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extremefit is an R package to estimate the extreme quantiles and probabilities of rare events. The idea of our approach is to adjust the tail of the distribution function over a threshold with a Pareto distribution. We propose a pointwise data driven procedure to choose the threshold. To illustrate the method, we use simulated data sets example and three real-world data sets available on the package.

Introduction

Extreme values study plays an important role in several practical domain of applications, such as insurance, biology and geology. For example, in [START_REF] Buishand | On Spatial Extremes: With Application to a Rainfall Problem[END_REF], the authors study extremes to determine how severe the rainfall periods occur in North Holland. [START_REF] Sharma | Application of extreme value theory for predicting violations of air quality standards for an urban road intersection[END_REF] use extreme values procedure to predict violations of air quality standards. Various applications were presented in a lot of areas such as hydrology [START_REF] Davison | Models for Exceedances over High Thresholds[END_REF] and [START_REF] Katz | Statistics of extremes in hydrology[END_REF]), insurance [START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF] and [START_REF] Rootzén | Extreme value statistics and wind storm losses: a case study[END_REF]) or finance [START_REF] Danielsson | Tail index and quantile estimation with very high frequency data[END_REF], [START_REF] Mcneil | Calculating quantile risk measures for financial return series using extreme value theory[END_REF], [START_REF] Embrechts | Extreme value theory as a risk management tool[END_REF] and [START_REF] Gencay | Extreme value theory and Value-at-Risk: Relative performance in emerging markets[END_REF]). Other applications goes from rainfall data [START_REF] Gardes | Conditional extremes from heavy -tailed distributions: an application to the estimation of extreme rainfall return levels[END_REF]) to earthquake [START_REF] Sornette | Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes[END_REF]). The extreme value theory consists using appropriate statistical models to estimate extreme quantiles and probability of rare events.

The idea of the approach implemented in the extremefit package is to fit a Pareto distribution to the data over a threshold τ using the Peak-Over-Threshold method. The choice of τ is a challenging problem, a large value can lead to an important variability while a small value may increase the bias. We refer to [START_REF] Hall | Adaptive Estimates of Parameters of Regular Variation[END_REF], [START_REF] Drees | Selecting the optimal sample fraction in univariate extreme value estimation[END_REF], [START_REF] Guillou | A diagnostic for selecting the threshold in extreme-value analysis[END_REF], [START_REF] Huisman | Tail index estimates in small samples[END_REF], [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF], Grama andSpokoiny (2008, 2007) and El Methni, [START_REF] El Methni | Estimation of extreme quantiles from heavy and light tailed distributions, Journal of Statistical Planning and Inference[END_REF] where several procedures for choosing the threshold τ have been proposed. Here, we adopt the method from [START_REF] Grama | Statistics of extremes by oracle estimation[END_REF] and [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF]. The package extremefit includes the modeling of time dependent data. The analysis of time series involves a bandwidth parameter h whose data driven choice is non trivial. We refer to [START_REF] Staniswalis | The kernel estimate of a regression function in likelihood-based models[END_REF] and [START_REF] Loader | Local regression and likelihood[END_REF] for the choice of the bandwidth in a nonparametric regression. For the purposes of extreme value modeling, we use a crossvalidation approach from [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF].

The extremefit package for the R system (R Development Core Team (2016)) is based on the methodology described in [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF]. The package performs a nonparametric estimation of extreme quantiles and probabilities of rare events. It proposes a pointwise choice of the threshold τ and, for the time series, a global choice of the bandwidth h and gives graphical representations of the results.

The paper is organized as follows. Section 2 is an overview of several existing R packages dealing with extreme value analysis. In Section 3, we describe the model and the estimation of the parameters, including the threshold τ and the bandwidth h choices. Section 4 contains a simulation study whose aim is to illustrate the performance of our approach. In Section 5, we give several applications on real data sets and we conclude in Section 6.

Extreme value packages in R

There exist several R packages dealing with the extreme value analysis. We give a short description of some of them. For a detailed description of these packages, we refer to [START_REF] Gilleland | A software review for extreme value analysis[END_REF]. A CRAN task view exists in extreme value analysis giving a description of registered packages available in CRAN, see https://CRAN.R-project.org/ view=ExtremeValue. Some of the packages have a specific use, such as the package SpatialExtremes [START_REF] Ribatet | SpatialExtremes: Modelling Spatial Extremes. R package version 2.0-2[END_REF]), which models spatial extremes and provides maximum likelihood estimation, bayesian hierarchical and copula modeling, or the package fExtremes [START_REF] Wuertz | fExtremes: Rmetrics -Extreme Financial Market Data[END_REF]) for financial purposes using functions from the packages evd, evir and others.

The copula package [START_REF] Hofert | copula: Multivariate Dependence with Copulas. R package version 0[END_REF]) provides tools for exploring and modeling dependent data using copulas. The evd package [START_REF] Stephenson | evd: Functions for extreme value distributions[END_REF]) provides both block maxima and peak-over-threshold computations based on maximum likelihood estimation in the univariate and bivariate cases. The evdbayes package [START_REF] Stephenson | evdbayes: Bayesian Analysis in Extreme Value Theory[END_REF]) provides an extension of the evd package using bayesian statistical methods for univariate extreme value models. The package extRemes [START_REF] Gilleland | extRemes: Extreme Value Analysis. R package version 2.0-5[END_REF]) implements also univariate estimation of block maxima and peak-over-threshold by maximum likelihood estimation allowing non stationarity. The package evir [START_REF] Pfaff | evir: Extreme Values in R. R package version 1.7-3[END_REF]) is based on fitting a generalized Pareto distribution with the Hill estimator over a given threshold. The package lmom [START_REF] Hosking | lmom: L-moments. R package version 2.5[END_REF]) is dealing with Lmoments to estimate the parameters of extreme value distributions and quantile estimations for reliability or survival analysis. The package texmex [START_REF] Southworth | texmex: Statistical modelling of extreme values. R package version 2.1[END_REF]) provides statistical extreme value modeling of threshold excesses, maxima and multivariate extremes, including maximum likelihood and Bayesian estimation of parameters.

In contrast to previous described packages, the extremefit package provides tools for modeling heavy tail distributions without assuming a general parametric structure. The idea is to fit a parametric Pareto model to the tail of the unknown distribution over some threshold. The remaining part of the distribution is estimated nonparametrically and a data driven algorithm for choosing the threshold is proposed in Section 3.2. We also provide a version of this method for analyzing extreme values of a time series based on the nonparametric kernel function estimation approach. A data driven choice of the bandwidth parameter is given in Section 3.3. These estimators are studied in more details in [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF].

Extreme value prediction using a semi-parametric model

Model and Estimator

We consider F t (x) = P (X ≤ x|T = t) the conditional distribution of a random variable X given a time covariate T = t, where x ∈ [x 0 , ∞) and t ∈ [0, T max ]. We observe independent random variables X t 1 , ..., X tn associated to a sequence of times 0 ≤ t 1 < ... < t n ≤ T max , such that for each t i , the random variable X t i has the distribution function F t i . The purpose of the extremefit package is to provide a pointwise estimation of the tail probability S t (x) = 1 -F t (x) and the extreme p-quantile F -1 t (p) processes for any t ∈ [0, T max ], given x > x 0 and p ∈ (0, 1). We assume that F t , are in the domain of attraction of the Fréchet distribution. The idea is to adjust, for some τ ≥ x 0 , the excess distribution function

F t,τ (x) = 1 - 1 -F t (x) 1 -F t (τ ) , x ∈ [τ, ∞) (1) 
by a Pareto distribution:

G τ,θ (x) = 1 - x τ -1 θ , x ∈ [τ, ∞), (2) 
where θ > 0 and τ ≥ x 0 an unknown threshold, depend on t. The justification of this approach is given by the Fisher-Tippett-Gnedenko theorem [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF], Theorem 2.1) which states that F t , is in the domain of attraction of the Fréchet distribution if and only if 1 -F t,τ (τ x) → x -1/θ as τ → ∞. This consideration is based on the peak-over-threshold (POT) approach [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF]). We consider the semi-parametric model defined by:

F t,τ,θ (x) = F t (x) if x ∈ [x 0 , τ ], 1 -(1 -F t (τ )) (1 -G τ,θ (x)) if x > τ, ( 3 
)
where τ ≥ x 0 is the threshold parameter. We propose in the sequel to estimate F t and θ which are unknown in (3).

The estimator of F t (x) is taken as the weighted empirical distribution given by

F t,h (x) = 1 n j=1 W t,h (t j ) n i=1 W t,h (t i )1 {Xt i ≤x} , (4) 
where, for i = 1, . . . , n, W t,h (t i ) = K t i -t h are the weights and K(.) is a kernel function assumed to be continuous, non-negative, symmetric with support on the real line such that K(x) ≤ 1, and h > 0 is a bandwidth.

By maximizing the weighted quasi-log-likelihood function (see [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF], [START_REF] Staniswalis | The kernel estimate of a regression function in likelihood-based models[END_REF] and [START_REF] Loader | Local regression and likelihood[END_REF])

L t,h (τ, θ) = n i=1 W t,h (t i ) log dF t,τ,θ dx (X t i ) (5)
with respect to θ, we obtain the estimator

θ t,h,τ = 1 n t,h,τ n i=1 W t,h (t i )1 {Xt i >τ } log X t i τ , ( 6 
)
where

n t,h,τ = n i=1 W t,h (t i )1 {Xt i >τ }
is the weighted number of observations over the threshold τ .

Plug-in ( 4) and ( 6) in the semi-parametric model (3), we obtain:

F t,h,τ (x) =    F t,h (x) if x ∈ [x 0 , τ ], 1 -1 -F t,h (τ ) 1 -G τ, θ t,h,τ (x) if x > τ. ( 7 
)
For any p ∈ (0, 1), the estimator of the p-quantile of X t is defined by

q p (t, h) =    F -1 t,h (p) if p < p τ , τ 1-pτ 1-p θ t,h,τ otherwise, (8) 
where p τ = F t,h (τ ).

Selection of the Threshold

The determination of the threshold τ in model ( 3) is based on a testing procedure which is a goodness-of-fit test for the parametric-based part of the model. At each step of the procedure, the tail adjustment to a Pareto distribution is tested based on k upper statistics. If it is not rejected, the number k of upper statistics is increased and the tail adjustment is tested again until it is rejected. If the test rejects the parametric tail fit from the very beginning, the Pareto tail adjustment is not significant. On the other hand, if all the tests accept the parametric Pareto fit then the underlying distribution is significantly Pareto. The critical value denoted by D depends on the kernel choice and is determined by Monte-Carlo simulation, using the CriticalValue function of the package.

In Table 1, we display the critical values obtained for several kernel functions using Criti-calValue.

In our package, the Gaussian kernel with standard deviation 1/3 is approximated by the truncated Gaussian kernel 1 √ 2πσ expx 2 2σ 2 1 |x|≤1 with σ = 1/3. The default values of the parameters in the algorithm yield satisfying estimation results on simulation study without being time-consuming even for large data sets. The choice of these tuning parameters is given in [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF].

The following commands compute the critical value D for the truncated Gaussian kernel with σ = 1 (default value) and display the empirical distribution function of the goodness-of-fit test statistic which determines the threshold τ . 

(1 -x 2 ) 2 1 |x|≤1 Epanechnikov 6.1 3 4 (1 -x 2 )1 |x|≤1 Rectangular 10.0 1 |x|≤1 Triangular 6.9 (1 -|x|)1 |x|≤1 Truncated Gaussian, σ = 1/3 8.3 3 √ 2π exp(-(3x) 2 2 )1 |x|≤1 Truncated Gaussian, σ = 1 3.4 1 √ 2π exp -x 2 2 1 |x|≤1
R> library(extremefit) R> n <-1000 #Define the sample size R> NMC <-500 #Define the number of Monte-Carlo simulated samples R> CriticalValue(NMC, n, TruncGauss.kernel, prob = 0.99, plot = TRUE)

[1] 3.432665 For a given t, the function hill.adapt allows a data-driven choice of the threshold τ and the estimation of θ t .

Selection of the bandwidth h

We determine the bandwidth h by cross-validation from a sequence of the form

h l = aq l , l = 0, . . . , M h with q = exp log b-log a M h
, where a is the minimum bandwidth of the sequence, extremefit: An R Package for Extreme Quantiles b is the maximum bandwidth of the sequence and M h is the length of the sequence. The choice is performed globally on the grid

T grid = {t 1 , . . . , t K } of points t i ∈ [0, T max ],
where the number K of the points on the grid is defined by the user. The choice K = n is possible but can be time consuming for large samples. We recommend to use a fraction of n.

We choose h cv by minimizing in h m , m = 1, . . . , M h the cross-validation function

CV (h m , p cv ) = 1 M h card(T grid ) h l t i ∈T grid log q (-i) pcv (t i , h m ) F -1 t i ,h l (p cv ) , ( 9 
)
where F -1 t i ,h l (p cv ) is the empirical quantile from the observations in the window [t i -h l , t i +h l ], q 8) with the observation X t i removed and τ being the adaptive threshold given by the remaining observations inside the window [t i -h m , t i + h m ]. The function bandwidth.CV selects the bandwidth h by cross-validation.

(-i) pcv (t i , h m ) is the quantile estimator inside the window [t i -h m , t i + h m ] defined by (

Package presentation on simulation study

The extremefit package is written in R, (R Development Core Team ( 2016)). In this section, we demonstrate the package using its application on two simulated data sets.

The following code displays the computation of the survival probabilities and quantiles using the adaptive choice of the threshold provided by the hill.adapt function.

R> library(extremefit) R> set.seed(5) R> X <-abs(rcauchy(200)) R> n <-100 R> HA <-hill.adapt(X) R> predict(HA, newdata = c(3, 5, 7), type = "survival")$p R> predict(HA, newdata = c(0.9, 0.99, 0.999, 0.9999), type = "quantile")$y A simple use of the method described in Section 3 is given by the following example. With t i = i/n, we consider data X t 1 , . . . , X tn generated by the Pareto change-point model defined by

F t (x) = 1 -x -1/2θt 1 x≤τ + 1 -x -1/θt τ 1/2θt 1 x>τ , ( 10 
)
where θ t is a time varying parameter depending on t ∈ [0, 1] defined by θ t = 0.5+0.25 sin(2πt) and τ = 3 as described in [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF]. We consider the sample size n = 50000. The following commands generate one sample from the model (10).

R> library(extremefit) R> set.seed(5) R> n <-50000 ; tau <-3 R> theta <-function(t){0.5+0.25*sin(2*pi*t)} R> T <-1:n/n; Theta <-theta(T); X <-NULL R> for(i in 1 For each t ∈ T grid , we determine the data-driven threshold τ and the estimates θ t,hcv,τ using the function hill.ts. R> Tgrid <-seq(0, 1, 0.01) R> hillTs <-hill.ts(X, T, Tgrid, h = Hcv$h.cv, + kernel = TruncGauss.kernel, CritVal = 3.4)

:n){ R> X[i] <-rparetoCP(1, a0 = 1/(Theta[i]*2), a1 = 1/Theta[i], x1=tau) R> }
For each t ∈ T grid , we display θ t,hcv,τ and the true value θ t = 0.5 + 0.25 sin(2πt) in Figure 2.

R> plot(Tgrid, hillTs$Theta) R> lines(T, Theta, col = "red")

The estimates of the quantiles and the survival probabilities are determined using the predict.hill.ts function. For instance the estimate of the p-quantile F -1 t (p) of order p = 0.99 and p = 0.999 are computed with the following R command: R> PredQuant <-predict(hillTs, newdata = c(0.99, 0.999), type = "quantile") t (p) with p = 0.99 (black line) and p = 0.999 (red line) and the corresponding estimated quantiles with p = 0.99 (black dots) and p = 0.999 (black cross) as function of t ∈ T grid .

In the same way, we estimate for each t ∈ T grid the survival probabilities S t (x) = 1 -F t (x). The function predict.hill.ts with the option type = "survival" computes the estimated survival function for a given x. For each t ∈ T grid , the following commands compute the estimate of S t (x) for x = 20 and x = 30. Figure 5: Boxplots of the log q 0.99 (t, h cv ) adaptive estimators with bandwidth h cv chosen by cross-validation and t ∈ T grid . The true log 0.99-quantile is plotted as a red line.

R>

Real-world data sets

Wind data

The study of wind speed is important for the renewable energy problem in present time.

Many considers wind as a free and environmentally source of energy. The implementation of wind farm throughout the world shows an encouraging and promising energy option. Studies of wind speed in extreme value theory were made to model windstorm losses or detect areas which can be subject to hurricanes (see [START_REF] Rootzén | Extreme value statistics and wind storm losses: a case study[END_REF] and [START_REF] Simiu | Extreme wind distribution tails: a peaks over threshold approach[END_REF]).

The wind data in the package extremefit comes from Airport of Brest (France) and represents the average wind speed per day from 1976 to 2005. The data set is included in the package extremefit and can be loaded by the following code.

R> library(extremefit) R> data("dataWind") R> attach(dataWind)

The commands below illustrate the function hill.adapt on the wind data set and computes a monthly estimation of the survival probabilities 1 -F t,h,τ (x) for a given x = 100 km/h with the function predict.hill.adapt. 

Sea shores water quality

The study of the pollution in the aquatic environment is an important problem to have it protected. Humans tend to pollute the environment through their activities and the water quality survey is necessary. The bivalve's activity is investigated by modeling the valve movements using high frequency valvometry. The electronic equipment is described in [START_REF] Tran | Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium[END_REF] and modified by Chambon, Legeay, [START_REF] Chambon | Influence of the parasite worm Polydora sp. on the behaviour of the oyster crassostrea gigas: a study of the respiratory impact and associated oxidative stress[END_REF]. More information can be found in http://molluscan-eye.epoc.u-bordeaux1.fr/.

High-frequency data (10 Hz) are produced by noninvasive valvometric techniques and the study of the bivalve's behavior in their natural habitat leads to the proposal of several statistical models (Sow, Durrieu, andBriollais (2011), Schmitt, De Rosa, Durrieu, Sow, Ciret, Tran, and[START_REF] Schmitt | Statistical study of bivalve high frequency microclosing behavior: scaling properties and shot noise modeling[END_REF], [START_REF] Jou | A dynamic artificial clam (Corbicula fluminea) allows parcimony on-line measurement of waterborne metals[END_REF], [START_REF] Coudret | Comparison of kernel density estimators with assumption on number of modes[END_REF], [START_REF] Azaïs | A hidden renewal model for monitoring aquatic systems biosensors[END_REF], [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF] and Durrieu, Pham, Foltête, Maxime, Grama, Le Tilly, Duval, Tricot, Naceur, and Sire ( 2016)). It is observed that in the presence of a pollutant, the activity of the bivalves is modified and consequently they can be used as bioindicators to detect perturbations in aquatic systems (pollutions, global warming). A group of oysters Crassostrea gigas of the same age are installed around the world but we concentrate on the Locmariaquer site (GPS coordinates 47 • 34 N, 2 • 56 W) in France. The oysters are placed in a traditional oyster bag. In the package extremefit, we provide a sample of the measurements for one oyster over one day. The data can be accessed by R> library(extremefit) R> data("dataOyster")

The description of the data can be found with the R command help(dataOyster). The following code covers the velocities and the time covariate and also displays the data.

R> Velocity <-dataOyster$data[, 3] R> time <-dataOyster$data[, 1] R> plot(time, Velocity, type = "l", xlab = "time (hour)", + ylab = "Velocity (mm/s)")

We observe in Figure 7 that the velocity is equal to zero in two periods of time. To facilitate the study of these data, we have included a time grid where the intervals with null velocities are removed. The grid of time can be accessed by dataOyster$Tgrid. We shift the data to be positive.

R> #grid for which the velocities are different from 0 R> new.Tgrid <-dataOyster$Tgrid R> #We shift the data to be positive R> X <-Velocity + (-min(Velocity))

The bandwidth parameter is selected by cross-validation method (h cv = 0.2981812) using bandwidth.CV but we select it manually in the following command due to long computation time. The estimations of the extreme quantile of order 0.999 and the probabilities of rare events are computed as described in Section 3.2. The critical value of the sequential test is D = 3.4 when considering a truncated Gaussian kernel, see Table (1). A global study on a set of 16 oysters on a 6 months period is given in [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF].

R> pred.quant.Oyster <-predict(TS.Oyster, newdata = 0.999, type = "quantile") R> plot(time, Velocity, type = "l", ylim = c(-0.5, 1), + xlab ="Time (hour)", ylab = "Velocity (mm/s)") R> quant0.999 <-rep(0, length(seq(0, 24, 0.05))) R> quant0.999[match(new.Tgrid, seq(0, 24, 0.05))] <-+ as.numeric(pred.quant.Oyster$y) -+ (-min(Velocity)) R> lines(seq(0, 24, 0.05), quant0.999, col = "red")

In [START_REF] Durrieu | Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles[END_REF] and [START_REF] Durrieu | Dynamic extreme values modeling and monitoring by means of sea shores water quality biomarkers and valvometry[END_REF], we observe that valvometry using extreme value theory allows in real-time in situ analysis of the bivalves behavior and appears as an effective early warning tool in ecological risk assessment and marine environment monitoring. 

Electric consumption

The study of the electric consumption is an important challenge due to the expansion of the human population that increases the need of electricity. Multiple models have been used to forecast the electric consumption, as regression and time series models [START_REF] Bianco | Electricity consumption forecasting in Italy using linear regression models[END_REF] and [START_REF] Ranjan | Modelling of electrical energy consumption in Delhi[END_REF], [START_REF] Harris | Dynamic structural analysis and forecasting of residential electricity consumption[END_REF] and [START_REF] Bercu | A SARIMAX coupled modelling applied to individual load curves intraday forecasting[END_REF]). [START_REF] Durand | Analyse de courbes de consommation électrique par chaînes de Markov cachées[END_REF] used hidden Markov model to forecast the electric consumption. A research project conducted in France (Lorient, GPS coordinates 47 • 45 N, 3 • 22 W) concerns the measurements of electric consumption using Linky, a smart communicating electric meter (http://www.enedis.fr/linky-communicating-meter). Installed in end-consumer's habitations and linked to a supervision center, this meter is in constant interaction with the network. The Linky electric meter allows a measurement of the electric consumption every 10 minutes.

To prevent from major power outages, the SOLENN project (http://www.smartgrid-solenn. fr/en/) is testing an alternative to load shedding. Data of electric consumption are collected on selected habitations to study the effect of a decrease on the maximal power limit. For example, an habitation with a maximal electric power contract of 9 kiloVolt ampere is decreased to 6 kiloVolt ampere. This experiment enables to study the consumption of the habitation with the application of an electric constraint related to the need of the network. For instance, after an incident such as a power outage on the electric network, the objective is to limit the number of habitations without electricity. If during the time period where the electric constraint is applied, the electric consumption of the habitation exceeds the restricted maximal power, the breaker cuts off and the habitation has no more electricity. The consumer can, at that time, close the circuit breaker and gets the electricity back. In any cases, at the end of the electric constraint, the network manager can close the breaker using the Linky electric meter which is connected to the network. The control of the cut off breakers is crucial to prevent a dissatisfaction from the customers and to detect which habitations are at risk. The extreme value modeling approach described in Section 3 was carried out on the electric consumption data for one habitation from the 24th December 2015 to the 29th June 2016. This data are accessible on the extremefit package and Figure 9 We observe in April 2016 missing values in Figure 9 due to a technical problem. We modify the grid of time by removing the intervals of T grid with no data.

R> new.Tgrid <-LoadCurve$Tgrid

We choose the truncated Gaussian kernel and the associated critical value of the goodnessof-fit test is D = 3.4 (see Table 1). The bandwidth parameter is selected by cross-validation method (h cv = 3.44) using bandwidth.CV but we select it manually in the following command due to long computation time.

R> HH <-hill.ts(LoadCurve$data$Value, LoadCurve$data$Time, new.Tgrid, + h = 3.44, kernel = TruncGauss.kernel, CritVal = 3.4)

To detect the probability to cut off the breaker, we compute for each time in the grid the estimates of the probability to exceed the maximal power of 9kVA and of the extreme 0.99quantile. Figure 10 displays the electric consumption during the period of study and the estimated quantile of order 0.99. The plus symbol appear at the times when the maximal power was decreased corresponding to the 11th, 13th, 18th of January, the 25th of February and the 1st, 7th, 18th of March in 2016, with a respectively decrease to 6.3, 4.5, 4.5, 4.5, 3.6, 2.7 and 2.7 kVA. Figure 11 displays the estimated survival probability which depends on the time and the maximal power. We can observe that the survival probability is higher than usual during this period. Furthermore, we have the auxiliary information that this habitation cuts off its breaker on every electric constraint period except the 11th of January, 2016.

Using prediction method coupled with the method implemented in the package extremefit, it will be possible to detect high probability of cutting off a breaker and react accordingly.

Conclusion

This paper focus on the functions contained in the package extremefit to estimate extreme quantiles and probabilities of rare events. The package extremefit works also well on large data set and the performance was illustrated on simulated data and on real data sets.

The choice of the pointwise data driven threshold allows a flexible estimation of the extreme quantiles. The diffusion of the use of this method for the scientific community will improve the choice of estimation of the extreme quantiles and probability of rare events using the peak-over-threshold approach.
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 1 Figure 1: Empirical distribution function of the test statistic for the truncated Gaussian kernel with N M C = 1000 Monte-Carlo samples of size n = 500. The vertical dashed line represents the critical value (D = 3.4) corresponding to the 0.99-empirical quantile of the test statistic.

Figure 2 :

 2 Figure 2: Plot of the θ t estimate θ t,hcv,τ (black dots) and the true θ t (red line) for each t ∈ T grid .

Figure 3

 3 Figure3displays the true and the estimated quantiles of order p = 0.99 and p = 0.999 of the Pareto change-point distribution defined by (10). The true quantiles can be accessed by the qparetoCP function.

Figure 4 :

 4 Figure 4: Plot of the true survival probabilities S t (x) at x = 20 (black line) and x = 30 (red line) and the corresponding estimated survival probabilities at x = 20 (black dots) and x = 30 (black cross) as function of t ∈ T grid .

  Figure 6: Plot of the estimated survival probability 1 -F t,h,τ (x) at x = 100 km/h.

Figure 7 :

 7 Figure 7: Plot of the velocity of the valve closing and opening over one day.

Figure 8 :

 8 Figure 8: Plot of the estimated 0.999-quantile (red line) and the velocities of valve closing (black lines).

Figure 9 :

 9 Figure 9: Electric consumption of one customer from the 24th December 2015 to the 29th June 2016.We consider the following grid of time T grid :

R>

  Figure 10: Plot of the estimated 0.99-quantile (red line) for each time from the 24th December 2015 to the 29th June 2016.

Figure 11 :

 11 Figure 11: Plot of the estimated survival probability depending on the time and the maximal power. The plus symbol correspond to the electric constraint period.

Table 1 :

 1 Critical values associated to kernel functions

	Kernel	D	K(x)
	Biweight	7	15 16
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