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OPTIMAL CONCAVITY OF THE TORSION FUNCTION

In this short note we consider an unconventional overdetermined problem for the torsion function: let n ≥ 2 and Ω be a bounded open set in R n whose torsion function u (i.e. the solution to ∆u = -1 in Ω, vanishing on ∂Ω) satisfies the following property:

Mu(x) is convex, where M = max{u(x) : x ∈ Ω}. Then Ω is an ellipsoid.

Introduction

When studying a (well posed) Dirichlet problem, a natural question is whether and how some relevant geometric property of the underlying domain influences the solution. A deeply investigated situation is when the domain is convex and the involved equation is elliptic. A classical result in this framework is the following (see Makar-Limanov [START_REF] Makar-Limanov | The solution of the Dirichlet problem for the equation ∆u = -1 in a convex region[END_REF] in the planar case, [START_REF] Kawohl | Rearrangements and convexity of level sets[END_REF][START_REF] Kennington | Power concavity and boundary value problems[END_REF] for n > 2). Proposition 1.1. Let n ≥ 2, Ω be a bounded open set in R n and let u solve

(1.1) ∆u = -1 in Ω u = 0 on ∂Ω If Ω is convex, then u is (1/2)-concave, i.e.
√ u is a concave function.

We recall that the solution to problem (1.1) is called the torsion function of Ω, since the torsional rigidity of τ (Ω) is defined by as follows:

(1.2) τ (Ω) -1 = min Ω |∇v| 2 dx Ω v dx 2 : v ∈ W 1,2 0 (Ω), v ≡ 0 ;
the above minimum is achieved by the solution u to (1.1) and it holds τ (Ω) = Ω u dx.

Nowadays there are several methods to prove general results like Proposition 1.1 (see for instance [START_REF] Kawohl | Rearrangements and convexity of level sets[END_REF], [START_REF] Caffarelli | Convexity of solutions to some classical variational problems[END_REF], [START_REF] Korevaar | Convex solutions to nonlinear elliptic and parabolic boundary value problems[END_REF]), but not so much has been done to investigate the optimality of them. When Ω is a ball, say Ω

= B(x, R) = {x ∈ R n |x -x| < R}, the solution to (1.1) is u B (x) = R 2 -|x -x| 2 2n ,
and it is concave (which is a stronger property than (1/2)-concavity). More generally, the same happens for every ellipsoid

E = {x ∈ R n : n i=1 a i (x i -xi ) 2 < R 2 }, with a i > 0 for i = 1, . . . , n, n i=1 a i = n; in this case the solution is u E (x) = R 2 -n i=1 a i (x i -xi ) 2 2n ,
and it is and it is concave. One can wonder whether this concavity property of the torsion function characterizes balls or ellipsoids (as it is the case for the Newtonian potential as shown in [START_REF] Salani | A characterization of balls through optimal concavity for potential functions[END_REF], see below). Actually the answer is negative since there are convex domains whose torsion function is concave, for instance:

• small perturbations of balls or ellipsoids (since u B and u E are uniformly concave).

• the torsion function of the equilateral triangle of vertices (-2, 0), (1, √ 3), (1, -√ 3) is given by u T (x, y) = (4 -3y 2 + 3xy 2 -3x 2 -x 3 )/12. Since the trace of the Hessian matrix of u T is -1 and its determinant is (1 -x 2 -y 2 )/4, then any (convex) level set u T = c included into the unit disk has a convex torsion function (u T -c).

2010 Mathematics Subject Classification. 35N25, 35R25, 35R30, 35B06, 52A40 .

• more generally, for any convex domain Ω, any (convex) level set sufficiently close to the maximum of u can provide a domain where the torsion function is concave. Since the power concavity has a monotonicity property (namely, u α concave ⇒ u β concave for β ≤ α), we can introduce the torsional concavity exponent of a convex domain Ω as the number α * (Ω) defined as α * (Ω) = sup{α > 0, such that u α is concave} where u is the torsion function of Ω. Then we have the following property which shows that the ellipsoids and many other domains maximize this quantity α * (Ω). Note that the same question has been raised by P. Lindqvist in [START_REF] Lindquist | A note on the nonlinear Rayleigh quotient Analysis, algebra, and computers in mathematical research[END_REF] about the first eigenfunction of the Dirichlet-Laplacian and this question of optimality of the ball seems to be still open for the eigenfunction. 

∈ Ω it results ∆(u α ) = αu α-2 [(α -1)|∇u| 2 -u] = G(x). Observing that u=ǫ |Du| = Vol{u > ǫ} one can deduce that u=ǫ ∆(u α ) ≥ αǫ α-2 (α -1)
Vol 2 {u > ǫ} Per{u > ǫ} -ǫ Per{u > ǫ} , which is positive for ǫ small enough since Vol{u > ǫ} → Vol(Ω) and Per{u > ǫ} → Per(Ω) as ǫ → 0. Therefore there exists a point x 0 ∈ Ω where G is positive, hence u α cannot be concave in Ω.

In order to get a property which characterizes balls and ellipsoids, we introduce the property (A), defined as follows.

Definition 1.3. Let Ω be a bounded convex open set in R n . We say that a function v ∈ C(Ω) satisfies property (A) in Ω if (A) w(x) = M -v(x) is convex in Ω , where M = max Ω v.
It is easily seen that if a function v satisfies property (A) is concave and also (1/2)-concave. Then one can suspect that the result by Makar-Limanov and Korevaar may be improved and could, for instance, guess that property (A) is satisfied by the solution u to problem (1.1) as soon as Ω is convex.

We will prove that this is not true and that property (A) is "sharp" for u E , in the sense that it characterizes ellipsoids. Precisely our main result is the following. As far as we know this is just the second step in the direction of investigating sharpness of concavity properties of solutions to elliptic equation, a first step being done by one of the authors in [START_REF] Salani | A characterization of balls through optimal concavity for potential functions[END_REF], where the following is proved: let n ≥ 3, Ω be a compact convex subset of R n and u be the Newtonian potential of Ω, that is the solution to

(1.3)    ∆u = 0 in R n \ Ω u = 1 in Ω u → 0 as |x| → +∞ ; if u 2/(2-n) is convex, then Ω is a ball.
Notice that both the latter result and Theorem 1.4 can be regarded as (unconventional) overdetermined problems. In general, an overdetermined problem is a Dirichlet problem coupled with some extra condition and the prototypal one is the Serrin problem, where (1.1) is coupled with the following Neumann condition:

(1.4) |∇u| = constant on ∂Ω .
In a seminal paper [START_REF] Serrin | A symmetry problem in potential theory[END_REF], Serrin proved that a solution to (1.1) satisfying (1.4) exists if and only if Ω is a ball. The literature about overdetermined problems is quite large, but usually the extra condition imposed to the involved Dirichlet problem regards the normal derivative of the solution on the boundary of the domain, like in [START_REF] Serrin | A symmetry problem in potential theory[END_REF], and the solution is given by the ball. Recently different conditions have been considered, like for instance in [START_REF] Ciraolo | A note on Serrin's overdetermined problem[END_REF][START_REF] Ciraolo | Symmetry of minimizers with a level surface parallel to the boundary[END_REF][START_REF] Ciraolo | Symmetry and linear stability in Serrin's overdetermined problem via the stability of the parallel surface problem 6[END_REF]6,[START_REF] Cupini | Densities with the mean value property for sub-laplacians: an inverse problem[END_REF][START_REF] Magnanini | Matzoh ball soup: heat conductors with a stationary isothermic surface[END_REF][START_REF] Magnanini | Nonlinear diffusion with a bounded stationary level surface[END_REF][START_REF] Schaefer | On nonstandard overdetermined boundary value problems[END_REF][START_REF] Shahgholian | Diversifications of Serrin's and related problems[END_REF]. More particularly, in [START_REF] Salani | A characterization of balls through optimal concavity for potential functions[END_REF] the overdetermination is given by the convexity of u 2/(2-n) ; here, in a similar spirit, the overdetermination in Theorem 1.4 is given by property (A). Again in connection with Theorem 1.4, we also recall that overdetermined problems where the solution is affine invariant and it is given by ellipsoids are considered in [START_REF] Brandolini | Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampère type[END_REF][START_REF] Enache | Some fully nonlinear elliptic boundary value problems with ellipsoidal free boundaries[END_REF][START_REF] Henrot | Some overdetermined boundary value problems with elliptical free boundaries[END_REF] etc.

2. Proof of Theorem 1.4.

Throughout, u ∈ C 2 (Ω) ∩ C(Ω) denotes the solution to (1.1) and

M = max Ω u .
Notice that the maximum principle gives

0 < u ≤ M in Ω .
Without loss of generality (up to a translation), we can assume B ρ (0) ⊂ Ω for some ρ > 0 and

u(0) = M .
Then ∇u(0) = 0. Furthermore, up to a rotation, we can also assume Then we can write

D 2 u(0) =    -λ 1 . . . 0 
v(x) = 1 2 n i=1 λ i x 2 i + z(x) ,
where z is a harmonic function in Ω, such that

(2.3) z(0) = 0 , ∇z(0) = 0 , D 2 z(0) = 0 .
Theorem (1.4) will be proved once we prove the following lemma.

Lemma 2.1. Let λ 1 , . . . , λ n ≥ 0 such that λ i = 1 and let z be a harmonic function in a neighborhood B ρ (0) of the origin, satisfying (2.3). If

w(x) = 1 2 n i=1 λ i x 2 i + z(x)
is a convex function in B ρ (0), then z ≡ 0.

Proof. Let r = |x| and ξ = x/r ∈ S n-1 . Then we can write

z(x) = z(r, ξ) = ∞ k=0 r k z k (ξ) with z k (ξ) = N (k,n) j=1 a k,j Y k,j (ξ) ,
where a k,j are suitable coefficients,

N (k, n) = (2k + n -2)(k + l -3)! (n -2)!k! and Y j k , j = 1, . . . , N (k, n) is an orthonormal basis of spherical harmonics of degree k in dimension n. We recall that the spherical harmonic Y j k is a solution to -∆ ξ Y = k(k + n -2)Y
(where -∆ ξ denotes the spherical Laplacian), whence we have that the function zk (x) = r k z k (ξ) is harmonic in R n for every k. Then we notice that, since zk (0) = 0 we have that |x|=ρ zk dσ = 0 for every ρ > 0, which yields (2.4) S n-1 z k (ξ) dξ = 0 for every k ∈ N .

Clearly, due to (2.3), we have z k ≡ 0 for k = 0, 1, 2. Then we can write

z(x) = ∞ k=3 r k z k (ξ) Now set (2.5) v(r, ξ) = r 2 2 n i=1 λ i ξ 2 i + ∞ k=3 r k z k (ξ) .
The assumption about convexity of w then implies (2.6)

w rr = ( √ v) rr = ∂ ∂r v r 2 √ v = 1 4v 3/2 2vv rr -v 2
r ≥ 0 for r ≥ 0 , for every fixed direction ξ ∈ S n-1 . Now we compute v r and v rr :

(2.7) v r = r i λ i ξ 2 i + ∞ k=3 kr k-1 z k (ξ) , v rr = i λ i ξ 2 i + ∞ k=3 k(k -1)r k-2 z k (ξ) . By setting

A(ξ) = 1 2 i λ i ξ 2 i ,
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λ i = 1 ,

 1 λ i ≥ 0 for i = 1, . . . , n and n i=1 thanks to the equation in(1.1).Let v(x) = M -u(x), then (2.1) ∆v = 1 in Ω v = M on ∂Ω . Moreover 0 ≤ v < M in Ω .

we can rewrite (2.7) as follows:

(2.8)

By (2.6), we have 2vv rr -v 2 r ≥ 0, we want to show that this implies z k ≡ 0 for every k ≥ 3. We will proceed by contradiction: let k be the first index (≥ 3) such that zk does not identically vanish. Then we have

On the other hand, (2.4) bears the existence of ξ ∈ S n-1 such that zk( ξ) < 0 , then, if A( ξ) > 0, for r sufficiently small we would have 2v(r, ξ)v rr (r, ξ) -v 2 r (r, ξ) = 2A( ξ)( k2 -3 k + 2)r kzk( ξ) + o(r k) < 0 , which contradicts (2.6).

If A( ξ) = 0, from (2.5) since v ≥ 0 we get 0 ≤ v(r, ξ) = rk zk( ξ) + o(r k) < 0 for r sufficiently small, and we have a contradiction as before.

The proof is complete.

Final remarks

We finally note that the argument of the proof above is in fact local and we can prove a more general result. If there exists x 0 ∈ A such that

is nonnegative and √ v is convex in a neighborhood of x 0 , then u(x) is a quadratic polynomial.

Proof. As before, we can assume x 0 = 0 and that D 2 u(0) is diagonal. Then, with v(x) as in the statement, the proof proceeds exactly as for Theorem 1.4, starting from (2.1).