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Abstract

Assessing past impacts of observed climate change on natural, human and managed
systems requires detailed knowledge about the effects of both climatic and other drivers
of change, and their respective interaction. Resulting requirements with regard to system
understanding and long term observational data can be prohibitive for quantitative
detection and attribution methods, especially in the case of human systems and in regions
with poor monitoring records. To enable a structured examination of past impacts in such
cases, we follow the logic of quantitative attribution assessments, however allowing for
gualitative methods and different types of evidence. We demonstrate how multiple lines
of evidence can be integrated in support of attribution exercises for human and managed
systems. Results show that careful analysis can allow for attribution statements without
explicit end-to-end modeling of the whole climate-impact system. However care must be

taken not to overstate or generalize the results, and to avoid bias when the analysis is
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motivated by and limited to observations considered consistent with climate change

impacts.

Key words: Observed Impacts of Climate Change, Impact Detection, Attribution, Human
and Managed Systems, Multiple drivers

This manuscript contains a total of 8.038 words



38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

1 Introduction

Human interference with the climate system has been visible at global scales for some
time, and is increasingly becoming apparent at regional scales (Stott et al 2010; Bindoff et
al 2013). Consequently, the rigorous attribution of changes in local environmental
conditions to changes in climate, and specifically the detection of climate change impacts
in human systems and sectors interlinked with them, is gaining importance and public
attention. Recent assessments of historical responses to climate change have drawn upon
large amounts of direct observational evidence, applying formalized procedures for the
detection and attribution of observed impacts

(Rosenzweig & Neofotis 2013; Cramer et al. 2014).

While impacts of recent climate change are now documented for all continents and across
the oceans, geographical imbalances and gaps in the documentation of impacts for
human and managed systems remain. Based on scientific knowledge about the sensitivity
of many human and managed systems to weather and climate variability, it is plausible to
expect that recent climate change will have had a role in locally observed changes.
However, confident detection of local effects in historical data remains challenging due to
naturally occurring variability in both climate and potentially impacted systems, and the
influence of other important drivers of change, such as land use, pollution, economic
development and autonomous or planned adaptation (Nicholls et al 2009; Bouwer 2011;
Hockey et al 2011). Often, the specification of a numerical model representing the entire
climate-impact system may not be feasible. In those cases, the careful examination of the
individual steps of the causal chain linking climate to impacts can still provide insight into
the role of recent climate change for the system in question. The goal of this paper is to
provide guidance for such an approach to the detection and attribution of impacts of

observed changes in climate.

Detection and attribution refer to the identification of responses to one or several drivers
in historical observations, and a range of corresponding methods exists across research

disciplines (Stone et al 2013). In the context of climate change research, detection and
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attribution methodologies have been developed mostly in the field of physical climate
science, where a substantial literature presents various model based statistical
approaches to the question how effects of anthropogenic forcing can be identified in
historical climate data (see Barnett et al 1999; Hegerl et al 2007; Bindoff et al 2013).

In contrast, efforts to develop overarching methods for the detection and attribution of
observed impacts to climate change are limited (Stone et al 2009; Hegerl et al 2010; Stone
et al 2013). Studies explicitly attributing individual observed impacts of climate change to
anthropogenic forcing of the climate system are rare, and usually based on a combination
of process- or statistical models and climate models (Gillett 2004; Barnett et al 2008;
Christidis et al 2010; Marzeion et al 2014). In addition, methods have been developed to
evaluate the role of anthropogenic forcing in large-scale patterns of multiple local
impacts, mainly in ecology. These include the identification of so-called fingerprints of
anthropogenic climate change in large sets of biological data (Parmesan and Yohe 2003;
Root et al 2003; Poloczanska et al 2013), joint attribution (Root et al 2005), and joint
attribution combined with spatial pattern congruence testing (Rosenzweig et al 2007;
2008). Generally, these approaches aim at the identification of a generic impact of
anthropogenic climate change which would emerge from analyzing a large number of
cases in parallel, given that it is often not possible to confidently attribute changes in
individual local records to anthropogenic forcing for technical reasons (Rosenzweig and

Neofotis 2013; Parmesan et al 2013).

The vast majority of impact studies are concerned with the identification of effects of
regional changes in one or several climate variables in the context of multiple interacting
drivers of change (Cramer et al 2014). Methods for detecting and explaining change are a
key part of many disciplines studying natural, human and managed systems, and can be
applied in the context of attribution to climate change. For example, reliable process-
based models have been developed and applied in climate attribution analysis for some
species and crops (Battisti et al 2005; e.g., Brisson et al 2010; Gregory and Marshall 2012).
Statistical models are increasingly being used to assess large scale effects of recent climate
change (e.g., Lobell et al 2011b; Cheung et al 2013). However, explicit numerical

modeling of the climate — impact system is not always feasible (see also section 2).



99 Instead, conclusions about cause and effect are often inferred from a combination of
100  multiple lines of evidence, such as process understanding, local knowledge, field and
101  model experiments, observations from similar systems in other locations, or statistical
102  analysis of observational data (see section 3).
103
104  Below, we will focus on impact detection and attribution in a multi-step analysis, based on
105  astructured examination of multiple lines of evidence. In doing so, we follow the
106  approach proposed by Stone et al. (2013), and applied in Cramer et al. (2014) and
107  elsewhere in the WGII contribution to the fifth assessment report (IPCC 2014a; IPCC
108  2014b). This approach is inspired by the framework laid out by the IPCC good practice
109 guidelines for detection and attribution related to anthropogenic climate change (Hegerl
110 et al 2010), but introduces the important modification that impact detection “addresses
111  the question of whether a system is changing beyond a specified baseline that
112  characterizes its behavior in the absence of climate change” (see also IPCC 2014c).
113
114  Detection of change in the climate system is concerned with the identification of a signal
115 or trend beyond the short term variability caused by internal processes. However, the
116  underlying assumption of a stable natural baseline state, with stochastic-like variability
117  superimposed may not be valid or practical in the case of some impact systems,
118  particularly those involving humans. Many impact systems are undergoing constant
119  change due to internal dynamics as well as external drivers which often interact and
120 change over time. The observation of a trend in the overall behavior of such a system, or a
121  lack thereof, may not, on its own, be informative for assessing whether a response to
122  climate change or any other driver has been detected (see also section 2). The main
123 concern of impact detection is to identify the effect of climate change against that of
124  other drivers of change. Therefore, the detection of a climate change impact must involve
125  the explicit testing for confounding factors. In that sense, impact detection can’t be
126  entirely separated from attribution (see Stone et al 2013).
127
128  In this paper we discuss the major steps involved in a complete evaluation of the causal

129 chain from recent changes in climate to locally observed impacts. Following this
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introduction, we outline the required steps for a comprehensive impact detection and
attribution analysis in section 2. We focus on distinguishing the effects of climate change
from those of non-climate drivers, rather than evaluating the anthropogenic contribution
to the observed change in climate. In section 3, we apply the resulting procedure in an
analysis of several examples from human and managed systems, based on available
literature. Those cases illustrate some of the major challenges involved, including the
treatment of systems undergoing change from multiple drivers, and the integration of
different types of evidence. We further discuss those challenges, and the limits and values
of the detection and attribution of climate change impacts in section 4, and provide brief

conclusions in section 5.

2 The five steps of an impact detection and attribution analysis

The logic of quantitative detection and attribution analysis - if not the methods - can also
be applied to qualitative studies, and those that combine various sources of evidence.
That logical flow follows from a classical hypothesis test. Briefly, to test whether climate
change has had an effect on a system, a suitable regression or other model reflecting the
knowledge of the system is specified. This model includes a possible effect due to climate
change as well as other potentially influential factors. The statistical test is then based on
comparing the goodness of fit of the model with climate change to that of the model
without climate change. In both cases, the model is fitted by optimizing a measure of the
goodness of fit. If the correctly specified model that includes the effect of a changing
climate provides a significantly superior fit than the model that does not, we conclude
that the data are not consistent with the null hypothesis that climate change has not had
an effect: in other words, we have detected a climate change impact. If we are also
interested in the magnitude of the contributions of the various drivers, the fitted model

provides a way of assessing these (e.g., based on the regression parameters).

The focus on impacts of recent climate change mostly restricts attention to cases in which
the design involves a trend in climate (which may, in turn, be consistent with the effect of
anthropogenic forcing). The identification of a trend over time in relevant climate

variables is therefore part of the analysis. It is important to note that in order to avoid
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bias, the hypothesis taken as the starting point should not be formulated from the same
data used to test it. Rather, it may be drawn from theory, e.g. model predictions, or
independent data, such as observations in a similar system in a different location. It can
also be helpful to differentiate between known external drivers of a system, which are
explicitly accounted for in the specification of the baseline behavior, and confounding
factors such as measurement errors, data bias, model uncertainty, and influences from
other potential drivers that are not explicitly considered in the study set-up, but need to

be controlled for (Hegerl et al 2010).

Below, we outline the major steps involved in a comprehensive detection and attribution
analysis in the context of climate change impacts (see figure 1).

1) Hypothesis formulation: Identification of a potential climate change impact;

2) Observation of a climate trend in the relevant spatial and temporal domain;

3) Identification of the baseline behavior of the climate-sensitive system in the
absence of climate change;

4) Demonstration that the observed change is consistent with the expected response
to the climate trend, and inconsistent with all plausible responses to non-climate
drivers alone (impact detection);

5) Assessment of the magnitude of the climate change contribution to overall

change, relative to contributions from other drivers (attribution).

Figure 1: Schematic of the five steps of detection and attribution of observed climate
change impacts. Note that in practice the specification of the baseline behavior and the
detection and attribution steps may be performed in parallel, given they all require

explicit examination of all drivers of change in the system.

2.1 Hypothesis

A common source of hypothesis is a prediction of an effect of expected anthropogenic
climate change based on system understanding. For example, if an impact of future

anthropogenic climate change has been predicted in an earlier analysis, one could test
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whether that effect is now detectable in accumulated observations. Another source might
be the detection of impacts in similar systems in other locations, or observations from the
recent past, or from paleo records. Naturally, studies will also be motivated by
observations of change in the climate-sensitive system; while it is unrealistic to ignore that
motivation, efforts need to then be made to minimise the effect of the resulting selection
bias or to evaluate its importance (Menzel et al 2006). A central part of this first step is the
identification of metrics that characterise the expected response of the system to climate

change.

2.2 Climate trend

In order to detect an impact of observed climate change on a system, the climate must
actually have changed and also have been observed to have changed for the relevant
location and period. This condition distinguishes an impact study from a pure sensitivity
analysis. Climate change is defined by the Intergovernmental Panel on Climate Change
(IPCC) as “a change in the state of the climate that can be identified (e.g., by using
statistical tests) by changes in the mean and/or the variability of its properties, and that
persists for an extended period, typically decades or longer” (IPCC 2014c). In that sense,
we consider a change in climate any long-term (e.g. 20 years and more) trend in a climate
variable that is substantial in relation to short time scale variability, regardless of the

cause of that trend.

A local climate trend is not necessarily caused by anthropogenic climate change. While it
is plausible to assume that a local temperature trend that is consistent with the
temperature trend in the larger area, which in turn has been attributed to global climate
change, may also be caused by anthropogenic forcing, this must not be taken as proven. In
general, individual and local climate records show higher variability than aggregated or
global measures (Bindoff et al 2013). Local climate is influenced by topography and
turbulence, but also by other local factors such as water management or land use change.
As a result, local trends may run contrary to or enhance the global warming signal, or may
not emerge at all. Changes in atmospheric circulation patterns, or multidecadal natural

variability could also generate local trends that differ from global ones. The question of
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how one might determine whether an observed trend is anthropogenically forced is

beyond the scope of this paper, but has been considered elsewhere (Stott et al 2010).

Systems may be sensitive to aspects of the climate other than the average, such as
temperature exceeding 30°C during a certain period in plant development (e.g., Lobell et

al 2011a). The chosen metric needs to reflect this aspect of the expected climate change.

2.3 Baseline

For some situations, the identification of a deviation from baseline behavior is relatively
straightforward: the metric shows a trend consistent in direction and magnitude with
what one would expect under climate change, and that trend is also inconsistent with
what could be plausibly expected as the effect of one or a combination of other known
drivers in a stationary climate, either because those drivers are of insufficient magnitude
or they mutually cancel. However in most human and managed systems, we expect the
observed overall response to be consistent with the combined effect of climate change
and other drivers, but not with that of climate change alone. The failure to account for all
drivers in the baseline may lead to erroneous conclusions about the influence of climate

change on a system, as illustrated in Figure 2

Figure 2 Stylized examples of the time series of some measure representing a climate
sensitive system which is responding in time to multiple drivers, one of them climate
change (the corresponding time series of the climate variable for both cases is shown in
panel c). The black line depicts the overall behavior of the system, while the dark,
vertically striped area represents the combined effect of non-climate drivers under
stationary climatic conditions, and the light area represents the additional effect due to
recent climate change. In panel a, the baseline condition (dark area) shows a clear
change midway through the record (e.g. due to a policy measure) but this is
compensated by the influence of climate change. However the resulting overall measure
does not show a deviation from its historical pre-climate change trend, thus masking the
existing climate change effect (potential type | error). In panel b, the observed behavior

shows a change that is consistent in direction with a predicted climate change impact;
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however, the majority of that change happens due to a change in the baseline arising
from other factors. This situation could lead to erroneous detection (potential type Il

error) or an overstatement of the climate effect.

So, in order to evaluate whether a climate change effect has been observed the baseline
behavior of the system in the absence of climate change has to be specified (Stone et al
2013). For some systems, that behavior may be non-stationary even in the absence of all

drivers.

As a world without climate change cannot be observed directly, the baseline must be
constructed using statistical techniques, observations of analogous systems, and/or
system understanding expressed in the form of numerical or conceptual models.
Specifying a reliable model is often hampered by lack of data, incomplete knowledge on
processes and mechanisms involved in systems undergoing change from multiple
stressors, limited understanding of causality within complex networks of social systems,
and how climate drivers and their perception influence those. In addition, research in
gualitative social sciences focuses on descriptive, non-numerical understanding of how
systems behave and interact and is often site- or case specific. For a comprehensive
assessment of impacts on humans systems, expectations of baseline behaviour may have

to be developed and adopted based on qualitative methods.

2.4 Impact Detection

For natural, human and managed systems, impact detection addresses the question
whether a system is changing beyond a specified baseline that characterizes behavior in
the absence of climate change (IPCC 2014c). In other words, impact detection requires the
demonstration that an observed long-term change in a system cannot be fully accounted
for by non-climate drivers. So, in order to detect an impact, it is not sufficient for climate
change to be a plausible explanation, but it must also be shown that there is no (equally

valid) alternative mechanism for the observed change (see also Figure 2).

10
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In well-observed systems, a common way to investigate the effect of a driver on an
outcome in the presence of other drivers is multiple regression analysis. To detect a
climate change impact, the null hypothesis that climate change has not affected the
outcome has to be tested, controlling for the impact of other drivers and confounding
factors, including autonomous and planned adaptation. If the null hypothesis is rejected
using a correctly specified model, a climate change impact has been detected. Following
this statistical approach, a detection statement is always binary: an impact has (or has

not) been detected at a chosen level of significance.

However, in many systems of interest, quantitative models representing causal
relationships will be either impossible to construct or incompatible with the type of data
available. In these situations not amenable to statistical testing, a detailed discussion of
the role of other drivers and potential confounding factors such as measurement errors or
data bias may provide a thorough evaluation of the various hypotheses. Though not
directly comparable to the results of a rigorous analysis of long-term data, a clear and
comprehensive qualitative analysis represents a valid form of evidence that should not be

dismissed.

2.5 Attribution

Attribution needs to examine all drivers of change that influence the system, and evaluate
their relative contribution to the detected change. Impact detection implies that climate
change has had at least a minor role in the observed outcome. Assessing the magnitude
of the contribution of climate change to an impact is a separate, but equally important

matter in a detection and attribution exercise.

An attribution statement needs a qualifier describing the relative importance of climate
change to an observed impact. This involves either simply an ordinal statement (e.g.
climate is the main influence responsible for a change) or a cardinal statement, which of
course requires estimation of the exact relative magnitude of the contribution of climate
change in relation to other drivers (see also Stone et al., 2013). The descriptor relates to

the size of the response to the climate driver relative to that to other drivers of change in

11
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the system, regardless of the direction of that change. While it may be relevant in other
ways, the absolute size of the impact is not vital to the attribution statement.

A key challenge for all attribution exercises consists of accounting for non-additive effects
of multiple drivers interacting on several temporal and spatial scales (see Parmesan et al
2013; Oliver and Morecroft 2014). While of particular concern for human and managed
systems, such effects have also been shown in analyses of large datasets of biological

changes (Crain et al 2008; Darling and Cote 2008).

3 Impact attribution assessments — examples from human and managed

systems

In this section we provide examples which illustrate the challenges of thorough
assessments of climate change impacts. The examples were chosen to cover a range of
different conditions in terms of quality and type of evidence, and clarity of climate trends
and observations. In line with the focus of this paper, we selected examples from human
and managed systems, and from world regions that are currently underrepresented in the
literature. The assessments are based on available literature at the time of writing, and
provide a summary of the more complex considerations detailed in the underlying
literature. As detection is a necessary condition for attribution, the attribution step is

omitted in cases where a climate impact has not been detected.
3.1 Fisheries productivity on Lake Victoria

3.1.1 Hypothesis

The inland fisheries of the Great Lakes are an important food source for the human population of
Eastern and Southern Africa, with Lake Victoria having the largest freshwater lake fishery in the
world. An expected outcome of anthropogenic climate change is warming of the Great Lakes,
with faster warming at the surface increasing stratification (Lehman et al 1998; Verburg and
Hecky 2009). Along with direct effects of the warming, the increased stratification is expected to
limit nutrient recycling, consequently leading to increased abundance of algae and hypoxic

conditions detrimental for the large fish which support the regional fishery industry (Lehman et al

12
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1998). Hence, the fishery catch per unit effort would be expected to have decreased on

Lake Victoria.

3.1.2 Climate trends

Atmospheric warming has occurred in the Great Lakes region (Verburg and Hecky 2009; Ndebele-
Murisa et al 2011), and lake surface waters appear to have warmed, too (Sitoki et al 2010; Loiselle
et al 2014). Analyses of sediment cores suggest that the surface waters of other large Great Lakes
have warmed to temperatures unprecedented in at least the last 500 years (Tierney et al 2010;
Powers et al 2011). A strengthening of the thermocline (and hence increase in stratification) has
been observed before 2000, but appears to have weakened since, possibly due to variability in

local wind regimes (Stager et al 2009, Sitoki et al 2010).

3.1.3 Baseline

The Great Lakes region has experienced a number of major environmental changes over the past
few decades. The Nile Perch, a large predatory fish, and the Nile Tilapia were introduced in 1954-
1964, and now comprise the bulk of the catch on Lake Victoria (Hecky et al. 2010). A fundamental
and rapid change in the fish community occurred in the early 1980s, and fishing effort has
increased in recent decades (Kolding et al 2008). The invasive spread of the water hyacinth had
disrupted lake access and transport on Lake Victoria in the 1990s until the more recent
introduction of the weevil (Hecky et al. 2010).

Much of the land surrounding Lake Victoria has been converted to agriculture, leading to
increased runoff of nutrients (Stager et al 2009; Hecky et al 2010). Like warming, this would be
expected to contribute to increased eutrophication, increased thermal stratification (by increasing

algal abundance), and a shift in species composition and decreased species diversity.

3.1.4 Impact Detection

The dramatic rise in both absolute fish catch and catch per unit effort observed on Lake Victoria
during the 1980s coincided with the large-scale establishment of the introduced Nile Perch.
Altered predation dynamics due to a change in the light regime caused by the increased
abundance of algae facilitated the success of the Nile perch (Kolding et al 2008; Hecky et al 2010).
Another marked rise in catch of a native species in the 2000s is temporally linked to improved lake

access after the establishment of efficient control of the water hyacinth (Hecky et al 2010). That

13
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rise is not reflected in other species and the relation to catch per unit effort is not documented;

the Nile perch catch has been stable since the 1980s despite increased effort.

These catch changes are linked to other changes in the ecology of the lake which indicate the
possible ultimate causes. Increases in primary productivity and algal abundance were
documented in the decades before 2000, though both may have decreased since (Stager et al
2009; Hecky et al 2010; Sitoki et al 2010; Loiselle et al 2014). Increases are consistent with
warming, increased nutrient supply from agricultural development, and decreased abundance of
planktivorous fish species caused by the introduced predators (Hecky et al 2010); the possible
recent decrease in algal biomass could be indicative of a decreased catch per unit effort, as
decreases in abundance of large predators allows populations of smaller fish species to recover.
While the expected effects of species introductions can be distinguished from the expected
response to warming, the responses to increased agricultural runoff and increasing fishing effort
are harder to differentiate. Thus, while current evidence may suggest a response to warming

beyond the responses to other drivers, considerable uncertainties remain.

3.1.5 Attribution

While anthropogenic climate change may become the dominant driver of the biology and
productivity of the Great Lakes in future decades, current evidence is unable to distinguish
whether the influence of warming has already been comparable to or much smaller than that of

other drivers of environmental change in the region.

3.2 Crop production in Southeast South America

3.2.1 Hypothesis

In Southeast South America, significant increases in summer crop productivity, and the
expansion of agricultural areas have been observed over the last decades. Given that
agricultural activity in the region is often constrained by the amount of rainfall, wetter

conditions are expected to have contributed to these trends.

14
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3.2.2 Climate trends

Southeast South America refers to the South American area south of 20°S and east of the
Andes, excluding Patagonia, and includes the important agricultural production centre of
the Argentinean Pampas, South-Eastern Brazil, Paraguay and Uruguay. Past precipitation
and temperature trends are well documented over the area (Giorgi 2002; Barros 2010;
Magrin et al 2014). The region has warmed by roughly 1°C since the mid 1970s, and the
frequency of warm nights has increased. Over the same period, there has been a
reduction in the number of overall dry days (Rivera et al 2013) and dry months in the
warm season (Vargas et al 2010), and increases in precipitation, leading to a westward

shift of the 600 and 800 mm isohyetal lines (Barros 2010; Doyle et al 2011).

3.2.3 Baseline

Across the region, socioeconomic factors such as policy incentives, market conditions,
population growth and agronomic developments have positively affected cultivated area
and agricultural productivity. The introduction of short-cycle soy varieties, no-till cropping
systems, and a general intensification of agriculture following macro-economic
development contributed to the expansion of agricultural activities into formally marginal

land (Baldi and Paruelo 2008; Asseng et al 2012; Hoyos et al 2013).

3.2.4 Impact Detection

Agricultural activity in the region is predominantly rain fed. The wetter and partly warmer
conditions observed since the 1970s are consistent with varying, but substantial increases
in yields observed in particular in those areas of Argentina, Uruguay and Southern Brazil
where precipitation was the limiting factor in the first half of the century (Magrin et al
2005; Magrin et al 2007). In the semi-arid and sub-humid areas at the western and
northern fringe of the Argentinean Pampas, increases in precipitation enabled a shift of
the “agricultural frontier” of about 100 km to the West into formally semi-arid land

(Barros, 2010).

In order to examine the role of different drivers in the expansion of agricultural land, Zak

et al. (2008) and Hoyos et al. (2013) study the conversion of Chaco forest into crop- and

15



424  rangelands in an area at the Northern fringes of the Argentinean Pampas. They show that
425  conversion rates in the Western part of their study region, which did not experience

426  increases in precipitation, are considerably lower than those in the Eastern part, where
427  they document upward trends in precipitation. As both regions exhibit otherwise very
428  similar conditions, they conclude that climate change is an important enabling factor of
429  the observed agricultural expansion, synergistically with technological changes and

430 socioeconomic drivers. The case is less clear for the La Plata basin, where no such natural
431  comparative area has been identified and studied, and the pattern of land types

432  converted does not allow for a clear distinction of the role of the climate trends (Baldi and
433  Paruelo 2008) as opposed to other factors.

434

435  Magrin et al. (2005) use crop models to study the relative effects of observed changes in
436  temperature and precipitation on yields in the Argentinean Pampas. They examine

437  observed yields of four main crops (sunflower, wheat, maize and soy) in nine

438 representative zones across the region. They conclude that climate change had non-

439 negligible favorable effects beyond that of technological changes. In a similar exercise for
440  six zones that extended to locations in Uruguay and Brazil, Magrin et al. (2007) found

441  substantial positive climate change effects on yields in particular for summer crops. Effects

442  were strongest in the originally drier regions.

443  3.2.5 Attribution

444  Recognizing what Zak et al. (2008), call “synergistic consequences of climatic,

445  socioeconomic, and technological factors”, climate change is estimated to be a major
446  driver of the observed increases in summer crop yields and of the expansion of

447  agricultural land into the formally semi-arid regions of South Eastern South America,

448  while the magnitude of its role for other areas and crops is less clear.

449 3.3 Agroforestry systems in the Sahel

450  3.3.1 Hypothesis

451  Drought and heat induced tree mortality is increasingly reported from many locations

452  worldwide (Allen et al 2010). The pronounced drought over the Western Sahel for much
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of the second half of the 20" century would be expected to result in negative impacts on

agroforestry systems.

3.3.2 Climate trends

Rainfall decreased markedly over the western Sahel in the few decades after 1950,
resulting in extremely dry conditions during the 1970s and 1980s; there has been some
recovery of the rains since 1990 but totals remain well below the mid-20th century values
(Greene et al 2009; Lebel and Ali 2009; Biasutti 2013). Like many regions of the world, the
western Sahel has also warmed on the order of 1°C during that time (Niang et al 2014),

promoting drought conditions.

3.3.3 Baseline

With a growing population, there has been a large increase in agricultural area in the
western Sahel at the expense of wooded vegetation (Brink and Eva 2009; Ruelland et al
2011). The growing population may also be harvesting a larger amount of firewood. The
basic structure of the agroforestry system and its management by local farmers have been

reported to be fairly stable over the period covered here (Maranz 2009).

3.3.4 Impact Detection

Over the past half century there has been a decrease in tree density in the western Sahel
noted through field survey as well as aerial and satellite imagery (Vincke et al 2010;
Ruelland et al 2011; Gonzalez et al 2012), and by local populations (Wezel and Lykke
2006). Because of their sensitivity to moisture deficits, trees would be expected to
become less densely spaced during long-term soil-moisture drought. Tree mortality has
been more pronounced for introduced or managed fruit-bearing trees, which may be less
adapted to decadal-scale drought conditions which appear typical of the western Sahel

than the native vegetation (Wezel and Lykke 2006; Maranz 2009).
The patterns of tree cover changes remain correlated with the combined effects of the

warming and drying trends after accounting for the effects of other factors (Gonzalez et al

2012). Moreover, the enhanced mortality among introduced species in relation to
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indigenous species is more consistent with the effect of climate change than with that of

the other drivers listed above (Wezel and Lykke 2006; Maranz 2009).

3.3.5 Attribution

The harvesting of firewood does not appear to have played a substantial role in the
decrease in tree density (Gonzalez et al 2012). The shift from wooded to agricultural
areas is substantial (Brink and Eva 2009; Ruelland et al 2011), and the decreases in tree
density are correlated with proximity to human presence (Vincke et al 2010). However,
both the warming and decreased rainfall trends appear to have played at least as large a
role in the overall decrease in tree density (Gonzalez et al 2012), though this has not been

examined specifically for fruit-bearing trees.

3.4 Wildfire in Australia

3.4.1 Hypothesis

Many high-impact fires occurred over the last decade, amongst them the 2009 “Black
Saturday” Bushfires, which were reported as one of the worst natural disasters in the
history of Australia, with 173 lives lost, and around 2300 homes plus other structures
destroyed (Crompton et al 2010). Bushfires occur naturally in Australia, and many of the
influencing parameters are directly (temperature, precipitation and windiness) or
indirectly (available fuel, land use and cover, fire history) susceptible to climate change
(Williams et al 2009), with fire risk expected to increase under climate change (Reisinger
et al 2014, Box 25-6). Hence a possible increase in fire hazard due to recent climate

change may have translated into increased damages from wildfire.

3.4.2 Climate trend

Increases in aggregate climate indices such as average temperature, maximum
temperatures, and the length of hot-spells have been detected on continental scale, albeit
with strong seasonal and regional variations (Alexander and Arblaster 2009; Trewin and
Vermont 2010). Composite indices such as the McArthur Forest Fire Danger Index (FFDI)
have been developed to capture the combined influence of relevant meteorological

variables such as temperature, relative humidity, wind speed and direction and
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antecedent precipitation for the assessment of fire risk. A trend in the FFDI toward
increasing danger has been observed since 1970 over large parts of Australia, especially in
the South and South East, with a clear signature of annual and decadal climate modes
such as the El Nifio/Southern Oscillation and the positive phase of the Indian Ocean

Dipole (Mills et al 2008; Clarke et al 2013).

3.4.3 Baseline

Damages from wildfire have increased over the course of the century, consistent with the
observed climate trends, but also with the effects of an increased number of exposed
assets (such as settlements built in or close to fire prone bush land), and increases in
population. Better fire management and improved forecasting may counteract these
trends, however their influence has not been quantified (Crompton et al 2011; Nicholls

2011).

3.4.4 Impact Detection

No detectable trend has been found in building damages or losses of life normalized
against trends in population and number of dwellings over the last century or decades
(Crompton and McAneney 2008; McAneney et al 2009; Crompton et al 2010). The
normalization process does not account for all factors that influence vulnerability, e.g.
human behavior such as precautionary measures of individual home owners, or collective
measures of changing spatial planning in order to reduce risk. Several of these factors
have been explored in the literature, often with a focus on specific regions or events.
Examples include the role of the “prepare, leave early or stay and defend” policy in New
South Wales, or the reduction of community vulnerability through improved risk
management (Haynes et al 2010; O’Neill and Handmer 2012; Whittaker et al 2013).
Damage from extreme fires is mainly controlled by exposure, as structures built in close
proximity to or within bush land are virtually impossible to defend during extreme fire
conditions (Chen and McAneney 2004). In the Greater Melbourne area, encroachment of
suburban dwellings into bush land has led to an increase in the number of exposed

dwellings (Butt and Buxton 2009; Buxton et al 2011).
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Crompton et al. (2011) in a reply to Nicholls (2011) discusses and dismisses several factors
(incl. improved fire management, forecasting, individual home owners defence measures)
that could be masking a trend consistent with a climate signal in the overall loss statistics.
They conclude that an influence of anthropogenic climate change “is not ruled out by our
analysis, but, if it does exist, it is clearly dwarfed by the magnitude of the societal change

and the large year-to-year variation in impacts”. In summary, an impact of climate change

on observed damages from bushfires in Australia has not been detected.

3.5 Urban coastal erosion and flooding in West Africa

3.5.1 Hypothesis

Anthropogenic warming of the climate system is expected to cause widespread rises in
sea level. West Africa has a number of low-lying urban areas particularly exposed to sea
level rise, with increases in coastal erosion and flooding expected (Dossou and

Glehouenou-Dossou 2007; Douglas et al 2008; Adelekan 2010).

3.5.2 Climate trends

There has been a lack of sustained tide gauge monitoring in West Africa over the past few
decades (Church and White 2011; Fashae and Onafeso 2011). While satellite monitoring
suggests rising total sea levels in the Gulf of Guinea, actual relative sea level changes at
specific locations along the coast will depend on additional factors, such as human

induced subsidence, or natural variations in ocean currents (Stammer et al 2013).

3.5.3 Baseline

The construction of ports has diverted coastal sediment transport around Cotonou, Benin,
while marine sand quarries have already reduced the supply of sand to the city (Dossou
and Glehouenou-Dossou 2007). Other plausible drivers of increased erosion have also
been posited, and include subsidence due to oil exploration for Lagos, Nigeria, and
sediment trapping in reservoirs for most of the West African Coast (Ericson et al 2006;

Douglas et al 2008).
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3.5.4 Impact Detection

Based on photographic evidence and comparison with satellite imagery, coastlines in
some urban areas in the Gulf of Guinea seem to have been retreating over the past few
decades (Dossou and Glehouenou-Dossou 2007; Fashae and Onafeso 2011). Ericson et al.
(2006) found that sediment trapping is the dominant cause of contemporary effective sea
level rise for the Niger delta, with contributions from land subsidence due to oil
exploration. Also, the construction of reservoirs on the Volta has led to a sharp decrease
in sediments moving across the West African coast, passing cities such as Cotonou and
Lagos. Given the lack of long-term monitoring of local sea level, coastal erosion, and the
various possible drivers of coastal erosion, it is currently not possible to examine whether

an anthropogenic climate change signal has been detected.

4 Discussion

This paper was motivated by an apparent inconsistency between the accepted view that
climate change is already impacting a number of vulnerable human and managed
systems, and the relative lack of documented evidence of observed impacts of climate
change for those vulnerable systems. There is a large literature concerning the sensitivity
of such systems to climate, and to future climate change, but there is comparatively little
documentation of observed impacts of climate change (Cramer et al. 2014).

A major factor explaining this gap consists in the lack of calibrated long-term monitoring
across sensitive systems and regions, which would provide the observational basis that
underpins detection and attribution analysis. Under the United Nations Framework
Convention on Climate Change (UNFCCC), nations are obligated to monitor their
respective contributions to anthropogenic forcing through standardized national
greenhouse gas inventories, but no such inventory scheme or standard exists for impacts

of climate change.

Detection and attribution studies are virtually impossible for impacts in some regions due
to the absence of an observational basis. For example, to determine how sea level rise

might be affecting urban coastal areas in West Africa (see 3.5) the current ambiguity over
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whether relative sea level has actually risen along the urban coastlines is a hindrance.
Innovate methods exist to fill in such gaps, for instance through analysis of archival
footage or consulting local and indigenous knowledge, and can provide valuable tools in

some cases (Rosenzweig and Neofotis 2013).

The five examples discussed in Section 3 draw on disparate studies across disciplines for a
comprehensive analysis of the role of observed climate change in the changes that various
systems have experienced during recent decades. However, they also illustrate some of
the challenges involved in the detection and attribution of impacts of climate change. For
example, the ecosystem of Lake Victoria faced the introduction of large predatory species,
and subsequently a regime shift occurred. Predicting the ecosystem response to such
major unprecedented change would be challenging even if the underlying ecosystem
dynamics were well understood. While it is plausible to assume that increased
precipitation will have contributed to increases in agricultural productivity in Southeast
South America, it is very difficult to disentangle the influence of the climate trend from
that of technological development and socioeconomic conditions for parts of the region.
Similarly, complex factors related to exposure preclude the detection of a climate related
signal in damages from bushfire in Australia. In the case of West Africa, the monitoring of
all drivers contributing to coastal erosion and flooding, as well as the documentation of

the actual changes remains insufficient.

In some cases though, the examples also point to ways forward. Local knowledge has
been valuable in assessing the role of rainfall decreases in the thinning of western
Sahelian forests, similar to what has long been documented for Inuit observations of
change in the Arctic (e.g., Nichols et al 2004; Krupnik and Ray 2007; Weatherhead et al
2010). Sediment cores provide proxy evidence that the current warming of the African
Great Lakes is, essentially, unprecedented. Examination of historical aerial and satellite
photography provided important insights about the baseline in several of the case studies.
The roles of some potential drivers for Australian bushfire damage were elucidated by

comparative analyses across fire events, regions, and other dimensions.
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Several examples point to the synergistic effects of changes in climate and other drivers,
e.g. the enabling role of the precipitation increases for extension of agricultural activity
(3.2), or the role of warming and weakening winds in triggering the ecosystem shift in
Lake Victoria (3.1). To adequately capture the role of climate change in the light of other
factors that may act as additional stressors, provide resilience, or create synergistic effects
different from the effect of any individual driver remains a central challenge for impact

attribution.

A fundamental issue we have only touched upon briefly concerns the end point of
attribution studies. For large parts of the community studying climate change and its
impacts, as well as many stakeholders, “attribution” is used as a synonym for “attribution
to anthropogenic forcing”. As one of the key motivations for detection and attribution
research is to inform the UNFCCC, this end-point has often been considered the main goal
(Zwiers and Hegerl 2008). It is important in the context of potential litigation for adverse
impacts of climate change (Grossman 2003), and may become relevant for the recently
established “Warsaw International Mechanism for Loss and Damage” under the UNFCCC
(James et al 2014). To assess the relative role of anthropogenic versus natural forcing in
observations provides a means to estimate whether recent and current impacts might be
expected to persist, and to calibrate predictions of future impacts made with other
methods. However, as we have shown, it is often very difficult to detect climate change
effects in observed records, and to disentangle the impacts of climate change from those
of other drivers of change. Clearly, attribution of observed impacts to anthropogenic

climate change adds another layer of complexity to an already challenging exercise.

Impact attribution research improves the understanding of vulnerabilities to long-term
climatic trends, including interactions and non-additive effects of multiple drivers, for
which identification of the underlying driver of the observed climate change may not be
relevant (Parmesan et al 2011; Parmesan et al 2013). Impact detection and attribution
provides important insights from “real world” conditions as compared to experimental
conditions or idealized models. Such knowledge is essential to identify the most adequate

adaptation strategies and resilient pathways. Given the increasing rate of climate change
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and possible threshold behaviour in impacted systems, as well as ongoing adaptation and
general development, caution must be applied when inferring conclusions about future

climate change impacts from observations.

It is also essential to be clear about the difference between the estimation of sensitivity to
weather, and the observation of an impact of climate change. This applies especially with
regard to the perception of manifestations of climate variability, such as severe drought or
storms. For many human and managed systems, impacts of extreme weather or climate
shocks are the rare occasion where a clear climate related signal can be detected.
However, while the impact of a particular extreme can be an important indicator of
sensitivity to climate it does not by itself constitute a climate change impact (Allen et al

2007; Stott et al 2013; Hulme 2014).

5 Conclusions

Detection and attribution of climate change impacts provides the most complete and
consistent analysis possible of the cause-effect chain, combining all possible sources of
information in a coherent evaluation. While setting a high bar, the distinction between
impacts that have been observed in data and linked to climate change with confidence,
and those that are predicted to occur but cannot be detected and attributed by science
(as yet) has proven a useful distinction. However, caution must be applied both ways
when interpreting results. The lack of documented impacts attributable to climate change
should not be misread as evidence for the absence of such impacts (Hansen and Cramer
2015). On the other hand, it is true that for many historic impacts on human systems,
non-climate related drivers are equally or more important than recent climate change,

and must be accounted for.

There may be cases where data are insufficient to detect an impact, while given climate
trends and known sensitivity strongly suggests that climate change will have affected the
system. While we support the use of different types of evidence, and the application of

interdisciplinary methods to establish causality, the fact remains that observational
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evidence demonstrating a long term effect is needed for impact attribution. Or to put it

another way — you can’t attribute something you have not detected.

Detection and attribution analysis can be a powerful tool in understanding how and why
our world is changing, albeit its cost is the need to possess the necessary observations
and understanding, which remains poor in many areas. To identify those gaps, to
determine whether they can be filled, and if so to prioritize research to address them, will
lead to a more comprehensive and inclusive understanding of the impacts of climate

change.
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Figure 2 Stylized examples of the time series of some measure representing a climate
sensitive system which is responding in time to multiple drivers, one of them climate
change (the corresponding time series of the climate variable for both cases is shown in
panel c). The black line depicts the overall behavior of the system, while the dark,
vertically striped area represents the combined effect of non-climate drivers under
stationary climatic conditions, and the light area represents the additional effect due to
recent climate change. In panel a, the baseline condition (dark area) shows a clear
change midway through the record (e.g. due to a policy measure) but this is
compensated by the influence of climate change. However the resulting overall measure
does not show a deviation from its historical pre-climate change trend, thus masking the
existing climate change effect (potential type | error). In panel b, the observed behavior
shows a change that is consistent in direction with a predicted climate change impact;
however, the majority of that change happens due to a change in the baseline arising
from other factors. This situation could lead to erroneous detection (potential type Il

error) or an overstatement of the climate effect.
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