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Introduction

Since ages, the electromagnetic invisibility has long been fascinating men and has had a big interest in the fantasy literature and researchers. From Plato who evoked the invisibility in the myth of Gyges (the myth of the magic ring making any wearer invisible) to the contemporary character of Harry Potter, she was associated with the magic (wizardry, witchery), the supernatural. Its irruption into the scientific and technical sphere could only arouse curiosity or surprise a wide audience.

However just in 2006, Simultaneously Ulf Leonhardt( [START_REF] Leonhardt | Optical conformal mapping[END_REF]) and John Pendry ( [START_REF] Pendry | Controlling electromagnetic fields[END_REF]) proposed similar concepts to achieve perfect invisibility. The initial idea can be however simple: If one follows the Snell-Descartes Laws, one can also distorts the light path and arranged that in order to avoid a particular area, that area and all objects that can contain become de facto invisible! Of course, this physical idea could germinate in a context where various ingredients seemed to make it realistic.

The key point discovered by Leonhardt and Pendry in 2006 is that the form of Maxwell equations that describe the propagation of electromagnetic waves are invariant under (conformal)coordinates changes. Therefore the path of the light may be decomposed: In one hand, in a set of intrinsic equations valid whatever the environment and which do not depend on the geometry (the new medium dielectric permittivity ε(x) and the new medium magnetic permeability µ(x) are depending only on the transformation and not on the geometry). In the other hand in a set of equations that characterize the environment and depend on geometry. It is thus possible to associate the change of geometry, that is to say the transformations of the space or coordinates in optical properties and to translate deformation of space in effects equivalent materials: This is the main idea of the transformational Optic, a new way of designing optical devices (the conformal transformations, applicable to two-dimensional case, have been long used by opticians and are special cases for which the properties of material are isotropic). So just, imagine a clever but simple distortion of the space, and apply the principle of transformational optic in order to obtain the optical characteristics of an invisibility Cape/cloak.

Of course, the question that immediately arises is whether we have materials at our disposal, which exhibit suitable characteristics. Let us say immediately that these materials do not exist in nature. One of the most active areas of modern optics is precisely the conception of metamaterials, that is to say structures in which the basic cells, more or less similar, are of sizes of the order of magnitude equal or below the wavelength and contain constituted substructures of conventional materials. The basic cells and their orderly arrangement give the total structure of new optical properties very different from those of basic materials and impossible to find in the range of natural homogeneous materials. For an exhaustive knowledge/history of the electromagnetic invisibility, see(A. Nicolet [START_REF] Nicolet | Les capes d'invisibilité et l'optique transformationnelle, Images de la Physique[END_REF])

The mecanism, using the change of variables, for obtaining electromagnetic invisibility/cloaking was similar to that of Greenleaf, Lassas and Uhlmann (cf [START_REF] Greenleaf | Anisotropic conductivities that cannot be detected by EIT[END_REF]) obtained earlier in 2003 for constructing conductivity ensuring a cloaking in the case of electric impedance tomography. Later Kohn, Shen, Vogelius and Weinstein (cf [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]) in 2008 and that of Kohn, Onofrei, Vogelius and Weinstein (cf [START_REF] Kohn | Cloaking via change of variables for the Helmoltz equation[END_REF])in 2010 use the same mecanism to generalize and improve the results of Greenleaf et al not only for electric impedance tomography but also for the Helmholtz equation. Another adoptations use the change of variables based cloaking to elastic sensing in 2006 ( [START_REF] Milton | On cloaking for elasticity and physical equations with a transformation invariant form[END_REF]) or to acoustic in 2007 ( [START_REF] Cummer | One path to acoustic cloaking[END_REF])

Let us remark hier that the Dirichlet-to-Neumann-Map and the solution of the Calderón problem ( [START_REF] Brander | Calderon's problem for the p-Laplacian:First order derivative of conductivity on the boundary[END_REF] and [START_REF] Calderón | On an inverse boundary value problem[END_REF]) play a crucial role for previous research on the cloaking.

the linear partial differential equations in divergence form formalising the context of Electric Impedance Tomography are generalized in nonlinear partial differential equations in the framework of the weighted p-Laplace equations (cf [START_REF] Brander | Calderon's problem for the p-Laplacian:First order derivative of conductivity on the boundary[END_REF] and [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]). In relation with this nonlinear generalization and for the investigation of the Calderón problem, interesting results are obtained (cf [START_REF] Brander | Calderon's problem for the p-Laplacian:First order derivative of conductivity on the boundary[END_REF] and [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]).

The p-Laplace equation has applications in e.g. image processing, fluid mechanics, plastic mouling and modelling of sand-pile. In contrast to previous investigations on the cloaking, the weighted p-Laplace equations are however, for every p = 2, not invariant under admissible (conformal)change of variables (i.e. coordinates change). Since the p-Laplace operators belong to the class of Leray-Lions (cf. [START_REF] Leray | Quelques resulatats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder[END_REF]), we will prove in this paper the following useful results : An admissible (conformal) coordinates change, transforms a quasi-linear elliptic differential equation in a quasi-linear elliptic differential equation given by operators in the class of ). We can hence obtain the method of coordinates change for the investigation of cloaking in this nonlinear context formalized by Leray-Lions.

The paper is organized as follows: We begin, in section 2, by introducing frequently used notions needed for the determination of the nonlinear variational Dirichlet problem, introduced in section 3, for second order quasi-linear elliptic differential equations in the class of [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]) and genralizing the weighted p-Laplace equations ( [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]). In section 3, we recall, on Lipschitz domain Ω in R d with d ≥ 2, functions from Ω × R d to R d satisfying structural assumptions defining second order quasi-linear elliptic differential operators/equation belonging to the class of Leray-Lions. We then use ( [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]) to recall the solution of the Dirichlet problem given a boundary function in the Sobolev-Slobodečki space W 1-1 p ,p (∂Ω) and to recall the Dirichlet-to-Neumann Map. In section 4, we define admissible change of variables and we prove that it transforms a second order quasi-linear elliptic differential equation in the class of Leray-Lions to a equation of the same art. Moreover this admissible change of varianbles leaves invariant the Dirichlet-to-Neumann-Map.

In section 5, we adopt the framework of second order quasi-linear elliptic differential equations to define the notion of cloaking. Further, we consider, for Ω the ball B 2 of center x = 0 and radius 2, the admissible (nonsingular) change of variables F ρ for 0 < ρ < 1 used in ( [START_REF] Greenleaf | Anisotropic conductivities that cannot be detected by EIT[END_REF] and [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]), and define an associated regular near cloak. We then prove that the unit ball B 1 is almost invisible (in the sence of item2 of theorem 2) as ρ is sufficiently small. Further we prove in theorem 3 that the regular near cloak does not focus on the radial case For the singular change of variales F , used in previous works(see among others ( [START_REF] Greenleaf | Anisotropic conductivities that cannot be detected by EIT[END_REF], [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF], [START_REF] Kohn | Cloaking via change of variables for the Helmoltz equation[END_REF])), we define an associeted singular cloak (given on the shell B 2 \B 1 by a transformation by F to a given second order quasi-linear elliptic differential operator and on B 1 by an arbitrary second order quasi-linear elliptic differential operator)and we show that it gives a perfect invisibilty for the ball B 1 . We prove, in theorm 4, that the potentiel outside the cloaked region with Dirichlet data ϕ ∈ W 1-1 p ,p (∂Ω) is the same obtained for ϕ ∈ H 1 2 (∂Ω) in (cf. [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF] pages 17 and 19 ) in the linear case of second order differential operator in divergence form modelling the electric impedance tomographie. The last section is devoted to the application of our results to the linear case treated in ( [START_REF] Greenleaf | Anisotropic conductivities that cannot be detected by EIT[END_REF], [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF])and we prove that our theorem 5 is a generalisation, at the framework of equations in the class of Leray-Lions, of theorem 3 in (cf. [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]) A direct application as for the Laplacian (2-Laplacian) to the p-laplacian for p = 2 will be treated in a next work... Because of the nonlinear character of our work, we have developed other methods not related to previous results such as from [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF] or from [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]in the linear case.

Preliminaries

Recall on Sobolev spaces and related fields We assume hier that Ω is a bounded Lipshitz domain in R d with d ≥ 2. For p ∈ [1, +∞], denote by L p (Ω) and W 1,p (Ω)the usual Lebesgue and first sobolev spaces. We denote by C 0,1 (Ω) the space of all Lipshitz continuous functions on the closure Ω of Ω. The boundary ∂Ω is equiped with the (d -1) dimensional Hausdorf measure dH when we work with the lebesgue space L p (∂Ω). Morever, C(∂Ω) denotes the set of all real valued continous functions on ∂Ω.

Trace on the boundary

Since Ω is a Lipshitz domain, by J. Nečas ([18] Theorem 4.2, 4.6 and 3.8) the mapping u → u | ∂Ω from C 0,1 (Ω) to C 0,1 (∂Ω) has a unique continuous extension mapping

T r : W 1,p (Ω) -→ L p * (∂Ω) called trace operator with p * = p(d-1) d-p if 1 ≤ p < d , p * ≥ 1 if p = d and p * = ∞ .
For conveniance, it is written u | ∂Ω instead of T r (u) for u ∈ W 1,p (Ω) even if u does not belong to C(Ω) and we call u | ∂Ω or T r (u) the trace of u.

Sobolev-Slobodečki space on the boundary

It is well Known (cf. J. Nečas [START_REF] Nečas | les methodes directes en theorie des equations elliptiques[END_REF] section 3.8) that

• ker(T r ) = {u ∈ W 1,p (Ω)|T r u = 0} the kernel of T r concide with the Sobolev space W 1,p 0 (Ω).

• Rg(T r ) = {T r u|u ∈ W 1,p (Ω)} the range of T r coincide with the Sobolev-Slobodečki space W 1-1 p ,p (∂Ω)(cf. [START_REF] Hajlasz | Traces of Sobolev Functions on Fractal Type Sets and Characterization of Extension Domains[END_REF]) defined as the linear subspace of all ϕ ∈ L p (∂Ω) with finite semi-norm

[ϕ] p p = ∂Ω ∂Ω |ϕ(x) -ϕ(y)| p |x -y| d-2+p dxdy
and equiped with the norm

ϕ W 1-1 p ,p (∂Ω) = ϕ L p (∂Ω) +[ϕ] p for every ϕ ∈ W 1-1 p ,p (∂Ω)
Remark 2.1 We have the following important results:

• The trace operator T r has a linear bounded right inverse

Z : W 1-1 p ,p (∂Ω) → W 1,p (Ω)
(cf. [START_REF] Nečas | les methodes directes en theorie des equations elliptiques[END_REF] theorem 5.7)

• Another crucial propriety of a Lipshitz domain (cf.D. Hauer [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF] Lemma 2.1) Ω is that: for 1 < p < ∞ and for 1 ≤ q < ∞ the space C ∞ (Ω) lies dense in W 1,p (Ω) and the set

{v → v | ∂Ω , v ∈ C ∞ (Ω)} is dense in W 1-1 p ,p ( 
∂Ω) and in L q (∂Ω).

3 Second order quasi-linear elliptic differential equations/operators thoughout this paper, we assume that Ω is a bounded domain in R d with a lipschitz boundary ∂Ω, d ≥ 2 and 1 < p < ∞ Definition 3.1 A function a : Ω × R d -→ R d satisfies a structural assumptions, needed for the defintion of a second order quasi-linear elliptic operator if :

1. a is a Caratheodory function satisfying the following assumptions:

For some constants 0 < α ≤ β < ∞ 2. < a(x, ξ), ξ >≥ α|ξ| p for a.e x ∈ Ω and every ξ ∈ R d 3. |a(x, ξ)| ≤ β|ξ| p-1 for a.e x ∈ Ω and every ξ ∈ R d 4. < (a(x, ξ 1 ) -a(x, ξ 2 ), (ξ 1 -ξ 2 ) >> 0 with ξ 1 = ξ 2 and for a.e x ∈ Ω 5. a(x, λξ) = λ|λ| p-2 a(x, ξ) ∀λ ∈ R, λ = 0 and for a.e x ∈ Ω Where <, > is the scalar product in R d and |ξ| =< ξ, ξ > 

Remark 3.2

1. Under the previous assymptions, the Caratheodory function a defines a second order quasi-linear elliptic operator A, belonging to the class of Leray-Lions operators (cf. [START_REF] Leray | Quelques resulatats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder[END_REF]) as follows:

Au := -div(a(x, ∇u)) in D (Ω) for every u ∈ W 1,p
Loc (Ω). Hier is ∇u = ∇ x u is the gradient of u relatively to the variable x.

2. To the quasi-linear elliptic operator A is developed by (cf. [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]) a nonlinear potential theory.

3. In a very recent work by Daniel Hauer in (cf. [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]) a Dirichlet-to-Neumann map associated with the second order quasi-linear elliptic operator A, was defined and Follow-up of applications to elliptic and parabolic problems.

4. By taking a(x, ξ) = σ(x)|ξ| P -2 ξ for ξ ∈ R d and σ is a continous and strongly elliptic matrix on Ω in the sence that for some constants 0 < m < M < ∞:

m|ξ| 2 ≤< σ(x)ξ, ξ >≤ M |ξ| 2 for all x ∈ Ω and ξ ∈ R d .
It is well known that the function a is a function satisfying the previous strutural assumptions and the associated operator A is called the weighted p-Laplace operator (cf. [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF])(resp.the classical p-Laplace ∆ p obtained by σ(x) = Id R d ) and is a prototype of quasi-linear elliptic differential operators belonging to the class of Leray-Lions operators.

5. If p = 2 then the weighted 2-Laplace operator is well known as a differential operator in divergence form known in physic as the PDE in electrostatics which is later known as a mathematical formalism for the Electric Impedance Tomography as follows: In what follows in this section, we will review (cf.D.Hauer [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]) some basic facts about quasi-linear elliptic equations given by -div(a(x, ∇u)) = 0 Where a satisfies a structural assumptions. Let ϕ ∈ W 1-1 p ,p (∂Ω)(the Sobolev-Slobodečki space on the boundary∂Ω). We consider the following nonlinear variational Dirichlet problem:

∇.(σ∇u) = i,j ∂ ∂x i (σ ij (x)) ∂u ∂x j in Ω The electrical conductivity σ(x) = σ ij (x) is,
-div (a(x, ∇u)) = 0 in Ω, u = ϕ on ∂Ω (1) 
Definition 3.3 1. We call u ∈ W 1,p Loc (Ω) a weak solution of -div (a(x, ∇u)) = 0 in Ω, (2) 
if u satisfies the following integral equation:

Ω (a(x, ∇u))∇vdx = 0 for all v ∈ W 1,p 0 (Ω), (3) 2. 
A weak solution will be called a-harmonic function on Ω.

For later use, we need the following compactness results concerning weak solutions of (2), which is an immediate consequence of (D. Hauer [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF] Lemma 2.3 ) and (L.Boccardo and F. Murat [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF] Theorem 2.1 and Remark 2.1). Lemma 3.4 If (u n ) is a bounded sequence in W 1,p (Ω) of weak solution of (2), then there is subsequence u kn of u n and a weak solution u ∈ W 1,p (Ω) of ( 2) such that (u kn ) converges to u weakly in W 1,p (Ω), strongly in L P , ∇u k converges to ∇u strongly in (L q (Ω)) d for every q < p(thus a.e in Ω) and a(x, ∇u kn ) converges to a(x, ∇u) a.e in Ω and weakly in L P (Ω).

Proposition 3.5 Let ϕ ∈ W 1-1 p ,p ( 
∂Ω), then there exists a unique weak solution of (2) which is solution of the problem [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF].

Proof Let Φ ∈ W 1,p (Ω) be such that Φ | ∂Ω = ϕ , it is well known that the operator v → A(v) = -div(a(x, ∇v + ∇Φ))
satisfies the assumptions of the Minty-Browder theorem [J.L.Lions [START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF], thm 2.1]. Hence the equation ( 2) admits a weak solution u ∈ W 1,p (Ω) satisfying u -Φ ∈ W 1,p 0 (Ω). We have then

Ω a(x, ∇u)∇vdx = 0 ∀v ∈ W 1,p 0 (Ω)
Let u 1 be another weak solution with (u

1 -Φ) ∈ W 1,p 0 (Ω) then u -u 1 ∈ W 1,p 0 (Ω) and Ω a(x, ∇u 1 )(∇u -∇u 1 )dx = Ω a(x, ∇u)(∇u -∇u 1 )dx = 0 and thus Ω (a(x, ∇u) -a(x, ∇u 1 )(∇u -∇u 1 )dx = 0.
By the strict monotonicity of the function a (assumption 4) we obtain ∇u = ∇u 1 and by the Poincaré Inequality we get u = u 1 .

We arrive to the following definition Definition 3.6 For a given boundary value ϕ ∈ W 1-1 p ,p (∂Ω), we call a function u ∈ W 1,p a W 1,p -solution of the Dirichlet problem [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF] on Ω if (u -Zϕ) ∈ W 1,p 0 (Ω)and u is a weak solution of (2). Z is the linear bounded right inverse of the trace function operator on the boundary ∂Ω (Remark 2.

1).

In what follows, we will denote for every ϕ ∈ W 1-1 p ,p (∂Ω) by P ϕ = P a ϕ the W 1,psolution of the Dirichlet problem (1) associated with the function a on Ω.

Remark 3.7

• for every λ ∈ R and ϕ ∈ W 1-1 p ,p (∂Ω), we have

P λϕ = λP ϕ and |P ϕ| ≤ P |ϕ|
• By (cf. [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF] Theorem 3.70) we will choose P ϕ a continous function on Ω.

• For useful Properties of the application P: 

W 1-1 p ,p (∂Ω) -→ W 1,p (Ω) (cf D. Hauer [9] lemma 2.5).
Then c is a function from Ω × R d -→ R d satisfying a structural assumptions.

Dirichlet-to-Neumann Map (DNP) associated with a quasilinear elliptic operator

If for a given boundary value ϕ ∈ W 1-1 p ,p (∂Ω), P ϕ and a(x, ∇P ϕ) are smooth enough up to the boundary ∂Ω and that ν denote the outward pointing unit normal vector on ∂Ω, the co-normal derivative of P ϕ (associated with the quasi-linear elliptic operator A defined by the function a as at the beginning of this section), on ∂Ω is formally defined by the dot product a(x, ∇P ϕ).ν on ∂Ω.

It is well known, (e.g. D. Hauer [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF]), that the Dirichlet-to-Neumann operator Λ associated with A assign to each Dirichlet boundary data ϕ the correspending co-normal derivative of P ϕ. We formally set: Λϕ = a(x, ∇P ϕ).ν

Multiplying the equaliy by some function ψ ∈ C ∞ (Ω) with respect to the inner product on L 2 (∂Ω) and applying Green's formula yields 

∂Ω (Λϕ)ψ | ∂Ω dH = Ω a(x, ∇P ϕ)∇ψdx = Ω a(x, ∇P ϕ)∇Zψdx H is the d -1 dimensional
W -(1-1 p ),p (∂Ω) of W 1-1 p ,p ( 
∂Ω) . This justifies why the following definition makes sense and is consistent to the case of smooth functions. Definition 3.9 We call the mapping Λ :

W 1-1 p ,p (∂Ω) -→ W -(1-1 p ),p (∂Ω), defined by < Λϕ, ψ >= Ω a(x, ∇P ϕ)∇Zψdx
for every ϕ, ψ ∈ W 1-1 p ,p (∂Ω), the Dirichlet-to-Neumann map associated with the second order quasi-linear differential operator A defined by the Function a(see Remark 3.1 1.).

We recall hier the following interesting results (cf. D.Hauer [START_REF] Hauer | The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems[END_REF] Proposition 3.3). Proposition 3.10 The mapping Λ :

W 1-1 p ,p (∂Ω) -→ W -(1-1 p ),p ( 
∂Ω) has the following properties:

1. < Λϕ, ψ >= Ω a(x, ∇P ϕ)∇P ψdx for every ψ, ϕ 2. Λ is continuous and monotone, that is for every

ϕ 1 ,ϕ 2 < Λϕ 1 -Λϕ 2 , ϕ 1 -ϕ 2 >≥ 0 3. There exists C 1 > 0 such that ||Λϕ|| W -(1-1 p ),p (∂Ω) ≤ C 1 ||ϕ|| p-1 W 1-1 p ,p (∂Ω)
for every ϕ ∈ W 1-1 p ,p (∂Ω).

4. There exists a constant C 2 > 0 such that

< Λϕ, ϕ >≥ C 2 ||ϕ|| P W 1-1 p ,p (∂Ω)
for every ϕ ∈ W

1-1 p ,p m (∂Ω) Hier W 1-1 p ,p m (∂Ω) is the subspace of all ϕ ∈ W 1-1
p ,p (∂Ω) satisfying the so-called compatibility condition ∂Ω ϕdx = 0 equipped with the induced norm and W

-(1-1 p ),p m (∂Ω) is the dual space of W 1-1 p ,p m (∂Ω)

Change of variables

Along this entire section we consider a Lipschitz domain Ω and a function a satisfying a structural assumptions (cf. section 3). Let U be an open subset in Ω and G a change of variables given by y = G(x) (where G is an invertible, differentiable and oriented preserving ) from U to G(U ) and DG(resp.DG T ) the (resp. transposed of the) Jacobian matrix of G with elements a ij = ∂yi ∂xj . We set for u and v in W 1,p (U ) I := U a(x, ∇ x u)∇ x vdx. By the change of variables y = G(x) we get:

I = G(U ) 1 det DG(G -1 (y))
DG(G -1 (y))a(G -1 (y), (DG(G -1 (y)) T ∇ y ũ(y))∇ y ṽ(y)dy

Where ũ(y) = u(G -1 (y)) and ṽ(y

) = v(G -1 (y)) If we set a G (y, ξ) := 1 det DG(G -1 (y)) DG(G -1 (y))a(G -1 (y), (DG(G -1 (y))) T ξ) for y ∈ G(U ) then: U a(x, ∇ x u)∇ x vdx = G(U )
a G (y, ∇ y ũ)∇ y ṽdy Proposition 4.1 Let U be an open subset in Ω and G a differentiable function from U to G(U ). We have for every x ∈ U and i ∈ {1, ..., d}, the eigenvalues λ i (x), β i (x) of the symmetric matrices (DG(x)) T DG(x) and DG(x)(DG(x)) T are nonneegative and hence for every θ ∈ R d and x ∈ U :

(min(λ i (x), i ∈ {1, ..., d}))

1 2 |θ| ≤ |DG(x)θ| ≤ (max(λ i (x), i ∈ {1, ..., d})) 1 2 |θ|

and

(min(β i (x), i ∈ {1, ..., d}))

1 2 |θ| ≤ |(DG(x)) T θ| ≤ (max(β i (x), i ∈ {1, ..., d})) 1 2 |θ|

Proof

Let for i ∈ {1, ..., d}, λ i (x), β i (x) the eigenvalues and u i , v i the orthonormal bases of eigenvectors respectively for the symmetric matrices (DG(x)) T DG(x) and DG(x)(DG(x)) T . Then for every θ ∈ R d , there exist real numbers θ i , µ i such that θ = n i=1 θ i u i = n i=1 µ i v i . We thus have:

|DG(x)θ| 2 =< (DG(x)) T DG(x)θ, θ >=< n i=1 θ i λ i (x)u i , n i=1 θ i u i >= n i=1 θ 2 i λ i (x)
and

|DG(x)) T θ| 2 =< DG(x)(DG(x)) T θ, θ >=< n i=1 µ i β i (x)v i , n i=1 µ i v i >= n i=1 µ 2 i β i (x)
the sought inequalities are then easy to obtain. given by a

G(U ) G (y, ξ) = a G (y, ξ)I G(U ) (y) satisfies on G(U ) × R d a

structural assumptions as by a

Proof

We set x = G -1 (y). Let for i ∈ {1, ..., d}, λ i (y), β i (y) the eigenvalues and u i , v i the orthonormal bases of eigenvectors respectively for the symmetric matrices (DG(x)) T DG(x) and DG(x)(DG(x)) T . From the hypothesis on the determinent of the matrix (DG(x)) and since the real numbers λ i (x), β i (x) are nonnegative, we easily obtain that the positiv real numbers α 1 = min(λ i (x), i ∈ {1, ..., d}), x ∈ U , α 2 = M ax(λ i (x), i ∈ {1, ..., d}, x ∈ U ), δ 1 = min(β i (x), i ∈ {1, ..., d}, x ∈ U ) and δ 2 = M ax(β i (x), i ∈ {1, ..., d}, x ∈ U ) are positive. By the previous corollary we have;

α 1 |θ| ≤ |DG(x)θ| ≤ α 2 |θ| and δ 1 |θ| ≤ |(DG(x)) T θ| ≤ δ 2 |θ|
for every θ ∈ R d and every x ∈ U . For α and β the constants given by the assumptions 2 and 3 on the function a, the previous inequalities and the hypothesis, we have

< a G (y, ξ), ξ >≥ α det DG(x) |(DG(x)) T ξ| p ≥ α(α 1 ) p det DG(x) |ξ| p ≥ α(α 1 ) p c 2 |ξ| p
for every y ∈ G(U ). It follows that the function a

G(U ) G
satisfies on G(U ) the assumption 2 with the constant α(α1) p c2 . Moreover, since

|a G (y, ξ)| = 1 det DG(x) |(DG(x))a(x, (DG(x)) T ξ)| we have |a G (y, ξ)| =≤ α 2 c 1 |a(x, (DG(x)) T ξ)| ≤ βα 2 c 1 |(DG(x)) T ξ| p-1 ≤ βα 2 (δ 2 ) p-1 c 1 |ξ| p-1
we hence obtain that the function a

G(U ) G
satisfies on G(U ) the assumption 3 with the constant β = (α2) p c1 . The other assumptions 4 and 5 and that the function a 

G(U ) G is a Caratheodory function from G(U ) × R d to R d are easy verified.
a G (y, ξ) := 1 det DG(x) DG(x)a(x, (DG(x)) T ξ) if y / ∈ G(E), := 0 if y ∈ G(E) (5) 
Where y = G(x) and E is the negligible closed subset in the definition of the admissible change of variables.

Theorem 1

Let G be an admissible change of variables on Ω and a G the transformed of the Caratheodory function a by G then 1. a G is a function on Ω × R d satisfying a structural assumptions as a in section 3.

a function u is an a-harmonic function on Ω if and only

if ũ = u • G -1 is an a G -
harmonic function on Ω. The notion of a-harmonic function is referred hier to the definition 3.2 2.

Proof

We have, by the change of variables y = G(x), the following relations between the Caratheodory Functions a and a G :

Ω\E a(x, ∇ x u)∇ x vdx = Ω\G(E) a G (y, ∇ y ũ)∇ y ṽdy Since E and G(E) are negligeable we have Ω a(x, ∇ x u)∇ x vdx = Ω a G (y, ∇ y ũ)∇ y ṽdy
The function a G satisfies bei Proposition 4.4 a same structural assumptions on Ω as the function a and because G is an admissible change of variables(G(x) = x on the boundary), we have v ∈ W 1,p 0 (Ω) if and only if ṽ ∈ W 1,p 0 (Ω). It is then easy to see that u is an a-harmonic function on Ω if and only if ũ is an a G -harmonic on Ω Remark 4.7

• the function a G is called the push-forward of a by the change of variables G (cf. [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF] or [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]).

• For the weighted p-Laplace given by a(x, ξ) = σ(x)|ξ| P -2 ξ we have:

a G (y, ξ) = 1 det DG(G -1 (y)) DG(G -1 (y))σ(G -1 (y))(DG(G -1 (y))) T |(DG(G -1 (y))) T ξ| p-2 ξ
This shows that the transformation by G of the weighted p-Laplace operator has not the same form of a p-Laplace

We denote in what follows by P b ϕ, for every ϕ ∈ W 1-1 p ,p (∂Ω), the solution of the Dirichlet problem (1) with boundary value ϕ defined in section 3 for every function b satisfying a structural assumptions in section 3, Corollary 4.8 We have:

P a ϕ = P a G ϕ for all ϕ ∈ W 1-1 p ,p (∂Ω) where P a ϕ = P a ϕ • G -1 .
Proof Since P ϕ = P a ϕ, for every ϕ ∈ W 1-1 p ,p (∂Ω), then it is an a-harmonic solution, it follows that P ϕ is, for every ϕ ∈ W 1-1 p ,p (∂Ω) a solution of the Dirichlet problem (1) defined in section 3 for the Caratheodory Function a G . Since a G is by Proposition 4.4 a function from Ω × R d -→ R d satisfying a structural assumptions (section 3), we hence obtain the corollary. 

< Λϕ, ψ > = Ω a(x, ∇ x P a ϕ)∇ x Zψdx = Ω a G (y, ∇ y P a ϕ)∇ y Zψdy = Ω a G (y, ∇ y P a G ϕ)∇ y Zψdy =< Λ G (ϕ), ψ > (6)
Thus for every ϕ, Λ(ϕ) and Λ G (ϕ) determine identical linear form on W 1-1 p ,p (∂Ω). It follows that

Λ(ϕ) = Λ G (ϕ) for every ϕ ∈ W 1-1 p ,p (∂Ω) and hence Λ = Λ G on W 1-1 p ,p (∂Ω)
5 Cloaking via change of variables Definition 5.1 (cf. [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF][START_REF] Kohn | Cloaking via change of variables for the Helmoltz equation[END_REF]) We say a region of space is cloaked for a particular class of measurements if its contents -and even the existence of the cloak are invisible using such measurements.

Remark 5.2 Let Ω be a relativ compact open set in R d such that the Dirichlet problem associated with a given partial differential operator is solvable for a class R of resolutive functions defined at the boundary(in a local setting) or at the complement (in a nonlocal setting) of Ω. We can then consider, for the definition of the cloaking, the class of solutions S(f ) f ∈R of the partial differential operator as the particular class of measurements.

We introduce in what follows a definition for the cloaking in the framework of second order quasi-linear elliptic differential equations. We now explain how change-of-variables-based cloaking for quasi-linear elliptic operators work. Our demarche is much more general but for simplicity we focus on the radial case: Ω = B 2 where B 2 is the ball of center x = 0 and radius 2 and the region D to be cloaked is B 1 , the concentric ball of radius 1.

We start by explaining how B 1 can be nearly-cloaked using the following admissible change of variables: Fixing a small parameter ρ > 0, consider the piecewise-smooth change of variables from B 2 to B 2 :

F ρ (x) = x ρ if |x| ≤ ρ, 2-2ρ 2-ρ + 1 2-ρ |x| x |x| if ρ ≤ |x| ≤ 2, ( 8 
)
F ρ expends the ball B ρ = {x ∈ R d / |x| ≤ ρ} to B 1 , while mapping the full domain B 2 to itself. Lemma 5.4 We have for every x ∈ B 2 \ B ρ DF ρ (x) = ( 1 2 -ρ + 1 |x| 2 -2ρ 2 -ρ )I - 2 -2ρ 2 -ρ 1 |x| xx T detDF ρ (x) = ( 1 2 -ρ )( 1 2 -ρ + 1 |x| 2 -2ρ 2 -ρ ) d-1 = (|x| + 2(1 -ρ)) d-1 (2 -ρ) d |x| d-1
where I is the identity matrix and x = x |x| Proof An easy calculation gives the Jacobian matrix DF ρ (x) which implies that it is symmetric, x is an eigenvector with eigenvalues 

The regular near cloak associated with F ρ

Let b be an arbitrary Caratheodory function from B 2 × R d to R d satisfying structural assymptions of section 3. Given a function a satisfying the same assumptions as b, we define the "regular near cloak" associated with F ρ as follows:

a ρ b (y, ξ) = b(y, ξ) for y ∈ B 1 and ξ ∈ R d , a Fρ (y, ξ) for y ∈ B 2 \B 1 and ξ ∈ R d (9) 
Lemma 5.5 For every 0 < ρ < 1, a ρ b is, by lemma 3.7 and theorem 1, a function from B 2 ×R d to R d satisfying structural assumptions of section 3 and u ∈ W 1,p is an a ρ b -harmonic solution if and only if uoF ρ is an (a ρ b ) F -1 ρ -harmonic solution for the following Caratheodory function:

(a ρ b ) F -1 ρ (x, ξ) = b F -1 ρ (x, ξ) for x ∈ B ρ and ξ ∈ R d , a(x, ξ) for x ∈ B 2 \B ρ and ξ ∈ R d (10) 
Which gives that an a ρ b -harmonic function is an a-harmonic function outside the closed ball Bρ for every 0 < ρ < 1.

In what follows, let ϕ ∈ W 1-1 p ,p (∂B 2 ) and P ρ ϕ the W 1,p solution of the following quasilinear elliptic equation

-div(a ρ b (x, ∇ x u)) = 0 in B 2 , u = ϕ on ∂B 2 . ( 11 
)
We recall hier the following Lemma 5.6 Let K be a non-empty compact subset of R d and U an open set containing K, then there exists a function θ ∈ C ∞ c (R d ) such that 0 ≤ θ ≤ 1 , θ = 1 on K and θ = 0 outside U Proposition 5.7 There exist constants C 1 and C 2 such that for every ϕ ∈ W 1-1 p ,p (∂B 2 ) and 0 < ρ < 1, we have

• B2\Bρ |∇ x (P ρ ϕ • F ρ (x))| p dx 1 p ≤ C 1 ϕ W 1-1 p ,p (∂B2) • B1 |∇ x P ρ ϕ(x))| p dx 1 p ≤ C 2 ϕ W 1-1 p ,p (∂B2)
Proof Let 0 < ρ 0 < 1 and θ the function associated by the previous lemma with K = B ρ0 and U = B 1 . Let v = (1 -θ)P ϕ and w := P ρ ϕ • F ρ -(1 -θ)P ϕ on B 2 , Since F ρ is an admissible change of variables, then w ∈ W 1,p (B 2 ) and T r(w) = 0, where T r(u) is the Trace on the boundary ∂B 2 of any function u ∈ W 1,p (B 2 ), hence w ∈ W 1,p 0 (B 2 ). Let

I = B2 (a ρ b ) F -1 ρ (x, ∇ x P ρ ϕ • F ρ (x))(∇ x P ρ ϕ • F ρ (x))dx
By the Lemma 5.5 and since v = 0 on B ρ0 we get that for every 0 ≤ ρ ≤ ρ 0

I = Bρ b F -1 ρ (x, ∇ x P ρ ϕ•F ρ (x)))(∇ x P ρ ϕ•F ρ (x))dx+ B2\Bρ a(x, ∇ x P ρ ϕ•F ρ (x))∇ x P ρ ϕ•F ρ (x)dx and hence I ≤ B2\Bρ a(x, ∇ x P ρ ϕ • F ρ (x))∇ x vdx
for α and β the contants given by the structural assumptions 2 and 3 on the function a and by the Hoelder inequality we have for p such that

1 p + 1 p = 1 α B2\Bρ |∇ x P ρ ϕ•F ρ (x)| p dx ≤ β B2\Bρ (|∇ x P ρ ϕ•F ρ0 (x)| p-1 ) p dx 1 p B2\Bρ |∇ x v(x)| p dx 1 p
Which gives:

B2\Bρ |∇P ρ ϕ • F ρ | p dx 1 p ≤ β α B2 |∇ x v| p dx 1 p = β α ∇ x v p It follows, since θ ∈ C ∞ c (R d ) that ∇ x v p ≤ ( ∇ x θ ∞ +1) P ϕ W 1,p (B2)
An easy calculation yields

P ϕ W 1,p (B2) ≤ (1 + 2K β α ) Zϕ W 1,p (B2)
where K is the Poincaré constant on B 2 . For Z the norm of the linear bounded right inverse of the trace, we get

Zϕ W 1,p (B2) ≤ Z ϕ W 1-1 p ,p (∂B2)
putting

C 1 = (1 + 2K( β α )) β α ( ∇ x θ ∞ +1)
Z we obtain the result sought. Further bei the change of variable we have

Bρ b F -1 ρ (x, ∇ x P ρ ϕ • F ρ (x)))(∇ x P ρ ϕ • F ρ (x))dx = B1 b(y, ∇ y P ρ ϕ(x))(∇ y P ρ ϕ(y))dy hence B1 b(y, ∇ y P ρ ϕ(y))(∇ y P ρ ϕ(y))dy ≤ B2\Bρ a(x, ∇ x P ρ ϕ • F ρ (x))∇ x vdx
thus for α b the constant corresponding to the assumption 2 on the function b we have

α b B1 |∇ x P ρ ϕ(x))| p dx ≤ β B2\Bρ (|∇ x P ρ ϕ • F ρ (x)| p-1 ) p dx 1 p B2\Bρ |∇ x v(x)| p dx 1 p dx ≤ β B2\Bρ (|∇ x P ρ ϕ • F ρ (x)| p )dx 1 p ∇v p ≤ β( β α ∇v p ) p p ∇v p (12) it follows that B1 |∇ x P ρ ϕ(x))| p dx 1 p ≤ ( β α b ) 1 p ( β α ) 1 p ∇v p = ( α α b ) 1 p ( β α ) ∇v p
Again putting,

C 2 = ( α α b ) 1 p (1 + 2K β α ) β α ( ∇θ ∞ +1) Z
we obtain the sought result.

Corollary 5.8 We have

B2 |∇ x (P ρ ϕ • F ρ (x))| p dx 1 p ≤ (C 1 + C 2 ) ϕ W 1-1 p ,p (∂B2)
for every ϕ ∈ W 1-1 p ,p (∂B 2 ), every 0 < ρ < 1 and every p ≤ d.

Proof

We have Since F ρ (x) = x ρ on B ρ , by a change of variables we easy obtain

Bρ |∇ x (P ρ ϕ • F ρ (x))| p dx ≤ ρ d-p B1 |∇ y (P ρ ϕ))| p dy hence Bρ |∇ x (P ρ ϕ • F ρ (x))| p dx 1 p ≤ C 2 ϕ W 1-1 p ,p (∂B2) 
.

Proposition 5.9 There exists a constant C such that

P ρ ϕ • F ρ W 1,p (B2) ≤ C ϕ W 1-1 p ,p (∂B2)
for every ϕ ∈ W 1-1 p ,p (∂B 2 ), every 0 < ρ < 1 and every p ≤ d.

Proof Since F ρ (x) = x for x ∈ ∂B 2 , then (P ρ ϕ • F ρ -P ϕ) ∈ W 1,p 0 (B 2 ), by the Poincaré inequality we have P ρ ϕ • F ρ -P ϕ p ≤ K ∇(P ρ ϕ • F ρ -P ϕ) p therefore

P ρ ϕ•F ρ p ≤ K ∇P ρ ϕ•F ρ p + P ϕ p +K ∇P ϕ p ≤ K ∇P ρ ϕ•F ρ p +(1+K) P ϕ W 1,p (B2) thus P ρ ϕ • F ρ W 1,p (B2) ≤ (C 1 + C 2 )(K + 1) + (K + 1)(1 + 2K β α Z ϕ W 1-1 p ,p (∂B2)
and it follows that

C = (2 + α α b ) 1 p )(K + 1)(1 + 2K β α ) β α ( ∇θ ∞ +1) Z
satisfies the sought inequality.

Proposition 5.10 Let p ≤ d and u ρ (x) := P ρ ϕ • F ρ (x) for every x ∈ B 2 . Then u ρ is, for every 0 < ρ < 1, an a-harmonic function outside the closed ball Bρ , which converge as ρ → 0 to P ϕ, the a-harmonic function solution of the problem [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF] with Dirichlet data ϕ. Moreover u ρ converge to P ϕ as ρ tends to zero, weakly in W 1,p (B 2 ) and strongly in L p , ∇P ρ ϕ converge to ∇P ϕ a.e on Ω and a(x, ∇P ρ ϕ) converge to a(x, ∇P ϕ) a.e in B 2 and weakly in L p (Ω) Proof By the Lemma (5.5) and the transformed of a ρ b by the admissible change of variables F -1 ρ , u ρ is for every 0 < ρ < 1 an a-harmonic function outside the closed ball B ρ . By the proposition 5.9, the theorem of Banach-Alaoglu, the lemma 3.4, a diagonal procedure and the trace theorem, we obtain that u ρ converge to P ϕ as ρ tends to zero, weakly in W 1,p (B 2 ) and strongly in L p and ∇u ρ converge to ∇P ϕ a.e on B 2 and a(x, ∇u ρ ) converge to a(x, ∇P ϕ) a.e in B 2 and weakly in L p (B 2 ) 

lim ρ →0 B2\Bρ |(a(x, ∇ x P ρ ϕ • F ρ ) -a(x, ∇ x P ϕ))f (x)|dx = 0
The convergence does not depend on the Caratheodory function b Proof We have for every measurable subset E of B 2

| E I B2\Bρ a(x, ∇ x P ρ ϕ • F ρ )f (x)dx| ≤ E I B2\Bρ |a(x, ∇ x P ρ ϕ • F ρ )f (x)|dx ≤ E I B2\Bρ β|∇ x P ρ ϕ • F ρ )| p-1 f (x)dx ≤ β B2\Bρ |∇ x P ρ ϕ • F ρ )| p dy 1 p E |f (x)| p dx 1 p ≤ β(C 1 ϕ W 1-1 p ,p (∂B2) ) p-1 E |f (x)| p dx 1 p .
(13) Where C 1 is the constant given in Proposition 5.6. We easy see that the set of functions {a(x, ∇ x P ρ ϕ • F ρ )I B2\Bρ , 0 < ρ < 1} is uniformly integrable relatively to the parameter ρ and the caratheodory function b. By the Proposition 5.10 and the Vitali Convergence Theorem we get the result sought.

We finish this subsection with the two following nearly cloking theorems: for every ϕ, ψ ∈ W 1-1 p ,p (∂B 2 ) and 0 < ρ < ρ 0 we have

Theorem 2 For every ψ ∈ W 1-1 p ,p (∂B 2 ), let f = (1 -θ)P ψ where θ is a C ∞ c (R d
< Λ ρ b ϕ, ψ > -< Λϕ, ψ >= B2\Br a(x, ∇ x P ρ ϕ • F ρ ) -a(x, ∇ x P ϕ) ∇ x f dx
for every r with ρ < r < ρ 0 2. for every ϕ, ψ

∈ W 1-1 p ,p (∂B 2 ) lim ρ →0 | < Λ ρ b ϕ, ψ > -< Λϕ, ψ > | = 0 Proof Let ψ, ϕ ∈ W 1-1 p ,p (∂B 2
). Since the functions f and P ρ ϕ • F ρ have the function ψ as trace on the Boundary of B 2 , then by propositions 3.9, 4.7 and the lemma 5.5 we have

< Λ ρ b ϕ, ψ >=< (Λ ρ b (F -1 ρ ))ϕ, ψ > . Let I :=< Λ ρ b ϕ, ψ > -< Λϕ, ψ > .
By the choose of the function f , we have ∇f = 0 on B ρ and then

I = B2 (a ρ b ) F -1 ρ (x, ∇ x P ρ ϕ • F ρ )∇ x P ρ ψ • F ρ dx - B2 a(, ∇P ϕ)∇P ψdx = B2 (a ρ b ) F -1 ρ (x, ∇ x P ρ ϕ • F ρ )∇f dx - B2 a(, ∇P ϕ)∇f dx = B2\Bρ (a(x, ∇ x P ρ ϕ • F ρ ) -a(x, ∇P ϕ))∇ x f dx (14) 
Hence

< Λ ρ b ϕ, ψ > -< Λϕ, ψ >= B2\Bρ (a(x, ∇ x P ρ ϕ • F ρ ) -a(x, ∇P ϕ))∇ x f dx
Since ∇f = 0 on B ρ0 we get the sought result.

By proposition 5.13, we then obtain the validity of item 2.

Remark 5.14 The ball B 1 is almost invisible as ρ is sufficiently small.

We have focused on the radial symmetric setting. However our arguments did not use this symmetry in any essential way. Indeed, the Rademacher theorem, an aproximation result for L 1 (Ω) functions by smooth functions and the same previous arguments proves: Theorem 3 Let G : B 2 → Ω be a Lipschitz continuous map with a Lipschitz continuous inverse, and let 

D = G(B 1 ) then H ρ = G • F ρ • G -1 : Ω → Ω is peacewise Lipschitz; moreower • H ρ expands G(B ρ ) to D and • H ρ (x) = x

Singular Cloak

In what follows, let

F (x) = lim ρ →0 F ρ (x) = (1 + 1 2 |x|) x |x| for x = 0.
If we set y = F (x), then F -1 (y) = 2(|y| -1) y |y| for |y| > 1. By the lemma 5.2 we have:

• DF = 1 2 + 1 |x| I - 1 |x| xx T where x = x |x| For x = 0 • For x = 0 det(DF )(x) = 1 2 1 2 + 1 |x| d-1 = (|x| + 2) d-1 2 d |x| d-1
We hence obtain from the previous calculus Remark 5.16 (DF ) -1 is uniformly bounded on B 2 but F is not an admissible change of variables and as by previous papers (cf. [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF], [START_REF] Kohn | Cloaking via change of variables for the Helmoltz equation[END_REF]) it will be called a singular change of variables.

Let b be an arbitrary function from B 2 × R d -→ R d satisfying a structural assumption as the function a Definition 5.17 (Singular cloak associated with F and a)

We define the singular cloak associated with the singular change of variables F , the Function, denoted by a F b , from

B 2 × R d -→ R d given as follows a F b (y, ξ) = b(y, ξ) for y ∈ B 1 and ξ ∈ R d , a F (y, ξ) for y ∈ B 2 \B 1 and ξ ∈ R d (16) 
where a F (y, ξ) := 1 det DF(x) DF (x)a(x, (DF (x))ξ) for every x > 0 and y = F (x)

The following theorems give, for the singular change of variables F , that the associate singular cloak makes the ball B 1 perfectly invisible in the sence of the definitions 5.1 and 5.3.

Theorem 4

Let ϕ ∈ W 1-1 p ,p (∂B 2 ) and u a locally bounded function from B 2 to R which is a W 1,p loc ( B2 \ ∂B 1 ) solution of the following "Dirichlet problem"

   Ω (a F b (y, ∇ y u))∇ y vdx = 0 for all v ∈ W 1,p 0 (B 2 ), u = ϕ on ∂B 2 (17) 
then there exist a constant C such that u has the following form u(y) = P ϕ(F -1 (y)) for almost every y such that 1 < |y| ≤ 2 u(y) = C for almost every y ∈ B 1

Proof Let ε > 0 and B ε the ball with center x = 0 and radius ε. We have for

x ∈ B 2 , |x| > ε if and only if y = F (x) > 1 + ε 2 .
From the previous properties of the jacobian matrix DF it follows that if

v ∈ W 1,p 0 (B 2 \ B ε ) then ṽ = v • F -1 ∈ W 1,p 0 (B 2 \ B 1+ ε 2 )
. By the hypothesis on u and a variable changes we have

B2\B 1+ ε 2 a F b (y, ∇u)∇ṽdy = B2\Bε a(x, ∇ x (u • F ))∇ x vdx = 0
for every ε > 0, Thus the locally bounded function u • F on B 2 is a-harmonic on B 2 \ {0}, since the point {0} is a-polar (i.e polar for quasilinear elliptic structure given by a, (cf.

[10] theorem 10.1), then by the removable singularuty theorem (cf. By the theorem 2, we have < Λϕ, ψ >= lim ρ→0 < Λ ρ b ϕ, ψ > and we thus obtain the sought results.

we end this section by the following very interesting result. 

  as in remark 4, a strongly elliptic matrixvalued fonction on Ω. It relates voltage u and the associated electric fields ∇u to the resulting current σ∇u.

Lemma 3 . 8

 38 Let D be a measurable subset in Ω, a and b are two Caratheodory functions respectively from (Ω\D) × R d -→ R d and from D × R d -→ R d satisfying a structural assumptions given at the beginning of this section. let c be the function from Ω × R d -→ R d given by c(x, ξ) := b(x, ξ) for x ∈ D and ξ ∈ R d , a(x, ξ) for x ∈ Ω\D and ξ ∈ R d

  Hausdorf measure on the boundary ∂Ω. If in addition Λϕ ∈ L P (∂Ω), then by an approximation argument using Remark 2.1 item 2, we can conclude that ∂Ω ΛϕψdH = Ω a(x, ∇P ϕ)∇Zψdx for every ψ ∈ W 1-1 p ,p (∂Ω) If ϕ and ψ belong to W 1-1 p ,p (∂Ω), the integral on the right-hand side of this equation exists, we easly see that the functional ψ → Ω a(x, ∇P ϕ)∇Zψdx belong to the dual space

Corollary 4 . 2

 42 If the Jacobian matrix of the change of variables G is symmetric then for every θ ∈ R d and x ∈ U , we have(min(|σ i (x)|, i ∈ {1, ..., d}))|θ| ≤ |DG(x)θ| ≤ (M ax(|σ i (x)|, i ∈ {1, ..., d}))|θ|where σ i (x), i ∈ {1, ..., d}) are the eigenvalues of the symmetric matrix DG(x).

Proposition 4 . 3

 43 Let U be an open subset in Ω and G a change of variables from U to G(U ) . Assume that there exist c 1 , c 2 positive constants such that c 1 < detDG(G -1 (y)) < c 2 for every y ∈ G(U ), then the function a G(U ) G

Definition 4 . 4 (

 44 admissible change of variables) We will say that a piece-wise smooth function G(y = G(x)) from Ω to Ω is an admissible change of variables, if G is invertible, G(x) = x at the boundary ∂Ω, there exists a subset E such that E as well G(E) are closed and of Lebesgue measure zero and G and G -1 are continuously differentiable respectively on Ω \ E and on Ω \ G(E). Moreover there exist two positive constants c 1 and c 2 such that c 1 < detG(x) < c 2 for every x ∈ Ω \ E Lemma 4.5 A function G from Ω to Ω is an admissible change of variables if and only if G -1 is an admissible change of variables. Definition 4.6 Let a be a function from Ω×R d to R d satisfying a structural assumptions and G an admissible change of variables. Then the transformed a G of a by G is defined as follows:

Proposition 4 . 9

 49 Let G be an admissible change of variables on Ω, and Λ G is the Dirichletto-Neumann map associated with a G then Λ = Λ G Proof We have for every ϕ, ψ in W 1-1 p ,p (∂Ω) and by the definition 3.8 of the Dirichlet-to-Neumann Map associated with the Caratheodory function a < Λϕ, ψ >= Ω a(x, ∇ x P a ϕ)∇ x Zψdx Since P a ϕ is a solution of the Dirichlet Problem (1) and (Zψ -Zψ) ∈ W 1,p 0 (Ω), from the previous corollary 4.4 and from the definition of the Dirichlet-to-Neumann Map associated with the Caratheodory function a G , we have:

Definition 5 . 3 7 )

 537 Let a be a fixed function satisfying, as in the beginning of setion3, a structural assumptions and a measurable subset D with D ⊂ Ω ⊂ Ω ⊂ Ω , Ω and Ω are open subset. Let a c be function from (Ω \D) × R d -→ R d satisfying locally a structural assumptions. We say that a c cloaks the region D if its every extention a D across D in the following form a D (x, ξ) := b(x, ξ) for x ∈ D and ξ ∈ R d , a c (x, ξ) for x ∈ Ω\D and ξ ∈ R d (produce on Ω the same Dirichlet-to-Neumann-map as a, regardless of the choice of the Caratheodory function b satisfying on Ω × R d a structural assumptions.

  1 2-ρ , and x⊥ = {y/y⊥x} is a d -1 dimensional eigenspace with eigenvalue ( 1 2-ρ + 1 |x| 2-2ρ 2-ρ ). Moreover for every 0 < ρ < 1 the key properties of F ρ are • F ρ is continuous and piecewise-smooth • F ρ and F -1 ρ are admissible change of variables on B 2 (in the sense of definition 4.5).

Corollary 5 . 11 Corollary 5 . 12

 511512 We have lim ρ →0 P ρ ϕ(y) = P ϕ • F -1 (y) for every 1 < |y| ≤ 2 where F (xFor every 0 < ρ < 1 the functionP ρ ϕ • F ρ is, locally uniformly bounded on B 2 \ B ρ .Proof By Remark 3.7 item 1 and the Harnack inequality (cf.[START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]) Proposition 5.13 For every ϕ ∈ W 1-1 p ,p (∂B 2 ) and function f ∈ L p (B 2 ) we have

1 ρ

 1 ) function from B 2 to R associated, according to the Lemma 5.6, with the compact set K = B ρ0 for a fixed 0 < ρ 0 < 1 and the open set U = B 2ρ0 . For every 0 < ρ < ρ 0 , let Λ ρ b , Λ ρ b (F -1 ρ ) and Λ are the Dirichlet-to-Neumann Maps associated respectively with a ρ b , (a ρ b ) F -and a. Then 1.

  at the boundary ∂Ω in the same way as in the beginning of this subsection, for given function a und b from Ω × R d -→ R d we define on Ω × R d the regular near cloak associated with H ρ as follows : a ρ b (y, ξ) = b(y, ξ) for y ∈ D and ξ ∈ R d , a Hρ (y, ξ) for y ∈ Ω\D and ξ ∈ R d (15) Then for every ϕ, ψ ∈ W 1-1 p ,p (∂B 2 ) lim ρ →0 | < Λ ρ b ϕ, ψ > -< Λϕ, ψ > | = 0 where Λ ρ b and Λ are the Dirichlet to Neumann maps associated respectively with a ρ b and a. Remark 5.15 The subset D ⊂ Ω is almost invisible as ρ is sufficiently small.

Then 1 . 1 2

 11 [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF] theorem 7.36) the function u•F is extendable to an a-harmonic Function. Since u•F = u = ϕ at the boundary of B 2 , we hence obtain u • F = P ϕ and thereforeu = P ϕ • F -1 on B 2 \ B1 Let v ∈ C ∞ c (B 2 ) and v 1 (y) = v(0) for |y| ≤ 1 and v 1 (y) = v • F -1 (y) for |y| > 1.It is easy to verify that v 1 ∈ W 1,p 0 (B 2 ) and by the hypothesis we haveB1 b(y, ∇ y u)∇ y v 1 dy + B2\ B1 a F (y, ∇ y u)∇ y v 1 dy = 0 for every v ∈ C ∞ c (B 2 ).By the change of variables y = F (x) we getB2\ B1 a F (y, ∇ y u)∇ y v 1 dy = B2\{o} a(x, ∇ x (u • F ))∇ x vdx.By the previous calculus we have u • F = P ϕ and then B2\{o} a(x, ∇ x (u • F ))∇ x vdx = 0, hence B1 b(y, ∇ y u)∇ y vdy = 0 for every v ∈ C ∞ c (B 2 ), it follows that b(y, ∇ y u) = 0 almost every where in B1 . Since the Function b satisfies a structural assumptions of section 3, by the assumption 2 we then obtain ∇ y u = 0 a.e and u is constant a.e in B 1 . Corollary 5.18 Let ϕ ∈ W 1-1 p ,p (∂B 2 ) and v the function from B 2 to R such thatv(y) = P ϕ(F -1 (y)) if 1 < |y| ≤ 2 v(y) = P ϕ(0) for y ∈ B 1([START_REF] Pendry | Controlling electromagnetic fields[END_REF] v is the unique continuous function satisfying the conditions of the previous theorem 2. v is the potentiel outside the cloaked region with Dirichlet data ϕ ∈ H (∂Ω) obtained in (cf.[START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF] pages 17 and 19 ) in the linear case modelling the electric impedance tomographie.By theorem 2, the existence of the limit of Λ ρ b , as ρ tends to zero, leads to the following definition of the Dirichlet-to-Neumann map: Definition 5.19 The mapping from W 1-1 p ,p (∂B 2 ) to its dual W -(1-1 p ),p (∂B 2 ) defined, for every ϕ, ψ ∈ W 1-1 p ,p (∂B 2 ), by < Λ F b ϕ, ψ >:= lim ρ→0 < Λ ρ b ϕ, ψ > will be called the Dirichlet-to-Neumann map associated with the singular cloak a F b (Definition 5.17).

Theorem 5 2 .

 52 For every function b from B 2 × R d -→ R d satisfying a structural assumptions of section 3, we have 1. Λ F b = Λ ; where Λ is the Dirichlet-to-Neumann-map associated with a. For every ϕ, ψ ∈ W 1-1 p ,p (∂B 2 ) we have< Λ F b ϕ, ψ >= B2\ B1 a F (y, ∇ y P ϕ • F -1 )∇ y P ψ • F -1 dy Proof Let ϕ, ψ in W 1-1 p ,p (∂B 2 ), by the Proposition 3.9 for the Dirichlet-to-Neumann-map associated with the function a and by the change of variablesF from B 2 \ {o} to B 2 \ B 1 , we have < Λϕ, ϕ > = B2\{o} a(x, ∇ x P ϕ)∇ x P ϕdx = B2\ B1 a F (y, ∇ y P ϕ • F -1 )∇ y P ϕ • F -1 dy = B2\ B1 1 detDF (F -1 ) a(x, DF (F -1 )∇ y P ϕ • F -1 )DF (F -1 )∇ y P ϕ • F -1 dy ≥ α B2\ B1 1 detDF (F -1 (y))|DF (F -1 (y))∇ y P ϕ • F -1 | p dy.

( 20 )

 20 This yields by the Hoelder Inequality that the function1 detDF (x) a(F -1 (y), DF (F -1 (y))∇ y P ϕ • F -1 (y))DF (F -1 (y))∇ y P ψ • F -1 (y)is integrable on B 2 \ B1 and hence by a change of variables y = F (x) we getB2\ B1 a F y, ∇ y P ϕ • F -1 ∇ y P ψ • F -1 dy = B2a(x, ∇ x P ϕ)∇ x P ψdx =< Λϕ, ψ > .

Corollary 5 . 20 3 6 6 . 1

 520361 For every function a satisfying a structural assumptions of section 3, every singular cloak a F b (Definition 5.16), associated with the singular change of variables F and a, Cloaks (makes perfectly invisible) the unit ball B 1 in the sense of definition 5.Applications Electric Impedance TomographyAs given in Remark 3.1 item 5, differential operators in divergence form known in physic as the PDE in electrostatics is a mathematical modelisation for the Electric Impedance Tomography as follows:∇.(σ∇u) = i,j ∂ ∂x i (σ ij (x)) ∂u ∂x j in Ω
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Where σ is a continous and strongly elliptic summetric matrix on Ω in the sence that for some constants 0 < m < M < ∞: m|ξ| 2 ≤< σ(x)ξ, ξ >≤ M |ξ| 2 for all x ∈ Ω and ξ ∈ R d . It is then easy to see that we have the case p = 2 and that the differential operator ∇.(σ∇) is the second order quasi-linear elliptic operator corresponding to the following function satisfying a structural assumptions with α = m and β = M a(x, ξ) = σ(x)ξ for every x ∈ Ω and ξ ∈ R d .

We have then easy obtained for the singular cloak (see definition 5.16) in this case

Our theorem 5 is then a generalisation, in the framework of the class of Leray-Lions operators, of theorem 3 of R.V.Kohn, H Shen, M.S.Vogelius, M.I.Weinstein (cf. [START_REF] Kohn | Cloaking via change of variables in Electric Impedance Tomography[END_REF]) in the linear setting of operators in divergence form.