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THE p-ADIC KUMMER–LEOPOLDT CONSTANT

NORMALIZED p-ADIC REGULATOR

by

Georges Gras

Abstract. — The p-adic Kummer–Leopoldt constant κK of a number field K is
(assuming the Leopoldt conjecture) the least integer c such that for all n ≫ 0, any
global unit of K, which is locally a pn+cth power at the p-places, is necessarily the
pnth power of a global unit of K. This constant has been computed by Assim &
Nguyen Quang Do using Iwasawa’s techniques, after intricate studies and calcula-
tions by many authors. We give an elementary p-adic proof and an improvement
of these results, then a class field theory interpretation of κK . We give some ap-
plications (including generalizations of Kummer’s lemma on regular pth cyclotomic
fields) and a natural definition of the normalized p-adic regulator for any K and
any p ≥ 2. This is done without analytical computations, using only class field
theory and especially the properties of the so-called p-torsion group TK of Abelian
p-ramification theory over K.

Résumé. — La constante p-adique de Kummer–Leopoldt κK d’un corps de nom-
bres K est (sous la conjecture de Leopoldt) le plus petit entier c tel que pour tout
n ≫ 0, toute unité globale de K, qui est localement une puissance pn+c-ième en
les p-places, est nécessairement puissance pn-ième d’une unité globale de K. Cette
constante a été calculée par Assim & Nguyen Quang Do en utilisant les techniques
d’Iwasawa, après des études et calculs complexes par divers auteurs. Nous donnons
une preuve p-adique élémentaire et une généralisation de ces résultats, puis une in-
terprétation corps de classes de κK . Nous donnons certaines applications (dont des
généralisations du lemme de Kummer sur les p-corps cyclotomiques réguliers) et une
définition naturelle du régulateur p-adique normalisé pour tous K & p ≥ 2. Ceci
est fait sans calculs analytiques, en utilisant uniquement le corps de classes et tout
spécialement les propriétés du fameux p-groupe de torsion TK de la théorie de la
p-ramification Abélienne sur K.

1. Notations

Let K be a number field and let p ≥ 2 be a prime number; we denote by p | p the
prime ideals of K dividing p. Consider the group EK of p-principal global units of
K (i.e., units ε ≡ 1 (mod

∏
p|p p)), so that the index of EK in the group of units is

prime to p. For each p | p, let Kp be the p-completion of K and p the corresponding
prime ideal of the ring of integers of Kp; then let

UK :=
{
u ∈

⊕
p|p

K×
p , u = 1 + x, x ∈

⊕
p|p

p

}
& WK := torZp

(UK),

the Zp-module of principal local units at p and its torsion subgroup.



2 NOTATIONS

The p-adic logarithm log is defined on 1 + x, x ∈
⊕
p|p

p, by means of the series

log(1 + x) =
∑
i≥1

(−1)i+1 xi

i
∈
⊕
p|p

Kp. Its kernel in UK is WK [15, Proposition 5.6].

We consider the diagonal embedding EK −−−→ UK and its natural extension EK⊗
Zp −−−→ UK whose image is EK , the topological closure of EK in UK .

In the sequel, these embeddings shall be understood; moreover, we assume in this
paper that K satisfies the Leopoldt conjecture at p, which is equivalent to the
condition rkZp

(EK) = rkZ(EK) (see, e.g., [15, § 5.5, p. 75]).

2. The Kummer–Leopoldt constant

This notion comes from the Kummer lemma (see, e.g., [15, Theorem 5.36]), that is
to say, if the odd prime number p is “regular”, the cyclotomic field K = Q(µp) of
pth roots of unity satisfies the following property stated for the whole group E′

K of
global units of K:

any ε ∈ E′
K , congruent to a rational integer modulo p, is a pth power in E′

K .

In fact, ε ≡ a (mod p) with a ∈ Z, implies εp−1 ≡ ap−1 ≡ 1 (mod p). So we shall
write the Kummer property with p-principal units in the more suitable equivalent
statement:

any ε ∈ EK , congruent to 1 modulo p, is a pth power in EK .

From [1], [11], [13], [14], [16], [17] one can study this property and its general-
izations with various techniques (see the rather intricate history in [2]). Give the
following definition from [2]:

Definition 2.1. — Let K be a number field satisfying the Leopoldt conjecture at
the prime p ≥ 2. Let EK be the group of p-principal global units of K and let UK

be the group of principal local units at the p-places.
We call Kummer–Leopoldt constant (denoted κK =: κ), the smallest integer c such
that the following condition is fulfilled:

for all n ≫ 0, any unit ε ∈ EK , such that ε ∈ Upn+c

K , is necessarily in Epn

K .

Remark 2.1. — The existence of κ comes from various classical characterizations
of Leopoldt’s conjecture proved for instance in [5, Theorem III.3.6.2], after [14],
[11] and oldest Iwasawa papers. Indeed, if the Leopoldt conjecture is not satisfied,

we can find a sequence εn ∈ EK \ Ep
K such that log(εn) → 0 (i.e., εn ∈ Upm

K ·WK ,
with m → ∞ as n → ∞); since WK is finite, taking a suitable p-power of εn, we
see that κ does not exist in that case.

We shall prove (Theorem 3.1) that in the above definition, the condition “for all
n ≫ 0” can be replaced by “for all n ≥ 0”, subject to introduce the group of global
roots of unity of K and a suitable statement.

We have the following first p-adic result giving pκ under the Leopoldt conjecture:

Theorem 2.1. — Denote by EK the group of p-principal global units of K, by
UK the Zp-module of principal local units at the p-places, and by WK its torsion
subgroup. Let κK be the Kummer–Leopoldt constant (Definition 2.1).

Then pκK is the exponent of the finite group torZp

(
log(UK)/log(EK)

)
, where log

is the p-adic logarithm and EK the topological closure of EK in UK (whence the
relation log(EK) = Zp log(EK)).
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3 THE KUMMER–LEOPOLDT CONSTANT

Proof. — Let pκ be the exponent of torZp

(
log(UK)/log(EK)

)
.

(i) (κ is suitable). Let n ≫ 0 and let ε ∈ EK be such that

ε = up
n+κ

,u ∈ UK .

So log(u) is of finite order modulo log(EK) and log(ε) = pn ·(pκ ·log(u)) = pn ·log(η)
with η ∈ EK . By definition of EK , we can write in UK , for all N ≫ 0,

η = η(N) · uN , η(N) ∈ EK , uN ≡ 1 (mod pN );

we get log(ε) = pn · log(η(N)) + pn · log(uN ) giving in UK

ε = η(N)p
n · upnN · ξN , ξN ∈ WK .

But ξN is near 1 (depending on the choice of n ≫ 0), whence ξN = 1 for all N ,
and ε = η(N)p

n· u′N , u′N → 1 as N → ∞; so u′N = ε · η(N)−pn is a global unit,
arbitrary close to 1, hence, because of Leopoldt’s conjecture [5, Theorem III.3.6.2

(iii, iv)], of the form ϕpn

N with ϕN ∈ EK (recall that n is large enough, arbitrary,
but fixed), giving

ε = η(N)p
n · ϕpn

N ∈ Epn

K .

(ii) (κ is the least solution). Suppose there exists an integer c < κ having the
property given in Definition 2.1. Let u0 ∈ UK be such that

log(u0) is of order pκ in torZp

(
log(UK)/log(EK)

)
;

then log(up
κ

0 ) = log(ε0), ε0 ∈ EK . This is equivalent to

up
κ

0 = ε0 · ξ0 = ε(N) · uN · ξ0, ε(N) ∈ EK , uN ≡ 1 (mod pN ), ξ0 ∈ WK ,

hence, for any n ≫ 0, up
n+κ

0 = ε(N)p
n· upnN . Taking N large enough, but fixed, we

can suppose that uN = vp
2κ

, v ∈ UK near 1; because of the above relations, log(v)
is of finite order modulo log(EK), thus log(vp

κ

) ∈ log(EK). This is sufficient, for

u′0 := u0 · v−pκ ,

to get log(u′0) of order pκ modulo log(EK). So we can write:

ε(N)p
n

= up
n+κ

0 · u−pn

N = up
n+κ

0 · (v−pκ)p
n+κ

= u′p
n+κ

0 ∈ Upn+(κ−c)+c

K ,

but, by assumption on c applied to the global unit ε(N)p
n

, we obtain

ε(N)p
n

= ηp
n+(κ−c)

0 , η0 ∈ EK ;

thus, the above relation u′p
n+κ

0 = ε(N)p
n

= ηp
n+(κ−c)

0 yields:

pc · log(u′0) = log(η0) ∈ log(EK),

which is absurd since log(u′0) is of order pκ modulo log(EK).

3. Interpretation of κK – Fundamental exact sequence

The following p-adic result is valid without any assumption on K and p:

Lemma 3.1. — We have the exact sequence (from [5, Lemma 4.2.4]):

1 → WK

/
torZp

(EK) −−−→ torZp

(
UK

/
EK

) log−−−→ torZp

(
log

(
UK

)/
log(EK)

)
→ 0.
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3 INTERPRETATION OF κK – FUNDAMENTAL EXACT SEQUENCE

Proof. — The surjectivity comes from the fact that if u ∈ UK is such that
pnlog(u) = log(ε), ε ∈ EK , then up

n

= ε · ξ for ξ ∈ WK , hence there exists m ≥ n
such that up

m ∈ EK , whence u gives a preimage in torZp

(
UK

/
EK

)
.

If u ∈ UK is such that log(u) ∈ log(EK), then u = ε · ξ as above, giving the kernel
equal to EK ·WK/EK = WK/torZp

(EK).

Corollary 3.1. — Let µK be the group of global roots of unity of p-power order of
K.
Then, under the Leopoldt conjecture for p in K, we have torZp

(EK) = µK ; thus in

that case WK

/
torZp

(EK) = WK/µK .

Proof. — From [5, Corollary III.3.6.3], [9, Définition 2.11, Proposition 2.12].

Put

WK := WK/µK & RK := torZp

(
log(UK)/log(EK)

)
.

Then the exact sequence of Lemma 3.1 becomes:

1 −→ WK −−−→ torZp

(
UK

/
EK

) log−−−→RK −→ 0.

Consider the following diagram (see [5], § III.2, (c), Fig. 2.2), under the Leopoldt
conjecture for p in K:

≃WK

TK

T ′

K

≃CℓK

≃UK/EK

Hpr
KK̃HK Hreg

K≃RK

K̃

HKK̃∩HK

K

where K̃ is the compositum of the Zp-extensions, CℓK the p-class group, HK the p-
Hilbert class field, Hpr

K the maximal Abelian p-ramified (i.e., unramified outside p)
pro-p-extension, of K. These definitions are given in the ordinary sense when p = 2
(so that the real infinite places of K are not complexified (= are unramified) in the
class fields under consideration which are “real”).

By class field theory, Gal(Hpr
K /HK) ≃ UK/EK in which the image of WK fixes

Hreg
K , the Bertrandias–Payan field, Gal(Hreg

K /K̃) being then the Bertrandias–Payan
module, except possibly if p = 2 in the “special case” (cf. [2] about the calculation
of κ and the Références in [6] for some history about this module).

But RK giving κK has, a priori, nothing to do with the definition of the Bertrandias–
Payan module associated with pr-cyclic extensions of K, r ≥ 1, which are embed-
dable in cyclic p-extensions of K of arbitrary large degree.

Then we put T ′
K := torZp

(Gal(Hpr
K /HK)) ⊆ TK := torZp

(Gal(Hpr
K /K)). The group

RK is then isomorphic to Gal(Hreg
K /K̃HK). Of course, for p ≥ p0 (explicit), WK =

[HK : K̃ ∩ HK ] = 1, whence RK = TK . We shall see in the Section 5 that
RK ≃ T ′

K/WK is closely related to the classical p-adic regulator of K.
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3 INTERPRETATION OF κK – FUNDAMENTAL EXACT SEQUENCE

Corollary 3.2. — Under the Leopoldt conjecture for p in K, the Kummer–

Leopoldt constant κK of K is 0 if and only if RK = 1 (i.e., Hreg
K = K̃HK).

Proof. — From Theorem 2.1 using the new terminology of the “algebraic regulator”
RK := torZp

(
log(UK)/log(EK)

)
whose exponent is pκ.

Corollary 3.3. — If the prime number p is regular, then κK = 0 for the field
K = Q(µp) of pth roots of unity, and any unit ε ∈ EK such that ε ≡ 1 (mod p) is
in Ep

K (Kummer’s lemma).

Proof. — (i) We first prove that if the real unit ε is congruent to 1 modulo p then
it is a pth power in UK . Put ε = 1 + α · p for a p-integer α ∈ K×. Let K0

be the maximal real subfield of K and let π0 be an uniformizing parameter of its
p-completion. Put α = a0 + β · π0 with a0 ∈ [0, p − 1] and a p-integer β. Since
NK0/Q(ε) = 1, this yields a0 = 0, whence ε = 1 + β · p · π0. The valuation of p · π0,
calculated in K, is p + 1, which is sufficient to get ε ∈ Up

K (use [15, Proposition
5.7]).

(ii) Then we prove that κ = 0. The cyclotomic field K = Q(µp) is p-regular and
p-rational in the meaning of [4, Théorème & Définition 2.1], so TK = 1 giving κ = 0.
In other words, κ = 0 is given by a stronger condition (p-rationality of K) than
RK = 1.

One may preferably use the general well-known p-rank formula (the p-rank rkp(A)
of a finite Abelian group A is the Fp-dimension of A/Ap), valid for any field K under
the Leopoldt conjecture, when the group µK of pth roots of unity is nontrivial [5,
Proposition III.4.2.2]:

rkp(TK) = rkp(CℓSKres
K ) + #SK − 1,

where SK is the set of prime ideals of K above p and CℓSKres
K the SK-class group in

the restricted sense (when p = 2) equal to the quotient of the p-class group of K in
the restricted sense by the subgroup generated by the classes of ideals of SK ; so for
K = Q(µp), we immediately get rkp(TK) = rkp(CℓK), which is by definition trivial
for regular primes.

Theorem 3.1. — Let κK be the Kummer-Leopoldt constant of K (Definition 2.1)
and let pν be the exponent of WK = WK/µK , where WK = torZp

(UK) and µK is

the group of global roots of unity of K of p-power order. (1)

The property defining κK can be improved as follows:

(i) If ν ≥ 1, for all n ≥ 0, any ε ∈ EK such that ε ∈ Upn+κK

K is necessarily of the

form ε = ζ · ηpn, with ζ ∈ µK ∩W pn

K , η ∈ EK .

(ii) If ν = 0, for all n ≥ 0, any ε ∈ EK being in Upn+κK

K is necessarily in Epn

K .

Proof. — Let n ≥ 0. Suppose that ε = up
n+κ

, u ∈ UK . So log(ε) = pn ·pκ · log(u) =
pn · log(η), η ∈ EK ; thus η = η(N) · uN , with η(N) ∈ EK , uN ≡ 1 (mod pN ), for
all N ≫ 0, and log(ε) = pn · log(η(N)) + pn · log(uN ) giving in UK

ε = η(N)p
n · upnN · ξN , ξN ∈ WK , for all N ≫ 0.

Taking N in a suitable infinite subset of N, we can suppose ξN = ξ independent of

N → ∞. Then ξ =
(
ε · η(N)−pn

)
· u−pn

N ∈ torZp
(EK), whence ξ = ζ ∈ µK because

of Leopoldt’s conjecture (loc. cit. in proof of Corollary 3.1). Then

(1)In the case ν = 0, if µK = 1, then µKp
= 1 ∀p ∈ SK ; if µK 6= 1, then SK = {p} & µKp

= µK .
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4 INTERPRETATION OF κK – FUNDAMENTAL EXACT SEQUENCE

up
n+κ

= ε = η(N)p
n · upnN · ζ = η(N)p

n · u′N · ζ, u′N (∈ EK) → 1 as N → ∞,

whence ε of the form η(N)p
n · ϕpn

N · ζ, ϕN ∈ EK , for N ≫ 0. So ε = ζ · ηpn , with

η ∈ EK and ζ = ε · η−pn ∈ µK ∩W pn

K , since ε is a local pnth power.

If ν = 0, WK = µK and ζ ∈ µK ∩W pn

K = µpn

K is a pnth power.

4. Remarks and applications

As above, we assume the Leopoldt conjecture for p in the fields under consideration.

(a) The condition ε ∈ Upn+κ

K =
⊕
p|p

Upn+κ

p , where Up := 1 + p, may be translated,

in the framework of Kummer’s lemma, into a less precise condition of the form
ε ≡ 1 (mod

∏
p|p p

mp(n,κ)) for suitable minimal exponents mp(n, κ) giving local

pn+κth powers. This was used by most of the cited references with p-adic analytical
calculations using the fact that #TK is, roughly speaking, a product “class number”
× “regulator” from p-adic L-functions, giving an upper bound for κ (it is the analytic
way used in [16] and [13] to generalize Kummer’s lemma when p is not regular).

(b) If TK = 1 (in which case κ = 0), the field K is said to be a p-rational field (see
[5, § IV.3], [4], [10], [12]). Then in any p-primitively ramified p-extension L of K
(definition and examples in [5, § IV.3, (b); § IV.3.5.1], after [8, Theorem 1, § II.2]),
we get TL = 1 whence κL = 0.

The following examples illustrate this principle:

(i) The pm-cyclotomic fields. The above applies for the fields Km := Q(µpm) of
pm-roots of unity when the prime p is regular, since we have seen that TQ(µp) = 1.

(ii) Some p-rational p-extensions of Q (p = 2 and p = 3). The following fields have
a Kummer-Leopoldt constant κ = 0 ([5, Example IV.3.5.1], after [8, § III]):

– The real Abelian 2-extensions of Q, subfields of the fields Q(µ2∞) ·Q(
√
ℓ ), ℓ ≡ 3

(mod 8), and Q(µ2∞) ·Q
(√√

ℓ
a−

√
ℓ

2

)
, ℓ = a2 + 4 b2 ≡ 5 (mod 8).

– The real Abelian 3-extensions of Q, subfields of the fields Q(µ3∞) · kℓ, ℓ ≡ 4, 7
(mod 9), where kℓ is the cyclic cubic field of conductor ℓ.

(c) When µK = 1, the formula giving rkp(TK), used in the proof of Kummer’s
lemma (Corollary 3.3), must be replaced by a formula deduced from the “reflection
theorem”: let K ′ := K(ζp), where ζp is a primitive pth root of unity; then

rkp(TK) = rkω
(
CℓSK′ res

K ′

)
+
∑
p|p

δp − δ,

which links the p-rank of TK to that of the ω-component of the p-group of SK ′-ideal
classes of the field K ′, where ω is the Teichmüller character of Gal(K ′/K), δp := 1
or 0 according as the completion Kp contains ζp or not, δ := 1 or 0 according as
ζp ∈ K or not (so that ω = 1 if and only if ζp ∈ K).

(d) Unfortunately, pκ may be less than #RK (hence a fortiori less than #TK) due
to the unknown group structure of RK ; as usual, when K/Q is Galois with Galois
group G, the study of its G-structure may give more precise information:

Indeed, to simplify assume p > 2 unramified in K, so that log(UK) is isomorphic
to OK , the direct sum of the rings of integers of the Kp, p | p; if η =: 1+ p ·α ∈ EK

generates a sub-G-module of EK , of index prime to p (such a unit does exist since
EK ⊗ Q is a monogenic Q[G]-module; cf. [5, Corollary I.3.7.2 & Remark I.3.7.3]),
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5 REMARKS AND APPLICATIONS

the structure of RK can be easily deduced from the knowledge of P (α) ≡ 1
p log(η)

modulo a suitable power of p, where P (α) is a rational polynomial expression of α
generating a sub-G-module of OK ; thus many numerical examples may be obtained.

(e) We have given in [7, § 8.6] a conjecture saying that, in any fixed number field
K, we have TK = 1 for all p ≫ 0, giving conjecturally κ = 0 for all p ≫ 0.

5. Normalized p-adic regulator of a number field

The previous Section 3 shows that the good notion of p-adic regulator comes from
the expression of the p-adic finite group RK associated with the class field theory

interpretation of Gal(Hreg
K /K̃HK).

For this, recall that EK is the topological closure, in the Zp-module UK of principal
local units at p, of the group of p-principal global units of K, and log the p-adic
logarithm:

Definition 5.1. — Let K be any number field and let p ≥ 2 be any prime number.
Under the Leopoldt conjecture for p in K, we call RK := torZp

(
log(UK)/log(EK)

)

(or its order #RK) the normalized p-adic regulator of K.

We have in the simplest case of totally real number fields (from Coates’s formula
[3, Appendix] and also [5, Remarks III.2.6.5] for p = 2):

Proposition 5.1. — For any totally real number field K 6= Q, we have, under the
Leopoldt conjecture for p in K,

#RK ∼ 1

2
·
(
Zp : log(NK/Q(UK))

)

#WK ·∏
p|pNp

· RK√
DK

,

where ∼ means equality up to a p-adic unit factor, where RK is the usual p-adic
regulator [15, § 5.5] and DK the discriminant of K.

With this expression, we find again classical results obtained by means of analytic
computations (e.g., [1, Theorem 6.5]). In the real Galois case, with p unramified

in K/Q, we get, as defined in [7, Définition 2.3], #RK ∼ RK

p[K:Q]−1
for p 6= 2 and

#RK ∼ 1

2d−1

RK

2[K:Q]−1
for p = 2, where d is the number of prime ideals p | 2 in K.

Of course, #RK = #torZp
(log(UK)) = 1 for Q and any imaginary quadratic field.
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