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Understanding the origin and evolution of Mediterranean vascular flora within the long-term context of
climate change requires a continuous study of historical biogeography supported by molecular phyloge-
netic approaches. Here we provide new insights into the fascinating but often overlooked diversification
of Mediterranean xerophytic plants. Growing in some of the most stressing Mediterranean environments,
i.e. coastal and mountainous opened habitats, the circum-Mediterranean Astragalus L. sect. Tragacantha
DC. (Fabaceae) gathers several thorny cushion-like taxa. These have been the subjects of recent taxonom-
ical studies, but they have not yet been investigated within a comprehensive molecular framework.
Bayesian phylogenetics applied to rDNA ITS sequences reveal that the diversification of A. sect.
Tragacantha has roots dating back to the Pliocene, and the same data also indicate an eastern–western
split giving rise to the five main lineages that exist today. In addition, AFLP fingerprinting supports an
old east–west pattern of vicariance that completely rules out the possibility of a recent eastern origin
for western taxa. The observed network of genetic relationships implies that contrary to what is widely
claimed in the taxonomic literature, it is range fragmentation, as opposed to a coastal-to-mountain eco-
logical shift, that is likely the main driver of diversification.
1. Introduction

The composition of a regional flora is the complex result of
in situ evolution determined by past environmental changes, as
well as dispersal from neighboring or more distant areas. In the
Mediterranean Basin, the state of current knowledge is still far
from a comprehensive understanding of the drivers of diversifica-
tion and persistence of a rich flora containing c. 25000 taxa of
which half are endemic, some common patterns are emerging
(Nieto-Feliner, 2014): recent Mediterranean phylogeographies of
widespread taxa have often highlighted an east–west vicariance
due to past divergences, some of which occurred earlier than the
Pliocene, along with the distinct possibility of repeated migrations
that could have led to secondary contacts between previously iso-
lated lineages (Mansion et al., 2008; Rodríguez-Sánchez and
Arroyo, 2008; Désamoré et al., 2011; Migliore et al., 2012;
Besnard et al., 2013; Chen et al., 2014; Hardion et al., 2014). Speci-
fic attention has paid to the role of changes in climate as drivers of
Mediterranean biodiversity (e.g. Fiz-Palacios and Valcárcel, 2013).

Sound insights into the role of migration were revealed by
recent phylogeographical studies done at the family level, exam-
ples of which include analyses of Araceae (e.g. Biarum genus,
Mansion et al., 2008) and Boraginaceae (Mansion et al., 2009).
These phylogenetic analyses of ancestral areas inferred that both
westward expansion and vicariance were there prior to diversifica-
tion, supporting the existence of land corridors along the Tethys
shores for flora dispersal from Anatolia, perhaps dating back to
the Oligocene. In the case of Boraginaceae, phylogeographical anal-
yses indicate that the Corso-Sardinian islands have been on the
receiving end of the North and South Mediterranean migration
routes that led to speciation of insular neo-endemics in Anchusa
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Bunge 1869
Sect. Melanocercis Bunge

Podlech 2008
Sect. Tragacantha DC.

Current consideration
Sect. Tragacantha DC.

A. angustifolius Lam. A. dirmilensis Hub.-Mor. & Reese A. dirmilensis Hub.-Mor. & Reese
A. angustifolius Lam. A. renzii Hub.-Mor. & Reese A. renzii Hub.-Mor. & Reese
A. angustifolius Lam. A. angustifolius Lam. A. angustifolius Lam.
A. hermoneus Boiss. A. angustifolius Lam. A. angustifolius Lam.
A. pungens Willd. A. angustifolius Lam. A. angustifolius Lam.
A. gymnolobus Fisch. A. gymnolobus Fisch. A. gymnolobus Fisch.
A. tymphresteus Boiss. & Spruner A. tymphresteus Boiss. & Spruner A. tymphresteus Boiss. & Spruner
A. sirinicus Ten. A. sirinicus Ten. A. sirinicus Ten.
A. sirinicus Ten. A. sirinicus Ten. A. croaticus Alegro et al.
A. sirinicus Ten. A. genargenteus Moris A. genargenteus Moris
A. sirinicus Ten. A. gennarii Bacch. & Brullo A. gennarii Bacch. & Brullo
A. sirinicus Ten. A. greuteri Bacch. & Brullo A. greuteri Bacch. & Brullo
A. massiliensis Lam. A. tragacantha L. A. tragacantha L.
A. massiliensis Lam. A. balearicus Chater A. balearicus Chater
A. massiliensis Lam. A. thermensis Vals. A. thermensis Vals.
A. massiliensis Lam. A. terracianoi Vals. A. terracianoi Vals.
A. massiliensis Lam. A. terracianoi Vals. A. tegulensis Bacch. & Brullo
– A. ibrahimianus Maire A. ibrahimianus Maire

Table 1
Taxonomic history of Astragalus sect. Tragacantha DC. according to Bunge (1869), Podlech (2008) and recent botanical literature (Alegro 
et al., 2009; Bacchetta and Brullo, 2010).
(Bacchetta et al., 2008) and Borago (Mansion et al., 2009), respec-
tively. For the xerophytic Haplophylum taxa originating from the
semiarid and steppe lands of the Irano-Turanian floristic region,
Manafzadeh et al. (2014) hypothesized that westward expansion
was driven in the mid-Miocene by the increased aridity arising
from the closure of the sea connection between the
proto-Mediterranean and the Paratethys. Then, Mediterranean
Haplophyllum taxa began to diverge after a Miocene east–west
vicariance. Following this, the Iberian endemic taxa began to diver-
sify during the early Pliocene (Navarro et al., 2004; Manafzadeh
et al., 2014), a period that could have been favorable to the expan-
sion of xerophytic taxa. Indeed, the short but intense Messinian
salinity crisis (5.96–5.33 Mya) resulted in a dramatic drying of
the sea, and this facilitated the expansion of xerophytes which
colonized the islands by means of emergent land bridges, further
shaping land ecosystems (Mansion et al., 2009).

More recently, the onset of glaciations (c. 2.6 Mya, Late Plio-
cene; Popescu, 2006) favored continent-wide open steppe vegeta-
tion with a high diversity of xerophytic plants (Suc, 1984; Suc et al.,
1995; Thompson, 2005; Pérez-Collazos et al., 2009). During these
interglacial periods, including the present one, it is assumed that
the range of steppe plants contracted to refugia, such as those
found at particular altitudes (Djamali et al., 2012; Gentili et al.,
2015). Among these xerophyte taxa, thorny cushion-like plants
from the Fabaceae family have a strong ecological importance
among Mediterranean steppe flora. However, their evolutionary
history remains poorly understood, and even less in the genus
Astragalus which includes hundred of thorny species, and several
sections that have convergently evolved to this habit (Zarre-
Mobarakeh, 2000; Hardion et al., 2010). Beyond some molecular
phylogenies (Osaloo et al., 2005; Abdel-Samad et al., 2014;
Dizkirici et al., 2014), the serious lack of phylogeographic studies
limits the understanding of such a diversification in Astragalus
and species persistence in the context of global change, despite
some analogous works on closely related genera (Phyllolobium,
Zhang et al., 2009; Onobrychis, Toluei et al., 2013, Erophaca,
Casimiro-Soriguer et al., 2010). We are therefore far from under-
standing the relative contributions that geographical isolation
and ecological differentiation make to persistence and speciation
in one of the most species-rich genus of angiosperms (c. 3000 spe-
cies; Bunge, 1869; Podlech, 2008).

However, an increasing number of morphological studies has
led continuous efforts in the description of new endemic Astragalus
taxa for a decade (e.g. Mattana et al., 2008; Bacchetta et al., 2011;
Brullo et al., 2012; Grillo et al., 2013; Mahmoodi et al., 2013). As an
illustration, A. sect. Tragacantha DC. (syn. Melanocercis Bge.) has
almost doubling its species richness (n = 16) with the description
of seven new species within the two last decades (Valsecchi,
1994; Bacchetta and Brullo, 2006, 2010). Distributed in open rocky
and sandy habitats in coastal and high-altitude environments, this
Mediterranean-wide section has been historically structured into
three complexes following ecological, morphological, and geo-
graphical criteria (Valsecchi, 1994; Bacchetta and Brullo, 2006,
2010; Alegro et al., 2009): (i) the western A. tragacantha complex,
which includes only coastal taxa, unlike (ii) the Adriatic A. sirinicus
complex and (iii) the eastern A. angustifolius complex, which
includes only orophyte species (Table 1, Fig. 1). Used historically
in the botanical literature (e.g. Nieto-Feliner, 1990), this ‘eco–
morpho–geo’ consensus offers the possibility of labeling
well-separated and localized groups of populations for conserva-
tion purposes, but it does not clearly elucidate their evolutionary
history and diversification. According to a preliminary study
(Hardion et al., 2010), the weak molecular divergence among the
western taxa of this section could be indicative of a late origin, per-
haps as recently as the late Quaternary period. Their current scat-
tered distribution in the western Mediterranean could represent a
recent contraction toward open vegetation habitats either along
the coastline or in altitude.

Diversification patterns and processes are important issues in
recent Mediterranean biogeography literature (e.g. Valente and
Vargas, 2013). Within the context of the present research we
examine the diversification history of A. sect. Tragacantha by test-
ing two main scenarios: based on previous Mediterranean-wide
phylogeographies, one can expect the taxonomic diversity of this
section has resulted (i) from a diversification after an old vicari-
ance in both east and west sides of the Mediterranean; or alterna-
tively (ii) from a recent western radiation from eastward origin,
as previously hypothesized (Hardion et al., 2010). In addition,
we test the phylogenetic support for the ecological differentiation
structuring this section between coastal and mountain habitats,
and its higher taxonomic richness in the Western Mediterranean.
We use rDNA ITS sequence data to anchor these analyses to a
temporal framework, and Amplified Fragment Length Polymor-
phism (AFLP) fingerprints to discern closely related taxa on a
genome-wide resolution, where ITS find their limits (Hardion
et al., 2010).



Fig. 1. Geographical (a) and altitudinal (b) distributions of Astragalus sect. Tragacantha DC. according to botanical literature (Pignatti, 1982; Davis et al., 1988; Strid, 1996;
Podlech, 1999; Bacchetta and Brullo, 2006, 2010; Brullo et al., 2012). Dashed lines indicate geographical clustering according to the biogeographical literature (Finnie et al.,
2007). Symbol colors correspond to taxa, and symbol forms to their ecological differentiation, as indicated in the figure. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
2. Material and methods

2.1. Plant sampling and DNA extractions

We gathered 75 samples representing 12 of the 16 species
currently considered to be part of A. sect. Tragacantha. Voucher
specimens were deposited in herbaria of the University of Stras-
bourg (STR, France), the Aix-Marseille University (MARS, France),
the University of Cagliari (CAG, Italy) and the Natural History
Museum of Rijeka (NHMR, Croatia; details in Table S1, Appendix
A). For each sample, leaflets were dried with silica gel and ground
up in liquid nitrogen before performing DNA extraction. The DNA
extractions followed the CTAB protocol, described by Doyle
and Doyle (1987), with some slight modifications (Hardion et al.,
2014).
2.2. Phylogenetic analyses of rDNA ITS sequences

DNA isolation and rDNA ITS sequencing were performed
according to methods described in Abdel-Samad et al. (2014).
Our strategy of molecular dating was to include A. sect. Tragacan-
tha taxa in a wider phylogeny of the genus Astragalus, in order to
use previously dated nodes in a secondary calibration
(Wojciechowski et al., 1999; Wojciechowski, 2005). As it was not
realist to include all Genbank data corresponding to Astragalus,
the choice of taxa was based on previous works dealing with Astra-
galus phylogenies (Wojciechowski et al., 1999; Wojciechowski,
2005; Osaloo et al., 2005; Dizkirici et al., 2014). An additional
Megablast research attempted to find putative nearest relatives
of A. sect. Tragacantha in Genbank data. Finally, selected rDNA
ITS sequences (Genbank accessions in Table S1, Appendix A) were



aligned with our sequenced taxa and related taxa to the genus
Astragalus used as outgroups for node calibration (i.e. Colutea,
Oxytropis, Onobrychis, Erophaca). This custom dataset includes
140 sequences and 114 Astragalus taxa. After alignment (MUSCLE
software; Edgar, 2004) the 5.8S and a microsatellite sequence in
the ITS 1 were removed. Sequence checking and alignment were
done in MEGA v.6 (Tamura et al., 2013). The phylogeny was deter-
mined by a Bayesian MCMC analysis using BEAST 1.8 (Drummond
et al., 2012). Four independent MCMC analyses were run for a total
of 20 millions steps, sampling states every 2000 generations
(Cipres Science gateway, Miller et al., 2010). The coalescent theory
for molecular data was applied based on the following items: a
K2P + gamma substitution model [which had been selected using
the model selection strategies implemented in jModeltest 2
(Darriba et al., 2012)], a Yule process tree prior, a random starting
tree and a relaxed log normal clock. Two priors were used for age
calibration: the crown node corresponding to the Astragalean clade
(normal distribution mean 16.1 Mya, Sd = 1.82) and the crown
node of Astragalus (normal distribution mean 12.7 Mya,
Sd = 1.45). These values were chosen according to Wojciechowski
(2005). Because rDNA ITS did not support the strict monophyly
of A. sect. Tragacantha, we generated the same Bayesian analysis
with and without prior on its monophyly. For the remaining model
parameters, the default programme prior distribution was used.
Tracer 1.4 (Rambaut et al., 2014) was used to first check the con-
vergence and mixing of each parameter between runs, and then
to estimate the mean and 95% highest posterior density (HPD) of
age nodes, sampled from the posterior distribution of the com-
bined runs. The effective sample size (ESS) of each parameter
was sufficient to provide reasonable estimates of the model param-
eter variances (i.e. ESS values > 200, after excluding a burn-in frac-
tion of 10%). The xml file containing the alignment and the
parameters of BEAST analysis is deposited in Appendix A.
2.3. AFLP protocol, genetic diversity and relationships

AFLP protocol was applied according to Hardion et al. (2014)
with the following modifications: after a pre-amplification PCR
on digested genomes using Eco+A and Mse+C primers, two selec-
tive PCRs were achieved using Eco+AAGG-Mse+CCAG and Eco
+AACG-Mse+CAAG primer pairs. These primer pairs were chosen
for their efficiency and reliability in a large population genetic
study still in progress on A. gummifer, which initially tested two
+3 and two +4 primer pairs (Abdel-Samad, 2015). AFLP fingerprints
were generated from electrophoretogram alignments using the
RawGeno R-package (Arrigo et al., 2009) in R environment (R
Core Team, 2015), following a format conversion using PeakScan-
ner v1.0 (Life Technologies, Waltham, US). Genetic markers were
automatically selected among fragments ranging from 50 to
500 bp in length, with a lower signal threshold of 100 relative flu-
orescent units. Ten replicate samples were randomly chosen, ana-
lyzed with other samples, and used in the binary dataset to
expunge all non-repeatable markers. Descriptive statistics were
estimated using the R-functions described in AFLPdat (Ehrich,
2006). These functions were also used to determine the numbers
of private fragments, the percentages of polymorphic fragments
and the frequency-down-weighted fragment values calculated as
a ratio of means. Then, analysis of molecular variance (AMOVA;
Excoffier et al., 1992) was used with the amova R-function from
ade4 R-package (Thioulouse et al., 1997) to test the robustness of
different clusterings based on geographical, taxonomical, and eco-
logical criteria. To represent phylogenetic relationships based on
AFLP data, the NeighborNet algorithm was used to produce a
distance-based network using Nei and Li’s genetic distances in
SplitsTree v.4.13 (Huson and Bryant, 2006).
3. Results

3.1. rDNA ITS phylogeny and molecular dating

Within A. sect. Tragacantha, the rDNA ITS sequence alignment
was 420 bp long, with 30 variable nucleotide sites, 25 being parsi-
mony informative. Twenty haplotypes were observed among the
75 individuals sequenced. Their overall mean divergence was
1.0%, ranging from 0.0% to 2.7% but this variation supports five
clades with good confidence (Bayesian posterior probabilities
>0.95, named A, B, C and D; Fig. 2).

The analysis was repeated without prior on the monophyly of A.
sect. Tragacantha: two taxa, A. odoratus and A. fragrans, appeared to
be nested within the sect. Tragcantha (see Fig. S2, Appendix A). The
monophyly of A. sect. Tragacantha is questioned by this result but it
did not change our inferences about diversification for three rea-
sons. First, even if this prior could be disregarded by Bayesian
inferences, they still kept the monophyly of the section in the prior
analysis. Second, A. odoratus and A. fragrans possess highly differ-
entiated morphology from A. sect. Tragacantha, and their phyloge-
netic position is more probably due to homoplasic or paralogous
information in rDNA. Third, ages of robust nodes that will be pre-
sented below were slightly affected by this point.

The 20 haplotypes were clustered in five clades with good con-
fidence (Bayesian posterior probabilities >0.95, named A, B, C and
D; Fig. 2). A first clade (node A) unites the haplotypes of the five
Corso-Sardinian taxa (Co, Sa) with haplotypes of the continental
A. tragacantha (Lu, Fr, Hs), without distinction between coastal
and orophyte taxa. Within this clade, the haplotypes are organized
according to their geographical origin (node A, Fig. 2; Fig. 1)
excepted for one haplotype of A. tragacantha sampled in France
near Marseille but branched with the Corso-Sardinian clade
despite weak support (posterior probability = 0.16). The age of
node A is estimated at 2.7 Mya with a 95% confidence interval
ranging from 1.3 to 4.3 Mya. The clade with roots in node B is com-
posed of haplotypes of A. balearicus, A. greuteri, A. croaticus and A.
tymphresteus, mixing members of the three taxonomic complexes
(Table 1). The existence of two divergent rDNA ITS sequences in
A. greuteri has therefore been revealed. The age of node B is esti-
mated at 1.9 Mya with a 95% confidence interval ranging from
0.5 to 3.4 Mya. The third clade (node C) is only composed of A.
ibrahimianus linked though a long branch to the clade B and E on
an older node estimated to 3.5 Mya but this node is weakly sup-
ported (posterior probability = 0.18) and the divergence of A.
ibrahimianus could be more ancient. The fourth and fifth clades
(nodes D and E) are composed of haplotypes of A. angustifoliuswith
a distribution in Balkans and Lebanon, the exception being a single
haplotype from Italy belonging to A. sirinicus. Their node ages are
estimated to 2.5 and 1.6 Mya respectively.

The crown node age of the section Tragacantha, regarding the
former divergence observed in the section, is estimated to be 4.4
Mya with a 95% CI ranging from 2.5 to 6.4 Mya. Despite the wide
confidence interval, the posterior probability distribution of this
dating supports a Pliocene origin of A. sect. Tragacantha (see poste-
rior distribution; Fig. 2).
3.2. AFLP clustering and diversities

The AFLP procedure initially generated 392 polymorphic mark-
ers after discarding of non-repeatable markers based on 10 repli-
cate samples. Based on a mean error rate of 2.7%, every plant
sample was distinguished as a different genotype, and 365 markers
(93.1%) were parsimony informative.

The NeighborNet (NNet) diagram resulting from this AFLP data-
set is well structured, having no strong pattern of reticulation
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Fig. 2. Focus on Astragalus sect. Tragacanthawithin a chronogram based on a Bayesian analysis of rDNA ITS haplotypes of 140 Astragalus and related taxa using the Yule model
of speciation and a log normal relaxed clock with two calibration nodes located at the base of genus phylogeny. The whole chronogram is available in Fig. S2, Appendix A.
Symbol colors correspond to taxa, and symbol forms to their ecological differentiation, as indicated in Fig. 1. Al, Albania; Bl, Balearic Is.; Bu, Bulgaria; Co, Corsica Is.; Fr, France;
Gr, Greece; Hs, Spain; It, Italy; Kr, Croatia; Lb, Lebanon; Lu, Portugal; Mo, Morocco; Mt, Montenegro; Sa, Sardinia Is. The diagram indicates the posterior distribution of the
crown node age of A. sect. Tragacantha. Values above nodes indicate posterior probabilities assigned after Bayesian analysis. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
(Fig. 3). Globally, the clustering follows a longitudinal dimension
with western genotypes on the left and eastern genotypes on the
right of the NNet (Fig. 3). To the right, the eastern group represent-
ing the A. angustifolius complex (Table 1) includes a South-Balkan
cluster and a Lebanon cluster. The left side of the NNet diagram
form a western group that includes the following three main lin-
eages: (i) a cluster containing genotypes of A. tragacantha from
continental parts of France, Spain, and Portugal; (ii) an insular clus-
ter containing Corso-Sardinian genotypes of A. genargenteus, A.
greuteri, A. thermensis, A. terrancianoi, and A. tegulensis; and (iii)
the genotypes of A. balearicus, endemic to the Balearic islands.
Between the western and eastern clusters, an Adriatic group is rep-
resented by Italian and Dalmatian (i.e. NE Balkan) genotypes of A.
sirinicus, A. croaticus and A. angustifolius. The exception to this geo-
graphical structuring is the position of the Moroccan genotypes of
A. ibrahimianus, connected in the middle of the NNet between the
eastern and central Mediterranean lineages.

To compare genetic diversity among geographic areas (as
defined in Fig. 1; dashed lines), A. ibrahimianus genotypes were dis-
tinguished due to their high divergence. Genetic diversity mea-
sured on AFLPs revealed somewhat higher percentages of
polymorphic fragments and greater numbers of private fragments
in the eastern (77.2%, 25) than in the western part (70.4%, 22;
Table 2), for an equivalent sampling effort (n = 22 and 26, respec-
tively), and even though only one species (A. angustifolius) was
sampled in the East versus seven taxa to the West. The eastward
increase in diversity becomes even clearer when one considers
the DW values accounting for marker rarity (Table 2). As observed
in the NNnet diagram, A. ibrahimianus has a high genetic originality
despite its weak sampling (DW = 899.5; Table 2). As a conse-
quence, the pattern of genetic divergence indicated by DW index
and private markers supports two main results: (i) a westward
decrease in marker rarity, which is contradicted by (ii) the long-
term isolation of A. ibrahimianus. The AMOVA results reveal that
geographical groups have a higher structuring effect on AFLP poly-
morphism (explaining 24.8% of genetic variation) than do taxo-
nomic complexes (19.9%), or even ecological differentiation
(17.1%; Table 3).

The AFLP NNet clusters are congruent with five rDNA ITS clades.
This congruence is supported by theoverall correlationbetweenAFLP
and ITS dissimilarities (Mantel test between matrices of
Jaccard distances and % of nucleotide differences, r = 0.71⁄⁄⁄,
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to the web version of this article.)

Table 2
Genetic diversities of Astragalus sect. Tragacantha among geographical groups (Fig. 1)
using Amplified Fragment Length Polymorphism (AFLP).

n sp F %F PF DW

East 22 1 328 77.2 25 674.7
Adriatic 7 3 276 59.9 10 636.9
West 26 7 309 70.4 22 526.0
Morocco 3 1 179 20.4 6 899.5

n, number of samples; sp, number of taxa; F, number of fragments; PF, number of
private fragments; %F, percentage of polymorphic fragments; DW, frequency-
down-weighted fragment values calculated as a ratio of means.

Table 3
Analyses of molecular variance (AMOVA) for geographical, taxonomical and ecological clus
barriers described from the literature (see dashed line in Fig. 1); Taxonomical clustering fol
Ecological clustering according to the orophyte or coastal ecological traits (Fig. 1).

Source of variation Geographical clustering Taxonomica

df Sum of squares % of variation df Sum

Among groups 2 2.00 24.8 2 1.7
Among samples 22 4.87 34.7 22 5.1
Within samples 27 2.16 40.5 27 2.1
⁄⁄⁄ denotes statistical significance level at 0.05). Phylogenetic rela-
tionships reportedbyAFLPsor rDNAITSdonotdemonstrate abranch-
ing pattern of western and Adriatic taxa within eastern lineages,
rejecting the scenario of a recent eastern origin for A. tragacantha.
4. Discussion

Paleoecology and phylogeography literature has poorly
addressed the historical biogeography of Mediterranean thorny
xerophytes, despite their emblematic place in Mediterranean land-
scapes (Quézel, 1999). The present study highlights new insights
into their evolutionary origin and diversification using thorny taxa
of Astragalus sect. Tragacantha. These taxa are distributed among
xerothermic zones, in coastal and mountainous habitats through-
out the Mediterranean region, making it possible to question the
role of geographical isolation and ecological differentiation in spe-
ciation processes.

The present study supports an alternative pattern than the pre-
vious hypothesis assuming the recent eastward origin of western
taxa (Hardion et al., 2010). The history of A. sect. Tragacantha
appears to be more complex, indicating a probable Pliocene origin
for the entire section. The ITS chronogram rooted A. sect. Tragacan-
tha at 4.4. Mya (95% CI, 2.5–6.4 Mya), and the isolation of the well-
supported western lineage (clade A, Fig. 2) at 2.7 Mya (95% CI, 1.3–
4.3 Mya), i.e. near the beginning of the Pleistocene. In addition, the
AFLP fingerprints revealed a major phylogenetic split between
eastern and western lineages. Thus both ITS and AFLP support an
ancestral distribution ranging from the Levant to NW Africa and
W Europe followed by vicariance events. This evidence is further
strengthened by the basal phylogenetic position of the most west-
erly taxon, the Moroccan A. ibrahimianus. The main phylogeo-
graphical split revealed here is in accordance with the bipolar
structures also revealed by other Mediterranean-wide phylo-
geographies, e.g. forMyrtus communis (Migliore et al., 2012), Laurus
(Rodríguez-Sánchez et al., 2009), Haplophyllum (Manafzadeh et al.,
2014), Smilax aspera (Chen et al., 2014), and several other cases
(Kadereit and Yaprak, 2008). According to our results, the timing
of this vicariance within Astragalus sect. Tragacantha dates to the
early Pliocene (i.e. near 5 Mya) and the five main lineages detected
in the rDNA phylogeny already existed at the late Pliocene or early
Pleistocene at 2 Mya.

Another important feature of our study concerns the geograph-
ical isolation as the main driver of genetic differentiation. Indeed
AFLPs lineages correspond to geographical units and this pattern
is observed not only at a coarse scale (i.e. west–central–east struc-
turing) but also at finer scales, as for the divergence between
Corso-Sardinian taxa and west continental ones (Portugal, Spain,
France), or between Balkan and Near East (Lebanon) populations
of A. angustifolius (Fig. 3). In agreement with an increasing number
of phylogeographies our results add support to the role of
migration-isolation cycles during the evolutionary history of
Mediterranean plant species (Pineiro et al., 2007; Mansion et al.,
2009; Guzmán and Vargas, 2010; Migliore et al., 2012; Garnatje
tering based on AFLP data. Geographical clustering delimited by main biogeographical
lowing the taxonomical complexes described historically as belonging to Tragacantha;

l clustering Ecological clustering

of squares % of variation df Sum of squares % of variation

3 19.9 1 1.09 17.1
4 38.6 23 5.78 42.1
6 41.5 27 2.16 40.8



et al., 2013; De Castro et al., 2015). The land connections estab-
lished during the Messinian salt crisis ending 5.3 Mya ago could
have eased long distance migration of xerophytes taxa such as
Astragalus thorny cushion plants. However the main lineages began
to diversify after this period near the limit between the Pliocene
and the Pleistocene (1.8–2.6 Mya; see crown node ages A, B, C, D
and E, Fig. 2), a period which is the scene of the first Mediterranean
climatic fluctuations with steppe-forest alternations that will char-
acterized the Pleistocene (Suc et al., 1995; Jiménez-Moreno et al.,
2010). This period coming flanked by the Messinian salt crisis
and the beginning of quaternary glaciations was the scene of
intense speciation in several families of Mediterranean flora (see
Gaudeul et al., 2016). The analysis of diversification rate done by
Fiz-Palacios and Valcárcel (2013) on 36 Mediterranean plant lin-
eages revealed a post-Messinian gap in cladogenesis, and that for
39% of them a recovery of diversification with the Mediterranean
climate onset. According to our results, it seems effectively that a
gap between old and recent diversification occurred within the
sect. Tragacantha, as it can be seen in both AFLP and ITS phyloge-
netic distances. However, the recovery appeared to be slightly
more recent than the Mediterranean climate onset (3.4 Mya;
Jiménez-Moreno et al., 2010). New data based on additional DNA
sequences will certainly help to narrow confidence intervals for a
better evaluation of respective role of the Mediterranean climate
onset versus the Pleistocene climatic oscillations in the cladogene-
sis of these Mediterranean thorny cushion plants. However, stan-
dardly used cpDNA sequences as matK gene, trnL-trnF spacer or
ndhF gene failed to supply additional support in our analyses due
to their strong uniformity (data not shown).

Finally, our results bear new insights on the ecogeographical
isolation criterion. The taxonomy of A. sect. Tragacantha was his-
torically based on three main species, the western coastal A. traga-
cantha, the Italo-Balkan orophyte A. sirinicus and the eastern
orophyte A. angustifolius (Valsecchi, 1994; Bacchetta and Brullo,
2006, 2010). The different taxa described from or put in synonym
of these three species were then grouped in three complexes. Even
as a legacy of taxonomic history, these complexes are defined by an
ecogeographical consistency (Bacchetta and Brullo, 2006, 2010;
Brullo et al., 2012). Consequently, one can expect a phylogenetic
support for the differentiation between coastal and mountainous
habitats. With the stark contrast between the characteristics of
these environments, it is reasonable to assume that local adapta-
tion and ecological reproductive isolation lead to a significant
genetic differentiation between coastal and mountainous popula-
tions (Lowry et al., 2008). However, Corso-Sardinian coastal taxa
appear to be genetically more related to Corso-Sardinian mountain
species than to continental coastal taxa on the NNet diagram
(Fig. 3). These results question the isolation of coastal and moun-
tain taxa of the Corso-Sardinian islands, but also the current taxon-
omy of the section in different eco-geographical complexes (A.
angustifolius, A. sirinicus and A. tragacantha complexes; Fig. 1) for
which altitude is a crucial criterion. According to molecular data,
the geographical isolation is a better hypothesis for the main struc-
turing force of genetic differentiation in A. sect. Tragacantha. Simi-
lar patterns were previously evidenced by the Heliosperma pusillum
group (Caryophyllaceae), where the ecological distinction between
low vs. high elevation taxa was initially chosen as the main taxo-
nomical criterion, but was later refuted by molecular markers
(Flatscher et al., 2012). These authors rather hypothesized a puta-
tive ecological distinction of ecotypes based on heritable epige-
netic variation. Concerning Corso-Sardinian taxa, the lack of
molecular divergence revealed here between taxa inhabiting dif-
ferent ecological conditions is not congruent with the phylogenetic
differentiation of Sardinian Anchusa endemic species between
coastal and mountainous habitats (Bacchetta et al., 2008). The phy-
logenetic divergence between Corso-Sardinian taxa is even lower
than between the three continental populations of A. tragcantha
(between France, Spain and Portugal). This weak genetic diver-
gence could be due to the recent foundation of these taxa in sepa-
rate part of the islands from a common ancestor (Fig. 1) or to
repeated genetic admixture due to altitude convergence during
favorable climatic periods, i.e. Pleistocene glaciations. Glacial
induced altitudinal migrations were also invoked to explain
genetic similarity between different taxa of Armeria (Plumbagi-
naceeae) which are currently isolated in coastal and mountain
habitats as A. sect. Tragacantha (Gutiérrez Larena et al., 2002). Con-
sequently, the reproductive isolation of the Corso-Sardinian taxa
remains an open question and their taxonomic status (species or
ecotypes) is awaiting further analyses with evolutionary
approaches. In addition, only an integrative study integrating
molecular markers to morphological characters on a broad sam-
pling will allow a reliable taxonomical revision of A. sect.
Tragacantha.

5. Conclusions

Our comprehensive results on A. sect. Tragacantha underscore
the promise of new studies relating range expansion and fragmen-
tation for plant diversification in the Mediterranean region. If
Mediterranean refugia have accumulated diversity (Nieto-Feliner,
2014), it could be also interesting to analyze how range fragmen-
tation triggered by climate change could have generated diversity.
In 1997, Chown questioned rarity and reduced abundance as
potential factors to stimulate diversification. Along these lines,
the western Mediterranean xerophytes confined to stressful habi-
tats represent overlooked case studies that could further an under-
standing of how biodiversity persists through climate change
(Hampe and Jump, 2011; Moritz and Agudo, 2013).
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