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uncertainty

Michael Poss

UMR CNRS 5506 LIRMM, Université de Montpellier, 161 rue Ada, 34392 Montpellier
Cedex 5, France.

Abstract

We study in this paper min max robust combinatorial optimization problems for

an uncertainty polytope that is defined by knapsack constraints, either in the

space of the optimization variables or in an extended space. We provide exact

and approximation algorithms that extend the iterative algorithms proposed by

Bertismas and Sim (2003). We also study the limitation of the approach and

point out NP-hard situations. Then, we approximate axis-parallel ellipsoids

with knapsack constraints and provide an approximation scheme for the corre-

sponding robust problem. The approximation scheme is also adapted to handle

the intersection of an axis-parallel ellipsoid and a box.

Keywords: robust optimization, combinatorial optimization, approximation

algorithms, ellipsoidal uncertainty

1. Introduction

Robust optimization pioneered by [1] has become a key framework to address

the uncertainty that arises in optimization problems. Stated simply, robust op-

timization characterizes the uncertainty over unknown parameters by providing

a set that contains the possible values for the the uncertain parameters and

considers the worst-case over the set. The popularity of robust optimization is

largely due to its tractability for uncertainty handling, since linear robust op-
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timization problems are essentially as easy as their deterministic counterparts

for many types of convex uncertainty sets [1], contrasting with the well-known

difficulty of stochastic optimization approaches. In addition, robust optimiza-

tion offers conservative approximation to stochastic programs with probabilistic

constraints by choosing appropriate uncertainty sets [2, 3, 4].

The picture is more complex when it comes to robust combinatorial optimiza-

tion problems. Let N denote a set of indices, with |N | = n, and X ⊂ {0, 1}n be

the feasibility set of a combinatorial optimization problem, denoted CO. Given

a bounded uncertainty set U ⊂ Rn+, we consider in this paper the min max

robust counterpart of CO, defined as

CO(U) min
x∈X

max
ξ∈U

ξTx. (1)

It is well known (e.g. [5, 6]) that a general uncertainty set U leads to a problem

CO(U) that is, more often than not, harder than the deterministic problem

CO. This is the case, for instance, when U is an arbitrary ellipsoid [7] or a set

of two arbitrary scenarios [6]. Robust combinatorial optimization witnessed a

breakthrough with the introduction of budgeted uncertainty in [8], which keeps

the tractability of the deterministic counterpart for a large class of combinatorial

optimization problems. Specifically, Bertsimas and Sim considered uncertain

cost functions characterized by the vector c ∈ Rn of nominal costs and the

vector d ∈ Rn+ of deviations. Then, given a budget of uncertainty Γ > 0, they

addressed

COd(UΓ) min
x∈X

max
ξ∈UΓ

∑
i∈N

(ci + ξidi)xi = min
x∈X

(∑
i∈N

cixi + max
ξ∈UΓ

∑
i∈N

ξidixi

)
,

for the budgeted uncertainty set UΓ :=
{
ξ :
∑
i∈N ξi ≤ Γ, 0 ≤ ξi ≤ 1, i ∈ N

}
.

Bertismas and Sim [8] proved two fundamental results:

Theorem 1 ([8]). Problem COd(UΓ) can be solved by solving n + 1 problems

CO with modified costs.

Theorem 2 ([8]). If CO admits a polynomial-time (1 + ε)-approximation algo-

rithm running in O(f(n, ε)), then COd(UΓ) admits a polynomial-time (1 + ε)-

approximation algorithm running in O(nf(n, ε)).
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These positive complexity results have been extended up to some extent to

optimization problem with integer variables (i.e. X ⊆ Zn) and constraints

uncertainty in [9, 10].

Another popular uncertainty model involves ellipsoids, and more particu-

larly, axis-parallel ellipsoids, which we represent here trough the robust coun-

terpart

COd(Uball) min
x∈X

(∑
i∈N

cixi + max
ξ∈Uball

∑
i∈N

ξidixi

)
,

where c now represents the center of the ellipsoid, d gives the length of its axes,

and Uball is a ball of radius Ω, Uball := {ξ : ‖ξ‖2 ≤ Ω} . Nikolova [11] proposes a

counterpart of Theorem 2 for COd(Uball) with a running time slightly worse than

O( 1
ε2 f(n, ε)). Her approach considers the problem as a two-objective optimiza-

tion problem and approximates its pareto front. Other authors have addressed

problem COd(Uball), including Mokarami and Hashemi [12] who showed how

the problem can be solved exactly by solving a pseudo-polynomial number of

problems CO and [13, 14] who provide polynomial special cases. A drawback of

COd(Uball) from the practical viewpoint is that Uball contains vectors with high

individual values. For that reason, a popular variation considers instead the

uncertainty set defined as the intersection of a ball and a box, formally defined

as Uboxball :=
{
ξ : ‖ξ‖2 ≤ Ω,−ξ ≤ ξ ≤ ξ

}
, for some ξ, ξ ∈ Rn+. While Uboxball has

been used in numerous papers dealing with robust optimization problems (e.g.

[15, 16]), we are not aware of previous complexity results for COd(Uboxball).

The main focus of this paper is to study robust combinatorial optimization

problem for uncertainty polytopes defined by bounds restrictions and s = |S|

knapsack constraints, specifically

Uknap :=

{
ξ ∈ Rn :

∑
i∈N

ajiξi ≤ bj , j ∈ S, 0 ≤ ξ ≤ ξ

}
, (2)

where a ∈ Rs×n+ , b ∈ Rs+, and ξ ∈ Rn+. Our definition Uknap is slightly more gen-

eral than the multidimensional knapsack-contrained uncertainty set introduced

in [17, 18] since we consider non-negative values for the constraint coefficients

while [17, 18] assumes all of them equal to 1. The author of [17, 18] motivates
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the introduction of these complex polytopes in the context of multistage deci-

sion problems, where one wishes to correlate the value of uncertain parameters

of a given period to those related to the precedent periods.

We relate next Uknap with the uncertainty polytopes that have been used

in the literature for specific applications. Whenever s = 1, the resulting family

of polytopes generalizes the uncertainty set
{
ξ ∈ Rn :

∑
i∈N ξi ≤ b, 0 ≤ ξ ≤ ξ

}
that has been used in scheduling [19]. For instance, our results imply that

minimizing the sum of completion times is polynomial under less restrictive

assumptions that those proposed in [19]. An application of Uknap with s = 4

arises for the vehicle routing problem with demand uncertainty for which the

authors of [20, 21] partition the set of clients into four sets N1, . . . , N4, according

to the four geographic quadrants based on the coordinates in the benchmark

problems, and limit the demand deviations for each of these four quadrants

by bj , formally, {ξ ∈ Rn :
∑
i∈Nj ξi ≤ bj , j ∈ {1, . . . , 4}, 0 ≤ ξ ≤ ξ}. Hence,

our result suggest solution algorithms based on solving a polynomial sequence

of deterministic problems. Knapsack uncertainty sets with larger values of s

have also been used in telecommunications network with demand uncertainty,

under the name of Hose model (traced back to [22]). Given an undirected graph

G = (V,E) and a set of demands D ⊆ V × V , the undirected Hose model is

the polytope
{
ξ ∈ R|D| :

∑
l:{k,l}∈D ξkl ≤ bk, for each k ∈ V s.t. ∃{k, l} ∈ D

}
,

where bl is the bandwidth capacity of the terminal node l ∈ V . Therefore, when

|D| is small, our results could also be applied to robust network design with

single path routing [23].

This paper is also dedicated to extensions of Uknap to (i) knapsack uncer-

tainty polytopes described in an extended space rather than in the space of

the optimization variables Rn and to (ii) decision-depend uncertainty. The first

model can be used to describe a variant of UΓ based on multiple intervals, which

is a relevant approach when there is enough data to build a histogram of the

values taken by the uncertain parameters [24]. We also show in the paper how

knapsack uncertainty polytopes defined in extended spaces can be used to ap-

proximate axis-parallel ellipsoids and the intersection between an axis-parallel
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ellipsoid and a box, which have been used in the aforementioned applications.

The second model describes uncertainty regions that are adjusted according to

the values taken by the optimization variables [4, 25]. When the uncertainty is

motivated by the probabilistic results from [3], it becomes natural to constraint

the uncertainty with few knapsack constraints [4], which can be solved efficiently

using the results of this paper.

Our contributions. In Section 2, we extend Theorems 1 and 2 to Uknap, showing

that similar positive complexity results hold when s is constant but that the

robust problems are in general NP-hard when s is part of the input. Section 3

considers uncertainty sets defined by s knapsack constraints in an extended

space of dimension ` with ` > n, yielding uncertainty set Uext. These models

replace the cost function gi(ξ) = ξidi used in COd(UΓ) by a linear function

h : R`+ → Rn+ that satisfies a technical assumption. We propose counterparts

of Theorems 1 and 2 for the optimization problems built from Uext and h and

show that the problems are NP-hard in general when the technical assumption

is relaxed, even when s is constant. Section 4 considers problem COd(Uball)

and proposes an approximation scheme based on a piece-wise approximation

of the quadratic function
∑n
i=1 ξ

2
i . Specifically, we propose a counterpart of

Theorem 2 with running time O(n
2

ε f(n, ε)). The approach is finally extended

in Section 5 to uncertainty set Uboxball, providing an approximation scheme for

problem COd(Uboxball).

2. Knapsack uncertainty

We provide in this section counterparts of Theorems 1 and 2 for Uknap, which

is defined by bounds restrictions and s = |S| knapsack constraints. Specifically,

we consider in this section the polytope Before stating our result, we introduce

the following notation: let Aθ = d be the matrix notation for the linear system

of n equations given by
∑
j∈S ajiθj = di, i ∈ N, and define the larger system

A′θ = d′ (3)
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with A′ =

 A

Id

 and d′ =

 d

0

, where Id is the s × s identity matrix

and 0 is the vector of dimension s with all zeros. Further, consider the set

Θ1 ⊆ Rs that is defined as follows: each element θ ∈ Θ1 is the unique solution

of a subsystem of A′θ = d′ formed by s linearly independent rows of A′.

Theorem 3. Problem COd(Uknap) can be solved by solving O(ssns) linear sys-

tems with s variables and s equations, and O(ssns) nominal problems

Z∗ = min
θ∈Θ1

Gθ,

where for each θ ∈ Θ1:

Gθ =
∑
j∈S

bjθj + min
x∈X

∑
i∈N

cixi +
∑
i∈N

xiξi max(0, di −
∑
j∈S

ajiθj)

 .

Proof. Problem COd(Uknap) can be written as

min
x∈X

(∑
i∈N

cixi + max

{∑
i∈N

diξixi :
∑
i∈N

ajiξi ≤ bj , j ∈ S, 0 ≤ ξi ≤ ξi, i ∈ N

})
. (4)

Let us focus on the inner linear program in (4), and let yi be the dual variables

associated to the upper bounds and θj be the dual variable associated to the

k-th inequality defining Uknap. Dualizing the inner maximization we obtain

min
θ,y≥0

∑
j∈S

bjθj +
∑
i∈N

ξiyi :
∑
j∈S

ajiθj + yi ≥ dixi, i ∈ N

 (5)

= min
θ≥0

∑
j∈S

bjθj +
∑
i∈N

ξi max(0, dixi −
∑
j∈S

ajiθj)

 (6)

= min
θ≥0

∑
j∈S

bjθj +
∑
i∈N

ξixi max(0, di −
∑
j∈S

ajiθj)

 , (7)

where yi has been substituted by max(0, dixi−
∑
j∈S ajiθj) in (6), and (7) holds

because xi ∈ {0, 1} for each i ∈ N .

We consider next the piece-wise linear function

fx(θ) =
∑
i∈N

cixi +
∑
j∈S

bjθj +
∑
i∈N

xiξi max(0, di −
∑
j∈S

ajiθj),
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and denote F (θ) = minx∈X fx(θ). Problem (4) can be rewritten as

min
x∈X

min
θ≥0

fx(θ) = min
θ≥0

min
x∈X

fx(θ) = min
θ≥0

F (θ).

For each x ∈ X , the function fx defined on Rs+ is piece-wise linear and minθ≥0 f(θ)

is bounded because Uknap is bounded and non-empty. Hence, the minimum of

minθ≥0 f(θ) is reached at some extreme point of the epigraph of fx (recall that

epi(fx) = {(θ, z) : θ ≥ 0, z ≥ fx(θ)}). Let us denote ext(epi(fx)) as Θx. Since

the minimum of fx(θ) is reached on Θx, we have that min
θ∈Θx

fx(θ) = min
θ∈

⋃
y∈X

Θy
fx(θ)

for each x ∈ X . Therefore,

min
θ≥0

F (θ) = min
x∈X

min
θ≥0

fx(θ) = min
x∈X

min
θ∈Θx

fx(θ) = min
θ∈

⋃
y∈X

Θy
min
x∈X

fx(θ) = min
θ∈

⋃
y∈X

Θy
F (θ),

and we are left to compute
⋃
x∈X Θx.

We focus first on Θ1 where 1 ∈ Rs is the vector of all ones, formally defined

as 1j = 1 for each j ∈ S. Since, by definition, Θ1 = ext(epi(f1)), Θ1 coincide

with the set of vectors where f1 has no directional derivative. Therefore, one

readily verifies that any vector θ in Θ1 is the unique solution of a subsystem of

the system A′θ = d′, defined in (3), formed by s linearly independent rows of

A′, which can be solved in O(s3). Similarly, any vector in Θx is obtained by

solving a subsystem of s independent linear constraints among

θj = 0, j ∈ S

xi
∑
j∈S

ajiθj = dixi, i ∈ N.

We obtain that, for any x ∈ X , Θx ⊆ Θ1, so that
⋃
x∈X Θx ⊆ Θ1. The result

follows from the fact that computing F (θ) amounts to solve an instance of

problem CO and |Θ1| =
s∑
j=0

(
s
j

)(
n
s−j
)
≤ O(ssns).

Whenever CO is polynomially solvable and s is constant, Theorem 3 shows

that the robust problem COd(Uknap) is polynomially solvable. The theorem also

applies to polytopes more general than Uknap. Recall that the down-monotone

completion of a polytope P ⊆ Rn+ is given by

dm(P ) = {r ∈ Rn+ : ∃p ∈ P such that ri ≤ pi for each i ∈ N}.
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We see that, for any polytope P ⊆ Rn+, dm(P ) is a polytope that satisfies (2).

The following simple result motivates the introduction of dm(P ).

Lemma 1. Let P and P ′ be polytopes included in Rn+. If dm(P ) = dm(P ′),

then problems COd(P ) and COd(P ′) have the same optimal solutions.

Proof. The proof follows immediatly from the equality

min
x∈X

(∑
i∈N

cixi + max
ξ∈P

∑
i∈N

ξidixi

)
= min
x∈X

(∑
i∈N

cixi + max
ξ∈dm(P )

∑
i∈N

ξidixi

)

= min
x∈X

(∑
i∈N

cixi + max
ξ∈P ′

∑
i∈N

ξidixi

)

Lemma 1 suggests that Theorem 3 can be an efficient way to solve COd(P )

for any polytope P for which we can compute a description of the down-

monotone completion that contains few knapsack constraints.

Whenever s is part of the input, the approach depicted in Theorem 3 has an

exponential running-time, which is consistent with the hardness result below.

Corollary 1. When s is part of the input, problem COd(Uknap) is at least as

hard as solving CO(U) where U contains 2 arbitrary vectors.

Proof. Consider an optimization problem described by the feasibility set X , and

let us introduce its robust version minx∈X maxη∈U2s ηTx for an uncertainty set

U2s that contains only two vectors, i.e. U2s := {η1, η2}. We characterize below

an instance of COd(Uknap) that is equivalent to the above problem. We define

ci = min(η1
i , η

2
i ) and di = max(η1

i − ci, η2
i − ci) for each i ∈ N and two 0-1

vectors ξ1 and ξ2 such that η1
i = ci + diξ

1
i and η2

i = ci + diξ
2
i for each i ∈ N .

We are left to define Uknap such that such that for any x ∈ X

max
η∈U2s

∑
i∈N

ηixi =
∑
i∈N

cixi + max
ξ∈Uknap

∑
i∈N

ξidixi. (8)

If we were allowed to replace Uknap in the rhs of (8) by an arbitrary polytope

U , the equality could be enforced by defining U as the line segment joining ξ1
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and ξ2, since in that case we would have∑
i∈N

cixi + max
ξ∈U

∑
i∈N

ξidixi =
∑
i∈N

cixi + max
ξ∈{ξ1,ξ2}

∑
i∈N

ξidixi,

for any x ∈ X , which is equal to maxη∈U2s ηTx by definition of ξ1 and ξ2.

Unfortunately, the above definition of U does not comply with the definition

of Uknap, provided in (2), so we instead construct a polytope Uknap that is the

down-monotone completion of U and use Lemma 1. Specifically, we claim that

the down-monotone completion of U can be defined as follows:

• For each i ∈ N such that ξ1
i = ξ2

i = 0, we have ξi = 0. The upper bounds

ξi are set to 1 for the other indices.

• Let N1 ⊆ N be the set of indices such that ξ1
i = 1 and ξ2

i = 0, and define

similarly N2. We have the following knapsack constraints

ξi + ξj ≤ 1 for each (i, j) ∈ N1 ×N2. (9)

To prove the claim, we must first verify that ξ1 and ξ2 belong to Uknap, which is

immediate from the definitions of the above knapsack constraints. To show that

any extreme point of Uknap different from ξ1 and ξ2 is dominated by ξ1 or ξ2,

we define the bipartite graph G = (N,E) induced by the subsets N1 and N2,

e.g. N = N1 ∪N2 and E = N1×N2. The knapsack constraints (9) are defined

by the adjacency matrix of the graph, which is totally unimodular. Hence, all

extreme points of Uknap are binary vectors ξ such that ξi = 1 for each i ∈ N∗

where either N∗ ⊆ N1 or N∗ ⊆ N2, proving the claim.

Corollary 1 implies that, when s is part of the input, COd(Uknap) is NP-

hard for the shortest path problem, the assignment problem, and the minimum

spanning tree problem, since the robust versions of these problems are NP-hard

for two arbitrary scenarios.

Following the lines of Theorem 2 and assuming that s is constant, we can

also obtain approximation algorithms for problems CO that are approximable.

Let H be a polynomial time (1 + ε)-approximation algorithm for problem CO.
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Algorithm 1: Approximation algorithm for COd(Uknap)
for each θ ∈ Θ1 find an (1 + ε)-approximate solution xθ for

min
x∈X

{∑
i∈N

cixi +
∑
i∈N

ξixi max(0, di −
∑
j∈S

ajiθj)

}
;

for each θ ∈ Θ1 let Zθ =
∑
i∈N

cix
θ
i + max

ξ∈Uknap

∑
i∈N

ξidix
θ
i ;

Let θε = arg min
θ∈Θ1

Zθ;

return: xε = xθ
ε

with cost equal to Zε = Zθ
ε

The approximation algorithm for COd(Uknap) is provided in Algorithm 1. Algo-

rithm 1 clearly runs in polynomial time whenever the cardinality Θ1 is bounded

by a polynomial function of n, which is the case whenever s is constant.

Proposition 1. Algorithm 1 returns an (1+ε)-approximate solution to COd(Uknap).

Proof. For each θ, we introduce Gθ such that

min
x∈X

∑
i∈N

cixi +
∑
i∈N

ξixi max(0, di −
∑
j∈K

ajiθj)

 . (10)

Let θ∗ be the index such that Z∗ = Gθ
∗

in Theorem 3 and xθ
∗

be an (1 + ε)-

approximate solution to problem (10). Then, we have

Zε ≤ Zθ
∗

=
∑
i∈N

cix
θ∗

i + max
ξ∈Uknap

∑
i∈N

ξidix
θ∗

i

=
∑
i∈N

cix
θ∗

i + min
θ≥0

∑
j∈K

bjθj +
∑
i∈N

ξix
θ∗

i max(0, di −
∑
j∈K

ajiθj)

 (11)

≤
∑
i∈N

cix
θ∗

i +
∑
j∈K

bjθ
∗
j +

∑
i∈N

ξix
θ∗

i max(0, di −
∑
j∈K

ajiθ
∗
j ) (12)

≤ (1 + ε)(Gθ
∗
−
∑
j∈K

bjθ
∗
j ) +

∑
j∈K

bjθ
∗
j (13)

≤ (1 + ε)Gθ
∗

(14)

= (1 + ε)Z∗, (15)

where (11) follows from (7) and (13) follows from (10).
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We provide in the Appendix an application of the above results to variable

uncertainty.

3. Extended knapsack uncertainty

The results from the previous section can be extended to polytopes described

through certain types of extended formulations. Namely, let us consider the set

of indices L, with |L| = `, and the linear mapping h : R`+ → Rn+ characterized by

the matrix (hil) with non-negative coefficients. The robust problems studied in

this section are then defined by replacing the product diξi present in COd(Uknap)

by hi(η), obtaining the problem

COh(Uext) min
x∈X

(∑
i∈N

cixi + max
η∈Uext

∑
i∈N

hi(η)xi

)

defined for the extended uncertainty set

Uext :=

{
η ∈ R` :

∑
l∈L

ajlηl ≤ bj , j ∈ S, 0 ≤ η ≤ η

}
.

Using a reduction from a robust scheduling problem studied in [26], we can show

that problem COh(Uext) is hard, even when s is constant.

Proposition 2. Problem COh(Uext) is NP-hard in the strong sense even when

s = 1.

Proof. The result is obtained by considering the scheduling problem that mini-

mizes the weighted sum of completion times, known to be solvable in polynomial

time using Smith’ rule. Its robust version for uncertainty set UΓ has been proved

strongly NP-hard in [26]. The problem is defined as follows. Given a set of n

jobs with weight wj , mean processing time pj and deviation p̂j for each job j,

and a budget of uncertainty Γ, the objective is to minimize the worst-case of

the weighted sum of the completion times knowing the processing times vary in

[pj , pj + p̂j ] and that at most Γ jobs reach simultaneously their upper values.

The problem can be cast in our framework using binary optimization variable

xij = 1 if job i is scheduled prior to job j and letting the set X sched ⊂ {0, 1}n2
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contain all binary vectors x feasible for the problem, yielding

min
x∈X sched

max


n∑
i=1

n∑
j=i

piwjxij :

n∑
i=1

pi − pi
p̂i

≤ Γ, pi ≤ p ≤ p̂i, i ∈ N

 .

The above problem is a special case of COh(Uext) obtained by defining cij = piwj

for i ≤ j and cij = 0 for i > j, hijl(η) = ηip̂iwj for i ≤ j and l = i, and

hijl(η) = 0 otherwise. Thus, considering an uncertainty set UΓ of dimension n

concludes the proof.

In view of the above hardness result, we focus below on a special type of

functions h that satisfy the following technical assumption

there exists a partition L1 ∪ · · · ∪ LN of L such that hil > 0 iff l ∈ Li. (16)

Assumption (16) is flexible enough to model the extension of the budgeted

uncertainty set where multiple deviations are allowed, closely related to the

histogram model studied in [24]. Namely, consider s budgets of uncertainty Γj

and deviations dji ∈ R+. Then, hi(η) =
∑
j∈S djiηji and the uncertainty set is

UMΓ :=

{
η ∈ R|S|×n :

∑
i∈N

ηji ≤ Γj , j ∈ S, 0 ≤ η ≤ 1

}
.

When s is constant, the following result shows that COh(UMΓ) amounts to solve

a polynomial number of problems CO.

Proposition 3. Consider problem COh(Uext) and suppose that (16) holds. The

problem can be solved by solving O(ss`s) linear systems with s variables and s

equations and O(ss`s) problems CO with modified costs.

Proof. Problem COh(Uext) can be written as

min
x∈X

(∑
i∈N

cixi + max

{∑
i∈N

∑
l∈L

hilηlxi :
∑
l∈L

ajlηl ≤ bj , j ∈ K, 0 ≤ η ≤ ηl, l ∈ L

})
.

Introducing the dual variables yl and θj as in the proof of Theorem 3, the dual

12



Algorithm 2: Approximation algorithm for COh(Uext)
for each θ ∈ Θext

1 find an (1 + ε)-approximate solution xθ for

min
x∈X

{∑
i∈N

cixi +
∑
i∈N

∑
l∈Li

ηlxi max(0, hil −
∑
j∈S

ajlθj)

}
;

for each θ ∈ Θext
1 let Zθ =

∑
i∈N

cix
θ
i + max

η∈Uext

∑
i∈N

hi(η)xθi ;

Let θε = arg min
θ∈Θext1

Zθ;

return: xε = xθ
ε

with cost equal to Zε = Zθ
ε

of the inner maximization problem reads

min
θ,y≥0

∑
j∈K

bjθj +
∑
l∈L

ηlyl :
∑
j∈K

ajlθj + yl ≥
∑
i∈N

hilxi, l ∈ L

 (17)

= min
θ,y≥0

∑
j∈K

bjθj +
∑
l∈L

ηlyl :
∑
j∈K

ajlθj + yl ≥ hilxi, i ∈ N, l ∈ Li

 (18)

= min
θ≥0

∑
j∈K

bjθj +
∑
i∈N

∑
l∈Li

ηl max(0, hilxi −
∑
j∈K

ajlθj)

 (19)

= min
θ≥0

∑
j∈K

bjθj +
∑
i∈N

∑
l∈Li

ηlxi max(0, hil −
∑
j∈K

ajlθj)

 , (20)

where (19) holds because of property (16). The rest of the proof is identical to

the proof of Theorem 3.

Proposition 3 naturally leads to approximation algorithms for problems for

which CO is approximable. Specifically, we introduce the set Θext
1 ⊆ Rs as in the

previous section however considering here the linear system hil =
∑
j∈S ajlθj ,

i ∈ N, l ∈ Li, and θj = 0, j ∈ S. The proof of correctness of Algorithm 2 is

omitted as it is very similar to the proof of correctness of Algorithm 1.

4. Ellipsoidal uncertainty

We provide in the section a counterpart of Algorithm 1 for COd(Uball). The

first element of our approach follows an idea of [27] that approximates Uball

13



π1

π2

π3

π4 = Ω2

√
π1

√
π2

(0, 0)

√
π3
√
π4

ξ

g(ξ)

Figure 1: Piece-wise affine over approximation of the function ξ2 with m = 4.

through a polytope Um where the integer m parametrizes the precision of the

approximation. Specifically, we approximate each function ξ2
i involved in the

definition of Uball by a piece-wise linear upper approximation g(ξi) based on

the equal division of the vertical axis [0,Ω2] into m segments [π0 = 0, π1 =

Ω2/m], . . . , [πm−1, πm = Ω2] and their images on the horizontal axis [0,
√
π1], . . . ,

[
√
πm−1,

√
πm]. Then, the graph of function g is defined as the union of the line

segments joining (
√
πk, πk) and (

√
πk+1, πk+1) for each k ∈ {0, . . . ,m− 1}, see

Figure 1. The polytope Um is then defined as

Um :=

{
ξ ∈ Rn :

∑
i∈N

g(ξi) ≤ Ω2

}
.

The first element of our approach shows that optimizing over Um is equivalent

to optimizing over an extended version of UΓ, defined as

U ′m :=

{
η ∈ Rn×m :

∑
i∈N

∑
k∈M

ηki ≤ m, 0 ≤ η ≤ 1

}
,

where M = {1, . . . ,m}.

Lemma 2. Let h : Rn×m → Rn be the linear mapping defined through hik =

14



Algorithm 3: Approximation algorithm for COd(Uball)
Use Algorithm 2 with Uext := U ′m and h defined in Lemma 2 to obtain xδ,

an (1 + δ)-approximate solution to COh(U ′m);

Compute the cost Zδ = cTxδ + Ω
√∑

i∈N d
2
ix
δ
i ;

return: xδ with cost equal to Zδ

di(
√
πk −

√
πk−1) for each i ∈ N . For any x, it holds that

max
ξ∈Um

∑
i∈N

ξidixi = max
η∈U ′m

∑
i∈N

hi(η)xi. (21)

Proof. ≥ : Let η be a maximizer of the rhs of (21). Since U ′m is integral,

we can assume that η is binary. Further, we can assume that ηki ≥ ηk+1
i for

each k and i because hik > hik+1. Let us then define the vector ξ ∈ Um by

ξi =
∑
k∈M (

√
πk −

√
πk−1)ηki . One readily verifies that ξ ∈ Um and, moreover,

that ξidi = hi(η) for each i ∈ N .

≤: Conversely, let ξ ∈ Um and let k(i) be the index k ∈ M such that
√
πk−1 ≤ ξi <

√
πk for each i ∈ N (see Figure 1). Then, define ηki = 1 for each

1 ≤ k ≤ k(i) − 1, η
k(i)
i = ξi−

√
πk(i)−1

√
πk(i)−

√
πk(i)−1

, and ηki = 0 for k ≥ k(i) + 1. We see

that η ∈ U ′m and ξidi = hi(η) for each i ∈ N .

Using Algorithm 2, we obtain in polynomial time an approximate solution

to COh(U ′m), which is also an approximate solution to COd(Um) thanks to

Lemma 2. The true cost of the solution is then computed for Uball to obtain

the desired approximate solution to COd(Uball). The procedure is formally

described in Algorithm 3 whose validity is stated below. The running time of

Algorithm 3 is in O(n
2

ε f(n, ε)) where O(f(n, ε)) is the running time required to

compute an (1 + ε)-approximate solution to CO.

Theorem 4. If m ≥ n
δ and ε = 4δ, then Algorithm 3 returns a (1 + ε)-

approximate solution to COd(Uball).

Let us introduce some notations before proving the theorem. First, we define

Uball(α) as the ball of radius α centered at 0. Second, we define Fball(x) = cTx+

15



max
ξ∈Uball

∑
i∈N

ξidixi = cTx+ Ω
√∑

i∈N d
2
ixi and Fm(x) = cTx+ max

ξ∈Um

∑
i∈N

ξidixi.

To prove Theorem 4, we will bound the ratio Fm(x)/Fball(x) from above and

from below. On the one hand, g(ξi) ≥ ξ2
i for each i ∈ N implies that Um ⊆ Uball

and we obtain immediately

Fm(x)

Fball(x)
≤ 1 for any x ∈ X . (22)

On the other hand, proving that Fm
Fball

is also bounded from below is more

technical. We first show that Uball(ρ(m)Ω) ⊆ Um for a specific function ρ(m).

Lemma 3. If m ≥ n, then Uball(Ω
√

1− n/m) ⊂ Um.

Proof. It follows from the definition of g that

g(ξi) ≤ ξ2
i +

Ω2

m
.

Consider then ξ be such that ‖ξ‖2 ≤ Ω
√

1− n/m. Therefore,∑
i∈N

g(ξi) ≤
∑
i∈N

ξ2
i + n

Ω2

m
≤ Ω2,

proving that ξ ∈ Um.

Using the above lemma, we can bound Fm
Fball

from below.

Lemma 4. Consider δ > 0. If m ≥ n
δ , then Fm(x)

Fball(x) ≥ 1− δ for any x ∈ X .

Proof. Lemma 3 implies that

Fm(x) ≥ cTx+ max
ξ∈Uball(Ω

√
1− n

m )

∑
i∈N

ξidixi.

Hence,

Fm(x) ≥ cTx+ Ω

√
1− n

m

√∑
i∈N

d2
ixi

≥
√

1− n

m

cTx+ Ω

√∑
i∈N

d2
ixi


≥
√

1− n

m
Fball(x),

and the results follows from taking m = dnδ e.

16



Algorithm 4: Approximation algorithm for UballCOd

Use Algorithm 2 with Uext := U ′m and h defined in Lemma 2 to obtain xδ,

an (1 + δ)-approximate solution to U ′mCOh;

Compute the cost Zδ = cTxδ + max
ξ∈Uball

∑
i∈N

ξidixi;

return: xδ with cost equal to Zδ

Proof. of Theorem 4. Let xδ, xm and xball denote the solution computed by

Algorithm 3, and the optimal solutions of problems min
x∈X

Fm(x) and min
x∈X

Fball(x),

respectively. The following holds for δ > 0 small enough:

Zδ = Fball(x
δ)

≤ 1

1− δ
Fm(xδ) (using Lemma 4)

≤ (1 + 2δ)Fm(xδ)

≤ (1 + δ)(1 + 2δ)Fm(xm) (by definition of xδ and Lemma 2)

≤ (1 + 4δ)Fm(xm)

≤ (1 + 4δ)Fm(xball) (by definition of xm)

≤ (1 + 4δ)Fball(x
ball) (follows from (22))

= (1 + 4δ) opt(COd(Uball)).

5. Ellipsoid with upper bounds

Rather than studying directly the problem COd(Uboxball), we focus in this

section on the problem COd(Uball) defined for an axis-parallel ellipsoid combined

with upper bounds, namely

Uball :=

{
ξ ∈ Rn :

∑
i∈N
‖ξ‖2 ≤ Ω, 0 ≤ ξ ≤ ξ

}
.

Since Uball∩Rn+ = Uboxball∩Rn+ and d ∈ Rn+, problems COd(Uboxball) and COd(Uball)

have the same optimal solutions. Hence, the extension of Algorithm 3 to
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the problem COd(Uball), presented in the rest of this section, also applies to

COd(Uboxball).

The counterpart of Um with Uball is given by

Um :=

{
ξ ∈ Rn :

∑
i∈N

g(ξi) ≤ Ω2, 0 ≤ ξ ≤ ξ

}
,

and one readily verifies that the counterpart of (21) is

max
ξ∈Um

∑
i∈N

ξidixi = max
η∈U ′m

∑
i∈N

hi(η)xi, (23)

where U ′m is the following extended polytope with one knapsack constraint

U ′m :=

{
η ∈ Rn×m :

∑
i∈N

∑
k∈M

ηki ≤ m, 0 ≤ η ≤ η

}
,

h : Rn×m → Rn is the linear mapping defined in Lemma 2, and η ∈ Rn×m+ is

defined as follows. Let k(i) be the index k ∈M such that
√
πk−1 ≤ ξi <

√
πk for

each i ∈ N . We obtain ηki = 1 for each 1 ≤ k ≤ k(i)−1, η
k(i)
i = ξi−

√
πk(i)−1

√
πk(i)−

√
πk(i)−1

,

and ηki = 0 for k ≥ k(i) + 1. Algorithm 3 is adapted in Algorithm 4 to handle

the upper bounds, the proof of correctness of which is provided in Theorem 5

below.

Theorem 5. If m ≥ n
δ and ε = 4δ, then Algorithm 4 returns a (1 + ε)-

approximate solution to COd(Uball).

The proof of Theorem 5 follows closely the lines of the proof of Theorem 4

with one little difference explained below. Let us first extend the notations Fm

and Fball to Fm and Fball, respectively, and introduce

Uball(Ω, ξ) :=

{
ξ ∈ Rn :

∑
i∈N
‖ξ‖2 ≤ Ω, 0 ≤ ξ ≤ ξ

}
.

Optimizing a linear function over the set Uball(Ω, ξ) satisfies the useful property

stated next.

Lemma 5. Consider λ > 0 and Ω > 0 and ξ, µ ∈ Rn+. It holds that

max
ξ∈Uball(λΩ,λξ)

µT ξ = λ max
ξ∈Uball(Ω,ξ)

µT ξ.
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Proof. The results follows from the property

Uball(λΩ, λξ) = λUball(Ω, ξ)

by performing the change of variables φ = λξ.

Proof of Theorem 5. Following the reasoning of the proof of Lemma 3, we see

that that m ≥ n implies that Uball(Ω
√

1− n/m) ⊂ Um. Hence, we have

Fm(x) ≥ cTx+ max
ξ∈Uball(Ω

√
1− n

m ,ξ)

∑
i∈N

ξidixi (24)

≥ cTx+ max
ξ∈Uball(Ω

√
1− n

m ,ξ
√

1− n
m )

∑
i∈N

ξidixi (25)

= cTx+

√
1− n

m
max

ξ∈Uball(Ω,ξ)

∑
i∈N

ξidixi (26)

≥
√

1− n

m
Fball(x), (27)

where (25) follows from

Uball
(
Ω
√

1− n
m , ξ

√
1− n

m

)
⊆ Uball

(
Ω
√

1− n
m , ξ

)
,

and (26) follows from Lemma 5. Inequality (27) states the counterpart of

Lemma 4 for Fm. Moreover, one readily verifies that inequality Fm(x)
Fball(x) ≤ 1

also holds. The result is thus obtained by following the steps of the proof of

Theorem 4.

6. Conclusion

We have investigated the complexity of min max robust combinatorial opti-

mization under general uncertainty polytopes. We have shown that, if the down-

monotone completion of the uncertainty polytope contains a constant number

of linear inequalities, then the optimal solution to the robust problem can be

obtained by solving a polynomial number of deterministic counterparts. We

have extended these results to polytopes defined in extended spaces, in which

case the complexity of the resulting robust problem also depend on the struc-

ture of the cost function. We have applied these results to problems where
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the uncertainty set is an axis-parallel ellipsoid or the intersection of the later

with a box, obtaining approximation algorithms for robust whose deterministic

counterparts are approximable.

From the practical viewpoint, our algorithms require to solve large numbers

of deterministic problems. Hence, a future research direction could be dedicated

to the efficient parallelization of this task, possibly exploiting the parallelization

possibilities of dedicated algorithms for specific problems. A related question

concerns the study of the stability of the optimal solutions under small changes

in the objective functions. Another interesting question is whether it is possible

to avoid solving the entire optimization problem at each iteration but instead

focus on separation/pricing problems. For instance, consider a branch-and-

cut-and-price algorithm for the vehicle routing problem that generates feasible

routes in pricing problems. One can readily verify that the robust counterpart

can be addressed by solving several pricing problems instead of solving several

time the full problem.
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Appendix A. Decision-dependent uncertainty

We show below how the results from Section 2 apply to variable uncertainty

introduced in [4, 28], and revived in [25] under the name “decision-dependent

uncertainty”. The framework considers robust problems where the uncertain

parameters live in a point-to-set-mapping U(x) : X ⇒ Rn instead of a fixed

uncertainty set. We consider below a restricted type of variable uncertainty

where only the rhs of the linear constraints characterizing the uncertainty point-

to-set mapping depend affinely on the optimization variables, namely

Uvarknap(x) :=

{
ξ ∈ Rn :

∑
i∈N

ajiξi ≤ bj(x), j ∈ S, 0 ≤ ξ ≤ ξ

}
,

where bj is an affine function of x for each j ∈ S. Interestingly, Theorem 3

extends directly to Uvarknap(x).

Proposition 4. Problem UvarknapCOd can be solved by solving olving O(ssns)

linear systems with s variables and s equations, and O(ssns) nominal problems

CO with modified costs.

Proof. The proof is almost identical to the proof of Theorem 3, with the differ-

ence that bjθj is now replaced by bj(x)θj in (17)–(20).

One of the interests of variable uncertainty arises when allowing the rhs of

UΓ, Γ, to depend on the optimization variables. Specifically, let us consider the

variable budgeted uncertainty set, defined as

Uγ(x) :=

{
ξ ∈ Rn :

∑
i∈N

ξi ≤ γ(x), 0 ≤ ξi ≤ 1, i ∈ N

}
.
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The author of [4, 28] has shown that if γ(x) is constructed according to the

probabilistic bounds proved in [3], then Uγ(x) yields the same probabilistic

garantee as UΓ, albeit at a lower solution cost since Uγ(x) ⊆ UΓ for all x. For

instance, a analytical choice for the function would be based on the weakest

of the bounds proposed by [3], yielding α(x) = (−2 ln(ε)
∑
i xi)

1
2 . While the

resulting point-to-set-mapping Uα(x) cannot be used in Proposition 4 (because

α is not an affine function of x), the point-to-set mapping can be approximated

by a more conservative one defined by s tangent affine approximations of α,

denoted γ1, . . . , γs,

Uγγ(x) :=

{
ξ ∈ Rn :

∑
i∈N

ξi ≤ γj(x), j ∈ S, 0 ≤ ξi ≤ 1, i ∈ N

}
.

The point-to-set mapping is clearly a special case of Uvarknap(x), and can therefore

be solved through Proposition 4. We refer to [4, 28, 25] for numerical experi-

ments reporting the reduction in the Price of robustness offered by models Uγ(x)

and Uγγ(x) and the approximation of α through affine functions.
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