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THE p-ADIC KUMMER–LEOPOLDT CONSTANT

NORMALIZED p-ADIC REGULATOR

GEORGES GRAS

Abstract. The p-adic Kummer–Leopoldt constant κK of a number field
K is (under the Leopoldt conjecture for p in K) the least integer c such
that for all n large enough, any global unit ε of K, which is locally (at the
p-places) a pn+cth power, is necessarily a pnth power of a global unit ofK.
This constant has been computed by J. Assim and T. Nguyen Quang Do
using Iwasawa’s technics. In this short Note, we give an elementary p-
adic proof of their result and the class field theory interpretation of κK

by means of Abelian p-ramification theory over K. Then, from this, we
give a natural definition of the normalized p-adic regulator of K for any
K and any p ≥ 2.

1. Notations

Let K be a number field and let p ≥ 2 be a prime number. We assume in
the sequel that K satisfies the Leopoldt conjecture at p. Denote by EK the
group of principal global units of K (i.e., units ε ≡ 1 (mod

∏
p|p p)) and by

UK :=
{
u ∈

∏
p|p

K×
p , u = 1 + x, x ∈

∏
p|p

p

}
& WK = torZp

(UK),

the Zp-module of local units at p and its torsion subgroup, where Kp is the
p-completion of K.

The p-adic logarithm log is defined on 1 + x, x ∈
∏

p|p p, by means of the

series log(1 + x) =
∑
i≥1

(−1)i+1 xi

i
∈
∏
p|p

Kp. The kernel of log in UK is WK .

We consider the diagonal embedding EK → UK and its natural extension
EK ⊗ Zp → UK whose image is EK , the topological closure of EK in UK . In
the sequel, these embeddings shall be understood.

2. The Kummer–Leopoldt constant

This notion comes from the Kummer lemma (see [W3, Theorem 5.36]), that
is to say, if the prime number p is “regular”, the cyclotomic field K = Q(µp)
satisfies the following property for the whole group E ′

K of global units of K:

any ε ∈ E ′
K , congruent to a rational integer modulo p, is a pth power in E ′

K.
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In fact, ε ≡ a (mod p), with a ∈ Z, implies εp−1 ≡ ap−1 ≡ 1 (mod p). So we
shall write, equivalently, the Kummer property with principal units:

any ε ∈ EK , congruent to 1 modulo p, is a pth power in EK.

From [A], [L], [O], [S], [W1], [W2] (see the rather intricate history in [AN])
one can study this property and its generalizations with various technics.
Give the following definition (from [AN]):

Definition 2.1. Let K be a number field satisfying the Leopoldt conjecture
at the prime p ≥ 2. Let EK be the group of principal global units of K.
We call Kummer–Leopoldt constant (denoted κ = κK), the smallest integer
c such that the following condition is fulfilled:

for all n ≫ 0, any unit ε ∈ EK , such that ε ∈ Upn+c

K , is necessarily in Epn

K .

Remark 2.2. The existence of κ comes from the classical characterization of
Leopoldt’s conjecture given, for instance, in [Gr1, Theorem III.3.6.2 (iv)]. If
the Leopoldt conjecture is not satisfied, we can find a sequence εn ∈ EK \Ep

K

such that log(εn) → 0 (i.e., εn ∈ Upm

K · WK , with m → ∞ when n → ∞);
since WK is finite, taking a suitable power of εn, we see that κ does not exist
in that case.

We have the following p-adic result giving pκ under the Leopoldt conjecture:

Theorem 2.3. Denote by EK the group of principal global units of K, then
by UK the Zp-module of principal local units at p and by WK its torsion
subgroup. Let κK (Definition 2.1) be the Kummer–Leopoldt constant; then
pκK is the exponent of the finite group torZp

(
log(UK)/log(EK)

)
, where EK is

the closure of EK in UK (hence log(EK) = Zp log(EK)).

Proof. (i) (κ is suitable). Let n ≫ 0 and let ε ∈ EK be such that ε = upn+κ

,
u ∈ UK (thus ε is arbitrary near from 1, depending on the choice of n ≫ 0).
Then log(ε) = pn · (pκ · log(u)) = pn · log(η) with η ∈ EK . So, writting

η = η(N) · uN , η(N) ∈ EK , uN ≡ 1 (mod pN), N → ∞,

we get log(ε) = pn · log(η(N)) + pn · log(uN) giving

ε = η(N)p
n · upn

N · ξ, ξ ∈ WK .

But ξ is near from 1, whence ξ = 1. Then

ε = η(N)p
n· u′

N , u′
N → 1 as N → ∞;

so u′
N = ε · η(N)−pn is a global unit, arbitrary near from 1, hence, because

of the Leopoldt conjecture (loc. cit. in Remark 2.2), of the form ϕpn

N with
ϕN ∈ EK , ϕN → 1 as N → ∞ (recall that n is arbitrary but fixed), giving

ε = η(N)p
n · ϕpn

N , whence:

ε ∈ Epn

K .

(ii) (κ is the least solution). Suppose there exists c < κ having the property
given in Definition 2.1.



THE p-ADIC KUMMER–LEOPOLDT CONSTANT 3

Let u0 ∈ UK be such that log(u0) is of order p
κ in torZp

(
log(UK)/log(EK)

)
;

then log(upκ

0 ) = log(ε0), ε0 ∈ EK . This is equivalent to

upκ

0 = ε0 · ξ0 = ε(N) · uN · ξ0, ε(N) ∈ EK , uN ∈ UK , ξ0 ∈ WK

(with uN → 1 when N → ∞), hence, for any n ≫ 0,

upn+κ

0 = ε(N)p
n · upn

N .

Taking N large enough, we can suppose that uN = vp
2κ

N , vN ∈ UK arbitrary
near from 1; because of the above relation, log(vN) is of finite order modulo

log(EK), thus log(vp
κ

N ) ∈ log(EK). This is sufficient, for u′
0 := u0 · v−pκ

N , to
get log(u′

0) of order p
κ modulo log(EK). So we can write:

ε(N)p
n

= upn+κ

0 · u−pn

N = upn+κ

0 · (v−pκ

N )p
n+κ

= u′pn+κ

0 ∈ Upn+(κ−c)+c

K ,

but, by assumption on c, we obtain ε(N)p
n

= ηp
n+(κ−c)

0 , η0 ∈ EK ; thus, the

above relation u′pn+κ

0 = u′pn+(κ−c)+c

0 = ηp
n+(κ−c)

0 , yields to:

pc · log(u′
0) = log(η0) ∈ log(EK) (absurd). �

3. Interpretation of κK – Fundamental exact sequence

Consider the following diagram, under the Leopoldt conjecture for p in K
(diagram given in [Gr1], § III.2, (c), Fig. 2.2):

WK

TK
T E

K

CℓK

UK/EK

Hpr
KK̃HK HE

KRK

K̃

HKK̃∩HK

K

where K̃ is the compositum of the Zp-extensions of K, CℓK the p-class
group in the ordinary sense, HK the p-Hilbert class field, Hpr

K the max-
imal Abelian p-ramified (i.e., unramified outside p) pro-p-extension of K;
then we put T E

K := torZp
(Gal(Hpr

K /HK)) ⊆ TK := torZp
(Gal(Hpr

K /K)), and

RK ≃ Gal(HE
K/K̃HK).

By class field theory, Gal(Hpr
K /HK) is canonically isomorphic to UK/EK in

which the image ofWK := WK/µK (where µK is the group of roots of unity of
K of p-power order) fixesHE

K , which is (except possibly if p = 2 in the “special

case”) equal to the Bertrandias–Payan field Hbp
K , Gal(Hbp

K /K̃) being then the
Bertrandias–Payan module (also evoked in [AN] about the calculation of κ;
see also [Gr2, Références] for some history about this module).
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Lemma 3.1. We have (without any assumption on K and p) the following
exact sequence:

1 −→ WK

/
torZp

(EK) −−−→ torZp

(
UK

/
EK

)

log−−−→ torZp

(
log

(
UK

)/
log(EK)

)
−→ 0.

Proof. From [Gr1, Lemma 4.2.4]: the surjectivity comes from the fact that if
u ∈ UK is such that pnlog(u) = log(ε), ε ∈ EK , then upn = ε · ξ for ξ ∈ WK ,
hence there exists m ≥ n such that upm ∈ EK , whence u ∈ torZp

(
UK

/
EK

)
;

u is a preimage. If u is such that log(u) ∈ log(EK), u = ε · ξ as above, giving
the kernel equal to EK ·WK/EK = WK/torZp

(EK). �

Assuming the Leopoldt conjecture, we have torZp
(EK) = µK ([Gr1, Corollary

III.3.6.3]). Thus, WK

/
torZp

(EK) = WK/µK = WK and the exact sequence
in the Lemma becomes, with the notations of the diagram:

1 −→ WK −−−→ T E

K

log−−−→RK −→ 0,

Corollary 3.2. Under the Leopoldt conjecture for p in K, the Kummer–
Leopoldt constant κ of K is 0 if and only if RK = 1, which is equivalent to
#TK = [HK : K̃ ∩HK ] · #WK .

Corollary 3.3. If the prime number p is regular, then κ = 0 for the field
Q(µp) (Kummer’s lemma).

Proof. In this case we know that the cyclotomic field Q(µp) is regular in the
meaning of [GJ, Théorème & Définition 2.1], so TK = 1 giving the result. �

For instance, if TK = 1 (in which case κK = 0) then in any p-primitively
ramified p-extension L of K (definition and examples in [Gr1, IV.3, (b);
IV.3.5.1], after [Gr4, Theorem 1, II.2 ] in the direction of the notion of “p-
rational field”), we get TL = 1 whence κL = 0.

Many generalizations are available which are left to the reader.

4. Normalized p-adic regulator of a number field

Definition 4.1. Under the Leopoldt conjecture for p in K, we call

RK := torZp

(
log(UK)/log(EK)

)
≃ Gal(HE

K/K̃HK),

(or its order) the normalized p-adic regulator of K, whatever the number field
K and the prime number p ≥ 2.

For instance, in the totally real case, from Coates’s formula [C, Appendix],
we get easily:

#RK ∼ 1

2
·
(
Zp : log(NK/Q(UK))

)

#WK ·
∏
p|p

Np
· RK√

DK

,

where ∼ means equality up to a p-adic unit factor, where RK is the usual
p-adic regulator and DK the discriminant of K.
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In the real Galois case, with p 6= 2 unramified in K/Q, we get, as defined in

[Gr3, Definition 2.3], #RK ∼ RK

p[K:Q]−1
·

One computes that #RK = 1 for all imaginary quadratic fields and all p.
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