images can be processed by

low-rank factorisation techniques in order to match the linear reflectance model (6), cf. [28].

We further assume orthographic projection, hence the normal n(u,v) is given by (3). Then

the reflectance model becomes a function of the depth map z:

R
(
z(u,v);si,ρ

)
:=

ρ (u,v)
√

‖∇z(u,v)‖2 +1

〈

si , [−∇z(u,v),1]⊤
〉

, (u,v) ∈ Ω, ∀i (7)

Eventually, we assume that the images Ii differ from this reflectance model only up to an

additive, zero-mean, Gaussian noise. The ML estimator is thus the least-squares estimator

Φ(x) = 1
2
x2, and the cost function in the reprojection criterion (5) becomes:

ER (z,ρ; I) :=
1

2m
∑∑
(u,v)∈Ω

m

∑
i=1

(

Ii(u,v)− ρ(u,v)√
‖∇z(u,v)‖2+1

〈

si , [−∇z(u,v),1]⊤
〉)2

(8)

3.2 Tikhonov regularisation of the model

Our energy in (8) only depends on the gradient ∇z and not on the depth z itself. As a

consequence, solutions can only be determined up to an arbitrary constant. As a remedy we

follow [22] and introduce a reference depth z0, thus regularising our initial model with a

zero-th order Tikhonov regulariser controlled by a parameter λ > 0:

min
z,ρ

{

ER (z,ρ; I)+
λ

2
∑∑
(u,v)∈Ω

(z(u,v)− z0(u,v))
2

}

(9)
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In practice, λ can be set to any small value, so that the minimiser of (9) lies as close as

possible to a minimiser of (8). In all our experiments we set λ := 10−6 and z0 as the classic

PS solution followed by least-squares integration.

3.3 Discretisation

As already mentioned, “optimise then discretise” approaches such as [21] for solving (9)

involve non-trivial BC. Hence, we prefer a “discretise then optimise”, finite dimensional

formulation of the variational PS problem (9). In our discrete setting we are given m images

Ii, i ∈ {1, . . . ,m}, with n pixels labelled with a single index j running from 1 to n. We rewrite

(9) in the following way:

argmin
z,ρ∈Rn

{
1

2m
∑

j

∥
∥
∥
∥

I j − ρ j
√

‖∇z j‖2
+1

S

[
−∇z j

1

]∥
∥
∥
∥

2

+
λ

2

∥
∥z j − z0 j

∥
∥2

}

(10)

where I j := [I1
j , . . . , I

m
j ]

⊤ ∈ R
m is the vector of intensities at pixel j, ∇z j represents again a

finite difference approximation of the gradient of z at pixel j, and S = [s1, . . . ,sm]⊤ ∈ R
m,3 is

a matrix containing the stacked m lighting vectors si.

We remark that the matrix S can be decomposed into two sub-matrices Sℓ and Sr of

dimensions m×2 and m×1 such that S :=
[
Sℓ Sr

]
, and so that

S

[
−∇z j

1

]

=−Sℓ∇z j +Sr (11)

Let us also introduce a 2n× n block matrix M, such that each block M j is a 2× n matrix

containing the finite difference coefficients used for approximating the gradient:

M :=
[
M1 . . . Mn

]⊤ ∈ R
2n,n, M jz ≈ ∇z j ∈ R

2 (12)

We further introduce the following aliases:

A j(z,ρ) :=− ρ j
√

1+
∥
∥M jz

∥
∥2

Sℓ ∈ R
m,2, b j(z,ρ) := I j −

ρ j
√

1+
∥
∥M jz

∥
∥2

Sr ∈ R
m (13)

and stack them, respectively, in a block-diagonal matrix and a vector:

A(z,ρ) :=






A1(z,ρ)
. . .

An(z,ρ)




 ∈ R

mn,2n, b(z,ρ) :=






b1(z,ρ)
...

bn(z,ρ)




 ∈ R

mn (14)

Using these notational conventions the task in (10) can be rewritten compactly as

argmin
z,ρ∈Rn

{
1

2m
‖A(z,ρ)Mz−b(z,ρ)‖2

2

︸ ︷︷ ︸

:= f (z,ρ)

+
λ

2
‖z− z0‖2

2

︸ ︷︷ ︸

:=g(z)

}

(15)

which is the discrete PS model we propose to tackle in this paper. Let us remark that this

model can be easily extended to include more realistic reflectance [10] and lighting [18]

models, as well as more robust estimators [9]: this only requires to change the definition of f ,

which stands for the global reprojection error ER.
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3.4 Alternating optimization strategy

In order to ensure applicability of our method to real-world data, the albedo ρ cannot be

assumed to be known. Inspired by the well-known Expectation-Maximisation algorithm, we

treat ρ as a hidden parameter, and opt for an alternating strategy which iteratively refines the

depth with fixed albedo, and the hidden parameter with fixed depth:

z(k+1) = argmin
z

{

f
(

z,ρ(k)
)

+g(z)
}

,ρ(k+1) = argmin
ρ

{

f
(

z(k+1),ρ
)

+g
(

z(k+1)
)}

(16)

starting from z(0) = z0 and taking as ρ(0) the albedo obtained by the classic PS approach [27].

Of course, the choice of a particular prior z0 has a direct influence on the convergence rate

of the algorithm. The proposed scheme globally converges towards the solution even with

a trivial prior z0 ≡ constant, but convergence is very slow in this case. Thus the proposed

method should be considered as a post-processing technique to refine classic PS approaches,

rather than as a standalone PS method.

Now, let us comment on the two optimisation problems in (16). Updating ρ amounts to a

linear least-squares problem which admits the following closed-form solution at each pixel:

ρ
(k+1)
j =

√

1+‖M jz(k+1)‖2
m

∑
i=1

Ii
js

i⊤
[

−M jz
(k+1)

1

]/
m

∑
i=1

(

si⊤
[

−M jz
(k+1)

1

])2

(17)

The computation of z(k+1) is considerably harder, and it is dealt with below.

3.5 The iPiano algorithm

We will now formulate the iPiano algorithm for our problem. Since the albedo is fixed for

the purpose of the corresponding optimisation stage, we denote f (z) = f (z,ρ(k)). The iPiano

algorithm seeks a minimiser of

min
x∈Rn

{ f (x)+g(x)} (18)

where g : Rn → R is convex and f : Rn → R is smooth. What makes iPiano appealing is the

fact that g must not necessarily be smooth and f is not required to be convex. This allows

manifold designs of novel fixed-point schemes. In its general form it evaluates

proxαg

(

z(k)−α∇ f (z(k))+β (z(k)− z(k−1))
)

(19)

where the proximal operator is given by

proxαg (z) := argmin
x

{
1

2
‖x− z‖2 +αg(x)

}

(20)

and which goes back to Moreau [15]. Before we can define the final algorithm we also need

to approximate the gradient of f .

3.6 Gradient of f

In our setting the main difficulty is that the matrix A depends on our sought unknown z. In

order to state a useful representation of this gradient we have to resort to matrix differential

calculus. We refer to [11, 12, 19, 20] for a more in-depth representation. A key notion is the

definition of the Jacobian of a matrix, which can be obtained in several ways. We follow [11].
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Definition 1 (Jacobian of a Matrix Valued Function). Let A be a differentiable m× p real

matrix function of an n×q matrix X of real variables, i.e. A = A(X). The Jacobian matrix of

A at X is the mp×nq matrix

D [A] (X) :=
dvec(A(X))

d(vecX)⊤
(21)

where vec(·) corresponds to the vectorisation operator described in [8] (Definition 4.29).

This operator stacks column-wise all the entries from its matrix argument to form a large

vector.

Here, differentiability of a matrix valued function means that the corresponding vectorised

function is differentiable in the usual sense. By this definition the computation of a matrix

Jacobian can be reduced to computing a Jacobian for a vector valued function. In extension

of this definition one can easily derive matrix-valued versions of the standard product- and

chain-rule from calculus (cf. Theorem 7 and 9 in [11]). Let us state directly our main result,

details on its proof can be found in the supplementary material.

Theorem 1. Using matrix differential theory we obtain for the gradient of f :

∇ f (z) =
1

m

(

A(z)M+
(

(Mz)⊤⊗ Inm

)

D[A](z)−D[b](z)
)⊤

(A(z)Mz−b(z)) (22)

Here, Inm represents the identity matrix in R
nm,nm and the symbol ⊗ stands for the Kronecker

matrix product [8] (Definition 4.2.1).

Equation (22) is computationally expensive to evaluate. If run times are an important

criterion, then one may use the following approximation, motivated by (22):

∇ f (z)≈ 1

m
(A(z)M)⊤ (A(z)Mz−b(z)) (23)

We conjecture that this is an efficient way to approximate ∇ f (z) for computations. In our

numerical experiments, we used (23) and could not observe any deficiencies.

Our final algorithm for the computation of the depth and the albedo is given in Algorithm 1.

For our experiments, the iPiano stopping criterion was set to a test on the relative change in

the objective function (< 10−8), and the global stopping criterion to a maximum number of

iterations. For the step sizes we employed the “lazy backtracking” algorithm as in [17].

4 Numerical Evaluation

Figure 2 presents the test data that we use in this paper. It consists of five real-world scenes

captured under 20 different known illuminants si, (i = 1, . . . , 20), provided in [24]. In our

experiments, we used m = 20 out of the original 96 RGB images, which we converted to grey

levels. Two of the sets present diffuse reflectance (Cat and Pot), while two other exhibit broad

specularities (Bear and Buddha) and one presents sparse specular spikes (Ball). Since the

ground truth normals are also provided in [24], the estimated normals can be computed from

the final depth map according to (3), and compared to the exact ground truth. For evaluation,

we indicate the Mean Angular Error (MAE) (in degrees) over the reconstruction domain

Ω. Let us consider the Cat data set in some detail, as it consists in a diffuse scene that fits
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Algorithm 1: Inertial Proximal Point Algorithm for Photometric Stereo

Choose prior z0 (classic PS), prior weight λ (10−6), β ∈ [0,1[ (0.5) and c > 0 (0.01)

Initialise z(0) (z0) and ρ(0) (classic PS), and set k = 0

repeat

Set z̃(0) = z̃(−1) = z(k) and l = 0

repeat

Lipschitz constant L estimation by lazy backtracking

Step size update: α(l) = 2
1−β
c+L

Depth update: z̃(l+1) = proxα(l)g

(

z̃(l)−α(l)∇ f
(

z̃(l)
)

+β
(

z̃(l)− z̃(l−1)
))

l = l +1

until iPiano convergence

z(k+1) = z̃(l+1)

Albedo update using Eq. (17)

k = k+1

until global convergence

Cat Pot Bear Buddha Ball

Figure 2: Test data (brightened and cropped to enhance visualisation) and 3D-reconstructions

obtained after 500 iterations k of Algorithm 1.

rather well our assumptions. We let our algorithm run for 1000 iterations k (approx. 1 hour

on a recent i7 processor, using non-optimised Matlab code), and study the evolution of two

criteria: the reprojection error, whose minimum is sought by our algorithm; and the MAE,

which indicates the overall accuracy of the 3D-reconstruction, cf. the two left images within

Figure 3. The displayed convergence graphs indicate that each iteration from Algorithm 1 not

only decreases the value of the objective function f +g (which is approximately equal to the

reprojection error ER = f ), but also the MAE. This confirms our conjecture that finding the

best possible explanation of the images yields more accurate 3D-reconstructions. In the other

two graphs in Figure 3 we study the results of our method compared to other PS strategies

based on least-squares: the classical PS framework [27] consisting in estimating in a least

squares sense the normals and the albedo, and integrating them afterwards, and the recent

differential ratios procedure from [22, 25]. The latter allows direct recovery of the depth, but

on the other hand it changes the objective function. Both other approaches rely on linear least

squares: they are thus by far faster than the proposed approach (here, a few seconds, versus a

few minutes with ours). Yet, in terms of accuracy, these methods are outperformed by our
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Figure 3: The Cat experiment (from left to right): (a) objective function f +g as a function

of the iterations count k; (b) MAE between the reconstructed surface and the ground truth;

(c) reprojection error for competing methods for increasing noise levels (we indicate the

standard deviation of the additive, zero-mean Gaussian noise, as a percentage of the maximum

intensity); (d) ditto for increasing numbers of input images, with 0.1 noise level.

Table 1: Reconstruction errors (MAE, in degrees) obtained for preprocessed input images

using the approach from [28]. For fair comparison, the MAE for classic PS is calculated on

the final surface, i.e. using the normals calculated by finite differences from the final depth

map, rather than the (non-integrable) normals estimated in the first step. Regarding the ratio

procedure, we applied the code from [22] directly on the grey level data.

Cat Pot Bear Buddha Ball

Classic PS [27] 8.83 8.91 7.01 14.34 3.05

Differential ratios [22] 8.57 9.00 7.01 14.31 3.13

Our method (500 iterations) 7.81 8.57 6.90 13.90 2.97

approach, no matter the noise level or the number of images (which were preprocessed via

low-rank factorization [28] in these two experiments).

By making the input images Lambertian via low-rank preprocessing [28], we can make

a reasonable comparison for the whole test dataset. Table 1 shows that our postprocessing

method can still improve the accuracy. The 3D-reconstruction results obtained with the full

pipeline are shown in Figure 4. In comparison with Figure 2, artefacts due to specularities are

clearly reduced.

5 Conclusions

We have shown the benefits of high performing numerical methods in the context of photo-

metric stereo. Let us emphasise that only by such novel numerical methods complex models

as arising in PS can be handled with success. Our results show that a significant quality gain

can be achieved in this way. A more detailed view on the computational results reveals that

remaining inaccuracies seem to be mostly due to shadows and highlights, edges and depth

discontinuities. Thus, an interesting perspective of our work would be to use more robust

estimators, which would ensure both robustness to outliers [9] and edges preservation [4].
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Figure 4: 3D-reconstruction results using the full pipeline, consisting of a preprocessing [28],

followed by classic PS [27], and finally the proposed method.
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