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Robust combinatorial optimization with knapsack
uncertainty

Michael Poss

UMR CNRS 5506 LIRMM, Université de Montpellier, 161 rue Ada, 34392 Montpellier
Cedex 5, France.

Abstract

We study in this paper min max robust combinatorial optimization problems for
an uncertainty polytope that is defined by knapsack constraints, either in the
space of the optimization variables or in an extended space. We provide exact
and approximation algorithms that extend the iterative algorithms proposed by
Bertismas and Sim (2003). We also study the limitation of the approach and
point out NP-hard situations. Then, we approximate axis-parallel ellipsoids
with knapsack constraints and provide an approximation scheme for the corre-
sponding robust problem. The approximation scheme is also adapted to handle
the intersection of an axis-parallel ellipsoid and a box.

Keywords: robust optimization, combinatorial optimization, approximation

algorithms, ellipsoidal uncertainty

1. Introduction

Robust optimization pioneered by [1] has become a key framework to address
the uncertainty that arises in optimization problems. Stated simply, robust op-
timization characterizes the uncertainty over unknown parameters by providing
a set that contains the possible values for the the uncertain parameters and
considers the worst-case over the set. The popularity of robust optimization is

largely due to its tractability for uncertainty handling, since linear robust op-

Email address: michael.poss@lirmm.fr (Michael Poss)

Preprint submitted to Discrete Optimization September 26, 2017



timization problems are essentially as easy as their deterministic counterparts
for many types of convex uncertainty sets [1], contrasting with the well-known
difficulty of stochastic optimization approaches. In addition, robust optimiza-
tion offers conservative approximation to stochastic programs with probabilistic
constraints by choosing appropriate uncertainty sets [2, 3, 4].

The picture is more complex when it comes to robust combinatorial optimiza-
tion problems. Let N denote a set of indices, with |[N| =n, and X C {0,1}"™ be
the feasibility set of a combinatorial optimization problem, denoted CO. Given
a bounded uncertainty set &/ C R, we consider in this paper the min max

robust counterpart of C'O, defined as

co) min max &7 . (1)

TE€EX €€l

It is well known (e.g. [5, 6]) that a general uncertainty set U leads to a problem
CO(U) that is, more often than not, harder than the deterministic problem
CO. This is the case, for instance, when U is an arbitrary ellipsoid [7] or a set
of two arbitrary scenarios [6]. Robust combinatorial optimization witnessed a
breakthrough with the introduction of budgeted uncertainty in [8], which keeps
the tractability of the deterministic counterpart for a large class of combinatorial
optimization problems. Specifically, Bertsimas and Sim considered uncertain
cost functions characterized by the vector ¢ € R"™ of nominal costs and the
vector d € Rt of deviations. Then, given a budget of uncertainty I' > 0, they
addressed

COq(U i i+ &id)z; = mi iTi + idii |
a(Ur) minmax » (¢ + &d;)x 21;1(2}%0;3 grrel%(;vﬁ x)

TEX EEUr N
for the budgeted uncertainty set Ur := {f 2 ien& ST0<E < 1ie N} .
Bertismas and Sim [8] proved two fundamental results:

Theorem 1 ([8]). Problem COq(Ur) can be solved by solving n + 1 problems
CO with modified costs.

Theorem 2 ([8]). If CO admits a polynomial-time (1 + €)-approzimation algo-
rithm running in O(f(n,¢)), then COq(Ur) admits a polynomial-time (1 + €)-

approximation algorithm running in O(nf(n,e€)).



These positive complexity results have been extended up to some extent to
optimization problem with integer variables (i.e. X C Z™) and constraints
uncertainty in [9, 10].

Another popular uncertainty model involves ellipsoids, and more particu-
larly, axis-parallel ellipsoids, which we represent here trough the robust coun-
terpart

COq(Upanr) Imrél;gl <§v CiTi + (max. ;\f&%m) :

where ¢ now represents the center of the ellipsoid, d gives the length of its axes,
and Upqy is a ball of radius Q, Upay := {£ : ||€]l2 < 2} . Nikolova [11] proposes a
counterpart of Theorem 2 for CO4(Upqi) with a running time slightly worse than
O(Z% f(n,€)). Her approach considers the problem as a two-objective optimiza-
tion problem and approximates its pareto front. Other authors have addressed
problem CO4(Upar), including Mokarami and Hashemi [12] who showed how
the problem can be solved exactly by solving a pseudo-polynomial number of
problems CO and [13, 14] who provide polynomial special cases. A drawback of
CO4q(Upqy) from the practical viewpoint is that Upey contains vectors with high
individual values. For that reason, a popular variation considers instead the
uncertainty set defined as the intersection of a ball and a box, formally defined
as UPSh = {€:||¢]ls < Q,—£ < E < €Y, for some &€ € RE. While UP2h has
been used in numerous papers dealing with robust optimization problems (e.g.
[15, 16]), we are not aware of previous complexity results for COq(UL%).

The main focus of this paper is to study robust combinatorial optimization
problem for uncertainty polytopes defined by bounds restrictions and s = |S)|
knapsack constraints, specifically

Upnap = {fER"ZZajififbj,jES,0S§§§}7 (2)

iEN
where a € Ry, b € R, and £ € R%.. Our definition Uy, is slightly more gen-
eral than the multidimensional knapsack-contrained uncertainty set introduced
in [17, 18] since we consider non-negative values for the constraint coefficients

while [17, 18] assumes all of them equal to 1. The author of [17, 18] motivates



the introduction of these complex polytopes in the context of multistage deci-
sion problems, where one wishes to correlate the value of uncertain parameters
of a given period to those related to the precedent periods.

We relate next Uynqp with the uncertainty polytopes that have been used
in the literature for specific applications. Whenever s = 1, the resulting family
of polytopes generalizes the uncertainty set {{ € R : Y, & <b,0 < <&}
that has been used in scheduling [19]. For instance, our results imply that
minimizing the sum of completion times is polynomial under less restrictive
assumptions that those proposed in [19]. An application of Uypep Wwith s = 4
arises for the vehicle routing problem with demand uncertainty for which the
authors of [20, 21] partition the set of clients into four sets Ny, ..., Ny, according
to the four geographic quadrants based on the coordinates in the benchmark
problems, and limit the demand deviations for each of these four quadrants
by b;, formally, {£ € R™ : ZieNj & < bj,j € {1,...,4},0 < & < &}. Hence,
our result suggest solution algorithms based on solving a polynomial sequence
of deterministic problems. Knapsack uncertainty sets with larger values of s
have also been used in telecommunications network with demand uncertainty,
under the name of Hose model (traced back to [22]). Given an undirected graph
G = (V,E) and a set of demands D C V x V, the undirected Hose model is
the polytope {f c RIPI . Zl:{k,l}ED &ri < by, for each k € V s.t. Ik, 1} € D} ,
where b; is the bandwidth capacity of the terminal node [ € V. Therefore, when
|D| is small, our results could also be applied to robust network design with
single path routing [23].

This paper is also dedicated to extensions of Uy, to (1) knapsack uncer-
tainty polytopes described in an extended space rather than in the space of
the optimization variables R™ and to (ii) decision-depend uncertainty. The first
model can be used to describe a variant of Ur based on multiple intervals, which
is a relevant approach when there is enough data to build a histogram of the
values taken by the uncertain parameters [24]. We also show in the paper how
knapsack uncertainty polytopes defined in extended spaces can be used to ap-

proximate axis-parallel ellipsoids and the intersection between an axis-parallel



ellipsoid and a box, which have been used in the aforementioned applications.
The second model describes uncertainty regions that are adjusted according to
the values taken by the optimization variables [4, 25]. When the uncertainty is
motivated by the probabilistic results from [3], it becomes natural to constraint
the uncertainty with few knapsack constraints [4], which can be solved efficiently

using the results of this paper.

Our contributions. In Section 2, we extend Theorems 1 and 2 to Upqp, showing
that similar positive complexity results hold when s is constant but that the
robust problems are in general N"P-hard when s is part of the input. Section 3
considers uncertainty sets defined by s knapsack constraints in an extended
space of dimension ¢ with ¢ > n, yielding uncertainty set U.,+. These models
replace the cost function g;(§) = &d; used in CO4(Ur) by a linear function
h: Rﬂ — R’ that satisfies a technical assumption. We propose counterparts
of Theorems 1 and 2 for the optimization problems built from U,,; and h and
show that the problems are NP-hard in general when the technical assumption
is relaxed, even when s is constant. Section 4 considers problem COg4(Upair)
and proposes an approximation scheme based on a piece-wise approximation
of the quadratic function Y ., &Z. Specifically, we propose a counterpart of
Theorem 2 with running time O(”T2 f(n,€)). The approach is finally extended
in Section 5 to uncertainty set L{é’gﬁ, providing an approximation scheme for

problem COq4(UPE).

2. Knapsack uncertainty

We provide in this section counterparts of Theorems 1 and 2 for Uyqp, which
is defined by bounds restrictions and s = |S| knapsack constraints. Specifically,
we consider in this section the polytope Before stating our result, we introduce
the following notation: let A = d be the matrix notation for the linear system

of n equations given by > . s a;if; = d;,i € N, and define the larger system

jES

A9 =d (3)



A d
with A" = and d' = , where Id is the s x s identity matrix
1d 0

and 0 is the vector of dimension s with all zeros. Further, consider the set
©71 C R that is defined as follows: each element 6 € ©4 is the unique solution

of a subsystem of A’ = d’ formed by s linearly independent rows of A’.

Theorem 3. Problem COq(Uynap) can be solved by solving O(s°n®) linear sys-

tems with s variables and s equations, and O(s*n®) nominal problems

where for each 6 € ©1:

Zb i0; +m1n chajz—l—lef max (0 Zaﬂ

jeSs i€EN i€EN jeSs

Proof. Problem COq(Ugnap) can be written as
I;%i}\/l (Z c;T; + max {Z dl&ilfl : Z ajz-{i < bj,j S S,O < fl < £i7i c N}) . (4)
iEN 1EN 1EN
Let us focus on the inner linear program in (4), and let y; be the dual variables
associated to the upper bounds and 6; be the dual variable associated to the

k-th inequality defining Uypqp. Dualizing the inner maximization we obtain

min Zb@ +Z§yz ZaﬂH +y; > d;x;,i €N (5)

6,y>0
i€EN jes

:renzuol ijﬁj + ZE’ max((),dixi — Zajﬂj) (6)

jES iEN jes
21911;161 E b0 + g &,w; max(0 E a;ib;) ¢, (7)
- jeSs i€EN JjeES

where y; has been substituted by max(0, diz; — ;¢ 5 a;:0;) in (6), and (7) holds
because x; € {0,1} for each i € N.
We consider next the piece-wise linear function

chxz—l—ZbG —|—Z lf max(0 Zaﬂ

i€EN JjES 1EN jeSs



and denote F(0) = mingex fz(0). Problem (4) can be rewritten as

min min f(¢) = minmin f(¢) = min £(0).

For each x € X, the function f, defined on R? is piece-wise linear and ming> f(0)
is bounded because Uypqp is bounded and non-empty. Hence, the minimum of
ming>o f(6) is reached at some extreme point of the epigraph of f, (recall that

epi(fy) ={(0,2) : 0 >0,z > f(0)}). Let us denote ext(epi(f;)) as O,. Since

the minimum of f,(6) is reached on ©,, we have that min f,(f) = min f,(6)
€O, be U O,
yeEX

for each x € X'. Therefore,

o F(8) — i £ (6] — min win £.(0) = i i (6) i E(0)
B O = S0 = R e RO =ty RO = g PO
yeX yeX

and we are left to compute |J, .y Oz

We focus first on ©; where 1 € R® is the vector of all ones, formally defined
as 1; = 1 for each j € S. Since, by definition, ©1 = ext(epi(f1)), ©1 coincide
with the set of vectors where f; has no directional derivative. Therefore, one
readily verifies that any vector # in ©1 is the unique solution of a subsystem of
the system A’6 = d’, defined in (3), formed by s linearly independent rows of
A’, which can be solved in O(s®). Similarly, any vector in ©, is obtained by

solving a subsystem of s independent linear constraints among

9, = 0, jeS

X; Z ajiej = d;x;, 1€ N.
jeSs
We obtain that, for any =z € X', ©, C 04, so that UweX O, C O;1. The result
follows from the fact that computing F'(f) amounts to solve an instance of

S

problem CO and |01| = Y, (;) (Sfj) < O(s°n®). O
0

Whenever C'O is polynomially solvable and s is constant, Theorem 3 shows
that the robust problem COg(Ugnap) is polynomially solvable. The theorem also
applies to polytopes more general than Uy,,,. Recall that the down-monotone

completion of a polytope PP C R} is given by

dm(P) = {r € R} : Ip € P such that r; < p; for each i € N'}.



We see that, for any polytope P C R}, dm(P) is a polytope that satisfies (2).

The following simple result motivates the introduction of dm(P).

Lemma 1. Let P and P’ be polytopes included in R’y . If dm(P) = dm(P’),
then problems COq(P) and COq(P’) have the same optimal solutions.

Proof. The proof follows immediatly from the equality

gréig <Z cixi + maX Z &d; x1> = mln (Z X + mﬁ(P Z &d; a:l>

ZGN iEN
= min ( E T + max E &d; xz>
rEX
¢ zGN

O

Lemma 1 suggests that Theorem 3 can be an efficient way to solve COq(P)
for any polytope P for which we can compute a description of the down-
monotone completion that contains few knapsack constraints.

Whenever s is part of the input, the approach depicted in Theorem 3 has an

exponential running-time, which is consistent with the hardness result below.

Corollary 1. When s is part of the input, problem COq(Ugnap) s at least as

hard as solving CO(U) where U contains 2 arbitrary vectors.

Proof. Consider an optimization problem described by the feasibility set X', and
let us introduce its robust version mingex max,cy2s nTx for an uncertainty set
U?® that contains only two vectors, i.e. U?® := {n',n?}. We characterize below
an instance of COq(Uknqp) that is equivalent to the above problem. We define
¢; = min(n},n?) and d; = max(n} — ¢;,n? — ¢;) for each i € N and two 0-1
vectors ¢! and €2 such that n} = ¢; + d;&} and n? = ¢; + d;&2 for each i € N.
We are left to define Uyyqp such that such that for any x € X

Jggg(s lezj:vmzm = iez;vczzl + Eemgip ; &idix;. (8)

If we were allowed to replace Ugnqp in the rhs of (8) by an arbitrary polytope

U, the equality could be enforced by defining U as the line segment joining ¢!



and &2, since in that case we would have
iezj:v ciTi + max ;V §idixy = lezz:v ciTi + 66%??22} ;\f &idixs,
for any x € X, which is equal to max;, cy2: 7 2 by definition of ¢ and &2
Unfortunately, the above definition of ¢ does not comply with the definition
of Unap, provided in (2), so we instead construct a polytope Uinqp that is the
down-monotone completion of i/ and use Lemma 1. Specifically, we claim that

the down-monotone completion of ¢/ can be defined as follows:

e For each i € N such that &} = ¢2 = 0, we have £; = 0. The upper bounds

&, are set to 1 for the other indices.

e Let N' C N be the set of indices such that £ =1 and £? = 0, and define

similarly N2. We have the following knapsack constraints

& +&; < 1for each (i,5) € N' x N2 (9)

To prove the claim, we must first verify that £' and &2 belong to Uynap, which is
immediate from the definitions of the above knapsack constraints. To show that
any extreme point of Uppe, different from ¢! and €2 is dominated by & or €2,
we define the bipartite graph G = (N, E) induced by the subsets N! and N2,
e.g. N=N'UN? and E = N' x N2. The knapsack constraints (9) are defined
by the adjacency matrix of the graph, which is totally unimodular. Hence, all
extreme points of Uynqp are binary vectors & such that {; = 1 for each ¢ € N*

where either N* C N! or N* C N2, proving the claim. O

Corollary 1 implies that, when s is part of the input, COq(Uknap) is N'P-
hard for the shortest path problem, the assignment problem, and the minimum
spanning tree problem, since the robust versions of these problems are A/P-hard
for two arbitrary scenarios.

Following the lines of Theorem 2 and assuming that s is constant, we can
also obtain approximation algorithms for problems C'O that are approximable.

Let H be a polynomial time (1 4 ¢)-approximation algorithm for problem CO.



Algorithm 1: Approximation algorithm for COq(Ugknap)

for each § € ©; find an (1 + ¢)-approximate solution z? for

min{ 3w+ Y &rimax(0,d; — S ajlﬂj)} ;

T€X | jeN ieN jes

for each € ©; let 7% = Y cix + max Y. &d; ml ;
iEN §€Uknap jeN

Let € = arg mln AS
0cO,

return: z¢ = 2% with cost equal to Z¢ = Z¢°

The approximation algorithm for COq4(Uknayp) is provided in Algorithm 1. Algo-
rithm 1 clearly runs in polynomial time whenever the cardinality ©4 is bounded

by a polynomial function of n, which is the case whenever s is constant.
Proposition 1. Algorithm 1 returns an (1+¢€)-approzimate solution to COq(Uknap)-

Proof. For each 0, we introduce G? such that
ﬁrgn Z ;T + Zﬁ x; max (0 Z a;i0;) ¢ . (10)
iEN iEN jeK

Let 0* be the index such that Z* = G  in Theorem 3 and z¥" be an (1 + ¢)-

approximate solution to problem (10). Then, we have

7€ < Z9*
_ 0 0
= Z cGr, + 5612135”0 Z &dix,
iEN EN
:Zci —|—m1n Zb@ —|—Z§le max (0, d; —Za]z (11)
i€EN jeEK ieN jeEK
< Z cia:f* + Z b;0; + Zg x; max Z a;it; (12)
iEN jeEK iEN jeEK
S@+eGT =D b0+ > bty (13)
JEK JEK
<(1+eG” (14)
=({1+eZ", (15)
where (11) follows from (7) and (13) follows from (10). O

10



We provide in the Appendix an application of the above results to variable

uncertainty.

3. Extended knapsack uncertainty

The results from the previous section can be extended to polytopes described
through certain types of extended formulations. Namely, let us consider the set
of indices L, with |L| = ¢, and the linear mapping h : Rﬁ — R?} characterized by
the matrix (h;;) with non-negative coefficients. The robust problems studied in
this section are then defined by replacing the product d;&; present in COq(Uknap)
by h;i(n), obtaining the problem

COpUert) gél)rfl (Z ;T + max Z hz(r])xb>

e
iEN NS eat LN

defined for the extended uncertainty set

Uewt = {neR‘ DY aum < by, eS,O<77<77}.
leL

Using a reduction from a robust scheduling problem studied in [26], we can show

that problem COp(Ueyt) is hard, even when s is constant.

Proposition 2. Problem COp(Uezt) is N'P-hard in the strong sense even when

s=1.

Proof. The result is obtained by considering the scheduling problem that mini-
mizes the weighted sum of completion times, known to be solvable in polynomial
time using Smith’ rule. Its robust version for uncertainty set Ur has been proved
strongly N'P-hard in [26]. The problem is defined as follows. Given a set of n
jobs with weight w;, mean processing time p; and deviation p; for each job j,
and a budget of uncertainty I', the objective is to minimize the worst-case of
the weighted sum of the completion times knowing the processing times vary in
[ﬁj,ﬁj + p;] and that at most I" jobs reach simultaneously their upper values.
The problem can be cast in our framework using binary optimization variable

xz;; = 1if job i is scheduled prior to job j and letting the set Xs¢hed < {0,1}"°

11



contain all binary vectors x feasible for the problem, yielding

n

n n —
Er)r(lir} ,max ZZpiwjxij : ZI% <Ip; <p<p,ieN
rEX schec et Lt ; i

=1 j=t 1=1

The above problem is a special case of COp(Uest) obtained by defining ¢;; = p;w;
for i < j and ¢;; = 0 for i > 7, hyji(n) = npiw; for i < j and | = 4, and
hiji(n) = 0 otherwise. Thus, considering an uncertainty set Ur of dimension n

concludes the proof. O

In view of the above hardness result, we focus below on a special type of

functions h that satisfy the following technical assumption
there exists a partition L; U---U Ly of L such that hy >0iff l € L;. (16)

Assumption (16) is flexible enough to model the extension of the budgeted
uncertainty set where multiple deviations are allowed, closely related to the
histogram model studied in [24]. Namely, consider s budgets of uncertainty I';

and deviations dj; € Ry. Then, h;(n) = > . o d;;n;; and the uncertainty set is

jeES
uMr = {n ERISPM Ny <Ty,je€S,0<n< 1}.
iEN
When s is constant, the following result shows that COp(U™M"') amounts to solve

a polynomial number of problems CO.

Proposition 3. Consider problem COp(Ueyt) and suppose that (16) holds. The
problem can be solved by solving O(s°0%) linear systems with s variables and s

equations and O(s*€®) problems CO with modified costs.

Proof. Problem COp(Ueyt) can be written as

wig (s { 5= S oo S <ty € o< <mae ).

€N i€EN l€L leL

Introducing the dual variables y; and 6; as in the proof of Theorem 3, the dual

12



Algorithm 2: Approximation algorithm for COp(Uezt)

for each 6 € ©§"! find an (1 + €)-approximate solution 2% for

min{ x4+ Y. Y, rymax(0,hy — > aﬂGj)} ;

TEX | /N iEN IEL; jes

for each § € O let Z% = Y c;2? + max > h;(n)x?

7
ieEN N€Ueat je N

Let 6¢ = arg min Z%;
eoezt

return: z¢ = 2% with cost equal to Z¢ = Z°

of the inner maximization problem reads

GIEiZDO Z bi0; + Zﬁzyl : Z ajl; +y > Z haxi,l € L (17)

jeK leL jeK ieN

= in § S b+ My Y anby > hawii € NJLE Ly (18)
jeK leL jeK

:%1212 Z b;0; + Z Z 7, max(0, hyx; — Z ajlej) (19)
jeK iEN IEL; jeK

:rgl>ig Z b0 + Z Z 7,2, max (0, hy — Z a;i9;) ¢, (20)

jeEK i€EN lEL; jeEK

where (19) holds because of property (16). The rest of the proof is identical to
the proof of Theorem 3. O

Proposition 3 naturally leads to approximation algorithms for problems for
which CO is approximable. Specifically, we introduce the set ©** C R® as in the
previous section however considering here the linear system h;; = > jes a;10;,
i€ N,l € L, and 0; = 0, j € S. The proof of correctness of Algorithm 2 is

omitted as it is very similar to the proof of correctness of Algorithm 1.

4. Ellipsoidal uncertainty

We provide in the section a counterpart of Algorithm 1 for COq(Upair). The

first element of our approach follows an idea of [27] that approximates Upq

13



(0-0) ' ' s

Figure 1: Piece-wise affine over approximation of the function £2 with m = 4.

through a polytope U,,, where the integer m parametrizes the precision of the
approximation. Specifically, we approximate each function &2 involved in the
definition of Upey by a piece-wise linear upper approximation g(&;) based on
the equal division of the vertical axis [0,Q?] into m segments [7° = 0,7! =
0%/m], ..., [7™7L 7™ = Q2] and their images on the horizontal axis [0, \/WT], cee
[V/am=1 \/7™]. Then, the graph of function g is defined as the union of the line
segments joining (\/7?’“, 7%) and (\/W, k1) for each k € {0,...,m — 1}, see
Figure 1. The polytope U,, is then defined as
Uy = {5 ER™: Y g(&) < 92} :
ieN
The first element of our approach shows that optimizing over U,, is equivalent

to optimizing over an extended version of Ur, defined as

U,’n::{neRnxm:Zangm,ogngl},

i€EN keM

where M = {1,...,m}.

Lemma 2. Let h : R"*™ — R"™ be the linear mapping defined through h;;, =

14



Algorithm 3: Approximation algorithm for COqUpan)
Use Algorithm 2 with Ueyy := U/, and h defined in Lemma 2 to obtain 0,

an (1 + d)-approximate solution to COx(U},);

Compute the cost Z% = T2’ + Q\ /3.y d2a?;

return: z° with cost equal to Z°

d;(V7k — V7k=1) for each i € N. For any x, it holds that

max Z &idiz; = max Z hi(n)z;. (21)
eN

eu.
¢ ™ ™iEN

Proof. > : Let n be a maximizer of the rhs of (21). Since U/, is integral,

k41
%

we can assume that 7 is binary. Further, we can assume that n¥ > 7 for
each k and i because h;, > hir41. Let us then define the vector & € U, by
& =2 e v (Vrk — /mE=1)pk One readily verifies that & € U, and, moreover,
that &d; = h;(n) for each i € N.

<: Conversely, let £ € U, and let k(i) be the index k € M such that
V=1 < & < V/7k for each i € N (see Figure 1). Then, define ¥ =1 for each
1<k<k@) -1, nf(i) = %7 and nF = 0 for k > k(i) + 1. We see
that n € U/, and &;d; = h;(n) for each i € N. O

Using Algorithm 2, we obtain in polynomial time an approximate solution
to COx(U),), which is also an approximate solution to COq(Uy,,) thanks to
Lemma 2. The true cost of the solution is then computed for Uy, to obtain
the desired approximate solution to COq(Upai). The procedure is formally
described in Algorithm 3 whose validity is stated below. The running time of
Algorithm 3 is in O(";f(n, €)) where O(f(n,€)) is the running time required to

compute an (1 + e)-approximate solution to CO.

Theorem 4. If m > % and ¢ = 46, then Algorithm & returns a (1 + €)-

approzimate solution to COq(Upair)-

Let us introduce some notations before proving the theorem. First, we define

Upan () as the ball of radius a centered at 0. Second, we define Fyqy () = ¢T 2+

15



max Y. &diry = clx+Qy [ ien d?z; and F,,(z) = Tz + max Y &dia;.
§€Upatl je N §€Um jeN

To prove Theorem 4, we will bound the ratio F,,(x)/Fpq(x) from above and
from below. On the one hand, g(&;) > 51-2 for each i € N implies that U,,, C Upan

and we obtain immediately

Fn(z)
<1forany z € X. 22
Fyau(x) — Y (22)
On the other hand, proving that % is also bounded from below is more

technical. We first show that Upau (p(m)Q) C U, for a specific function p(m).

Lemma 3. If m > n, then Upa (/1 — n/m) C Uy,.

Proof. 1t follows from the definition of g that

QQ
2
9(&) <&+ P

Consider then & be such that ||£]|2 < Q4/1 —n/m. Therefore,
0?2
Y g€) <> GHn— <0
iEN iEN m

proving that & € U,,,. O

Using the above lemma, we can bound % from below.

Fm(T)

Lemma 4. Consider § > 0. If m > %, then Fron (@)

>1—90 foranyx e X.
Proof. Lemma 3 implies that

Fo(z) > T+ max &idix;.
E€Upair (2/1-75) ;\[

Hence,
n
Fp(z) >z + Q\/l - m\/z d2x;
i€EN
n T 9
>yfl——[cz+0Q Zdixi
m €N
/ n
> 1-—F a ’
2 o ()
and the results follows from taking m = [%]. O
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Algorithm 4: Approximation algorithm for U;—COgq
Use Algorithm 2 with U, := U~ and h defined in Lemma 2 to obtain x?,

an (14 d)-approximate solution to U COp;

Compute the cost Z% = ¢z’ + max Y &dwy;
E€Upgyr iEN

return: z° with cost equal to Z°

Proof. of Theorem 4. Let x°, 2™ and x**" denote the solution computed by
Algorithm 3, and the optimal solutions of problems mi)r(l F,,(z) and mi)I(l Fpan(x),
xTE xE

respectively. The following holds for § > 0 small enough:

Z° = Fyan(z?)
1

<

- 1-94

14 26)F,, (2°)

Fon(2°) (using Lemma 4)

IN

140)(1+20)F,, (™) (by definition of 2° and Lemma 2)

IN A

IN

1 4 46) Fyqu () (follows from (22))

( )

<( (

(14 40)F,, (™)

(1 + 46) Fy, (et (by definition of z™)
( )

( )

1+ 468) opt(COgq(Upar))-

5. Ellipsoid with upper bounds

Rather than studying directly the problem CO4(UE%%), we focus in this
section on the problem C'Oq(U;7;) defined for an axis-parallel ellipsoid combined

with upper bounds, namely

Upary = {€€R” S SQ,0§€S£}.
iEN
Since U MR = UL2ENR™ and d € R":, problems COq(UL%E) and CO4(Uspy)

have the same optimal solutions. Hence, the extension of Algorithm 3 to

17



the problem COq4(Uy;), presented in the rest of this section, also applies to
COa(Upg)-
The counterpart of U,,, with U4_j; is given by

Un = {561@" DY g(&) <9270<§<5}7

iEN
and one readily verifies that the counterpart of (21) is

idix; = h; 2 23
Inax E §idix max E (n)z (23)
iEN 1eN

where U/ is the following extended polytope with one knapsack constraint

Uél::{neﬂ%”xmrzZm‘“<m,0<n<n},

i€EN keM
h : R™™™ — R™ is the linear mapping defined in Lemma 2, and 77 € R}™™ is
defined as follows. Let k(i) be the index k € M such that V7k—1 < &, < Vr* for
. ok : k() & —VmFO1
each i € N. We obtain nf =1foreachl <k <k(i)—-1,7," " = TRy
and 7% = 0 for k > k(i) + 1. Algorithm 3 is adapted in Algorithm 4 to handle

the upper bounds, the proof of correctness of which is provided in Theorem 5

below.

Theorem 5. If m > % and € = 46, then Algorithm 4 returns a (1 + €)-

approzimate solution to COq(Us7)-

The proof of Theorem 5 follows closely the lines of the proof of Theorem 4
with one little difference explained below. Let us first extend the notations Fy,

and Fy. to Fop and Fy_p;, respectively, and introduce

Upa (2, 6) = {5 ER™: Y ¢l <Q,0<E< 5} :
ieN
Optimizing a linear function over the set U;—(€2, £) satisfies the useful property
stated next.

Lemma 5. Consider A >0 and Q >0 and &, € R%. It holds that

max  plé=X max pul€
E€Uir(AQ2,NE) €U 17(9,8)

18



Proof. The results follows from the property
Upar( A2, AE) = Ay (©2,€)
by performing the change of variables ¢ = A§. O

Proof of Theorem 5. Following the reasoning of the proof of Lemma 3, we see

that that m > n implies that U4_7;(€2/1 —n/m) C Us. Hence, we have

Fm(z) > c''x + max &idix; (24)
Usarr (/1= 3:.) ;V
> (;TJ: —|— max Z fzdzxz (25)

ball( vV 1= 5\/ zeN

=cle+4/1- 2 max Z &idix; (26)
M €U (08) Ty
n
>4 /1 — —F— 27
=1/ m batt () (27)

where (25) follows from

UW(Q\/l_i’g\/l_i CZj[ball (Q\/ ;ng)

and (26) follows from Lemma 5. Inequality (27) states the counterpart of

Lemma 4 for Fm. Moreover, one readily verifies that inequality Fbm”(z) <1

also holds. The result is thus obtained by following the steps of the proof of
Theorem 4. O

6. Conclusion

We have investigated the complexity of min max robust combinatorial opti-
mization under general uncertainty polytopes. We have shown that, if the down-
monotone completion of the uncertainty polytope contains a constant number
of linear inequalities, then the optimal solution to the robust problem can be
obtained by solving a polynomial number of deterministic counterparts. We
have extended these results to polytopes defined in extended spaces, in which
case the complexity of the resulting robust problem also depend on the struc-

ture of the cost function. We have applied these results to problems where
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the uncertainty set is an axis-parallel ellipsoid or the intersection of the later
with a box, obtaining approximation algorithms for robust whose deterministic
counterparts are approximable.

From the practical viewpoint, our algorithms require to solve large numbers
of deterministic problems. Hence, a future research direction could be dedicated
to the efficient parallelization of this task, possibly exploiting the parallelization
possibilities of dedicated algorithms for specific problems. A related question
concerns the study of the stability of the optimal solutions under small changes
in the objective functions. Another interesting question is whether it is possible
to avoid solving the entire optimization problem at each iteration but instead
focus on separation/pricing problems. For instance, consider a branch-and-
cut-and-price algorithm for the vehicle routing problem that generates feasible
routes in pricing problems. One can readily verify that the robust counterpart
can be addressed by solving several pricing problems instead of solving several

time the full problem.
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Appendix A. Decision-dependent uncertainty

We show below how the results from Section 2 apply to variable uncertainty
introduced in [4, 28], and revived in [25] under the name “decision-dependent
uncertainty”. The framework considers robust problems where the uncertain
parameters live in a point-to-set-mapping U(z) : X = R™ instead of a fixed
uncertainty set. We consider below a restricted type of variable uncertainty
where only the rhs of the linear constraints characterizing the uncertainty point-

to-set mapping depend affinely on the optimization variables, namely

u]z)ggp(x) = {5 € R™: Zajifi § bj(x)aj € S,O S 5 S 5} )

ieN
where b; is an affine function of = for each j € S. Interestingly, Theorem 3

extends directly to Uy ().

Proposition 4. Problem U5, COq can be solved by solving olving O(s°n?)
linear systems with s variables and s equations, and O(s°n®) nominal problems

CO with modified costs.

Proof. The proof is almost identical to the proof of Theorem 3, with the differ-
ence that b;60; is now replaced by b;(z)6; in (17)-(20). O

One of the interests of variable uncertainty arises when allowing the rhs of
Ur, T, to depend on the optimization variables. Specifically, let us consider the

variable budgeted uncertainty set, defined as

Uy (z) := {é‘eR" Py G <y(@),0<¢ < Lz‘eN}.

iEN
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The author of [4, 28] has shown that if y(x) is constructed according to the
probabilistic bounds proved in [3], then U, (z) yields the same probabilistic
garantee as Ur, albeit at a lower solution cost since U, (x) C Ur for all z. For
instance, a analytical choice for the function would be based on the weakest
of the bounds proposed by [3], yielding a(z) = (~2In(e) 3, z;)2. While the
resulting point-to-set-mapping U, (z) cannot be used in Proposition 4 (because
« is not an affine function of ), the point-to-set mapping can be approximated
by a more conservative one defined by s tangent affine approximations of «,

denoted ~1,...,7s,

Uy () = {geR" 1Y & <q(),j€8,0<& < l,ieN}.

iEN

The point-to-set mapping is clearly a special case of UP?" (z), and can therefore

knap
be solved through Proposition 4. We refer to [4, 28, 25] for numerical experi-
ments reporting the reduction in the Price of robustness offered by models U, (z)

and Uy (x) and the approximation of « through affine functions.
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