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on PCB contamination
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Cédric Garnier6, Mama Chacha7 and Henri Portugal2

Abstract 

This study evaluated the distribution of polychlorinated biphenyls (PCBs) in 39 surface sediment samples and four 
cores collected in Toulon Bay, a semiclosed area submitted to various anthropogenic inputs. The concentration of 
PCBs in the superficial sediment samples ranged from 1.7 to 2530 ng g−1 dry weight. The spatial distribution of these 
compounds suggested that the high concentrations of these contaminants are located in the small bay and are 
related to human activities. In the larger bay, the concentrations were in the same order of magnitude than those 
reported in others locations around the world. Comparison of the levels with target values from the French legislation 
shows that, except for four polluted sites with critical values (N2: values ≥1 mg kg−1 dry weight) in the smaller bay, 
PCBs levels throughout the larger and the smaller bay are lower than the accepted values (N1: values <0.5 mg kg−1 
dry weight). The PCBs in the sediment cores ranged from 0.8 to 739 ng g−1 dry weight dependent core. Vertical pro‑
files indicated earlier usage of PCBs which coincided with the history of the Toulon Bay. In this study, using alkane, we 
could follow the PCBs pollution history over about 80 years and estimate a sedimentation rate of about 0.32 cm year 
in the small Bay of Toulon.
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Backgrounds
Polychlorinated biphenyls (PCBs) were discovered in the 
early 1900  s. They form a large family of about 209 dif-
ferent ‘congener’ molecules that differ in the number of 
chlorine atoms (1–10 Cl) (Hutzinger et al. 1974; Hawker 
and Connell 1988), their locations in the biphenyl core 
and other spatial properties. From the 1920s onwards, 
PCBs have found multiple uses, due to their high ther-
modynamic stability and chemically inert nature (Martin 
et  al. 2003; Fu and Wu 2006; Darko et  al. 2008). How-
ever, because of their high stability, environmental PCBs 

degrade very slowly. Since these molecules are lipophilic, 
they concentrate in many biological organisms and exert 
toxic effects of long and unpredictable duration. PCBs 
can be stored in sediments over decades (Bellemin-Guyot 
1982; Monod et al. 1987; De Voogt and Brinkman 1989; 
Duan et al. 2013b). This persistence varies among differ-
ent congeners, and so the relative proportions of differ-
ent molecules in a given medium vary in space and time 
according to physical, chemical and biological factors. 
(MacKay et al. 1992) reported that the half-life of PCBs 
ranges approximately from 8 months to 6 years depend-
ing on the congeners. Industrial processes allowing the 
decomposition of PCBs implements chemical and ther-
mal technologies, which have no equivalent in the natu-
ral environment. The only one bacterial (Swers and May 
2013; Chun et al. 2013) natural process may realize a slow 
biodegradation into two phases: the first one, anaerobic, 
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being able to dechlorinate gradually PCBs. The second, 
aerobic, transfers the dechlorinated products towards the 
interface water–sediment.

Environmental risks depend on PCBs persistence in 
sediments and on their accumulation in organisms of 
the food chain up to the human consumer. The main 
effects are metabolic disorders, leading for instance to 
altered calcification and changes in reproductive capac-
ity of marine species (Colborn and Smolen 1996; Xue 
et  al. 2005). Even so, despite the accumulation of PCBs 
up to 450 mg kg−1 in the fatty tissues of marine mammals 
(Wafo, personal communication), the links with mortal-
ity have been difficult to establish (Hany et al. 1999).

PCB dispersion in a coastal environment is closely 
linked to particulate matter, including the dispersion, 
nature and supply of this particulate matter, its absorbent 
properties and movements according to coastal currents 
and to the depths of the seafloor.

Our study focuses on the evaluation of the level of 
PCBs contamination in the sediments of the Bay of 
Toulon. This bay is semi-enclosed, exposed to strong 
anthropic impact and to the dumping of a number of 
contaminants, leading to the progressive degradation 
of the environment. This is exemplified by the almost 
complete disappearance of the Posidonia beds (Bernard 
et  al. 2001), testimony to a strong perturbation of the 
underwater biological habitat. Based on this observation, 
a “Bay Contract” was established for the Bay of Toulon 
by the “Syndicat Intercommunal de l’Aire Toulonnaise” 
(Toulon Area Intercommunal Association, SIAT. The aim 
is to restore healthy aquatic ecosystems, to preserve the 
heritage and enhance the economy.

Within the frame of this bay contract and on the basis 
of a prior diagnostic, the objectives of restoration of 
water quality and preservation of the marine environ-
ment were set up and the actions and works necessary to 
restore and valorise the water quality were planned. To 
meet these requirements, the CARTOCHIM project for 
the Toulon Bay was initiated in 2008. Among the actions 
to be undertaken, the determination of pollutants such as 
metals, polychlorinated biphenyl (PCBs), polycyclic aro-
matic hydrocarbons (PAHs), tributyltin (TBT) appeared 
as a priority. Since the early 1990s, PCBs levels from 
along most of the Mediterranean coast, including the 
Toulon Bay and its surroundings, have been studied in 
our laboratory both in surface sediment and along core 
samplings. Sediment can be seen as a geologic history or 
memory that retains patterns from the past.

The Toulon harbour has experienced a series of events 
that are likely to have played a role in affecting the sedi-
ment at different dates: battles, the sinking of ships, pier 
constructions, river diversions, and industrial develop-
ments. We can attempt to identify the traces of these 

events to estimate the sedimentation speed at different 
sites. Sediment deposition depend not only on the verti-
cal accretion of minerals, organic and biological matter in 
water but also on their horizontal transfer mediated by 
sea-water currents, along with bioturbation by inverte-
brates and burrowing fishes. The speed of sedimentation 
depends not only on the origin of mineral and biologi-
cal particles but also on the strengths of sea currents. 
This phenomenon is enhanced close to the shore where 
depths are low and topography plays a major role. The 
construction of the pier which divides the Toulon Bay 
into two areas complicates the problem. One part is heav-
ily urbanised and industrialised, and the other is opened 
to the sea and is mostly devoted to touristic uses. In these 
conditions, settling velocities for pollutants may best be 
treated globally. Nevertheless, a partial approach to the 
problem in the smaller bay, and especially its southern 
zones, would be most useful since they receive pollution 
coming directly from the shore and the dockyards.

A study of alkanes, reported by Milano (1990), was 
made using a 60  cm deep sample obtained from a site 
very close to sample site 15 of this study. We used the 
raw data from this work to analyse the speed of pollutant 
deposition in the region and to estimate a chronology for 
PCBs pollution at the sites sampled in our study.

Thus, the aims of this study were to: (a) measure the 
level of contamination by PCBs of the sediments in the 
Bay of Toulon and estimate the sediment toxicity with 
respect to reference values; (b) study the chronology of 
this pollution and relate the temporal trend in pollutants 
concentrations to the history of the Toulon.

Methods
Study area
Toulon Bay covers a large area (Fig. 1) extending to the 
open sea between the point of Carqueiranne in the east 
and Cap Cepet in the west. It is protected from north 
winds by Mounts Caume, Coudon and Faron and from 
south winds by the layered crystalline rock formations 
of Carqueiranne in the east and St Mandrier in the west. 
Two natural bays are linked: the larger bay, with an area of 
31 km2, shows a semi-circular shape, opens to the Medi-
terranean and offers little shelter from eastern winds. The 
smaller, western bay is much better protected by several 
promontories that provide shelter for harbours and docks 
and many military, industrial, tourist and aquaculture 
activities. At the end of the 19th century, a pier (1500 m) 
was built between Mourillon and St Mandrier isolating 
the two areas more.

Two rivers with relatively weak currents flow into the 
Toulon Bay basin: the Eygoutier (12  km) and the Las 
(8 km). These two rivers, which are subject to the Med-
iterranean tide, have always experienced severe and 
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significant changes in water level. The Eygoutier has been 
diverted to the larger eastern bay to lessen this problem. 
The depth profile of the waters of Toulon Bay reveals two 
isobaths at depths of 50 and 60 m at less than 2 km from 
the head of the canyon that cuts the continental slope to 
the south and in the axis of the bay.

Differences in depths in the larger, eastern bay, mostly 
greater than 20 m, and the western bay, typically less than 
20  m, were accentuated by the construction of the pier. 
Sedimentation in the coastal zone was enhanced espe-
cially in harbours and coves (Bregaillon and Lazaret) less 
than 10  m in depth. The channel between the two bays 
was reduced from 3 km to about 500 m by the construc-
tion of the pier. A deeper channel was dredged and is 
maintained artificially at a depth of 20  m. It runs along 
the peninsula of St Mandrier and takes a steeper slope 
towards the centre of the bay before joining the head of 
the canyon to the South.

As the expansion of Toulon town was closely linked 
to the expansion of the fleet and dockyards, military 
setbacks, including those of 1707, 1793 and 1942, have 
caused major losses in ground installations such as the 
dockyards, harbours, forts, and munition and fuel sup-
plies. Major changes occurred after the Second World 

War. The naval strength remained but the shift to 
nuclear-powered aircraft-carriers and submarines altered 
the impact on the environment. Over the same years, 
commercial sea traffic greatly increased, and the democ-
ratization of sailing for pleasure has equally increased 
maritime traffic.

Further changes have occurred as the Toulon metropo-
lis has grown to a population of nearly 600,000. It now 
extends from Ollioules in the west to Pradet in the east 
and from La Seyne to St Mandrier in the south. The 
conurbation has grown very fast, with large increases 
in industrial, commercial and tourist activities. Con-
tributions from pollutants due to these activities have 
increased, with runoffs and outflows from imperme-
able surfaces. The sources have become more dis-
persed, resulting in a diffuse pollution widely distributed 
throughout Toulon Bay.

Sampling and storage
Surface sediments were sampled in November 2008, Feb-
ruary and June 2009, with the help of the French Navy. 
We collected samples of ‘superficial sediment’ by pull-
ing 10  cm long cylindrical tubes into the sediment at 
39 points distributed across the bay. Each sample was 

Fig. 1  Map of the sampling sites in Toulon Bay
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subdivided in two parts corresponding to depths of 0–5 
and 5–10 cm. The sampling procedures and sample treat-
ment had been described by (Tessier et al. 2011).

Four additional interface cores, representative of condi-
tions over time for different sites in the bay (core 12 and 
15 for the small bay; 23 and 52 for the larger bay), were 
collected in the same conditions, to evaluate the time 
course of PCBs contamination. They were divided into 
2  cm slices under liquid nitrogen and stored at −20  °C 
before each subsample was analysed as described above.

Chemical analysis
Samples were analysed for the PCBs congeners 28, 52, 
101, 118, 138, 153, 170, 180, 194; IUPAC notation from 
Ballschmiter and Zell (1980). Among the 9 PCB com-
pounds investigated in this study, the CB 28, 52, 101, 
118, 138, 153, 180 were selected by the Commission of 
the European Communities (BCR) (Griepink et al. 1990). 
These compounds are considered as tracers of PCBs pol-
lution and are the major constituents in DP6 (equiva-
lent to Aroclor 1260), which is the industrial component 
widely used in France.

Usually, to estimate the total PCB, we use as formulae: 
tPCB = (CB118 + CB138 + CB153 + CB180) × 100/41 
(Perez et al. 2003; Wafo et al. 2006, 2012).

In this study, we considered total PCBs as being the 
sum of the analyzed congeners. With this approach, we 
intended to facilitate the interpretation of the results, 
being aware that this does not provide an accurate cal-
culation of total 209 congeners. By using the sum of the 
analyzed congeners, we consider that we get closer to the 
reality.

Sample extraction and quantification
All the samples were lyophilised, sieved through a 2 mm 
sieve, and then stored in amber glass bottles at −18  °C 
until analysis. Prior to analysis, the water content of each 
sample was determined systematically on a 1 g subsam-
ple dried at 105  °C for 24  h. The value obtained (%) is 
added to the results for each PCBs congener. 2 g of sedi-
ment was extracted using Pestipur® hexane in a soxhlet 
apparatus. The resulting extracts were purified with con-
centrated sulfuric acid according to Murphy (1972), and 
then desulfurized with TBA-Sulfite Reagent (Jensen et al. 
1977). Liquid chromatography was performed on these 
extracts using silica gel and alumina column, follow-
ing previously described procedures (Wells et  al. 1985). 
The resulting extract was concentrated to 1  mL. Analy-
ses were performed with a HP 6890 series gas chroma-
tograph equipped with a 63Ni electron capture detector 
(ECD) as described previously (Perez et  al. 2003; Wafo 
et al. 2006, 2012).

Quality control
Glassware was cleaned before use with the detergent 
TFD4 dec FT30, dried at 200  °C for at least 24  h, and 
rinsed at least twice with the solvent (hexane) before 
use. All traces of organochlorinated compounds were 
removed from the extraction cartridges (22  ×  80  mm, 
no. 350211, Schleicher & Schull) by conducting a blank 
pre-extraction for 12  h under normal conditions. For 
each series of extracts, a blank, certified sample (BCR-
536) was used to provide an internal validation. For this 
certified sample, congeners 28, 52, 101, 118, 138, 153, 180 
were analysed. Each sample was analysed in triplicate 
with recovery levels of 85–95 %. The detection limits for 
individual PCB congeners were 0.01 ng g−1 dry weights.

Results and discussion
Granulometry
Organochlorine compounds adsorbed on sediments can 
suffer degradation and desorption processes, the latter 
being strongly influenced by physical chemical factors 
of the sediment such as grain size or organic matter con-
tent (Bondi et al. 2006; Yang et al. 2011, 2012; Duan et al. 
2013a). Results for grain size showed that fine fraction 
(F < 60 µm) was predominant over the entire bay. Sedi-
ment from Toulon Bay presented a high homogeneity, 
and a low variability with depth. This predominance of 
fine fraction will promote the accumulation of contami-
nants in the sediment.

The distribution of granule sizes was measured for layers 
0–5 and 5–10 cm deep. For the sake of simplicity, since the 
differences between these two layers were usually small, 
an average value was calculated for each site. Figure 2a–d 
shows maps of the granule size distribution in total sedi-
ment for the most representative size ranges: greater than 
2 mm (coarse sand and granules), less than 63 μm (silts), 
less than 20 μm (fine silts) and less than 4 μm (clays).

 Granular and coarse sands larger than 2 mm (Fig. 2a) 
corresponded mostly to gravel and debris from shellfish 
and vegetation. The proportion of these large granules 
varied from 2.6 to 43.9 %, reflecting the diversity of the 
sites studied. Silts smaller than 63  μm (Fig.  2b), mostly 
reflecting organic pollution (Taylor and Boult 2007), were 
detected at levels ranging between 83 and 45.3  %. The 
levels of 60–70 % were found over the remainder of the 
zones tested extending into the larger bay. The distribu-
tion of fine silts smaller than 20 μm was very similar to 
that of coarser silts (Fig.  2c). The major difference was 
detected in western regions of the larger, external bay 
where levels of 42–51 % may reflect an increased amount 
of very fine (F < 4 μm) rather than moderately fine sedi-
mentation. This very fine sediment fraction (F  <  4  μm) 
corresponds to clay-like particles, which are likely to be a 
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better absorbent. This fraction was preferentially located 
in eastern regions of the larger, external bay (Fig. 2d).

In sum, the granulometric analysis reveals different 
behaviours, which vary depending on the geographical 
location. The zones containing the highest levels of fine 
sediment (70–80  %) are located in the most enclosed 
part of the bay in the north, where various activities are 
concentrated. The absence of tides in the Mediterra-
nean, along with the presence of the pier, mitigates the 
impact of ocean currents. Waters renew slowly in these 
zones, which is favourable to the accumulation of fine 
particulate matter. Additional file  1: Table S1 shows the 
mean composition of six majors’ granules sizes (lower 
than 4, 4–20, 20–63, 63–200, 200–2000 and larger than 
2000 μm) from each 2 cm layer.

Sedimentation and confinement in the smaller, internal 
bay tended to favour homogenous granule sizes, except 
for sand and particles larger than 2 mm, whose presence 
was most evident at sampling site 15. Sampling sites 23 
and 52 in the larger external bay exhibited very differ-
ent profiles. Site 23 was rather shallow and received the 
efflux from the Eygoutier River. Large granules were 
highly represented: 16.1 % for sands of 200–2000 μm and 
13.4  % for coarse sands up to 2  mm. Site 52, the deep-
est (58 m deep), was characterised by important silting, 

with granules smaller than 63 μm (78 %) associated with 
a fraction of large granules (F > 2 mm) (8.1 %). The sandy 
granule fraction (200–2000  μm) was very low (1.3  %). 
This reflects the dual origin of granules in this rather het-
erogeneous area.

PCB levels in superficial sediments
In the 0–5 and 5–10 cm layers from all parts of the bay, 
the total PCBs levels varied from 1.8 to 1869 ng g−1 and 
from 1.6 to 3188 ng g−1, respectively. As shown in Addi-
tional file 2: Figure S3A, the PCBs levels in the 0–5 cm 
layer varied from maxima north of the smaller bay 
(1869  ng  g−1) to minima east of the larger, external bay 
(2.2 ng g−1).

PCBs concentrations higher than 100  ng  g−1 were 
restricted to zones of port activity north of the small bay 
and very locally at one sample site (20) in the south. The 
spread of PCBs pollution to the south of the small bay 
and its opening into the larger bay follows currents flow-
ing around the St Mandrier peninsula. This spread could 
be traced along the sampling sites 15, 18, 25, 26, 40 and 
41, where PCBs levels were in the range 34–74  ng  g−1. 
PCBs levels fell steadily from 13 to 2 ng g−1 with the dis-
tance north and east of the larger bay as well as towards 
the Anse des Sablettes.

Fig. 2  Spatial distribution of granule sizes (F>2m, F<63µm, F<20µm, F<4µm), with their percentages distribution (< 5 to > 30 %) in each superficial 
fraction sediments
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The distribution of PCBs in samples of the deeper 
5–10 cm layer (Additional file 2: Figure S3B) is similar to 
that in the upper 0–5 cm layer, especially in the smaller 
bay. In the larger bay, regions of very low PCBs levels 
extended over wider zones from the shore of Mourillon 
to the Carqueiranne point in the east. We note that the 
high PCBs level, 210 ng g−1, measured at sample site 41 
in the southern region of the larger bay, indicates poten-
tial accumulation in the coastal sector.

Additional file  3: Figure S4 compares the PCBs levels 
measured in the upper (0–5  cm) and lower (5–10  cm) 
layers. The concentration ratios show that in the smaller 
bay there has been a quasi-general decrease in PCBs, 
except in sites 6 and CS, while in the larger bay a balance 
between PCB influx and removal may exist. These phe-
nomena may be linked to sediment disturbance in this 
zone due to maritime traffic and dredging operations.

In Fig. 3, PCBs level variations between the small and 
the large bays are plotted as a logarithm of total PCBs 
concentration. This graph is based on data from a series 
of sampling sites located between the dock zones in the 
north of the small bay to the point of Carqueiranne. A 
good fit indicates the regular pattern of PCBs dispersal.

At a given sampling site, the fate of PCBs in shallow 
sediments depends on the transfer and sedimentation 
of particulate matter from a coastal site of origin to the 
site of accretion and on the stability of the conditions 
at the sampling site. We estimated relative proportions 
based on different homolog groups of analysed PCBs. 
Using Phenochlor DP6 as an example; we distinguished 
four homolog groups of congeners (3  +  4, 5, 6, 7 Cl). 
Assuming that dechlorination should involve first the 

most heavily chlorinated congeners (Brown et  al. 1987; 
Wafo 1996; Fang et al. 2013; Demirtepe et al. 2015), we 
classified sites according to a decreasing order of hepta-
chloride compounds. The percentages of other congener 
groups might vary according to the kinetics of dechlorin-
ation at each site.

Variation curves were generated for PCBs with 3, 4 or 
5 Cl and with 7 Cl in order to illustrate changes in the 
sampling sites, using heptachlorinated PCBs as a refer-
ence. The degree of dechlorination assessed as an index 
of PCBs degradation was not identical at all sites, but the 
variations demonstrated a general trend that was similar 
for both layers (Additional file 4: Figure S6).

The French Legislation level for PCB admitted for dredging 
waste
 The current French legislation on dredging waste is based 
on multiple guidelines (Alzieu 2005) for the level of pol-
lutants that may be present in dockside zones. Values are 
expressed in mg kg−1 of dry sediment at two different lev-
els: N1 (0.5 mg kg−1) and N2 (1.0 mg kg−1) for immersed 
sediments. At levels below N1, effects are thought to be 
neutral or negligible for the environment. Between levels 
N1 and N2, further toxicity assessments may be required 
depending on the project and on the extent to which N1 is 
exceeded. Above level N2, negative environmental effects 
are possible. Immersion may be forbidden and alterna-
tive solutions must be sought. Sediments in the bay may 
be estimated by averaging the values from the upper 
(0–5 cm) and lower (5–10 cm) layers at each sample site. 
Figure  4 shows those among the sampling sites that fall 
within the levels N1 and N2, as defined for PCBs.

Fig. 3  Concentration profile of total PCBs between the small bay (Station 1 to 18) and the large bay (Stations 25 to 52)
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PCBs pollution reaches N2 levels in a small proportion 
of the region considered, particularly at sample sites 5, 6 
and MI north of the small bay and also around a localised 
source, St 20, south of the small dock. Except for these sites, 
PCBs pollution in Toulon Bay is below level N2. Heavy 
use of these molecules occurred during a relatively limited 
period. Legislation introduced in the 1970s has successfully 
suppressed PCBs manufacture and use (http://www.legi-
france.gouv.fr) with positive effects on the marine environ-
ment around Toulon. For comparison, we note, however, 
that the level of PCBs pollution in aquatic sediment from 
the Marseilles bay has been measured at 1.6 mg kg−1, up to 
the N2 level (Wafo et al. 2006) and 0.75 mg kg−1, up to the 
N1 level (Agung Dhamar et al. 2012).

 The concentration ranges of PCBs in this study are 
compared to those reported from different locations of 
the Mediterranean region and other industrial or urban 
coastal environments (Table 1). It should be noted, how-
ever, that a quantitative comparison across reported 
PCBs compounds data is difficult because of variances 
in the time of sampling, specific congeners measured in 
each study, the sediment fraction analyzed, and the ana-
lytical methods used. With the exception of the small bay 
with high PCBs level (100–2530  ng  g−1  dw); the PCBs 
concentrations in surface sediment in this study were 
also in the same order magnitude than those reported 
from other locations.

Establishment of reference values to estimate PCBs 
pollution
PCBs are ubiquitous in environmental samples. Since 
they do not occur naturally but are produced industrially, 
their maritime reference levels should be near zero, given 
their global dispersion. Clearly this is unrealistic. In this 
context, it is difficult to define a range of concentrations 
of total PCBs that properly reflects the gradients from 
the coast to the open sea. Levels of PCBs in the open sea 
might be used as “normal” minimal concentrations.

For sediments of a relatively confined environment such 
as the Western Mediterranean Sea, this value could be 
deduced from previously measured concentration gradi-
ents in our laboratory from 1995 to 2009 (Perez et al. 2003; 
Wafo et al. 2006). To this end, we present a range of con-
centrations inferred statistically from the analysis of over 
1500 samples using similar methodologies. Sediments 
were collected in the North-Western Mediterranean from 
coastal regions to depths of down to 2000 m between Cor-
sica and the Balearic Islands. The results are expressed 
as tPCBs, with five concentrations levels (0–10–25–50–
100 ng g−1 dw) used to represent transitions between non-
polluted and heavily polluted sediments (Table 2).

We note that these data were obtained from the 
open sea and so exclude very high PCBs levels in har-
bour deposits, which should be considered as industrial 
wastes.

Fig. 4  Spatial distribution of the levels of pollution compared with target values

http://www.legifrance.gouv.fr
http://www.legifrance.gouv.fr
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Using the core samples to determine PCBs distribution 
in time
Alkane distributions in a core sample
Alkanes are saturated chain hydrocarbons. They may be 
natural, anthropogenic, pyrolytic or petroleum-related. 
These categories may reflect the number of carbon 
atoms. A natural origin for specific alkanes is indicated 
by chains with odd numbers of carbon atoms. The C17 
alkane has been linked to a marine phytoplanktonic 

origin (Aboul-Kassim and Simoneit 1995, 1996; 
Colombo et al. 1989, 2006), while C27, C29, C31 and C33 
alkanes have a terrestrial origin, possibly related to 
petroleum (Mille et al. 1981; Mahler et al. 2005; Yunker 
et al. 2002, 2015; Foster et al. 2015). A study of alkanes, 
reported by Milano (1990), was made using a 60  cm 
deep sample obtained from a site very close to sample 
site 15 of this study. We use data from this analysis to 
estimate an average sedimentation rate of PCBs in the 
cores for our study. Detailed results from this analysis, 
based on variations in alkanes C14 to C36 at each level of 
the sample, show the distribution of alkanes C20 to C32 
at two characteristic levels along the core, revealing an 
overall increase in the total concentration (10–20 and 
40–60 cm) (Fig. 5a).

In each case, a large and rather symmetric peak 
between C21 and C32 with a maximum at C27 is followed 
by a smaller, asymmetric peak displaced towards C23 
(Fig.  5b). We can make a reasonable hypothesis on the 

Table 1  Comparison of PCBs concentrations (ng g−1 dw) in the surface sediments of different coastal areas

Location PCB References

Lake Como, Italia 449.7–1672.1 Bettinetti et al. (2016)

Seine River Basin, France 2300 Lorgeoux et al. (2016)

Baltic 28 Sobek et al. (2015)

Northern France 126.8–194.4 Net et al. (2015)

Nadoor Lagoon, Marocco 2.5–20.5 Giuliani et al. (2015)

Rhône River, France 11.5–417.1 Mourier et al. (2014)

Port Elizabeth Harbour, South Africa 0.56–2.35 Kampire et al. (2015)

Qinzhou Bay, South China 1.62–62.63 Zhang et al. (2014)

Monastir Bay (Tunisia, Central Mediterranean) 3.1–9.3 Nouira et al. (2013)

Mediterranean coastal environment, Egypt 0.29 – 288 Barakat et al. (2013)

Egyptian Mediterranean coast 7.06–75.17 Aly Salem et al. (2013)

Eastern Aegean Coast, Turkey 26.07 Kucuksezgin and Gonul ( 2012)

Rhône River, France 78–281 Desmet et al. (2012)

Abu Qir Bay (Egypt) 45 Khairy et al. (2012)

Cortiou, Marseille, France 750 Agung Dhamar et al. (2012)

Port of Spain 62–601 Mohammed et al. (2011)

Mar Piccolo, Taranto Ionian Sea, South Italy 2–1684 Cardellicchio et al. (2007)

Naples harbor, Italy 10–899 Sprovieri et al. (2007)

Cortiou, Marseille, France 12.68–1559.3 Wafo et al. (2006)

Dalian Bay 58.1 (average) Xing et al. (2005)

Singaore’s coast 1.4–329.6 Wurl and Obbard (2005)

Narragansett Bay, USA 20.8–1760 Hartmann et al. (2004)

Masan Bay, Korea 1.24–41.4 Hong et al. (2003)

Alexandria harbor, Egypt 0.9–1211 Barakat et al. (2002)

Daya Bay, China 0.85–27.37 Zhou et al. (2001)

Hong Kong’s coast 3.5–25.1 Hong et al. (1999)

Victoria harbor, Hong Kong 3.2–27 Connell et al. (1998)

Coastal Barcelona offshore 4.0–64 Tolosa et al. (1995)

Abu-Quir Bay, Egypt 53–231 Abdallah and Abbas (1994)

Table 2  Proposed reference values

tPCBs (ng g−1 dw) Sediment qualification

<10 Not polluted

10–25 Slightly polluted

25–50 Moderately polluted

50–100 Polluted

>100 Very polluted
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origins of these variations. The scuttling of the French 
Mediterranean fleet on the 27th of November 1942 
(Antier 1992) is the only recent event that might have 
initiated such a massive release of hydrocarbons. One 
hundred and seventeen ships were sunk, and all naval 
dockyard facilities destroyed. While the sabotage opera-
tion lasted for 2 h, fires and explosions continued for sev-
eral days. Huge quantities of toxic waste released from 
the destroyed ships, docks, buildings, munitions and fuel 
were added to the harbour sediments. This massive and 
rapid pollution of the entire Toulon Bay was followed by 
a long period of recovery which prolonged, even though 
more moderately, the contamination of the bay. The 1942 
cataclysm also has biological correlates in the sediment 
record. The level (20–30 cm) corresponding to the scut-
tling of the fleet is associated with a transition from grey, 
clay Posidonia beds to grey beds of decaying Posidonia 
debris, testimony to a strong perturbation of the under-
water biological habitat.

Following our hypothesis, the paroxysmal phase should 
be attributed to 15–20 cm layers. High levels of pollution 
seem likely to have affected larger invertebrates, conse-
quently reducing the sediment disturbance that they gen-
erate. In contrast, an influx of novel PCBs would tend to 
facilitate re-arrangements that would transfer previously 
accreted PCBs to higher levels in the sediment structure. 
At the same time, hydrocarbon chains should degrade, 
leading to a new distribution with shorter chains and a 
shift of the peak to C23.

These observations allowed us to date the 15 cm layer 
back to 1942. Average sedimentation could then be esti-
mated at 0.32 cm per year. This provided a valuable basis 

for studying the chronology of sediment pollution in the 
smaller bay.

Usually, sediment cores have been used to estimate his-
torical deposition and trends of persistent environmental 
contaminants, whereby the chronology of contamination 
is linked to the measurement of 210Pb or 137Cs activities in 
the sediment layers as a function of depth and time (Hites 
2004; Covaci et  al. 2005; Stern et  al. 2005). The pioneer-
ing study by Hites et al. (1977) on the historical record of 
sedimentary PAHs ushered in the use of sediment cores 
to trace the history of accumulation of many pollutants, 
including PCBs (Boonyatumanond et  al. 2007; Zennegg 
et al. 2007) in many aquatic ecosystems around the world. 
Sediment can be seen as a geologic history or memory that 
retains patterns from the past. The Toulon harbour has 
experienced a series of events that are likely to have played 
a role in affecting the sediment at different dates. We can 
attempt to identify the traces of these events to estimate 
the sedimentation speed at different sites. Using the 210Pb 
or 137Cs activities, (Tessier et al. 2011) found 0.27 cm as an 
average sedimentation for the same core in the small bay. 
The results obtains in our study sediments are similar to 
those found elsewhere such as Masan Bay, Korea (Hong 
et al. 2010), Lake Maggiore, Italy (Guzzella et al. 2008), the 
Norwegian Arctic (Evenset et al. 2007), the Strait of Geor-
gia, Canada (Johannessen et  al. 2008), Thailand (Kwan 
et al. 2014), Haizhou Bay in China (Xing et al. 2005; Zhang 
et al. 2014), and Guaratuba Bay (Combi et al. 2013). Simi-
lar sediment PCBs profiles were observed in Changjiang 
Estuary and adjacent East China Sea (Yang et  al. 2012; 
Duan et al. 2013a); In The Seine River Basin-France (Lor-
geoux et  al. 2016, The Seine River Basin, Paris), Nador 

Fig. 5  Depth profile n-alkane distribution by slice, from 10 to 20 and 40 to 60 cm
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Lagoon-Morocco(Giuliani et  al. 2015), and The Rhône 
River-France (Mourier et al.2014; Desmet et al. 2012).

PCBs distribution in core samples
Minimal and maximal concentrations from each sample 
are presented in Table 3.

As shown in Table  4, PCBs levels, both in total sedi-
ment and in the fine fraction (F < 63 µm), were highest in 
samples from site 12. Comparison of samples from differ-
ent sites (Fig. 6) revealed that these differences appeared 
starting at depths of 26 cm, corresponding approximately 
to the 1930s period. PCBs levels lower than 100  ng  g−1 
at depths down to 12  cm revealed lower rates of PCBs 
accretion. The maximum concentrations during this 
period were similar to the 1940–1950 period concentra-
tions. A rapid, massive increase in PCBs content started 
in the 1960s and 70s, with levels reaching a maximum of 
650 ng g−1 at depths of 6–8 cm in the 1980s–1990s. PCBs 

levels then declined regularly to values near 200 ng g−1 at 
the surface, which corresponds to today’s values.

Part of the reduction in PCBs levels can be attributed 
to the legislation of the 1970s prohibiting their sale and 
use. Another factor may also have influenced PCBs pollu-
tion in Toulon Bay: in the 1970s, naval submarines were 
replaced by civil dockyard activities at Mourillon. Differ-
ences in PCBs levels between the total sediment and its 
fine fraction were constant and rather small, as expected 
from the nature of deposits in this zone of the bay.

In the sample core 15, PCBs were first detected at 
depths of about 26 cm, corresponding approximately to 
deposits from 1930. PCBs levels increased after the war 
(1945), especially from 12  cm up to the surface (1970–
1980), where PCBs exceeded 50 ng g−1. Maximal levels of 
140 ng g−1 were found in the fine fraction (F < 63 µm) at 
the surface. The sample core 12 differs in several aspects 
from sample 15. First, there was an increased mean ratio 

Table 3  Minimum and maximum PCBs levels in the samples

Core 12 15 23 52

Min Max Min Max Min Max Min Max

tPCB (ng g−1)

Total sediment 1.9 653 0.8 96 1 14.8 1.3 11.3

(F < 63 μm) 3 739 1 140 2 24 2 13

Fig. 6  Depth profiles of PCBs levels in the samples
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between PCBs levels in the fine fraction and in total sedi-
ment (1.32 in sample 12 and 1.55 in sample 15). This cor-
relates with the larger sediment granule sizes in samples 
from site 15. Second, maximal PCBs levels were higher, 
with a ratio of 3.7 for mean levels in the most polluted 
part of the respective samples. Third, the depth profiles 
of PCBs levels differed. A peak could be clearly observed 
for samples at depths of 6–8 cm, while in samples from 
site 15, PCBs levels fluctuated but remained elevated up 
to the surface. The sample core 23 is situated far from 
pollutants originating from the industrialised zones of 
Toulon. In the sample core 52 the PCB content was very 
low (maximum of 13 ng g−1). PCB levels did not exceed 
the background (5 ng g−1) at levels lower that 16–18 cm. 
Sediment from this site was largely clay-like with 85 % of 
F < 63 μm in the most recently deposited sediment.

There is a very evident decrease of PCBs concentra-
tions in the late 1990s, correlated with the legal ban in 
1986 in France (http://www.legifrance.gouv.fr). The bar 
graphs of specific PCBs depth distributions shown in 
Additional file 5: Figure S10 demonstrate a clear division 
above and below 12  cm for different samples. From the 
surface to a depth of 12  cm, different congeners follow 
stable, equilibrated distribution with no dominant contri-
bution. In contrast, at depths below 12 cm, the three least 
chlorinated congeners (CB28, 52, 101) dominate, with 
maximal levels at 16 and 30 cm separated by a minimum 
at 20–22 cm.

Differences between upper and lower sample layers 
may be interpreted as resulting from increases in PCBs 
pollution, but also as the effect of lower PCBs levels dur-
ing periods including the Second World War and its 
aftermath. Reduced PCBs efflux probably encourages a 
more complete biodegradation and so enhances the pro-
portion of less-chlorinated PCBs.

In the sample core 15, except for an ‘abnormal’ peak 
corresponding to the 8–10  cm layer, 7-Cl PCBs levels 
fell steadily from the surface to deeper layers (from 39 to 
10 %). The level of 3–4 Cl PCBs increased proportionally 
(from 1 to 19 %) and so did the level of 5-Cl PCBs (from 8 
to 29 %). The level of 6-Cl PCBs remained rather constant 
(41–47 %). At depths below 10 cm, few changes were evi-
dent, and 3–4 Cl PCBs were practically absent. We sug-
gest that PCBs degradation starts in the less oxygenated 
regions of the sampled sediment and then accelerates 
logarithmically. These processes occur more slowly at 
lower depths (including the 20–25 cm layer) where PCBs 
levels are very low, close to baseline noise. In the sample 
core 23, a regular sequence of changes in different PCBs 
components was evident between the surface and a depth 
of 28 cm for this sample. The level of 7-Cl PCBs fell from 
37 to 7 %, while 3 + 4 + 5Cl PCBs increased from 7 to 
41 %. The level of 3-Cl PCBs was relatively high, in sharp 

contrast to samples from sites 12 and 15, where they are 
essentially absent from near-surface depths. PCBs deg-
radation apparently starts close to the efflux from the 
Eygoutier River. These data are somewhat less clear than 
for samples from other sites. Presumably they result from 
the more heterogeneous granule structure of this sample, 
which could favour more uniform PCBs degradation pro-
cesses. Additional file 6: Figure S11 summarises the ten-
dency of changes in PCBs chlorination in our samples.

For sample core 52, with the exception of the 8–10 cm 
layer, which was characterised by reduced levels of 7-Cl 
PCBs in favour of 5-Cl PCBs, the degradation process 
manifested in a decrease in 7-Cl PCBs levels that was 
compensated for by and increase in 3 + 4 + 5-Cl PCBs 
levels (Additional file  6: Figure S11). This process is 
comparable to the one observed in the other samples. 
Despite being linked to a time factor, and consequently to 
a sedimentation speed that is not identical to that of the 
other samples, the differences in slope can be observed 
between the different sites. We should stress here that 
low, residual levels may not depend exclusively on deg-
radation processes. The levels of less chlorinated PCBs 
that are more soluble and have lower molecular weights 
may also result from the expulsion of these derivatives in 
water columns.

Conclusion
PCBs are a permanent contaminant of coastal sediments, 
but are limited quantitatively and qualitatively over 
time. In the present study, we showed that PCBs pollu-
tion was limited in the small Toulon Bay, a relatively pro-
tected harbour zone. The PCBs content reached and even 
exceeded average levels of 2530 ng g−1 (level N2) at cer-
tain sites. In the larger, more open bay, the PCBs content 
was lower, between 1.9 and 136 ng g−1 on average (level 
N1) indicating that that the risk posed by PCBs is lim-
ited. The PCBs concentrations in surface sediment in this 
study were also in the same order magnitude than those 
reported from other locations.

It can be hoped that, after the 1970s legislation on 
PCBs fabrication, sale and use, new polychlorinated 
biphenyl pollution is at an end. The PCBs concentrations 
in surface sediment in this study, especially in the larger 
bay, were also in the same order magnitude than those 
reported from other locations.

Our study resolved levels of PCBs contamination in 
total sediment and especially in sediment fractions of 
silts and clays (<63 µm). A relatively uniform PCBs deg-
radation was estimated for both bays studied based on 
the analysis of the fractions of PCBs congeners with dif-
ferent numbers of Cl atoms.

Five ranges of PCBs levels are proposed for a rational 
definition of sedimentary pollution at other sites. Dated 

http://www.legifrance.gouv.fr
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sediment core samples were able to capture the historical 
deposition of PCBs in Toulon Bay reflecting important 
events and factors that influenced the deposition of these 
compounds. The sedimentation rate was estimated from 
the timing of major events which left an imprint on the 
geological memory. These events included the traces of 
military conflicts, the increase in PCBs use in the 1950s 
and 1960s and changes in the course of a river flowing 
into the bay. In this way, we could follow the PCBs pol-
lution history over about 80  years and estimate a sedi-
mentation rate of about 0.32 cm year−1 in the small Bay 
of Toulon.
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