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We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the limitation of the approach and point out N P-hard situations. Then, we approximate axis-parallel ellipsoids with knapsack constraints and provide an approximation scheme for the corresponding robust problem. The approximation scheme is also adapted to handle the intersection of an axis-parallel ellipsoid and a box.

Introduction

Robust optimization pioneered by [START_REF] Ben-Tal | Robust optimization[END_REF] has become a key framework to address the uncertainty that arises in optimization problems. Stated simply, robust optimization characterizes the uncertainty over unknown parameters by providing a set that contains the possible values for the the uncertain parameters and considers the worst-case over the set. The popularity of robust optimization is largely due to its tractability for uncertainty handling, since linear robust op-Email address: michael.poss@lirmm.fr (Michael Poss)

Preprint submitted to Discrete Optimization September 26, 2017 timization problems are essentially as easy as their deterministic counterparts for many types of convex uncertainty sets [START_REF] Ben-Tal | Robust optimization[END_REF], contrasting with the well-known difficulty of stochastic optimization approaches. In addition, robust optimization offers conservative approximation to stochastic programs with probabilistic constraints by choosing appropriate uncertainty sets [START_REF] Ben-Tal | Robust solutions of linear programming problems contaminated with uncertain data[END_REF][START_REF] Bertsimas | The price of robustness[END_REF][START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF].

The picture is more complex when it comes to robust combinatorial optimization problems. Let N denote a set of indices, with |N | = n, and X ⊂ {0, 1} n be the feasibility set of a combinatorial optimization problem, denoted CO. Given a bounded uncertainty set U ⊂ R n + , we consider in this paper the min max robust counterpart of CO, defined as

CO(U) min x∈X max ξ∈U ξ T x. (1) 
It is well known (e.g. [START_REF] Aissi | Min-max and min-max regret versions of combinatorial optimization problems: A survey[END_REF][START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF]) that a general uncertainty set U leads to a problem CO(U) that is, more often than not, harder than the deterministic problem CO. This is the case, for instance, when U is an arbitrary ellipsoid [START_REF] Sim | Robust optimization[END_REF] or a set of two arbitrary scenarios [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF]. Robust combinatorial optimization witnessed a breakthrough with the introduction of budgeted uncertainty in [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF], which keeps the tractability of the deterministic counterpart for a large class of combinatorial optimization problems. Specifically, Bertsimas and Sim considered uncertain cost functions characterized by the vector c ∈ R n of nominal costs and the vector d ∈ R n + of deviations. Then, given a budget of uncertainty Γ > 0, they addressed

CO d (U Γ ) min x∈X max ξ∈UΓ i∈N (c i + ξ i d i )x i = min x∈X i∈N c i x i + max ξ∈UΓ i∈N ξ i d i x i ,
for the budgeted uncertainty set

U Γ := ξ : i∈N ξ i ≤ Γ, 0 ≤ ξ i ≤ 1, i ∈ N .
Bertismas and Sim [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF] proved two fundamental results:

Theorem 1 ( [START_REF] Bertsimas | Robust discrete optimization and network flows[END_REF]). Problem CO d (U Γ ) can be solved by solving n + 1 problems CO with modified costs.

Theorem 2 ([8]). If CO admits a polynomial-time (1 + )-approximation algorithm running in O(f (n, )), then CO d (U Γ ) admits a polynomial-time (1 + )approximation algorithm running in O(nf (n, )).

These positive complexity results have been extended up to some extent to optimization problem with integer variables (i.e. X ⊆ Z n ) and constraints uncertainty in [START_REF] Álvarez-Miranda | A note on the bertsimas & sim algorithm for robust combinatorial optimization problems[END_REF][START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF].

Another popular uncertainty model involves ellipsoids, and more particularly, axis-parallel ellipsoids, which we represent here trough the robust counterpart

CO d (U ball ) min x∈X i∈N c i x i + max ξ∈U ball i∈N ξ i d i x i ,
where c now represents the center of the ellipsoid, d gives the length of its axes, and U ball is a ball of radius Ω, U ball := {ξ : ξ 2 ≤ Ω} . Nikolova [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] proposes a counterpart of Theorem 2 for CO d (U ball ) with a running time slightly worse than

O( 1 2 f (n, )
). Her approach considers the problem as a two-objective optimization problem and approximates its pareto front. Other authors have addressed problem CO d (U ball ), including Mokarami and Hashemi [START_REF] Mokarami | Constrained shortest path with uncertain transit times[END_REF] who showed how the problem can be solved exactly by solving a pseudo-polynomial number of problems CO and [START_REF] Atamtürk | Polymatroids and mean-risk minimization in discrete optimization[END_REF][START_REF] Baumann | Lagrangean decomposition for meanvariance combinatorial optimization[END_REF] who provide polynomial special cases. A drawback of CO d (U ball ) from the practical viewpoint is that U ball contains vectors with high individual values. For that reason, a popular variation considers instead the uncertainty set defined as the intersection of a ball and a box, formally defined as U box ball := ξ : ξ 2 ≤ Ω, -ξ ≤ ξ ≤ ξ , for some ξ, ξ ∈ R n + . While U box ball has been used in numerous papers dealing with robust optimization problems (e.g. [START_REF] Babonneau | Robust capacity assignment solutions for telecommunications networks with uncertain demands[END_REF][START_REF] Pessoa | Robust network design with uncertain outsourcing cost[END_REF]), we are not aware of previous complexity results for CO d (U box ball ). The main focus of this paper is to study robust combinatorial optimization problem for uncertainty polytopes defined by bounds restrictions and s = |S| knapsack constraints, specifically

U knap := ξ ∈ R n : i∈N a ji ξ i ≤ b j , j ∈ S, 0 ≤ ξ ≤ ξ , (2) 
where a ∈ R s×n + , b ∈ R s + , and ξ ∈ R n + . Our definition U knap is slightly more general than the multidimensional knapsack-contrained uncertainty set introduced in [START_REF] Minoux | On robust maximum flow with polyhedral uncertainty sets[END_REF][START_REF] Minoux | Solving some multistage robust decision problems with huge implicitly defined scenario trees[END_REF] since we consider non-negative values for the constraint coefficients while [START_REF] Minoux | On robust maximum flow with polyhedral uncertainty sets[END_REF][START_REF] Minoux | Solving some multistage robust decision problems with huge implicitly defined scenario trees[END_REF] assumes all of them equal to 1. The author of [START_REF] Minoux | On robust maximum flow with polyhedral uncertainty sets[END_REF][START_REF] Minoux | Solving some multistage robust decision problems with huge implicitly defined scenario trees[END_REF] motivates the introduction of these complex polytopes in the context of multistage decision problems, where one wishes to correlate the value of uncertain parameters of a given period to those related to the precedent periods.

We relate next U knap with the uncertainty polytopes that have been used in the literature for specific applications. Whenever s = 1, the resulting family of polytopes generalizes the uncertainty set ξ ∈ R n : i∈N ξ i ≤ b, 0 ≤ ξ ≤ ξ that has been used in scheduling [START_REF] Tadayon | Algorithms and complexity analysis for robust single-machine scheduling problems[END_REF]. For instance, our results imply that minimizing the sum of completion times is polynomial under less restrictive assumptions that those proposed in [START_REF] Tadayon | Algorithms and complexity analysis for robust single-machine scheduling problems[END_REF]. An application of U knap with s = 4 arises for the vehicle routing problem with demand uncertainty for which the authors of [START_REF] Gounaris | An adaptive memory programming framework for the robust capacitated vehicle routing problem[END_REF][START_REF] Gounaris | The robust capacitated vehicle routing problem under demand uncertainty[END_REF] partition the set of clients into four sets N 1 , . . . , N 4 , according to the four geographic quadrants based on the coordinates in the benchmark problems, and limit the demand deviations for each of these four quadrants by b j , formally, {ξ ∈ R n : i∈Nj ξ i ≤ b j , j ∈ {1, . . . , 4}, 0 ≤ ξ ≤ ξ}. Hence, our result suggest solution algorithms based on solving a polynomial sequence of deterministic problems. Knapsack uncertainty sets with larger values of s have also been used in telecommunications network with demand uncertainty, under the name of Hose model (traced back to [START_REF] Fingerhut | Designing least-cost nonblocking broadband networks[END_REF]). Given an undirected graph G = (V, E) and a set of demands D ⊆ V × V , the undirected Hose model is

the polytope ξ ∈ R |D| : l:{k,l}∈D ξ kl ≤ b k , for each k ∈ V s.t. ∃{k, l} ∈ D ,
where b l is the bandwidth capacity of the terminal node l ∈ V . Therefore, when |D| is small, our results could also be applied to robust network design with single path routing [START_REF] Altın | Provisioning virtual private networks under traffic uncertainty[END_REF].

This paper is also dedicated to extensions of U knap to (i) knapsack uncertainty polytopes described in an extended space rather than in the space of the optimization variables R n and to (ii) decision-depend uncertainty. The first model can be used to describe a variant of U Γ based on multiple intervals, which is a relevant approach when there is enough data to build a histogram of the values taken by the uncertain parameters [START_REF] Bienstock | Histogram models for robust portfolio optimization[END_REF]. We also show in the paper how knapsack uncertainty polytopes defined in extended spaces can be used to approximate axis-parallel ellipsoids and the intersection between an axis-parallel ellipsoid and a box, which have been used in the aforementioned applications.

The second model describes uncertainty regions that are adjusted according to the values taken by the optimization variables [START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF][START_REF] Nohadani | Optimization under decision-dependent uncertainty[END_REF]. When the uncertainty is motivated by the probabilistic results from [START_REF] Bertsimas | The price of robustness[END_REF], it becomes natural to constraint the uncertainty with few knapsack constraints [START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF], which can be solved efficiently using the results of this paper.

Our contributions. In Section 2, we extend Theorems 1 and 2 to U knap , showing that similar positive complexity results hold when s is constant but that the robust problems are in general N P-hard when s is part of the input. Section 3 considers uncertainty sets defined by s knapsack constraints in an extended space of dimension with > n, yielding uncertainty set U ext . These models replace the cost function

g i (ξ) = ξ i d i used in CO d (U Γ ) by a linear function h : R + → R n
+ that satisfies a technical assumption. We propose counterparts of Theorems 1 and 2 for the optimization problems built from U ext and h and show that the problems are N P-hard in general when the technical assumption is relaxed, even when s is constant. Section 4 considers problem CO d (U ball ) and proposes an approximation scheme based on a piece-wise approximation of the quadratic function n i=1 ξ 2 i . Specifically, we propose a counterpart of Theorem 2 with running time O( n 2 f (n, )). The approach is finally extended in Section 5 to uncertainty set U box ball , providing an approximation scheme for problem CO d (U box ball ).

Knapsack uncertainty

We provide in this section counterparts of Theorems 1 and 2 for U knap , which is defined by bounds restrictions and s = |S| knapsack constraints. Specifically, we consider in this section the polytope Before stating our result, we introduce the following notation: let Aθ = d be the matrix notation for the linear system of n equations given by j∈S a ji θ j = d i , i ∈ N, and define the larger system 

A θ = d (3) 
Z * = min θ∈Θ1 G θ ,
where for each θ ∈ Θ 1 :

G θ = j∈S b j θ j + min x∈X    i∈N c i x i + i∈N x i ξ i max(0, d i - j∈S a ji θ j )    .
Proof. Problem CO d (U knap ) can be written as

min x∈X i∈N cixi + max i∈N diξixi : i∈N ajiξi ≤ bj, j ∈ S, 0 ≤ ξi ≤ ξ i , i ∈ N . (4) 
Let us focus on the inner linear program in (4), and let y i be the dual variables associated to the upper bounds and θ j be the dual variable associated to the k-th inequality defining U knap . Dualizing the inner maximization we obtain

min θ,y≥0    j∈S b j θ j + i∈N ξ i y i : j∈S a ji θ j + y i ≥ d i x i , i ∈ N    (5) = min θ≥0    j∈S b j θ j + i∈N ξ i max(0, d i x i - j∈S a ji θ j )    (6) = min θ≥0    j∈S b j θ j + i∈N ξ i x i max(0, d i - j∈S a ji θ j )    , (7) 
where y i has been substituted by max(0, d i x i -j∈S a ji θ j ) in [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF], and (7) holds because x i ∈ {0, 1} for each i ∈ N .

We consider next the piece-wise linear function

f x (θ) = i∈N c i x i + j∈S b j θ j + i∈N x i ξ i max(0, d i - j∈S a ji θ j ),
and denote F (θ) = min x∈X f x (θ). Problem (4) can be rewritten as

min x∈X min θ≥0 f x (θ) = min θ≥0 min x∈X f x (θ) = min θ≥0 F (θ).
For each x ∈ X , the function f x defined on R s + is piece-wise linear and min θ≥0 f (θ) is bounded because U knap is bounded and non-empty. Hence, the minimum of We focus first on Θ 1 where 1 ∈ R s is the vector of all ones, formally defined as 1 j = 1 for each j ∈ S. Since, by definition, Θ 1 = ext(epi(f 1 )), Θ 1 coincide with the set of vectors where f 1 has no directional derivative. Therefore, one readily verifies that any vector θ in Θ 1 is the unique solution of a subsystem of the system A θ = d , defined in (3), formed by s linearly independent rows of A , which can be solved in O(s 3 ). Similarly, any vector in Θ x is obtained by solving a subsystem of s independent linear constraints among

min θ≥0 f (θ) is reached at some extreme point of the epigraph of f x (recall that epi(f x ) = {(θ, z) : θ ≥ 0, z ≥ f x (θ)}). Let us denote ext(epi(f x )) as Θ x . Since the minimum of f x (θ) is reached on Θ x , we have that min θ∈Θx f x (θ) = min
θ j = 0, j ∈ S x i j∈S a ji θ j = d i x i , i ∈ N.
We obtain that, for any x ∈ X , Θ x ⊆ Θ 1 , so that x∈X Θ x ⊆ Θ 1 . The result follows from the fact that computing F (θ) amounts to solve an instance of problem CO and

|Θ 1 | = s j=0 s j n s-j ≤ O(s s n s ).
Whenever CO is polynomially solvable and s is constant, Theorem 3 shows that the robust problem CO d (U knap ) is polynomially solvable. The theorem also applies to polytopes more general than U knap . Recall that the down-monotone completion of a polytope P ⊆ R n + is given by dm(P ) = {r ∈ R n + : ∃p ∈ P such that r i ≤ p i for each i ∈ N }.

We see that, for any polytope P ⊆ R n + , dm(P ) is a polytope that satisfies (2). The following simple result motivates the introduction of dm(P ). 

c i x i + max ξ∈P i∈N ξ i d i x i = min x∈X i∈N c i x i + max ξ∈dm(P ) i∈N ξ i d i x i = min x∈X i∈N c i x i + max ξ∈P i∈N ξ i d i x i
Lemma 1 suggests that Theorem 3 can be an efficient way to solve CO d (P ) for any polytope P for which we can compute a description of the downmonotone completion that contains few knapsack constraints.

Whenever s is part of the input, the approach depicted in Theorem 3 has an exponential running-time, which is consistent with the hardness result below.

Corollary 1. When s is part of the input, problem CO d (U knap ) is at least as hard as solving CO(U) where U contains 2 arbitrary vectors.

Proof. Consider an optimization problem described by the feasibility set X , and let us introduce its robust version min x∈X max η∈U 2s η T x for an uncertainty set U 2s that contains only two vectors, i.e. U 2s := {η 1 , η 2 }. We characterize below an instance of CO d (U knap ) that is equivalent to the above problem. We define

c i = min(η 1 i , η 2 i ) and d i = max(η 1 i -c i , η 2 i -c i ) for each i ∈ N and two 0-1 vectors ξ 1 and ξ 2 such that η 1 i = c i + d i ξ 1 i and η 2 i = c i + d i ξ 2 i for each i ∈ N .
We are left to define U knap such that such that for any x ∈ X max η∈U 2s i∈N

η i x i = i∈N c i x i + max ξ∈U knap i∈N ξ i d i x i . (8) 
If we were allowed to replace U knap in the rhs of ( 8) by an arbitrary polytope U, the equality could be enforced by defining U as the line segment joining ξ 1 and ξ 2 , since in that case we would have

i∈N c i x i + max ξ∈U i∈N ξ i d i x i = i∈N c i x i + max ξ∈{ξ 1 ,ξ 2 } i∈N ξ i d i x i ,
for any x ∈ X , which is equal to max η∈U 2s η T x by definition of ξ 1 and ξ 2 .

Unfortunately, the above definition of U does not comply with the definition of U knap , provided in (2), so we instead construct a polytope U knap that is the down-monotone completion of U and use Lemma 1. Specifically, we claim that the down-monotone completion of U can be defined as follows:

• For each i ∈ N such that ξ 1 i = ξ 2 i = 0, we have ξ i = 0. The upper bounds ξ i are set to 1 for the other indices.

• Let N 1 ⊆ N be the set of indices such that ξ 1 i = 1 and ξ 2 i = 0, and define similarly N 2 . We have the following knapsack constraints

ξ i + ξ j ≤ 1 for each (i, j) ∈ N 1 × N 2 . (9) 
To prove the claim, we must first verify that ξ Following the lines of Theorem 2 and assuming that s is constant, we can also obtain approximation algorithms for problems CO that are approximable.

Let H be a polynomial time (1 + )-approximation algorithm for problem CO. 

c i x i + i∈N ξ i x i max(0, d i - j∈S a ji θ j ) ; for each θ ∈ Θ 1 let Z θ = i∈N c i x θ i + max ξ∈U knap i∈N ξ i d i x θ i ; Let θ = arg min θ∈Θ1 Z θ ; return: x = x θ with cost equal to Z = Z θ
The approximation algorithm for CO d (U knap ) is provided in Algorithm 1. Algorithm 1 clearly runs in polynomial time whenever the cardinality Θ 1 is bounded by a polynomial function of n, which is the case whenever s is constant.

Proposition 1. Algorithm 1 returns an (1+ )-approximate solution to CO d (U knap ).

Proof. For each θ, we introduce G θ such that

min x∈X    i∈N c i x i + i∈N ξ i x i max(0, d i - j∈K a ji θ j )    . (10) 
Let θ * be the index such that Z * = G θ * in Theorem 3 and x θ * be an (1 + )approximate solution to problem [START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF]. Then, we have

Z ≤ Z θ * = i∈N c i x θ * i + max ξ∈U knap i∈N ξ i d i x θ * i = i∈N c i x θ * i + min θ≥0    j∈K b j θ j + i∈N ξ i x θ * i max(0, d i - j∈K a ji θ j )    (11) 
≤ i∈N c i x θ * i + j∈K b j θ * j + i∈N ξ i x θ * i max(0, d i - j∈K a ji θ * j ) (12) 
≤ (1 + )(G θ * - j∈K b j θ * j ) + j∈K b j θ * j (13) 
≤ (1 + )G θ * (14) = (1 + )Z * , (15) 
where [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] follows from ( 7) and ( 13) follows from [START_REF] Goetzmann | Optimization over integers with robustness in cost and few constraints[END_REF].

We provide in the Appendix an application of the above results to variable uncertainty.

Extended knapsack uncertainty

The results from the previous section can be extended to polytopes described through certain types of extended formulations. Namely, let us consider the set of indices L, with |L| = , and the linear mapping h : R + → R n + characterized by the matrix (h il ) with non-negative coefficients. The robust problems studied in this section are then defined by replacing the product

d i ξ i present in CO d (U knap ) by h i (η), obtaining the problem CO h (U ext ) min x∈X i∈N c i x i + max η∈Uext i∈N h i (η)x i
defined for the extended uncertainty set

U ext := η ∈ R : l∈L a jl η l ≤ b j , j ∈ S, 0 ≤ η ≤ η .
Using a reduction from a robust scheduling problem studied in [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF], we can show that problem CO h (U ext ) is hard, even when s is constant.

Proposition 2. Problem CO h (U ext ) is N P-hard in the strong sense even when

s = 1.
Proof. The result is obtained by considering the scheduling problem that minimizes the weighted sum of completion times, known to be solvable in polynomial time using Smith' rule. Its robust version for uncertainty set U Γ has been proved strongly N P-hard in [START_REF] Bougeret | Robust scheduling with budgeted uncertainty[END_REF]. The problem is defined as follows. Given a set of n jobs with weight w j , mean processing time p j and deviation pj for each job j, and a budget of uncertainty Γ, the objective is to minimize the worst-case of the weighted sum of the completion times knowing the processing times vary in [p j , p j + pj ] and that at most Γ jobs reach simultaneously their upper values.

The problem can be cast in our framework using binary optimization variable

x ij = 1 if job i is scheduled prior to job j and letting the set X sched ⊂ {0, 1} n 2 contain all binary vectors x feasible for the problem, yielding min

x∈X sched max    n i=1 n j=i p i w j x ij : n i=1 p i -p i pi ≤ Γ, p i ≤ p ≤ pi , i ∈ N    .
The above problem is a special case of CO h (U ext ) obtained by defining c ij = p i w j for i ≤ j and c ij = 0 for i > j, h ijl (η) = η i pi w j for i ≤ j and l = i, and h ijl (η) = 0 otherwise. Thus, considering an uncertainty set U Γ of dimension n concludes the proof.

In view of the above hardness result, we focus below on a special type of functions h that satisfy the following technical assumption there exists a partition 16)

L 1 ∪ • • • ∪ L N of L such that h il > 0 iff l ∈ L i . (
Assumption ( 16) is flexible enough to model the extension of the budgeted uncertainty set where multiple deviations are allowed, closely related to the histogram model studied in [START_REF] Bienstock | Histogram models for robust portfolio optimization[END_REF]. Namely, consider s budgets of uncertainty Γ j and deviations d ji ∈ R + . Then, h i (η) = j∈S d ji η ji and the uncertainty set is

U M Γ := η ∈ R |S|×n : i∈N η ji ≤ Γ j , j ∈ S, 0 ≤ η ≤ 1 .
When s is constant, the following result shows that CO h (U M Γ ) amounts to solve a polynomial number of problems CO. 

c i x i + max i∈N l∈L h il η l x i : l∈L a jl η l ≤ b j , j ∈ K, 0 ≤ η ≤ η l , l ∈ L .
Introducing the dual variables y l and θ j as in the proof of Theorem 3, the dual 

c i x i + i∈N l∈Li η l x i max(0, h il - j∈S a jl θ j ) ; for each θ ∈ Θ ext 1 let Z θ = i∈N c i x θ i + max η∈Uext i∈N h i (η)x θ i ; Let θ = arg min θ∈Θ ext 1 Z θ ; return: x = x θ with cost equal to Z = Z θ of the inner maximization problem reads min θ,y≥0    j∈K b j θ j + l∈L η l y l : j∈K a jl θ j + y l ≥ i∈N h il x i , l ∈ L    (17) = min θ,y≥0    j∈K b j θ j + l∈L η l y l : j∈K a jl θ j + y l ≥ h il x i , i ∈ N, l ∈ L i    (18) = min θ≥0    j∈K b j θ j + i∈N l∈Li η l max(0, h il x i - j∈K a jl θ j )    (19) = min θ≥0    j∈K b j θ j + i∈N l∈Li η l x i max(0, h il - j∈K a jl θ j )    , (20) 
where [START_REF] Tadayon | Algorithms and complexity analysis for robust single-machine scheduling problems[END_REF] holds because of property [START_REF] Pessoa | Robust network design with uncertain outsourcing cost[END_REF]. The rest of the proof is identical to the proof of Theorem 3.

Proposition 3 naturally leads to approximation algorithms for problems for which CO is approximable. Specifically, we introduce the set Θ ext 1 ⊆ R s as in the previous section however considering here the linear system h il = j∈S a jl θ j , i ∈ N, l ∈ L i , and θ j = 0, j ∈ S. The proof of correctness of Algorithm 2 is omitted as it is very similar to the proof of correctness of Algorithm 1.

Ellipsoidal uncertainty

We provide in the section a counterpart of Algorithm 1 for CO d (U ball ). The first element of our approach follows an idea of [START_REF] Han | Robust optimization approach for a chance-constrained binary knapsack problem[END_REF] that approximates U ball 

π 1 π 2 π 3 π 4 = Ω 2 √ π 1 √ π 2 (0, 0) √ π 3 √ π 4 ξ g(ξ)
U m := ξ ∈ R n : i∈N g(ξ i ) ≤ Ω 2 .
The first element of our approach shows that optimizing over U m is equivalent to optimizing over an extended version of U Γ , defined as

U m := η ∈ R n×m : i∈N k∈M η k i ≤ m, 0 ≤ η ≤ 1 ,
where M = {1, . . . , m}.

Lemma 2. Let h : R n×m → R n be the linear mapping defined through h ik = Algorithm 3: Approximation algorithm for CO d (U ball )

Use Algorithm 2 with U ext := U m and h defined in Lemma 2 to obtain x δ , an (1 + δ)-approximate solution to CO h (U m );

Compute the cost

Z δ = c T x δ + Ω i∈N d 2 i x δ i ; return: x δ with cost equal to Z δ d i ( √ π k - √ π k-1
) for each i ∈ N . For any x, it holds that

max ξ∈Um i∈N ξ i d i x i = max η∈U m i∈N h i (η)x i . (21) 
Proof. ≥ : Let η be a maximizer of the rhs of [START_REF] Gounaris | The robust capacitated vehicle routing problem under demand uncertainty[END_REF]. Since U m is integral, we can assume that η is binary. Further, we can assume that η k i ≥ η k+1 i for each k and i because h ik > h ik+1 . Let us then define the vector ξ ∈ U m by

ξ i = k∈M ( √ π k - √ π k-1 )η k i .
One readily verifies that ξ ∈ U m and, moreover, that 1). Then, define

ξ i d i = h i (η) for each i ∈ N . ≤: Conversely, let ξ ∈ U m and let k(i) be the index k ∈ M such that √ π k-1 ≤ ξ i < √ π k for each i ∈ N (see Figure
η k i = 1 for each 1 ≤ k ≤ k(i) -1, η k(i) i = ξi- √ π k(i)-1 √ π k(i) - √ π k(i)-1
, and η k i = 0 for k ≥ k(i) + 1. We see that η ∈ U m and ξ i d i = h i (η) for each i ∈ N .

Using Algorithm 2, we obtain in polynomial time an approximate solution to CO h (U m ), which is also an approximate solution to CO d (U m ) thanks to Lemma 2. The true cost of the solution is then computed for U ball to obtain the desired approximate solution to CO d (U ball ). The procedure is formally described in Algorithm 3 whose validity is stated below. The running time of Let us introduce some notations before proving the theorem. First, we define U ball (α) as the ball of radius α centered at 0. Second, we define

F ball (x) = c T x+ max ξ∈U ball i∈N ξ i d i x i = c T x + Ω i∈N d 2 i x i and F m (x) = c T x + max ξ∈Um i∈N ξ i d i x i .
To prove Theorem 4, we will bound the ratio F m (x)/F ball (x) from above and from below. On the one hand, g(ξ i ) ≥ ξ 2 i for each i ∈ N implies that U m ⊆ U ball and we obtain immediately

F m (x) F ball (x) ≤ 1 for any x ∈ X . (22) 
On the other hand, proving that Fm F ball is also bounded from below is more technical. We first show that U ball (ρ(m)Ω) ⊆ U m for a specific function ρ(m).

Lemma 3. If m ≥ n, then U ball (Ω 1 -n/m) ⊂ U m .
Proof. It follows from the definition of g that

g(ξ i ) ≤ ξ 2 i + Ω 2 m .
Consider then ξ be such that

ξ 2 ≤ Ω 1 -n/m. Therefore, i∈N g(ξ i ) ≤ i∈N ξ 2 i + n Ω 2 m ≤ Ω 2 ,
proving that ξ ∈ U m .

Using the above lemma, we can bound Fm F ball from below.

Lemma 4. Consider δ > 0. If m ≥ n δ , then Fm(x) F ball (x) ≥ 1 -δ for any x ∈ X .

Proof. Lemma 3 implies that

F m (x) ≥ c T x + max ξ∈U ball (Ω √ 1-n m ) i∈N ξ i d i x i .
Hence,

F m (x) ≥ c T x + Ω 1 - n m i∈N d 2 i x i ≥ 1 - n m   c T x + Ω i∈N d 2 i x i   ≥ 1 - n m F ball (x),
and the results follows from taking m = n δ . respectively. The following holds for δ > 0 small enough:

Z δ = F ball (x δ ) ≤ 1 1 -δ F m (x δ ) (using Lemma 4) ≤ (1 + 2δ)F m (x δ ) ≤ (1 + δ)(1 + 2δ)F m (x m )
(by definition of x δ and Lemma 2)

≤ (1 + 4δ)F m (x m ) ≤ (1 + 4δ)F m (x ball ) (by definition of x m )
≤ (1 + 4δ)F ball (x ball ) (follows from ( 22))

= (1 + 4δ) opt(CO d (U ball )).

Ellipsoid with upper bounds

Rather than studying directly the problem CO d (U box ball ), we focus in this section on the problem CO d (U ball ) defined for an axis-parallel ellipsoid combined with upper bounds, namely

U ball := ξ ∈ R n : i∈N ξ 2 ≤ Ω, 0 ≤ ξ ≤ ξ . Since U ball ∩ R n + = U box ball ∩ R n + and d ∈ R n + , problems CO d (U box ball )
and CO d (U ball ) have the same optimal solutions. Hence, the extension of Algorithm 3 to the problem CO d (U ball ), presented in the rest of this section, also applies to

CO d (U box ball ). The counterpart of U m with U ball is given by U m := ξ ∈ R n : i∈N g(ξ i ) ≤ Ω 2 , 0 ≤ ξ ≤ ξ ,
and one readily verifies that the counterpart of ( 21) is max ξ∈Um i∈N

ξ i d i x i = max η∈U m i∈N h i (η)x i , (23) 
where U m is the following extended polytope with one knapsack constraint 

U m := η ∈ R n×m : i∈N k∈M η k i ≤ m, 0 ≤ η ≤ η , h : R n×m → R n is the linear mapping defined in Lemma 2, and η ∈ R n×m + is defined as follows. Let k(i) be the index k ∈ M such that √ π k-1 ≤ ξ i < √ π k for each i ∈ N . We obtain η k i = 1 for each 1 ≤ k ≤ k(i) -1, η k(i) i = ξ i - √ π k(i)-1 √ π k(i) - √ π k(i)-1 , and η k i = 0 for k ≥ k(i) + 1.
U ball (Ω, ξ) := ξ ∈ R n : i∈N ξ 2 ≤ Ω, 0 ≤ ξ ≤ ξ .
Optimizing a linear function over the set U ball (Ω, ξ) satisfies the useful property stated next. Proof of Theorem 5. Following the reasoning of the proof of Lemma 3, we see that that m ≥ n implies that U ball (Ω 1 -n/m) ⊂ U m . Hence, we have

F m (x) ≥ c T x + max ξ∈U ball (Ω √ 1-n m ,ξ) i∈N ξ i d i x i (24) 
≥ c T x + max ξ∈U ball (Ω √ 1-n m ,ξ √ 1-n m ) i∈N ξ i d i x i (25) = c T x + 1 - n m max ξ∈U ball (Ω,ξ) i∈N ξ i d i x i (26) ≥ 1 - n m F ball (x), (27) 
where [START_REF] Nohadani | Optimization under decision-dependent uncertainty[END_REF] follows from

U ball Ω 1 -n m , ξ 1 -n m ⊆ U ball Ω 1 -n m , ξ ,
and (26) follows from Lemma 5. Inequality [START_REF] Han | Robust optimization approach for a chance-constrained binary knapsack problem[END_REF] states the counterpart of Lemma 4 for F m . Moreover, one readily verifies that inequality Fm(x) F ball (x) ≤ 1 also holds. The result is thus obtained by following the steps of the proof of Theorem 4.

Conclusion

We have investigated the complexity of min max robust combinatorial optimization under general uncertainty polytopes. We have shown that, if the downmonotone completion of the uncertainty polytope contains a constant number of linear inequalities, then the optimal solution to the robust problem can be obtained by solving a polynomial number of deterministic counterparts. We have extended these results to polytopes defined in extended spaces, in which case the complexity of the resulting robust problem also depend on the structure of the cost function. We have applied these results to problems where the uncertainty set is an axis-parallel ellipsoid or the intersection of the later with a box, obtaining approximation algorithms for robust whose deterministic counterparts are approximable.

From the practical viewpoint, our algorithms require to solve large numbers of deterministic problems. Hence, a future research direction could be dedicated to the efficient parallelization of this task, possibly exploiting the parallelization possibilities of dedicated algorithms for specific problems. A related question concerns the study of the stability of the optimal solutions under small changes in the objective functions. Another interesting question is whether it is possible to avoid solving the entire optimization problem at each iteration but instead focus on separation/pricing problems. For instance, consider a branch-andcut-and-price algorithm for the vehicle routing problem that generates feasible routes in pricing problems. One can readily verify that the robust counterpart can be addressed by solving several pricing problems instead of solving several time the full problem.

The author of [START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF][START_REF] Poss | Robust combinatorial optimization with variable cost uncertainty[END_REF] has shown that if γ(x) is constructed according to the probabilistic bounds proved in [START_REF] Bertsimas | The price of robustness[END_REF], then U γ (x) yields the same probabilistic garantee as U Γ , albeit at a lower solution cost since U γ (x) ⊆ U Γ for all x. For instance, a analytical choice for the function would be based on the weakest of the bounds proposed by [START_REF] Bertsimas | The price of robustness[END_REF], yielding α(x) = (-2 ln( ) i x i ) 1 2 . While the resulting point-to-set-mapping U α (x) cannot be used in Proposition 4 (because α is not an affine function of x), the point-to-set mapping can be approximated by a more conservative one defined by s tangent affine approximations of α, denoted γ 1 , . . . , γ s ,

U γγ (x) := ξ ∈ R n : i∈N ξ i ≤ γ j (x), j ∈ S, 0 ≤ ξ i ≤ 1, i ∈ N .
The point-to-set mapping is clearly a special case of U var knap (x), and can therefore be solved through Proposition 4. We refer to [START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF][START_REF] Poss | Robust combinatorial optimization with variable cost uncertainty[END_REF][START_REF] Nohadani | Optimization under decision-dependent uncertainty[END_REF] for numerical experiments reporting the reduction in the Price of robustness offered by models U γ (x) and U γγ (x) and the approximation of α through affine functions.

Theorem 3 .

 3 Id is the s × s identity matrix and 0 is the vector of dimension s with all zeros. Further, consider the set Θ 1 ⊆ R s that is defined as follows: each element θ ∈ Θ 1 is the unique solution of a subsystem of A θ = d formed by s linearly independent rows of A . Problem CO d (U knap ) can be solved by solving O(s s n s ) linear systems with s variables and s equations, and O(s s n s ) nominal problems

  θ∈ y∈X Θy f x (θ) for each x ∈ X . Therefore, min θ≥0 F (θ) = min x∈X min θ≥0 f x (θ) = min x∈X min θ∈Θx f x (θ) = min θ∈ y∈X Θy min x∈X f x (θ) = min θ∈ y∈X Θy F (θ), and we are left to compute x∈X Θ x .

Lemma 1 .

 1 Let P and P be polytopes included in R n + . If dm(P ) = dm(P ), then problems CO d (P ) and CO d (P ) have the same optimal solutions. Proof. The proof follows immediatly from the equality min x∈X i∈N

1 and ξ 2

 2 belong to U knap , which is immediate from the definitions of the above knapsack constraints. To show that any extreme point of U knap different from ξ 1 and ξ 2 is dominated by ξ 1 or ξ 2 , we define the bipartite graph G = (N, E) induced by the subsets N 1 and N 2 , e.g. N = N 1 ∪ N 2 and E = N 1 × N 2 . The knapsack constraints (9) are defined by the adjacency matrix of the graph, which is totally unimodular. Hence, all extreme points of U knap are binary vectors ξ such that ξ i = 1 for each i ∈ N * where either N * ⊆ N 1 or N * ⊆ N 2 , proving the claim.Corollary 1 implies that, when s is part of the input, CO d (U knap ) is N Phard for the shortest path problem, the assignment problem, and the minimum spanning tree problem, since the robust versions of these problems are N P-hard for two arbitrary scenarios.

Algorithm 1 :

 1 Approximation algorithm for CO d (U knap ) for each θ ∈ Θ 1 find an (1 + )-approximate solution x θ for min x∈X i∈N

Algorithm 2 :

 2 Approximation algorithm for CO h (U ext ) for each θ ∈ Θ ext 1 find an (1 + )-approximate solution x θ for min x∈X i∈N

Figure 1 :Figure 1 .

 11 Figure 1: Piece-wise affine over approximation of the function ξ 2 with m = 4.

Algorithm 3 Theorem 4 .

 34 is in O( n 2 f (n, )) where O(f (n, )) is the running time required to compute an (1 + )-approximate solution to CO. If m ≥ n δ and = 4δ, then Algorithm 3 returns a (1 + )approximate solution to CO d (U ball ).

Algorithm 4 :

 4 Approximation algorithm for U ball CO d Use Algorithm 2 with U ext := U m and h defined in Lemma 2 to obtain x δ , an (1 + δ)-approximate solution to U m CO h ; Compute the cost Z δ = c T x δ + max ξ∈U ball i∈N ξ i d i x i ; return: x δ with cost equal to Z δ Proof. of Theorem 4. Let x δ , x m and x ball denote the solution computed by Algorithm 3, and the optimal solutions of problems min x∈X F m (x) and min x∈X F ball (x),

Theorem 5 .

 5 Algorithm 3 is adapted in Algorithm 4 to handle the upper bounds, the proof of correctness of which is provided in Theorem 5 below. If m ≥ n δ and = 4δ, then Algorithm 4 returns a (1 + )approximate solution to CO d (U ball ). The proof of Theorem 5 follows closely the lines of the proof of Theorem 4 with one little difference explained below. Let us first extend the notations F m and F ball to F m and F ball , respectively, and introduce

Lemma 5 .

 5 Consider λ > 0 and Ω > 0 and ξ, µ ∈ R n + . It holds that max ξ∈U ball (λΩ,λξ) µ T ξ = λ max ξ∈U ball (Ω,ξ) µ T ξ. Proof. The results follows from the property U ball (λΩ, λξ) = λU ball (Ω, ξ) by performing the change of variables φ = λξ.
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Appendix A. Decision-dependent uncertainty

We show below how the results from Section 2 apply to variable uncertainty introduced in [START_REF] Poss | Robust combinatorial optimization with variable budgeted uncertainty[END_REF][START_REF] Poss | Robust combinatorial optimization with variable cost uncertainty[END_REF], and revived in [START_REF] Nohadani | Optimization under decision-dependent uncertainty[END_REF] under the name "decision-dependent uncertainty". The framework considers robust problems where the uncertain parameters live in a point-to-set-mapping U(x) : X ⇒ R n instead of a fixed uncertainty set. We consider below a restricted type of variable uncertainty where only the rhs of the linear constraints characterizing the uncertainty pointto-set mapping depend affinely on the optimization variables, namely

where b j is an affine function of x for each j ∈ S. Interestingly, Theorem 3 extends directly to U var knap (x).

Proposition 4. Problem U var knap CO d can be solved by solving olving O(s s n s ) linear systems with s variables and s equations, and O(s s n s ) nominal problems CO with modified costs.

Proof. The proof is almost identical to the proof of Theorem 3, with the difference that b j θ j is now replaced by b j (x)θ j in ( 17)- [START_REF] Gounaris | An adaptive memory programming framework for the robust capacitated vehicle routing problem[END_REF].

One of the interests of variable uncertainty arises when allowing the rhs of U Γ , Γ, to depend on the optimization variables. Specifically, let us consider the variable budgeted uncertainty set, defined as