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Abstract

The present paper introduces and treats the cloaking via change of variables in the
framework of quasi-linear elliptic partial differential operators belonging to the class
of Leray-Lions (cf. [14]). We show how a regular near-cloak can be obtained using an
admissible (nonsingular) change of variables and we prove that the singular change-
of variable-based scheme achieve perfect cloaking in any dimension d ≥ 2. We thus
generalize previous results (cf. [7], [11]) obtained in the context of electric impedance
tomography formulated by a linear differential operator in divergence form.
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1 Introduction

Since ages, the electromagnetic invisibility has long been fascinating men and has had a big
interest in the fantasy literature and researchers. From Plato who evoked the invisibility in
the myth of Gyges (the myth of the magic ring making any wearer invisible) to the contem-
porary character of Harry Potter, she was associated with the magic (wizardry, witchery),
the supernatural. Its irruption into the scientific and technical sphere could only arouse
curiosity or surprise a wide audience.

However just in 2006, Simultaneously Ulf Leonhardt([13]) and John Pendry ([19]) pro-
posed similar concepts to achieve perfect invisibility. The initial idea can be however simple:
If one follows the Snell-Descartes Laws, one can also distorts the light path and arranged
that in order to avoid a particular area, that area and all objects that can contain become
de facto invisible! Of course, this physical idea could germinate in a context where various
ingredients seemed to make it realistic.

The key point discovered by Leonhardt and Pendry in 2006 is that the form of Maxwell
equations that describe the propagation of electromagnetic waves are invariant under (conformal)-
coordinates changes. Therefore the path of the light may be decomposed: In one hand, in a
set of intrinsic equations valid whatever the environment and which do not depend on the
geometry (the new medium dielectric permittivity ε(x) and the new medium magnetic per-
meability µ(x) are depending only on the transformation and not on the geometry). In the
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other hand in a set of equations that characterize the environment and depend on geometry.
It is thus possible to associate the change of geometry, that is to say the transformations
of the space or coordinates in optical properties and to translate deformation of space in
effects equivalent materials: This is the main idea of the transformational Optic, a new way
of designing optical devices (the conformal transformations, applicable to two-dimensional
case, have been long used by opticians and are special cases for which the properties of
material are isotropic). So just, imagine a clever but simple distortion of the space, and
apply the principle of transformational optic in order to obtain the optical characteristics of
an invisibility Cape/cloak.

Of course, the question that immediately arises is whether we have materials at our dis-
posal, which exhibit suitable characteristics. Let us say immediately that these materials do
not exist in nature. One of the most active areas of modern optics is precisely the conception
of metamaterials, that is to say structures in which the basic cells, more or less similar, are
of sizes of the order of magnitude equal or below the wavelength and contain constituted
substructures of conventional materials. The basic cells and their orderly arrangement give
the total structure of new optical properties very different from those of basic materials and
impossible to find in the range of natural homogeneous materials.
For an exhaustive knowledge/history of the electromagnetic invisibility, see(A. Nicolet [17])

The mecanism, using the change of variables, for obtaining electromagnetic invisibil-
ity/cloaking was similar to that of Greenleaf, Lassas and Uhlmann (cf [7]) obtained earlier
in 2003 for constructing conductivity ensuring a cloaking in the case of electric impedance
tomography. Later Kohn, Shen, Vogelius and Weinstein (cf [11]) in 2008 and that of Kohn,
Onofrei, Vogelius and Weinstein (cf [12])in 2010 use the same mecanism to generalize and
improve the results of Greenleaf et al not only for electric impedance tomography but also
for the Helmholtz equation. Another adoptations use the change of variables based cloaking
to elastic sensing in 2006 ([16]) or to acoustic in 2007 ([3])

Let us remark hier that the Dirichlet-to-Neumann-Map and the solution of the Calderón
problem ([4] and [2]) play a crucial role for previous research on the cloaking.

the linear partial differential equations in divergence form formalising the context of
Electric Impedance Tomography are generalized in nonlinear partial differential equa-
tions in the framework of the weighted p-Laplace equations (cf [4] and [10]).
In relation with this nonlinear generalization and for the investigation of the Calderón prob-
lem, interesting results are obtained (cf [4] and [9]).

The p-Laplace equation has applications in e.g. image processing, fluid mechanics, plas-
tic mouling and modelling of sand-pile.
In contrast to previous investigations on the cloaking, the weighted p-Laplace equations are
however, for every p 6= 2, not invariant under admissible (conformal)change of variables (i.e.
coordinates change). Since the p-Laplace operators belong to the class of Leray-Lions (cf.
[14]), we will prove in this paper the following useful results :
An admissible (conformal) coordinates change, transforms a quasi-linear elliptic differential
equation in a quasi-linear elliptic differential equation given by operators in the class of
Leray-Lions ([14]). We can hence obtain the method of coordinates change for the investi-
gation of cloaking in this nonlinear context formalized by Leray-Lions.

The paper is organized as follows: We begin, in section 2, by introducing frequently
used notions needed for the determination of the nonlinear variational Dirichlet problem,
introduced in section 3, for second order quasi-linear elliptic differential equations in the
class of Leray-Lions, ([9]) and genralizing the weighted p-Laplace equations ([10]).
In section 3, we recall, on Lipschitz domain Ω in Rd with d ≥ 2, functions from Ω × Rd to
Rd satisfying structural assumptions defining second order quasi-linear elliptic differential
operators/equation belonging to the class of Leray-Lions. We then use ([9]) to recall the
solution of the Dirichlet problem given a boundary function in the Sobolev-Slobodečki
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space W 1− 1
p ,p(∂Ω) and to recall the Dirichlet-to-Neumann Map.

In section 4, we define admissible change of variables and we prove that it transforms a
second order quasi-linear elliptic differential equation in the class of Leray-Lions to a equa-
tion of the same art. Moreover this admissible change of varianbles leaves invariant the
Dirichlet-to-Neumann-Map.
In section 5, we adopt the framework of second order quasi-linear elliptic differential equa-
tions to define the notion of cloaking. Further, we consider, for Ω the ball B2 of center x = 0
and radius 2, the admissible (nonsingular) change of variables Fρ for 0 < ρ < 1 used in ([7]
and [11]), and define an associated regular near cloak. We then prove that the unit ball B1

is almost invisible (in the sence of item2 of theorem 2) as ρ is sufficiently small. Further we
prove in theorem 3 that the regular near cloak does not focus on the radial case
For the singular change of variales F , used in previous works(see among others ([7], [11],
[12])), we define an associeted singular cloak (given on the shell B2\B1 by a transformation
by F to a given second order quasi-linear elliptic differential operator and on B1 by an
arbitrary second order quasi-linear elliptic differential operator)and we show that it gives
a perfect invisibilty for the ball B1. We prove, in theorm 4, that the potentiel outside the

cloaked region with Dirichlet data ϕ ∈ W 1− 1
p ,p(∂Ω) is the same obtained for ϕ ∈ H 1

2 (∂Ω)
in (cf. [11] pages 17 and 19 ) in the linear case of second order differential operator in
divergence form modelling the electric impedance tomographie.
The last section is devoted to the application of our results to the linear case treated in ([7],
[11])and we prove that our theorem 5 is a generalisation, at the framework of equations in
the class of Leray-Lions, of theorem 3 in (cf. [11]) A direct application as for the Laplacian
(2-Laplacian) to the p-laplacian for p 6= 2 will be treated in a next work...
Because of the nonlinear character of our work, we have developed other methods not related
to previous results such as from [5] or from [11]in the linear case.

2 Preliminaries

Recall on Sobolev spaces and related fields
We assume hier that Ω is a bounded Lipshitz domain in Rd with d ≥ 2. For p ∈ [1,+∞],
denote by Lp(Ω) and W 1,p(Ω)the usual Lebesgue and first sobolev spaces. We denote by
C0,1(Ω) the space of all Lipshitz continuous functions on the closure Ω of Ω. The boundary
∂Ω is equiped with the (d − 1) dimensional Hausdorf measure dH when we work with the
lebesgue space Lp(∂Ω). Morever, C(∂Ω) denotes the set of all real valued continous func-
tions on ∂Ω.

2.1 Trace on the boundary

Since Ω is a Lipshitz domain, by J. Nečas ([18] Theorem 4.2, 4.6 and 3.8) the mapping
u 7→ u|∂Ω

from C0,1(Ω) to C0,1(∂Ω) has a unique continuous extension mapping

Tr : W 1,p(Ω) −→ Lp
∗
(∂Ω)

called trace operator with p∗ = p(d−1)
d−p if 1 ≤ p < d , p∗ ≥ 1 if p = d and p∗ = ∞ . For

conveniance, it is written u|∂Ω
instead of Tr(u) for u ∈ W 1,p(Ω) even if u does not belong

to C(Ω) and we call u|∂Ω
or Tr(u) the trace of u.

2.2 Sobolev-Slobodečki space on the boundary

It is well Known (cf. J. Nečas [18] section 3.8) that
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• ker(Tr) = {u ∈ W 1,p(Ω)|Tru = 0} the kernel of Tr concide with the Sobolev space
W 1,p

0 (Ω).

• Rg(Tr) = {Tru|u ∈W 1,p(Ω)} the range of Tr coincide with the Sobolev-Slobodečki

space W 1− 1
p ,p(∂Ω)(cf. [8]) defined as the linear subspace of all ϕ ∈ Lp(∂Ω) with finite

semi-norm

[ϕ]pp =

∫
∂Ω

∫
∂Ω

|ϕ(x)− ϕ(y)|p

|x− y|d−2+p
dxdy

and equiped with the norm

‖ ϕ ‖
W

1− 1
p
,p

(∂Ω)
=‖ ϕ ‖Lp(∂Ω) +[ϕ]p

for every ϕ ∈W 1− 1
p ,p(∂Ω)

Remark 2.1 We have the following important results:

• The trace operator Tr has a linear bounded right inverse

Z : W 1− 1
p ,p(∂Ω)→W 1,p(Ω)

(cf.[18] theorem 5.7)

• Another crucial propriety of a Lipshitz domain (cf.D. Hauer[9] Lemma 2.1) Ω is that:
for 1 < p <∞ and for 1 ≤ q <∞ the space C∞(Ω) lies dense in W 1,p(Ω) and the set

{v 7→ v|∂Ω
, v ∈ C∞(Ω)} is dense in W 1− 1

p ,p(∂Ω) and in Lq(∂Ω).

3 Second order quasi-linear elliptic differential equa-
tions/operators

thoughout this paper, we assume that Ω is a bounded domain in Rd with a lipschitz boundary
∂Ω, d ≥ 2 and 1 < p <∞

Definition 3.1 A function a : Ω× Rd −→ Rd satisfies a structural assumptions, needed
for the defintion of a second order quasi-linear elliptic operator if :

1. a is a Caratheodory function satisfying the following assumptions:

For some constants 0 < α ≤ β <∞

2. < a(x, ξ), ξ >≥ α|ξ|p for a.e x ∈ Ω and every ξ ∈ Rd

3. |a(x, ξ)| ≤ β|ξ|p−1 for a.e x ∈ Ω and every ξ ∈ Rd

4. < (a(x, ξ1)− a(x, ξ2), (ξ1 − ξ2) >> 0 with ξ1 6= ξ2 and for a.e x ∈ Ω

5. a(x, λξ) = λ|λ|p−2a(x, ξ) ∀λ ∈ R, λ 6= 0 and for a.e x ∈ Ω

Where <,> is the scalar product in Rd and |ξ| =< ξ, ξ >
1
2 .

Remark 3.2 1. Under the previous assymptions, the Caratheodory function a defines
a second order quasi-linear elliptic operator A, belonging to the class of Leray-Lions
operators (cf.[14]) as follows:

Au := −div(a(x,∇u)) in D′(Ω) for every u ∈W 1,p
Loc(Ω).

Hier is ∇u = ∇xu is the gradient of u relatively to the variable x.



5

2. To the quasi-linear elliptic operator A is developed by (cf.[10]) a nonlinear potential
theory.

3. In a very recent work by Daniel Hauer in (cf.[9]) a Dirichlet-to-Neumann map associ-
ated with the second order quasi-linear elliptic operator A, was defined and Follow-up
of applications to elliptic and parabolic problems.

4. By taking a(x, ξ) = σ(x)|ξ|P−2ξ for ξ ∈ Rd and σ is a continous and strongly elliptic
matrix on Ω in the sence that for some constants 0 < m < M <∞:
m|ξ|2 ≤< σ(x)ξ, ξ >≤M |ξ|2 for all x ∈ Ω and ξ ∈ Rd.
It is well known that the function a is a function satisfying the previous strutural
assumptions and the associated operator A is called the weighted p-Laplace operator
(cf.[10])(resp.the classical p-Laplace ∆p obtained by σ(x) = IdRd) and is a prototype
of quasi-linear elliptic differential operators belonging to the class of Leray-Lions op-
erators.

5. If p = 2 then the weighted 2-Laplace operator is well known as a differential oper-
ator in divergence form known in physic as the PDE in electrostatics which is later
known as a mathematical formalism for the Electric Impedance Tomography as follows:

∇.(σ∇u) =
∑
i,j

∂

∂xi
(σij(x))

∂u

∂xj
in Ω

The electrical conductivity σ(x) = σij(x) is, as in remark 4, a strongly elliptic matrix-
valued fonction on Ω. It relates voltage u and the associated electric fields ∇u to the
resulting current σ∇u.

In what follows in this section, we will review (cf.D.Hauer [9]) some basic facts about
quasi-linear elliptic equations given by

−div(a(x,∇u)) = 0

Where a satisfies a structural assumptions.

Let ϕ ∈W 1− 1
p ,p(∂Ω)(the Sobolev-Slobodečki space on the boundary∂Ω).

We consider the following nonlinear variational Dirichlet problem:{
−div (a(x,∇u)) = 0 in Ω,

u = ϕ on ∂Ω
(1)

Definition 3.3 1. We call u ∈W 1,p
Loc(Ω) a weak solution of

−div (a(x,∇u)) = 0 in Ω, (2)

if u satisfies the following integral equation:∫
Ω

(a(x,∇u))∇vdx = 0 for all v ∈W 1,p
0 (Ω), (3)

2. A weak solution will be called a-harmonic function on Ω.

For later use, we need the following compactness results concerning weak solutions of
(2), which is an immediate consequence of (D. Hauer [9] Lemma 2.3 ) and (L.Boccardo and
F. Murat [1] Theorem 2.1 and Remark 2.1).
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Lemma 3.4 If (un) is a bounded sequence in W 1,p(Ω) of weak solution of (2), then there
is subsequence ukn of un and a weak solution u ∈W 1,p(Ω) of (2) such that (ukn) converges
to u weakly in W 1,p(Ω), strongly in LP , ∇uk converges to ∇u strongly in (Lq(Ω))d for every
q < p(thus a.e in Ω) and a(x,∇ukn) converges to a(x,∇u) a.e in Ω and weakly in LP

′
(Ω).

Proposition 3.5 Let ϕ ∈ W 1− 1
p ,p(∂Ω), then there exists a unique weak solution of (2)

which is solution of the problem (1).

Proof
Let Φ ∈W 1,p(Ω) be such that Φ|∂Ω

= ϕ , it is well known that the operator v → A(v) =
−div(a(x,∇v + ∇Φ)) satisfies the assumptions of the Minty-Browder theorem [J.L.Lions
[15], thm 2.1]. Hence the equation (2) admits a weak solution u ∈ W 1,p(Ω) satisfying
u− Φ ∈W 1,p

0 (Ω). We have then∫
Ω

a(x,∇u)∇vdx = 0 ∀v ∈W 1,p
0 (Ω)

Let u1 be another weak solution with (u1 − Φ) ∈W 1,p
0 (Ω) then u− u1 ∈W 1,p

0 (Ω) and∫
Ω

a(x,∇u1)(∇u−∇u1)dx =

∫
Ω

a(x,∇u)(∇u−∇u1)dx = 0

and thus ∫
Ω

(a(x,∇u)− a(x,∇u1)(∇u−∇u1)dx = 0.

By the strict monotonicity of the function a (assumption 4) we obtain ∇u = ∇u1 and by
the Poincaré Inequality we get u = u1.
We arrive to the following definition

Definition 3.6 For a given boundary value ϕ ∈ W 1− 1
p ,p(∂Ω), we call a function u ∈

W 1,p a W 1,p-solution of the Dirichlet problem (1) on Ω if (u − Zϕ) ∈ W 1,p
0 (Ω)and u is a

weak solution of (2). Z is the linear bounded right inverse of the trace function operator on
the boundary ∂Ω (Remark 2.1).

In what follows, we will denote for every ϕ ∈ W 1− 1
p ,p(∂Ω) by Pϕ = P aϕ the W 1,p-

solution of the Dirichlet problem (1) associated with the function a on Ω.

Remark 3.7 • for every λ ∈ R and ϕ ∈W 1− 1
p ,p(∂Ω), we have

Pλϕ = λPϕ and |Pϕ| ≤ P |ϕ|

• By (cf.[10] Theorem 3.70) we will choose Pϕ a continous function on Ω.

• For useful Properties of the application P: W 1− 1
p ,p(∂Ω) −→W 1,p(Ω) (cf D. Hauer [9]

lemma 2.5).

Lemma 3.8 Let D be a measurable subset in Ω, a and b are two Caratheodory functions
respectively from (Ω\D) × Rd −→ Rd and from D × Rd −→ Rd satisfying a structural
assumptions given at the beginning of this section.
let c be the function from Ω× Rd −→ Rd given by

c(x, ξ) :=

{
b(x, ξ) for x ∈ D and ξ ∈ Rd,
a(x, ξ) for x ∈ Ω\D and ξ ∈ Rd (4)

Then c is a function from Ω× Rd −→ Rd satisfying a structural assumptions.
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3.1 Dirichlet-to-Neumann Map (DNP) associated with a quasi-
linear elliptic operator

If for a given boundary value ϕ ∈ W 1− 1
p ,p(∂Ω), Pϕ and a(x,∇Pϕ) are smooth enough up

to the boundary ∂Ω and that ν denote the outward pointing unit normal vector on ∂Ω, the
co-normal derivative of Pϕ (associated with the quasi-linear elliptic operator A defined by
the function a as at the beginning of this section), on ∂Ω is formally defined by the dot
product a(x,∇Pϕ).ν on ∂Ω.

It is well known, (e.g. D. Hauer [9]), that the Dirichlet-to-Neumann operator Λ associated
with A assign to each Dirichlet boundary data ϕ the correspending co-normal derivative of
Pϕ. We formally set:

Λϕ = a(x,∇Pϕ).ν

Multiplying the equaliy by some function ψ ∈ C∞(Ω) with respect to the inner product
on L2(∂Ω) and applying Green’s formula yields∫

∂Ω

(Λϕ)ψ|∂Ω
dH =

∫
Ω

a(x,∇Pϕ)∇ψdx =

∫
Ω

a(x,∇Pϕ)∇Zψdx

H is the d − 1 dimensional Hausdorf measure on the boundary ∂Ω. If in addition
Λϕ ∈ LP

′
(∂Ω), then by an approximation argument using Remark 2.1 item 2, we can

conclude that∫
∂Ω

ΛϕψdH =

∫
Ω

a(x,∇Pϕ)∇Zψdx for every ψ ∈W 1− 1
p ,p(∂Ω)

If ϕ and ψ belong to W 1− 1
p ,p(∂Ω), the integral on the right-hand side of this equation

exists, we easly see that the functional ψ 7→
∫

Ω

a(x,∇Pϕ)∇Zψdx belong to the dual space

W−(1− 1
p ),p′(∂Ω) of W 1− 1

p ,p(∂Ω) . This justifies why the following definition makes sense
and is consistent to the case of smooth functions.

Definition 3.9 We call the mapping Λ : W 1− 1
p ,p(∂Ω) −→W−(1− 1

p ),p′(∂Ω), defined by

< Λϕ,ψ >=

∫
Ω

a(x,∇Pϕ)∇Zψdx

for every ϕ,ψ ∈ W 1− 1
p ,p(∂Ω), the Dirichlet-to-Neumann map associated with the

second order quasi-linear differential operator A defined by the Function a(see Remark
3.1 1.).

We recall hier the following interesting results (cf. D.Hauer[9] Proposition 3.3).

Proposition 3.10 The mapping Λ : W 1− 1
p ,p(∂Ω) −→W−(1− 1

p ),p′(∂Ω) has the following
properties:

1. < Λϕ,ψ >=

∫
Ω

a(x,∇Pϕ)∇Pψdx for every ψ,ϕ

2. Λ is continuous and monotone, that is for every ϕ1,ϕ2

< Λϕ1 − Λϕ2, ϕ1 − ϕ2 >≥ 0
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3. There exists C1 > 0 such that

||Λϕ||
W
−(1− 1

p
),p′

(∂Ω)
≤ C1||ϕ||p−1

W
1− 1

p
,p

(∂Ω)
for every ϕ ∈W 1− 1

p ,p(∂Ω).

4. There exists a constant C2 > 0 such that

< Λϕ,ϕ >≥ C2||ϕ||P
W

1− 1
p
,p

(∂Ω)
for every ϕ ∈W 1− 1

p ,p
m (∂Ω)

Hier W
1− 1

p ,p
m (∂Ω) is the subspace of all ϕ ∈ W 1− 1

p ,p(∂Ω) satisfying the so-called com-

patibility condition

∫
∂Ω

ϕdx = 0 equipped with the induced norm and W
−(1− 1

p ),p′

m (∂Ω) is the

dual space of W
1− 1

p ,p
m (∂Ω)

4 Change of variables

Along this entire section we consider a Lipschitz domain Ω and a function a satisfying a
structural assumptions (cf. section 3).
Let U be an open subset in Ω and G a change of variables given by y = G(x) (where G is
an invertible, differentiable and oriented preserving ) from U to G(U) and DG(resp.DGT )
the (resp. transposed of the) Jacobian matrix of G with elements aij = ∂yi

∂xj
.

We set for u and v in W 1,p(U) I :=

∫
U

a(x,∇xu)∇xvdx. By the change of variables

y = G(x) we get:

I =

∫
G(U)

1

det DG(G−1(y))
DG(G−1(y))a(G−1(y), (DG(G−1(y))T∇yũ(y))∇y ṽ(y)dy

Where ũ(y) = u(G−1(y)) and ṽ(y) = v(G−1(y)) If we set

aG(y, ξ) :=
1

det DG(G−1(y))
DG(G−1(y))a(G−1(y), (DG(G−1(y)))T ξ) for y ∈ G(U)

then: ∫
U

a(x,∇xu)∇xvdx =

∫
G(U)

aG(y,∇yũ)∇y ṽdy

Proposition 4.1 Let U be an open subset in Ω and G a differentiable function from U
to G(U). We have for every x ∈ U and i ∈ {1, ..., d}, the eigenvalues λi(x), βi(x) of the
symmetric matrices (DG(x))TDG(x) and DG(x)(DG(x))T are nonneegative and hence for
every θ ∈ Rd and x ∈ U :

(min(λi(x), i ∈ {1, ..., d})) 1
2 |θ| ≤ |DG(x)θ| ≤ (max(λi(x), i ∈ {1, ..., d})) 1

2 |θ|

and

(min(βi(x), i ∈ {1, ..., d})) 1
2 |θ| ≤ |(DG(x))T θ| ≤ (max(βi(x), i ∈ {1, ..., d})) 1

2 |θ|

Proof
Let for i ∈ {1, ..., d}, λi(x), βi(x) the eigenvalues and ui, vi the orthonormal bases of eigenvec-
tors respectively for the symmetric matrices (DG(x))TDG(x) and DG(x)(DG(x))T . Then
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for every θ ∈ Rd, there exist real numbers θi, µi such that θ =
∑n
i=1 θiui =

∑n
i=1 µivi. We

thus have:

|DG(x)θ|2 =< (DG(x))TDG(x)θ, θ >=<

n∑
i=1

θiλi(x)ui,

n∑
i=1

θiui >=

n∑
i=1

θ2
i λi(x)

and

|DG(x))T θ|2 =< DG(x)(DG(x))T θ, θ >=<

n∑
i=1

µiβi(x)vi,

n∑
i=1

µivi >=

n∑
i=1

µ2
iβi(x)

the sought inequalities are then easy to obtain.

Corollary 4.2 If the Jacobian matrix of the change of variables G is symmetric then for
every θ ∈ Rd and x ∈ U , we have

(min(|σi(x)|, i ∈ {1, ..., d}))|θ| ≤ |DG(x)θ| ≤ (Max(|σi(x)|, i ∈ {1, ..., d}))|θ|

where σi(x), i ∈ {1, ..., d}) are the eigenvalues of the symmetric matrix DG(x).

Proposition 4.3 Let U be an open subset in Ω and G a change of variables from U to
G(U) . Assume that there exist c1, c2 positive constants such that

c1 < detDG(G−1(y)) < c2 for every y ∈ G(U), then the function a
G(U)
G given by a

G(U)
G (y, ξ) =

aG(y, ξ)IG(U)(y) satisfies on G(U)× Rd a structural assumptions as by a

Proof
We set x = G−1(y). Let for i ∈ {1, ..., d}, λi(y), βi(y) the eigenvalues and ui, vi the or-
thonormal bases of eigenvectors respectively for the symmetric matrices (DG(x))TDG(x)
and DG(x)(DG(x))T . From the hypothesis on the determinent of the matrix (DG(x)) and
since the real numbers λi(x), βi(x) are nonnegative, we easily obtain that the positiv real
numbers α1 = min(λi(x), i ∈ {1, ..., d}), x ∈ U , α2 = Max(λi(x), i ∈ {1, ..., d}, x ∈ U),
δ1 = min(βi(x), i ∈ {1, ..., d}, x ∈ U) and δ2 = Max(βi(x), i ∈ {1, ..., d}, x ∈ U) are positive.
By the previous corollary we have;

α1|θ| ≤ |DG(x)θ| ≤ α2|θ|

and
δ1|θ| ≤ |(DG(x))T θ| ≤ δ2|θ|

for every θ ∈ Rd and every x ∈ U .
For α and β the constants given by the assumptions 2 and 3 on the function a, the previous
inequalities and the hypothesis, we have

< aG(y, ξ), ξ >≥ α

det DG(x)
|(DG(x))T ξ|p ≥ α(α1)p

det DG(x)
|ξ|p ≥ α(α1)p

c2
|ξ|p

for every y ∈ G(U). It follows that the function a
G(U)
G satisfies on G(U) the assumption 2

with the constant α(α1)p

c2
.

Moreover, since

|aG(y, ξ)| = 1

det DG(x)
|(DG(x))a(x, (DG(x))T ξ)|

we have

|aG(y, ξ)| =≤ α2

c1
|a(x, (DG(x))T ξ)| ≤ βα2

c1
|(DG(x))T ξ|p−1 ≤ βα2(δ2)p−1

c1
|ξ|p−1
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we hence obtain that the function a
G(U)
G satisfies on G(U) the assumption 3 with the constant

β = (α2)p

c1
.

The other assumptions 4 and 5 and that the function a
G(U)
G is a Caratheodory function from

G(U)× Rd to Rd are easy verified.

Definition 4.4 (admissible change of variables)
We will say that a piece-wise smooth function G(y = G(x)) from Ω to Ω is an admissible
change of variables, if G is invertible, G(x) = x at the boundary ∂Ω, there exists a subset
E such that E as well G(E) are closed and of Lebesgue measure zero and G and G−1 are
continuously differentiable respectively on Ω \E and on Ω \G(E). Moreover there exist two
positive constants c1 and c2 such that c1 < detG(x) < c2 for every x ∈ Ω \ E

Lemma 4.5 A function G from Ω to Ω is an admissible change of variables if and only
if G−1 is an admissible change of variables.

Definition 4.6 Let a be a function from Ω×Rd to Rd satisfying a structural assumptions
and G an admissible change of variables. Then the transformed aG of a by G is defined as
follows:

aG(y, ξ) := 1
det DG(x)DG(x)a(x, (DG(x))T ξ) if y /∈ G(E),

:= 0 if y ∈ G(E)
(5)

Where y = G(x) and E is the negligible closed subset in the definition of the admissible
change of variables.

Theorem 1
Let G be an admissible change of variables on Ω and aG the transformed of the Caratheodory

function a by G then

1. aG is a function on Ω× Rd satisfying a structural assumptions as a in section 3.

2. a function u is an a-harmonic function on Ω if and only if ũ = u ◦ G−1 is an aG-
harmonic function on Ω. The notion of a-harmonic function is referred hier to the
definition 3.2 2.

Proof
We have, by the change of variables y = G(x), the following relations between the Caratheodory
Functions a and aG :∫

Ω\E
a(x,∇xu)∇xvdx =

∫
Ω\G(E)

aG(y,∇yũ)∇y ṽdy

Since E and G(E) are negligeable we have∫
Ω

a(x,∇xu)∇xvdx =

∫
Ω

aG(y,∇yũ)∇y ṽdy

The function aG satisfies bei Proposition 4.4 a same structural assumptions on Ω as the
function a and because G is an admissible change of variables(G(x) = x on the boundary),
we have v ∈W 1,p

0 (Ω) if and only if ṽ ∈W 1,p
0 (Ω). It is then easy to see that u is an a-harmonic

function on Ω if and only if ũ is an aG-harmonic on Ω

Remark 4.7 • the function aG is called the push-forward of a by the change of vari-
ables G (cf.[10] or [11]).
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• For the weighted p-Laplace given by a(x, ξ) = σ(x)|ξ|P−2ξ we have:

aG(y, ξ) =
1

det DG(G−1(y))
DG(G−1(y))σ(G−1(y))(DG(G−1(y)))T |(DG(G−1(y)))T ξ|p−2ξ

This shows that the transformation by G of the weighted p-Laplace operator has not
the same form of a p-Laplace

We denote in what follows by P bϕ, for every ϕ ∈W 1− 1
p ,p(∂Ω), the solution of the Dirich-

let problem (1) with boundary value ϕ defined in section 3 for every function b satisfying a
structural assumptions in section 3,

Corollary 4.8 We have:

˜P aϕ = P aGϕ for all ϕ ∈W 1− 1
p ,p(∂Ω) where ˜P aϕ = P aϕ ◦G−1.

Proof
Since Pϕ = P aϕ, for every ϕ ∈ W 1− 1

p ,p(∂Ω), then it is an a-harmonic solution, it follows

that P̃ϕ is, for every ϕ ∈ W 1− 1
p ,p(∂Ω) a solution of the Dirichlet problem (1) defined in

section 3 for the Caratheodory Function aG. Since aG is by Proposition 4.4 a function from
Ω×Rd −→ Rd satisfying a structural assumptions (section 3), we hence obtain the corollary.

Proposition 4.9 Let G be an admissible change of variables on Ω, and ΛG is the Dirichlet-
to-Neumann map associated with aG then Λ = ΛG

Proof
We have for every ϕ,ψ in W 1− 1

p ,p(∂Ω) and by the definition 3.8 of the Dirichlet-to-Neumann
Map associated with the Caratheodory function a

< Λϕ,ψ >=

∫
Ω

a(x,∇xP aϕ)∇xZψdx

Since P aϕ is a solution of the Dirichlet Problem (1) and (Zψ − Z̃ψ) ∈ W 1,p
0 (Ω), from the

previous corollary 4.4 and from the definition of the Dirichlet-to-Neumann Map associated
with the Caratheodory function aG, we have:

< Λϕ,ψ > =

∫
Ω

a(x,∇xP aϕ)∇xZψdx

=

∫
Ω

aG(y,∇y ˜P aϕ)∇yZ̃ψdy

=

∫
Ω

aG(y,∇yP aGϕ)∇yZψdy

=< ΛG(ϕ), ψ >

(6)

Thus for every ϕ, Λ(ϕ) and ΛG(ϕ) determine identical linear form on W 1− 1
p ,p(∂Ω).

It follows that

Λ(ϕ) = ΛG(ϕ) for every ϕ ∈W 1− 1
p ,p(∂Ω)

and hence
Λ = ΛG on W 1− 1

p ,p(∂Ω)
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5 Cloaking via change of variables

Definition 5.1 (cf. [11, 12]) We say a region of space is cloaked for a particular class of
measurements if its contents - and even the existence of the cloak are invisible using such
measurements.

Remark 5.2 Let Ω be a relativ compact open set in Rd such that the Dirichlet problem
associated with a given partial differential operator is solvable for a class R of resolutive
functions defined at the boundary(in a local setting) or at the complement (in a nonlocal
setting) of Ω. We can then consider, for the definition of the cloaking, the class of solutions
S(f)f∈R of the partial differential operator as the particular class of measurements.

We introduce in what follows a definition for the cloaking in the framework of second
order quasi-linear elliptic differential equations.

Definition 5.3 Let a be a fixed function satisfying, as in the beginning of setion3, a
structural assumptions and a measurable subset D with D̄ ⊂ Ω ⊂ Ω̄ ⊂ Ω′, Ω and Ω′ are
open subset. Let ac be function from (Ω′\D) × Rd −→ Rd satisfying locally a structural
assumptions.
We say that ac cloaks the region D if its every extention aD across D in the following form

aD(x, ξ) :=

{
b(x, ξ) for x ∈ D and ξ ∈ Rd,
ac(x, ξ) for x ∈ Ω\D and ξ ∈ Rd (7)

produce on Ω the same Dirichlet-to-Neumann-map as a, regardless of the choice of the
Caratheodory function b satisfying on Ω× Rd a structural assumptions.

We now explain how change-of-variables-based cloaking for quasi-linear elliptic operators
work. Our demarche is much more general but for simplicity we focus on the radial case:
Ω = B2 where B2 is the ball of center x = 0 and radius 2 and the region D to be cloaked is
B1, the concentric ball of radius 1.

We start by explaining how B1 can be nearly-cloaked using the following admissible
change of variables: Fixing a small parameter ρ > 0, consider the piecewise-smooth change
of variables from B2 to B2 :

Fρ(x) =

{ x
ρ if |x| ≤ ρ,(

2−2ρ
2−ρ + 1

2−ρ |x|
)

x
|x| if ρ ≤ |x| ≤ 2,

(8)

Fρ expends the ball Bρ = {x ∈ Rd/ |x| ≤ ρ} to B1, while mapping the full domain B2 to
itself.

Lemma 5.4 We have for every x ∈ B2 \Bρ

DFρ(x) = (
1

2− ρ
+

1

|x|
2− 2ρ

2− ρ
)I − 2− 2ρ

2− ρ
1

|x|
x̂x̂T

detDFρ(x) = (
1

2− ρ
)(

1

2− ρ
+

1

|x|
2− 2ρ

2− ρ
)d−1 =

(|x|+ 2(1− ρ))d−1

(2− ρ)d|x|d−1

where I is the identity matrix and x̂ = x
|x|

Proof
An easy calculation gives the Jacobian matrix DFρ(x) which implies that it is symmetric, x̂
is an eigenvector with eigenvalues 1

2−ρ , and x̂⊥ = {y/y⊥x̂} is a d−1 dimensional eigenspace

with eigenvalue ( 1
2−ρ + 1

|x|
2−2ρ
2−ρ ).

Moreover for every 0 < ρ < 1 the key properties of Fρ are



13

• Fρ is continuous and piecewise-smooth

• Fρ and F−1
ρ are admissible change of variables on B2(in the sense of definition 4.5).

5.1 The regular near cloak associated with Fρ

Let b be an arbitrary Caratheodory function from B2 × Rd to Rd satisfying structural
assymptions of section 3.
Given a function a satisfying the same assumptions as b, we define the “regular near
cloak” associated with Fρ as follows:

aρb(y, ξ) =

{
b(y, ξ) for y ∈ B1 and ξ ∈ Rd,
aFρ(y, ξ) for y ∈ B2\B1 and ξ ∈ Rd (9)

Lemma 5.5 For every 0 < ρ < 1, aρb is, by lemma 3.7 and theorem 1, a function from
B2×Rd to Rd satisfying structural assumptions of section 3 and u ∈W 1,p is an aρb -harmonic
solution if and only if uoFρ is an (aρb)F−1

ρ
-harmonic solution for the following Caratheodory

function:

(aρb)F−1
ρ

(x, ξ) =

{
bF−1

ρ
(x, ξ) for x ∈ Bρ and ξ ∈ Rd,

a(x, ξ) for x ∈ B2\Bρ and ξ ∈ Rd
(10)

Which gives that an aρb -harmonic function is an a-harmonic function outside the closed
ball B̄ρ for every 0 < ρ < 1.

In what follows, let ϕ ∈W 1− 1
p ,p(∂B2) and Pρϕ the W 1,p solution of the following quasi-

linear elliptic equation {
−div(aρb(x,∇xu)) = 0 in B2 ,

u = ϕ on ∂B2 .
(11)

We recall hier the following

Lemma 5.6 Let K be a non-empty compact subset of Rd and U an open set containing
K, then there exists a function θ ∈ C∞c (Rd) such that
0 ≤ θ ≤ 1 , θ = 1 on K and θ = 0 outside U

Proposition 5.7 There exist constants C1 and C2 such that for every ϕ ∈W 1− 1
p ,p(∂B2)

and 0 < ρ < 1, we have

• (∫
B2\Bρ

|∇x(Pρϕ ◦ Fρ(x))|pdx
) 1
p ≤ C1 ‖ ϕ ‖

W
1− 1

p
,p

(∂B2)

• (∫
B1

|∇xPρϕ(x))|pdx
) 1
p ≤ C2 ‖ ϕ ‖

W
1− 1

p
,p

(∂B2)

Proof
Let 0 < ρ0 < 1 and θ the function associated by the previous lemma with K = Bρ0

and
U = B1. Let v = (1− θ)Pϕ and w := Pρϕ ◦Fρ− (1− θ)Pϕ on B2, Since Fρ is an admissible
change of variables, then w ∈ W 1,p(B2) and Tr(w) = 0, where Tr(u) is the Trace on the
boundary ∂B2 of any function u ∈W 1,p(B2), hence w ∈W 1,p

0 (B2). Let

I =

∫
B2

(aρb)F−1
ρ

(x,∇xPρϕ ◦ Fρ(x))(∇xPρϕ ◦ Fρ(x))dx
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By the Lemma 5.5 and since v = 0 on Bρ0 we get that for every 0 ≤ ρ ≤ ρ0

I =

∫
Bρ

bF−1
ρ

(x,∇xPρϕ◦Fρ(x)))(∇xPρϕ◦Fρ(x))dx+

∫
B2\Bρ

a(x,∇xPρϕ◦Fρ(x))∇xPρϕ◦Fρ(x)dx

and hence

I ≤
∫
B2\Bρ

a(x,∇xPρϕ ◦ Fρ(x))∇xvdx

for α and β the contants given by the structural assumptions 2 and 3 on the function a and
by the Hoelder inequality we have for p′ such that 1

p + 1
p′ = 1

α

∫
B2\Bρ

|∇xPρϕ◦Fρ(x)|pdx ≤ β
(∫

B2\Bρ
(|∇xPρϕ◦Fρ0

(x)|p−1)p
′
dx
) 1
p′
(∫

B2\Bρ
|∇xv(x)|pdx

) 1
p

Which gives: (∫
B2\Bρ

|∇Pρϕ ◦ Fρ|pdx
) 1
p ≤ β

α

(∫
B2

|∇xv|pdx
) 1
p

=
β

α
‖ ∇xv ‖p

It follows, since θ ∈ C∞c (Rd) that

‖ ∇xv ‖p≤ (‖ ∇xθ ‖∞ +1) ‖ Pϕ ‖W 1,p(B2)

An easy calculation yields ‖ Pϕ ‖W 1,p(B2)≤ (1 + 2K β
α ) ‖ Zϕ ‖W 1,p(B2) where K is the

Poincaré constant on B2. For ‖ Z ‖ the norm of the linear bounded right inverse of the
trace, we get

‖ Zϕ ‖W 1,p(B2)≤‖ Z ‖‖ ϕ ‖
W

1− 1
p
,p

(∂B2)

putting C1 = (1 + 2K(βα ))βα (‖ ∇xθ ‖∞ +1) ‖ Z ‖ we obtain the result sought.
Further bei the change of variable we have∫

Bρ

bF−1
ρ

(x,∇xPρϕ ◦ Fρ(x)))(∇xPρϕ ◦ Fρ(x))dx =

∫
B1

b(y,∇yPρϕ(x))(∇yPρϕ(y))dy

hence ∫
B1

b(y,∇yPρϕ(y))(∇yPρϕ(y))dy ≤
∫
B2\Bρ

a(x,∇xPρϕ ◦ Fρ(x))∇xvdx

thus for αb the constant corresponding to the assumption 2 on the function b we have

αb

∫
B1

|∇xPρϕ(x))|pdx ≤ β
(∫

B2\Bρ
(|∇xPρϕ ◦ Fρ(x)|p−1)p

′
dx
) 1
p′
(∫

B2\Bρ
|∇xv(x)|pdx

) 1
p

dx

≤ β
(∫

B2\Bρ
(|∇xPρϕ ◦ Fρ(x)|p)dx

) 1
p′ ‖ ∇v ‖p

≤ β(βα ‖ ∇v ‖p)
p
p′ ‖ ∇v ‖p

(12)
it follows that( ∫

B1

|∇xPρϕ(x))|pdx
) 1
p ≤ (

β

αb
)

1
p (
β

α
)

1
p′ ‖ ∇v ‖p= (

α

αb
)

1
p (
β

α
) ‖ ∇v ‖p

Again putting,

C2 = (
α

αb
)

1
p (1 + 2K

β

α
)
β

α
(‖ ∇θ ‖∞ +1) ‖ Z ‖

we obtain the sought result.
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Corollary 5.8 We have(∫
B2

|∇x(Pρϕ ◦ Fρ(x))|pdx
) 1
p ≤ (C1 + C2) ‖ ϕ ‖

W
1− 1

p
,p

(∂B2)

for every ϕ ∈W 1− 1
p ,p(∂B2), every 0 < ρ < 1 and every p ≤ d.

Proof
We have Since Fρ(x) = x

ρ on Bρ, by a change of variables we easy obtain∫
Bρ

|∇x(Pρϕ ◦ Fρ(x))|pdx ≤ ρd−p
∫
B1

|∇y(Pρϕ))|pdy

hence (∫
Bρ

|∇x(Pρϕ ◦ Fρ(x))|pdx
) 1
p ≤ C2 ‖ ϕ ‖

W
1− 1

p
,p

(∂B2)

.

Proposition 5.9 There exists a constant C such that

‖ Pρϕ ◦ Fρ ‖W 1,p(B2)≤ C ‖ ϕ ‖
W

1− 1
p
,p

(∂B2)

for every ϕ ∈W 1− 1
p ,p(∂B2), every 0 < ρ < 1 and every p ≤ d.

Proof
Since Fρ(x) = x for x ∈ ∂B2, then (Pρϕ ◦Fρ − Pϕ) ∈W 1,p

0 (B2), by the Poincaré inequality
we have ‖ Pρϕ ◦ Fρ − Pϕ ‖p≤ K ‖ ∇(Pρϕ ◦ Fρ − Pϕ) ‖p therefore

‖ Pρϕ◦Fρ ‖p≤ K ‖ ∇Pρϕ◦Fρ ‖p + ‖ Pϕ ‖p +K ‖ ∇Pϕ ‖p≤ K ‖ ∇Pρϕ◦Fρ ‖p +(1+K) ‖ Pϕ ‖W 1,p(B2)

thus

‖ Pρϕ ◦ Fρ ‖W 1,p(B2)≤
(
(C1 + C2)(K + 1) + (K + 1)(1 + 2K

β

α
‖ Z ‖

)
‖ ϕ ‖

W
1− 1

p
,p

(∂B2)

and it follows that

C = (2 +
α

αb
)

1
p )(K + 1)(1 + 2K

β

α
)
β

α
(‖ ∇θ ‖∞ +1) ‖ Z ‖

satisfies the sought inequality.

Proposition 5.10 Let p ≤ d and uρ(x) := Pρϕ ◦ Fρ(x) for every x ∈ B2. Then uρ is,
for every 0 < ρ < 1, an a-harmonic function outside the closed ball B̄ρ, which converge as
ρ 7→ 0 to Pϕ, the a-harmonic function solution of the problem (1) with Dirichlet data ϕ.
Moreover uρ converge to Pϕ as ρ tends to zero, weakly in W 1,p(B2) and strongly in Lp,
∇Pρϕ converge to ∇Pϕ a.e on Ω and a(x,∇Pρϕ) converge to a(x,∇Pϕ) a.e in B2 and

weakly in Lp
′
(Ω)

Proof
By the Lemma (5.5) and the transformed of aρb by the admissible change of variables F−1

ρ , uρ
is for every 0 < ρ < 1 an a-harmonic function outside the closed ball Bρ. By the proposition
5.9, the theorem of Banach-Alaoglu, the lemma 3.4, a diagonal procedure and the trace
theorem, we obtain that uρ converge to Pϕ as ρ tends to zero, weakly in W 1,p(B2) and
strongly in Lp and ∇uρ converge to ∇Pϕ a.e on B2 and a(x,∇uρ) converge to a(x,∇Pϕ)

a.e in B2 and weakly in Lp
′
(B2)



16

Corollary 5.11 We have lim
ρ 7→0

Pρϕ(y) = Pϕ◦F−1(y) for every 1 < |y| ≤ 2 where F (x) =

lim
ρ 7→0

Fρ(x) = (1 +
1

2
|x|) x
|x|

for x 6= 0.

Corollary 5.12 For every 0 < ρ < 1 the function Pρϕ ◦Fρ is, locally uniformly bounded
on B2 \Bρ.

Proof
By Remark 3.7 item 1 and the Harnack inequality (cf. [10])

Proposition 5.13 For every ϕ ∈W 1− 1
p ,p(∂B2) and function f ∈ Lp(B2) we have

lim
ρ 7→0

∫
B2\Bρ

|(a(x,∇xPρϕ ◦ Fρ)− a(x,∇xPϕ))f(x)|dx = 0

The convergence does not depend on the Caratheodory function b

Proof
We have for every measurable subset E of B2

|
∫
E
IB2\Bρa(x,∇xPρϕ ◦ Fρ)f(x)dx| ≤

∫
E

IB2\Bρ |a(x,∇xPρϕ ◦ Fρ)f(x)|dx

≤
∫
E

IB2\Bρβ|∇xPρϕ ◦ Fρ)|
p−1f(x)dx

≤ β
(∫

B2\Bρ
|∇xPρϕ ◦ Fρ)|pdy

) 1
p′
(∫

E

|f(x)|pdx
) 1
p

≤ β(C1 ‖ ϕ ‖
W

1− 1
p
,p

(∂B2)
)p−1

( ∫
E
|f(x)|pdx

) 1
p

.

(13)
Where C1 is the constant given in Proposition 5.6. We easy see that the set of functions
{a(x,∇xPρϕ ◦ Fρ)IB2\Bρ , 0 < ρ < 1} is uniformly integrable relatively to the parameter
ρ and the caratheodory function b. By the Proposition 5.10 and the Vitali Convergence
Theorem we get the result sought.

We finish this subsection with the two following nearly cloking theorems:
Theorem 2
For every ψ ∈ W 1− 1

p ,p(∂B2), let f = (1 − θ)Pψ where θ is a C∞c (Rd) function from B2

to R associated, according to the Lemma 5.6, with the compact set K = Bρ0
for a fixed

0 < ρ0 < 1 and the open set U = B2ρ0
. For every 0 < ρ < ρ0, let Λρb , Λρb(F

−1
ρ ) and Λ are

the Dirichlet-to-Neumann Maps associated respectively with aρb , (aρb)F−1
ρ

and a. Then

1. for every ϕ,ψ ∈W 1− 1
p ,p(∂B2) and 0 < ρ < ρ0 we have

< Λρbϕ,ψ > − < Λϕ,ψ >=

∫
B2\Br

(
a(x,∇xPρϕ ◦ Fρ)− a(x,∇xPϕ)

)
∇xfdx

for every r with ρ < r < ρ0

2. for every ϕ,ψ ∈W 1− 1
p ,p(∂B2)

lim
ρ7→0
| < Λρbϕ,ψ > − < Λϕ,ψ > | = 0
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Proof
Let ψ,ϕ ∈ W 1− 1

p ,p(∂B2). Since the functions f and Pρϕ ◦ Fρ have the function ψ as trace
on the Boundary of B2, then by propositions 3.9, 4.7 and the lemma 5.5 we have

< Λρbϕ,ψ >=< (Λρb(F
−1
ρ ))ϕ,ψ > .

Let
I :=< Λρbϕ,ψ > − < Λϕ,ψ > .

By the choose of the function f , we have ∇f = 0 on Bρ and then

I =

∫
B2

(aρb)F−1
ρ

(x,∇xPρϕ ◦ Fρ)∇xPρψ ◦ Fρdx−
∫
B2

a(,∇Pϕ)∇Pψdx

=

∫
B2

(aρb)F−1
ρ

(x,∇xPρϕ ◦ Fρ)∇fdx−
∫
B2

a(,∇Pϕ)∇fdx

=
∫
B2\Bρ(a(x,∇xPρϕ ◦ Fρ)− a(x,∇Pϕ))∇xfdx

(14)

Hence

< Λρbϕ,ψ > − < Λϕ,ψ >=

∫
B2\Bρ

(a(x,∇xPρϕ ◦ Fρ)− a(x,∇Pϕ))∇xfdx

Since ∇f = 0 on Bρ0 we get the sought result.

By proposition 5.13, we then obtain the validity of item 2.

Remark 5.14 The ball B1 is almost invisible as ρ is sufficiently small.

We have focused on the radial symmetric setting. However our arguments did not use
this symmetry in any essential way. Indeed, the Rademacher theorem, an aproximation
result for L1(Ω) functions by smooth functions and the same previous arguments proves:
Theorem 3
Let G : B2 → Ω be a Lipschitz continuous map with a Lipschitz continuous inverse, and let
D = G(B1) then Hρ = G ◦ Fρ ◦G−1 : Ω→ Ω is peacewise Lipschitz; moreower

• Hρ expands G(Bρ) to D and

• Hρ(x) = x at the boundary ∂Ω

in the same way as in the beginning of this subsection, for given function a und b from
Ω×Rd −→ Rd we define on Ω×Rd the regular near cloak associated with Hρ as follows :

aρb(y, ξ) =

{
b(y, ξ) for y ∈ D and ξ ∈ Rd,
aHρ(y, ξ) for y ∈ Ω\D and ξ ∈ Rd (15)

Then for every ϕ,ψ ∈W 1− 1
p ,p(∂B2)

lim
ρ 7→0
| < Λρbϕ,ψ > − < Λϕ,ψ > | = 0

where Λρb and Λ are the Dirichlet to Neumann maps associated respectively with aρb and a.

Remark 5.15 The subset D ⊂ Ω is almost invisible as ρ is sufficiently small.
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5.2 Singular Cloak

In what follows, let F (x) = lim
ρ 7→0

Fρ(x) = (1 +
1

2
|x|) x
|x|

for x 6= 0.

If we set y = F (x), then F−1(y) = 2(|y| − 1) y
|y| for |y| > 1. By the lemma 5.2 we have:

•
DF =

(1

2
+

1

|x|
)
I − 1

|x|
x̂x̂T

where x̂ = x
|x| For x 6= 0

• For x 6= 0

det(DF )(x) =
1

2

(1

2
+

1

|x|
)d−1

=
(|x|+ 2)d−1

2d|x|d−1

We hence obtain from the previous calculus

Remark 5.16 (DF )−1 is uniformly bounded on B2 but F is not an admissible change
of variables and as by previous papers (cf. [11], [12]) it will be called a singular change of
variables.

Let b be an arbitrary function from B2 × Rd −→ Rd satisfying a structural assumption
as the function a

Definition 5.17 (Singular cloak associated with F and a)

We define the singular cloak associated with the singular change of variables F , the
Function, denoted by aFb , from B2 × Rd −→ Rd given as follows

aFb (y, ξ) =

{
b(y, ξ) for y ∈ B1 and ξ ∈ Rd,
aF (y, ξ) for y ∈ B2\B1 and ξ ∈ Rd (16)

where

aF (y, ξ) :=
1

det DF(x)
DF (x)a(x, (DF (x))ξ) for every x > 0 and y = F (x)

The following theorems give, for the singular change of variables F , that the associate
singular cloak makes the ball B1 perfectly invisible in the sence of the definitions 5.1 and 5.3.

Theorem 4
Let ϕ ∈W 1− 1

p ,p(∂B2) and u a locally bounded function from B2 to R̄ which is a W 1,p
loc (B̄2 \

∂B1) solution of the following “Dirichlet problem”
∫

Ω

(aFb (y,∇yu))∇yvdx = 0 for all v ∈W 1,p
0 (B2),

u = ϕ on ∂B2

(17)

then there exist a constant C such that u has the following form{
u(y) = Pϕ(F−1(y)) for almost every y such that 1 < |y| ≤ 2
u(y) = C for almost every y ∈ B1

(18)

Proof
Let ε > 0 and Bε the ball with center x = 0 and radius ε. We have for x ∈ B2, |x| > ε if
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and only if y = F (x) > 1 + ε
2 . From the previous properties of the jacobian matrix DF it

follows that if v ∈ W 1,p
0 (B2 \ Bε) then ṽ = v ◦ F−1 ∈ W 1,p

0 (B2 \ B1+ ε
2
). By the hypothesis

on u and a variable changes we have∫
B2\B1+ ε

2

aFb (y,∇u)∇ṽdy =

∫
B2\Bε

a(x,∇x(u ◦ F ))∇xvdx = 0

for every ε > 0, Thus the locally bounded function u ◦ F on B2 is a-harmonic on B2 \ {0},
since the point {0} is a-polar (i.e polar for quasilinear elliptic structure given by a, (cf.
[10] theorem 10.1), then by the removable singularuty theorem (cf. [10] theorem 7.36) the
function u◦F is extendable to an a-harmonic Function. Since u◦F = u = ϕ at the boundary
of B2, we hence obtain u ◦ F = Pϕ and therefore u = Pϕ ◦ F−1 on B2 \ B̄1

Let v ∈ C∞c (B2) and v1(y) = v(0) for |y| ≤ 1 and v1(y) = v ◦ F−1(y) for |y| > 1. It is
easy to verify that v1 ∈W 1,p

0 (B2) and by the hypothesis we have∫
B̄1

b(y,∇yu)∇yv1dy +

∫
B2\B̄1

aF (y,∇yu)∇yv1dy = 0 for every v ∈ C∞c (B2).

By the change of variables y = F (x) we get∫
B2\B̄1

aF (y,∇yu)∇yv1dy =

∫
B2\{o}

a(x,∇x(u ◦ F ))∇xvdx.

By the previous calculus we have u ◦ F = Pϕ and then

∫
B2\{o}

a(x,∇x(u ◦ F ))∇xvdx = 0,

hence

∫
B̄1

b(y,∇yu)∇yvdy = 0 for every v ∈ C∞c (B2), it follows that b(y,∇yu) = 0 almost

every where in B̄1. Since the Function b satisfies a structural assumptions of section 3, by
the assumption 2 we then obtain ∇yu = 0 a.e and u is constant a.e in B1.

Corollary 5.18 Let ϕ ∈W 1− 1
p ,p(∂B2) and v the function from B2 to R such that{

v(y) = Pϕ(F−1(y)) if 1 < |y| ≤ 2
v(y) = Pϕ(0) for y ∈ B1

(19)

Then

1. v is the unique continuous function satisfying the conditions of the previous theorem

2. v is the potentiel outside the cloaked region with Dirichlet data ϕ ∈ H 1
2 (∂Ω) obtained

in (cf. [11] pages 17 and 19 ) in the linear case modelling the electric impedance
tomographie.

By theorem 2, the existence of the limit of Λρb , as ρ tends to zero, leads to the following
definition of the Dirichlet-to-Neumann map:

Definition 5.19 The mapping from W 1− 1
p ,p(∂B2) to its dual W−(1− 1

p ),p′(∂B2) defined,

for every ϕ,ψ ∈W 1− 1
p ,p(∂B2), by

< ΛFb ϕ,ψ >:= limρ→0 < Λρbϕ,ψ >

will be called the Dirichlet-to-Neumann map associated with the singular cloak aFb (Definition
5.17).
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Theorem 5
For every function b from B2 ×Rd −→ Rd satisfying a structural assumptions of section

3, we have

1. ΛFb = Λ ; where Λ is the Dirichlet-to-Neumann-map associated with a.

2. For every ϕ,ψ ∈W 1− 1
p ,p(∂B2) we have

< ΛFb ϕ,ψ >=

∫
B2\B̄1

aF (y,∇yPϕ ◦ F−1)∇yPψ ◦ F−1dy

Proof
Let ϕ,ψ in W 1− 1

p ,p(∂B2), by the Proposition 3.9 for the Dirichlet-to-Neumann-map
associated with the function a and by the change of variables F from B2 \ {o} to B2 \ B1,
we have

< Λϕ,ϕ > =

∫
B2\{o}

a(x,∇xPϕ)∇xPϕdx

=

∫
B2\B̄1

aF (y,∇yPϕ ◦ F−1)∇yPϕ ◦ F−1dy

=

∫
B2\B̄1

1

detDF (F−1)
a(x,DF (F−1)∇yPϕ ◦ F−1)DF (F−1)∇yPϕ ◦ F−1dy

≥ α
∫
B2\B̄1

1

detDF (F−1(y))
|DF (F−1(y))∇yPϕ ◦ F−1|pdy.

(20)
This yields by the Hoelder Inequality that the function

1

detDF (x)
a(F−1(y), DF (F−1(y))∇yPϕ ◦ F−1(y))DF (F−1(y))∇yPψ ◦ F−1(y)

is integrable on B2 \ B̄1

and hence by a change of variables y = F (x) we get∫
B2\B̄1

aF
(
y,∇yPϕ ◦ F−1

)
∇yPψ ◦ F−1dy =

∫
B2

a(x,∇xPϕ)∇xPψdx =< Λϕ,ψ > .

By the theorem 2, we have < Λϕ,ψ >= limρ→0 < Λρbϕ,ψ > and we thus obtain the sought
results.

we end this section by the following very interesting result.

Corollary 5.20 For every function a satisfying a structural assumptions of section 3,
every singular cloak aFb (Definition 5.16), associated with the singular change of variables
F and a, Cloaks (makes perfectly invisible) the unit ball B1 in the sense of definition 5.3

6 Applications

6.1 Electric Impedance Tomography

As given in Remark 3.1 item 5, differential operators in divergence form known in physic
as the PDE in electrostatics is a mathematical modelisation for the Electric Impedance To-
mography as follows:

∇.(σ∇u) =
∑
i,j

∂

∂xi
(σij(x))

∂u

∂xj
in Ω
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Where σ is a continous and strongly elliptic summetric matrix on Ω in the sence that for
some constants 0 < m < M <∞:
m|ξ|2 ≤< σ(x)ξ, ξ >≤ M |ξ|2 for all x ∈ Ω and ξ ∈ Rd. It is then easy to see that we have
the case p = 2 and that the differential operator ∇.(σ∇) is the second order quasi-linear
elliptic operator corresponding to the following function satisfying a structural assumptions
with α = m and β = M
a(x, ξ) = σ(x)ξ for every x ∈ Ω and ξ ∈ Rd.

We have then easy obtained for the singular cloak (see definition 5.16) in this case

aF (y, ξ) =
1

detDF (F−1(y))
DF (F−1(y))σ(F−1(y))DF (F−1(y))

Our theorem 5 is then a generalisation, in the framework of the class of Leray-Lions opera-
tors, of theorem 3 of R.V.Kohn, H Shen, M.S.Vogelius, M.I.Weinstein (cf. [11]) in the linear
setting of operators in divergence form.
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