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Abstract

Vibro-acoustic simulation in the mid-frequency range is of interest for automotive and

truck constructors. The dissipative treatments used for noise and vibration control such

as viscoelastic patches and acoustic absorbing materials must be taken into account in the

problem. The Statistical modal Energy distribution Analysis (SmEdA) model consists in

extending Statistical Energy Analysis (SEA) to the mid-frequency range by establishing

power balance equations between the modes of the different subsystems. The modal basis

of uncoupled-subsystems that can be estimated by the finite element method in the mid-

frequency range is used as input data. SmEdA was originally developed by considering

constant modal damping factors for each subsystem. However, this means that it cannot

describe the local distribution of dissipative materials. To overcome this issue, a methodol-

ogy is proposed here to take into account the effect of these materials. This methodology

is based on the finite element models of the subsystems that include well-known homog-

enized material models of dissipative treatments. The Galerkin method with subsystem

normal modes is used to estimate the modal damping loss factors. Cross-modal coupling

terms which appear in the formulation due to the dissipative materials are assumed to be

negligible. An approximation of the energy sharing between the subsystems damped by
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dissipative materials is then described by SmEdA. The different steps of the method are

validated experimentally by applying it to a laboratory test case composed of a plate-cavity

system with different configurations of dissipative treatments. The comparison between the

experimental and the simulation results shows good agreement in the mid-frequency range.

Key words: vibro-acoustic modelling, fluid-structure interaction, mid-frequency analysis,

viscoelastic layer, porous materials, modal damping loss factor

Nomenclature

am the amplitude of the mth panel mode (dimensionless quantity)

bn the amplitude of the nth cavity mode (dimensionless quantity)

cn the integrated amplitude of the nth cavity mode (s)

cair the speed of sound in the air (m s−1)

C the fluid-structure coupling matrix (m2)

E∗ba the complex Young’s modulus of the bare plate (N m−2)

E∗eq,m the complex equivalent Young’s modulus of the multilayer (N m−2)

Em the energy of the mth panel mode (J)

En the energy of the nth cavity mode (J)

E1 the total energy of the plate in a third octave band (J)

E2 the total energy inside the cavity in a third octave band (J)

F the panel nodal force vector (N or kg m s−2)

Fm the generalized force of the mth panel mode (N m)

F0(t) the amplitude of the external force in function of time t (N)

h the thickness of the bared plate (m)

hi the thickness of the ith layer (m)
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K∗air the complex compressibility of the air (N m−2)

K̄air the kinetic energy matrix of the ’undamped’ air domain (kg−1 m4)

K∗ba the complex stiffness matrix of the ’damped’ bare panel (N m−1)

Ke
air the elementary kinetic energy matrix of the ’undamped’ air domain (m)

K̄ba the stiffness matrix of the ’undamped’ bare panel (N m−1)

Ke
ba the elementary stiffness matrix of the ’undamped’ bare panel (m)

K∗eq,f the complex equivalent homogenized fluid compressibility (N m−2)

Kc the global kinetic energy matrix of the cavity (kg−1 m4)

K∗eq,f the complex kinetic energy matrix of the ’damped’ equivalent fluid domain

(kg−1 m4)

K̄eq,f the kinetic energy matrix of the ’undamped’ equivalent fluid domain (kg−1 m4)

Ke
eq,f the elementary kinetic energy matrix of the ’undamped’ equivalent fluid

domain (m)

K∗eq,m the complex stiffness matrix of the ’damped’ equivalent multilayer domain

(N m−1)

K̄eq,m the stiffness matrix of the ’undamped’ equivalent multilayer domain (N m−1)

Ke
eq,m the elementary stiffness matrix of the ’undamped’ equivalent multilayer do-

main (m)

Ks the global stiffness matrix of the panel (N m−1 or kg s−2)

Lx the dimension of the plate/cavity in the x direction (m)

Ly the dimension of the plate/cavity in the y direction (m)

Lz the dimension of the cavity in the z direction (m)

M̃ the set of the panel resonant modes (dimensionless quantity)

M∗
air the complex strain energy matrix of the ’damped’ air domain (kg−1 m4 s2)

M̄air the strain energy matrix of the ’undamped’ air domain (kg−1 m4 s2)

Me
air the elementary strain energy matrix of the ’undamped’ air domain (m3)

Mba the mass matrix of the bared plate (kg)
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Mc the global strain energy matrix of the cavity (kg−1 m4 s2)

Me the excitation point

M∗
eq,f the complex strain energy matrix of the ’damped’ equivalent fluid domain

(kg−1 m4 s2)

M̄eq,f the strain energy matrix of the ’undamped’ equivalent fluid domain (kg−1 m4 s2)

Me
eq,f the elementary strain energy matrix of the ’undamped’ equivalent fluid do-

main (m3)

Meq,m the mass matrix of the equivalent multilayer domain (kg)

Mm the generalized mass of the mth panel mode (kg m2)

Mn the generalized ’mass’ of the nth cavity mode (kg m2 s−2)

Ms the global mass matrix of the panel (kg)

Ñ the set of the cavity resonant modes (dimensionless quantity)

P the acoustic pressure (N m−2)

P the nodal pressure vector of the cavity (N m−2)

p2
i the spectrum of the space-averaged quadratic pressure inside the cavity (N2 m−4 s)

pin the modal pressure at node i of the nth mode (N m−2)

Pn the nodal pressure vector of the nth cavity mode (N m−2)

SF0F0 the power spectrum density of the excited force (N2 s)

si the elementary surface attributed to node i (m2)

v2
i the spectrum of the space-averaged quadratic velocity of the plate (m2 s−1)

W the nodal displacement vector of the panel (m)

Wm the nodal displacement vector of the mth panel mode (m)

wim the normal displacement at node i of the mth mode (m)

Wmn the intermodal work between modem and mode n (J or N m or kg m2 s−2)

Z∗c the characteristic impedance of the absorbent material (kg s−1 m−2)

βmn the intermodal coupling factor between the mode m and the mode n (s−1)

βωmn the spectral intermodal coupling factor between the mode m and the mode
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n (s)

βWmn the spatial intermodal coupling factor between the mode m and the mode n

(s−2)

δf the frequency resolution (s−1)

∆ω the width of the angular frequency band of interest (s−1)

ηm the damping loss factor of the mth panel mode (dimensionless quantity)

ηn the damping loss factor of the nth cavity mode ( dimensionless quantity)

ηair the damping loss factor of the air (dimensionless quantity)

ηba the damping loss factor of the bared structure (dimensionless quantity)

ηeq,m the equivalent damping loss factor of the multilayer (dimensionless quan-

tity)

ηeq,f the damping loss factor of the equivalent fluid due to thermal effect (dimen-

sionless quantity)

η1 the global damping loss factor of the structure (dimensionless quantity)

η2 the global damping loss factor of the cavity (dimensionless quantity)

veq,m the equivalent Poisson’s ratio of the multilayer (dimensionless quantity)

vi the Poisson’s ratio of the ith layer (dimensionless quantity)

Πdiss
m the time-averaged power dissipated by the internal damping of mode m

(J s−1)

Πinj
m the time-averaged power injected by the generalized force Fm (J s−1)

Πmn the time-averaged power flow exchanged between the modem and the mode

n (J s−1)

ρ the density of the bared plate (kg m−3)

ρair the density of the air (kg m−3)

ρ∗eq,f the complex equivalent fluid density of the absorbent (kg m−3)

ρeq,m the equivalent density of the multilayer (kg m−3)

χeq,f the damping loss factor of the equivalent fluid due to viscous effect (dimen-
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sionless quantity)

ω the angular frequency (s−1)

ωc the central angular frequency of the frequency band of interest (s−1)

ωm the angular frequency of the mth panel mode (s−1)

ωn the angular frequency of the nth cavity mode (s−1)

ω̄n the modified angular frequency of the nth cavity mode (s−1)

1 Introduction

The noise, vibration and harshness (NVH) performance of modern vehicles is of

great importance for manufacturers in globally competitive markets. In order to

control this performance at the design stage of a new vehicle, engineers must rely

on accurate predictive vibro-acoustic tools. These tools should cover a large part of

the audible frequency range [1–3] without being limited to modelling the behaviour

of the body-in-white structure only. Indeed, to be relevant, these tools must take

into account the effects of dissipative treatments such as viscoelastic layers and

poroelastic materials.

In the low frequency range, the Finite Element Method (FEM) [4] is generally used

due to its considerable versatility. Various formulations have been implemented to

capture the effects of dissipative materials. For instance, viscoelastic treatments can

be represented using classical lamination theory [5] whereas porous materials can

be represented by Biot’s model [6, 7] or the simplified equivalent fluid model [8].

On the other hand, for high frequencies, Statistical Energy Analysis (SEA) [9–11] is

commonly considered by industrial companies because it gives quick and accurate

assessments of the performance of sound packages [1, 12]. SEA parameters are

generally estimated with dedicated models of the parts of the system which include
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dissipative materials. For instance, the transmission loss of a multi-layered noise

control treatment can be predicted using the transfer matrix method [12, 13] and

the equivalent damping loss factors of the cavity with noise control treatments can

be deduced. These parameters are then used in the SEA model of the global system.

The main drawback of these two methods (i.e. FEM, SEA) is that they do not gen-

erally cover the whole frequency band of interest. FEM has proved its efficiency

and relevance for analyzing the modal behaviour of complex mechanical structures

and their sound radiations. Beyond this frequency range, this approach is compu-

tationally costly and can be problematic for describing the variabilities and uncer-

tainties of the system considered. Moreover, analyzing the considerable amount of

results to extract the most predominant phenomena involved in noise radiation is

not an easy task. Furthermore, SEA relies on numerous assumptions that limit its

application to high frequencies. In particular, each subsystem must present a high

number of resonant modes per frequency band of analysis and a high modal over-

lap (typically, greater than one) [14,15]. The development of dedicated methods for

the mid-frequency range to fill this frequency gap in modelling capability remains

a hot topic of research. Recent research projects have been carried out that in-

clude dissipative treatments in their mid-frequency models such as the Wave Based

Method [16–18] and the hybrid FE-SEA [19–22].

In this context, the present work proposes a methodology for including dissipative

materials in a Statistical modal Energy distribution Analysis (SmEdA) model [23–

25]. This method extends classical statistical energy analysis (SEA) to the mid-

frequency range by establishing power balance equations between modes in differ-

ent subsystems. This circumvents the requirement of the SEA approach for modal

energy equipartition and enables applying SmEdA to cases of low modal over-
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lap, locally excited subsystems and complex heterogeneous subsystems. It uses the

modal bases of each uncoupled subsystem. These bases can be extracted from a

wider frequency range than the global modes as the extraction is performed on

parts of the system considered (i.e. on subsystems). Moreover, they can be evalu-

ated by using Finite Element models which permits dealing with subsystems having

complex geometries. However, dissipative treatments have not been taken into ac-

count in the original formulation which considers constant damping loss factors for

the resonant modes of each subsystem. The present study proposes to extend the

method to include the dissipative effect of two types of materials widely-used in in-

dustry: viscoelastic layer patches and acoustic absorbing poroelastic materials. The

methodology proposed is based on homogenized material models used to represent

dissipative materials. This allows facilitating their implementation in a standard

FEM code. Moreover, it reduces the computing time compared to a full model and

is well-adapted for re-analysis. It is possible to calculate the normal modes related

to the frequency band considered using the FE model of each subsystem, includ-

ing the homogenized material model of the dissipative material. Thus the modal

damping loss factors that characterize the dissipation in the SmEdA model are de-

duced from the equations of motions of the damped subsystems and the Galerkin

method is implemented with the normal mode shapes of the subsystem considered.

The modal damping loss factors are obtained from the imaginary part of the modal

projection by neglecting the cross modal terms. This process can be related to the

estimation of the imaginary part of the Rayleigh quotient. In the literature, it has

also been called the Modal Strain Energy (MSE) method [26] in the case of a struc-

tural subsystem, and the Modal Strain and Kinetic Energy (MSKE) [27] method in

the case of an acoustic subsystem. Finally, in the last step, the modal energies are

obtained by resolving the SmEdA equations for each frequency band. For the pur-

poses of validation, the extended SmEdA model proposed in this paper is applied to
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a plate-cavity test case with different configurations of dissipative treatments. The

results are compared with laboratory measurements to experimentally validate the

different steps of the methodology proposed. Part of this work was done during the

PhD thesis of the first author ( [28]) and certain intermediate results were presented

at two international conferences ( [28], [29], [30])

The present paper is organized as follows. The outline of SmEdA method is given

in section 2 while the methodology allowing the inclusion of the dissipative mate-

rial is proposed in section 3. The application to the laboratory test case is described

in section 4. Finally, the experimental validations of the computed modal damping

loss factors and of the subsystem energies predicted by SmEdA are presented in

section 5.

2 Statistical modal Energy distribution Analysis Method

Here we present the outline of the SmEdA method used to describe the power

flow between different subsystems in the mid-frequency range. For the sake of

clarity, this presentation focuses on a vibrating thin structure coupled to an acoustic

cavity, although it can be applied to complex structures (see for instance the recent

application for modelling the interaction between the floor and the interior cavity

of a truck cab [31]).

In Section 2.1, we recall the results of the Dual Modal Formulation (DMF [24, 32,

33] which allows us to describe the fluid-structure interaction through the subsys-

tem modes. Then, the SmEdA equations of motion are obtained as described in

Section 2.2 by writing the power balance for each mode of each subsystem.
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2.1 Dual modal formulation

Let us consider the internal vibro-acoustic problem presented in Fig 1. An elastic

thin panel is coupled with a rigid-walled acoustic cavity. S is the fluid-structure

coupling interface and Sr is the rigid wall surface. The panel is assumed to be ex-

cited by a normal force at point Me. Fo(t) represents the force signal function of

time t. It is assumed to be a white noise in a given frequency band of central fre-

quency ωc and of width ∆ω. SF0F0 represents its constant power spectrum density

for the frequency band considered.

A finite element discretization of the considered system is considered to simplify

the presentation of the DMF. We adopt the following notation for the finite element

model:

- W(t), the nodal displacement vector of the panel function of time;

- P(t), the nodal pressure vector of the cavity function of time;

- F(t), the nodal applied force vector on the panel due to the external mechanical

excitation;

- Ms and Ks, the mass and stiffness matrices of the finite element model of the

panel, respectively;

- Mc and Kc, the strain energy matrix and the kinetic energy matrix of the finite

element model of the cavity, respectively, and;

- C, the fluid-structure coupling matrix.

The equations of motion of the conservative system can then be written [34]:

MsW
′′(t) + KsW(t)−CP(t) = F(t) (1)

McP
′′(t) + KcP(t) + CTW′′(t) = 0 (2)
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where the superscript T is the matrix transpose and the apostrophe symbol refers to

the derivative with time.

DMF can be used to represent the dynamic behaviour of these two coupled sub-

systems (i.e. vibrating structure, acoustic cavity) based on the knowledge of the

uncoupled subsystem modes. This modal formulation was developed to describe

the coupling between a structure and an acoustic cavity [32,33] and, more recently,

it has been extended to the general case of two coupled elastic continuous mechan-

ical systems [24].

In accordance with the DMF, the structure is described by its displacement field and

uncoupled-free modes (i.e. in-vacuo modes of the structure) whereas the cavity is

described by its stress fields (i.e. acoustic pressure) and uncoupled-blocked modes

(i.e. rigid wall modes of the cavity). These subsystem modes can be easily calcu-

lated analytically for academic cases [32, 33] or numerically with Finite Element

models for complex cases [35].

In the following we use the notations below:

- ωm, Wm and Mm = WT
mMsWm, the angular frequency, the displacement vec-

tor and the generalized mass of mode m of the in-vacuo panel;

- ωn, Pn and Mn = PT
nMcPn, the angular frequency, the pressure vector and the

generalized ’mass’ of mode n of the cavity with rigid walls.

We underline that as Mn intervenes with the second derivative with time of the

modal amplitude in the modal equation, Mn is named the modal ’mass’ in the

present paper as is commonly done in the literature. However, we should keep in

mind that it depends on the strain energy matrix of the cavity Mc.
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The modal expansions of the panel displacements W and of the acoustic pressure

P may be written as:

W(t) =
∑
m∈N∗

am(t)Wm, (3)

P(t) =
∑
n∈N∗

bn(t)Pn, (4)

where:

- am and bn are the amplitudes of the modes m and n, respectively, and;

- N∗ denotes the set of non-null natural numbers.

The DMF consists in: (a), introducing Eq. (3-4) in Eq. (1) (respectively in Eq. (2);

(b), multiplying the resulting equation by WT
m on the left (respectively by PT

n); (c),

using the subsystem modal orthogonality properties WT
m′MsWm = WT

m′KsWm =

0 for m 6= m′ (respectively PT
n′McPn = PT

n′KcPn = 0 for n 6= n′). Finally, we

obtain:


Mm[a′′m(t) + ω2

mam(t)]−
∑
n∈N∗

Wmnbn(t) = Fm(t), ∀m ∈ N∗

Mn[b′′n(t) + ω2
nbn(t)] +

∑
m∈N∗

Wmna
′′
m(t) = 0, ∀n ∈ N∗

(5)

where:

- Fm = F0(t)Wm(Me) is the modal force due to the external mechanical forces,

and;

- Wmn is called the intermodal work between mode m and mode n and is defined

by:

Wmn = WT
mCPn. (6)
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The latter quantity is related to the spatial matching of modes m and n. It is ex-

pressed in Joules (J).

Furthermore, if we assume that the vibratory behaviour of the coupled subsystems

can be described by considering only the interaction between the resonant modes

(i.e. modes in the frequency band of excitation) and if we use the change of variable

bn(t) = c′n(t), DMF finally provides the modal equations of motion:



Mm[a′′m(t) + ω2
mam(t)]−

∑
n∈Ñ

Wmnc
′
n(t) = Fm(t), ∀m ∈ M̃

Mn[c′′n(t) + ω2
ncn(t)] +

∑
m∈M̃

Wmna
′
m(t) = 0, ∀n ∈ Ñ

(7)

where M̃ and Ñ are the sets of resonant modes of the structure and the cavity,

respectively.

It can be observed that the system of equations (7) is interpreted as the coupling be-

tween a set of oscillators associated with the structure and another set of oscillators

associated with the cavity. The coupling elements, known as gyroscopic elements,

are related to the oscillators’ velocities without energy dissipation (due to the op-

posite signs in Eq. (7)). On the other hand, there is no direct coupling between the

oscillators of the same subsystem. This mode coupling configuration is the basis of

the SmEdA model. Eq. (7) has been written considering the conservative system.

Terms corresponding to the modal damping models are introduced in Eq. (7) to
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take the dissipative effects into account:



Mm[a′′m(t) + ωmηma
′
m(t) + ω2

mam(t)]−
∑
n∈Ñ

Wmnc
′
n(t) = Fm(t), ∀m ∈ M̃

Mn[c′′n(t) + ωnηnc
′
n(t) + ω2

ncn(t)] +
∑
m∈M̃

Wmna
′
m(t) = 0, ∀n ∈ Ñ

(8)

where ηm and ηn are the modal damping loss factors of the structure and the cav-

ity, respectively. It should be underlined that we assume here that the dissipative

phenomena do not introduce direct couplings between the modes of the same sub-

system. This is a fundamental assumption for the development of the SEA [10]

and SmEdA models [25]. However, as will be seen in section 3.3.2, cross-modal

terms will appear in the modal equations of subsystems containing dissipative ma-

terial. Applying SmEdA to these treated subsystems will then consist in neglecting

the effect of these modal coupling terms. Hence, the SmEdA model proposed in

this paper provides an approximation of the energy exchanged by the treated sub-

systems. Eq. (8) depends on the intermodal works Wmn expressed by Eq. (6) as

a function of the modal vectors Wm,Pn and the coupling matrix C. In practice,

the finite element codes do not always allow the extraction of the coupling matrix.

However, it has been shown (from the definition of the intermodal works for con-

tinuous systems, and using the rectangular rule for integrals) that the intermodal

work can be correctly approximated using ( [24], [35]):

Wmn ≈
∑
i∈S

wimp
i
ns

i, (9)

where

- wim is the normal displacement at node i of the mth mode;

- pin is the pressure at node i of the nth mode, and;
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- si is the elementary surface attributed to node i.

2.2 Modal energy equations of motion

The modal energy equations of SmEdA are obtained from the principle of energy

conservation for each mode of each subsystem [25]. For mode m of subsystem 1,

it is written as follows:

Πinj
m = Πdiss

m +
∑
n∈Ñ

Πmn, ∀m ∈ M̃ (10)

where:

- Πinj
m is the time-averaged power injected by the generalized force Fm;

- Πdiss
m is the time-averaged power dissipated by the internal damping of mode m;

-
∑
n∈Ñ Πmn is the time-averaged power flow exchanged by mode m with the

resonant modes of subsystem 2.

The different powers appearing in this equation are evaluated from relations es-

tablished for one single oscillator or two coupled oscillators, using the same as-

sumptions as in SEA (white noise force spectrums, un-correlated modal interaction

forces [10, 36]):

Πinj
m ≈

π

4Mm

SF0F0 w
2
m(Me), Πdiss

m ≈ ωmηmEm, Πmn ≈ βmn(Em − En) (11)

where Em is the time averaged energy of mode m and βmn is called the intermodal

coupling factor between modem and mode n. βmn can be decomposed as the prod-
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uct of two terms:

βmn = βWmn × βωmn (12)

where

βWmn =
(Wmn)2

MmMn

, (13)

and

βωmn =
ωmηm(ωn)2 + ωnηn(ωm)2

((ωm)2 − (ωm)2)2 + (ωmηm + ωnηn)(ωmηm(ωn)2 + ωnηn(ωm)2)
(14)

βWmn depends only on the spatial shapes of modes m and n (through the intermodal

work). It expresses the spatial matching of the subsystem modes. On the other hand,

βωmn depends only on the natural frequencies and the damping loss factors of modes

m and n. This term expresses the frequency matching of the subsystem modes.

The power balance equation for the resonant modes of subsystem 2 can be writ-

ten in the same way (taking no external source into account). Finally, we obtain

a linear equation system expressing the modal energy exchanged between the two

subsystems. We can write the SmEdA equations in matrix form:


β11 −β12

−β12
T β22




E1

E2

 =


Π1

0

 , (15)

with E1 = [Em]
M̃×1

, E2 = [En]
Ñ×1

, Π1 =
[
Πinj
m

]
M̃×1

, β12 = [βmn]
M̃×Ñ ,

β11 =

diag(ωmηm +
∑
n∈Ñ

βmn)


M̃×M̃

, β22 =

diag(ωnηn +
∑
m∈M̃

βmn)


Ñ×Ñ

.
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Inverting this system gives the modal energies. The overall energy of a subsystem

can be obtained by summing all its modal energies and then linking the result to a

spatial mean square velocity in the case of a vibrating structure, or to a mean square

acoustic pressure in the case of a cavity, following standard SEA formulations [36].

These SmEdA equations depend only on the source characteristics (i.e. position,

auto-spectrum density) and the modal information of each uncoupled subsystem

(i.e. modal angular frequencies, modal damping loss factors, mode shapes on the

coupling surface). This modal information can be obtained from finite element

models for subsystems with complex geometries and/or heterogeneous mechani-

cal properties.

We emphasize that the dissipation of energy is described in SmEdA through the

modal damping loss factors. These factors do not only intervene in the modal dis-

sipated powers, but also in the coupling strengths between the structure modes and

the cavity modes (see Eq. (14) of βωmn). This indicates that adding a dissipative

material like viscoelastic layers or a porous-elastic material in this problem will

change the modal damping loss factors, and then influence the coupling strength

and the power flow between the two subsystems.

Usually, for systems without dissipative treatments, the modal damping loss factors

of each subsystem are assumed to be constant and equal to the estimated subsystem

damping loss factors: 
ηm = η1, ∀m ∈ M̃

ηn = η2, ∀n ∈ Ñ

(16)

where η1 and η2 are the damping loss factors (DLF) of the structure and the cavity,

respectively. In general, these DLFs cannot be predicted for a body-in-white struc-

ture or for a non-treated cavity. They are generally estimated from measurements
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on the global system or on each uncoupled-subsystem, and by using different post-

processing techniques (Power injection method [37], ESPRIT algorithm [38, 39],

etc). In the next section, we will describe a process for approximating the modal

damping loss factors for subsystems containing dissipative materials.

3 Methodology for including dissipative treatments

In this section, a methodology for including the effect of dissipative materials in an

SmEdA model is developed. Two types of dissipative materials will be considered:

- The first consists of viscoelastic layer patches, as currently used in the automo-

tive industry for vibration control [40]. These patches are generally composed

of one layer of viscoelastic material glued to one (for an unconstrained layer) or

two metal sheets (for a constrained layer). Vibration energy is dissipated by the

viscoelastic effect;

- The second is composed of poroelastic materials which can be used in acoustic

cavities in the automotive industry for noise control. Foam and fibrous materials

are typical examples of these types of materials which dissipate acoustic energy

by viscous and thermal effects.

3.1 Principle

The methodology proposed is based on four steps:

- The first step consists in representing the dissipative materials by using homog-

enized material models, as described in Section 3.2.1 for the viscoelastic layer

patches and in Section 3.2.2 for the poroelastic material. This type of modelling
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has two main advantages: (a) it permits increasing the upper frequency bound of

the FEM calculation compared to a full detailed model; (b) it is well adapted for

optimizing dissipative materials. Different positions of the dissipative materials

could be considered easily by modifying only the property of the element in the

original finite element mesh;

- The second step consists in building the finite element models of each subsys-

tem treated. The dissipative treatments are introduced in these models by using

the homogenized material models. As the mechanical properties of these ma-

terials may vary with frequency, constant mean values are considered for each

frequency band of calculation (typically, third-octave band). A finite element

model is then created for each subsystem and each frequency band. Boundary

conditions at the coupling surface are defined in accordance with DMF (as dis-

cussed in section 2.1). The normal modes of each subsystem and each frequency

band are then extracted. The natural frequencies and mode shapes at the coupling

junction (normalized to a unit modal mass) are saved in the database used for the

SmEdA calculation;

- The modal damping loss factors are estimated in the third step. Modal equations

of each subsystem containing a dissipative material are obtained from the dy-

namic equation of motion of the subsystem considered and the Galerkin method

with normal mode shapes is used. Cross-modal terms are then neglected for esti-

mating the modal damping loss factors by analogy between the modal equations

obtained and the standard ones. These developments are proposed in section 3.3

for a panel damped by viscoelastic patches and for a cavity with an absorbent

material;

- The final step consists in resolving the SmEdA equations (15), depending on the

subsystem modal information estimated numerically in the two previous steps.

Finally, the total energy of each subsystem can be estimated by summing the
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modal energies.

3.2 Equivalent models of dissipative materials

In the following sub-sections, two simplified equivalent models are presented: the

equivalent single layer model for describing viscoelastic layers applied to a thin

structure in Section 3.2.1 and the equivalent fluid model for an acoustic cavity

treated with porous materials in Section 3.2.2.

3.2.1 Thin structure damped by viscoelastic layers

The concept of multi-layered thin structures is increasingly used to build structures

with high levels of sound and vibration performances without significant addition

of weight. However, modelling such structures is not an easy task. Hence it is pos-

sible to consider a 3-D finite element model representing the viscoelastic layers

coupled to a 2D finite element model representing the thin structures [41]. How-

ever, attention must be given to the sizes of the elements to accurately represent

the behaviour of the multilayer structure. The number of degrees of freedom can

become significant. Moreover, this specific model of the viscoelastic layer patches

requires re-meshing the system if the patches are moved in view to optimizing vi-

bration and noise. Another strategy adopted in this paper and illustrated in Fig. 2

consists in evaluating the single layer properties equivalent to the multi-layered

structures [40]. It permits dealing with any number of layers and facilitates the

modification of the material properties of each layer. It also facilitates the position-

ing of the viscoelastic patches on the structure by modifying the element properties

of the 2D shell finite element model of the structure.

The homogenization method clearly described in [42, 43] is based on a travelling
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wave approach where continuity conditions on displacement and shear stresses at

each layer interface are used to obtain the equations of motion of the multi-layered

plate field expressed in the function of the first layer field. Without entering into de-

tail, the method estimates the material properties of the equivalent one single layer

structure as a function of the material parameters and thickness of each layer, that

is: E∗eq,m, the homogenized complex Young’s modulus; veq,m =

∑
i hivi∑
i hi

, the equiv-

alent Poisson’s ratio; and ρeq,m, the equivalent homogenized density. The subscripts

“eq,m” and “i” refer to the equivalent homogenized parameters of the multilayer

and ith layer, respectively. The equivalent homogenized damping loss factor ηeq,m is

then given by:

ηeq,m =
Im
{
E∗eq,m

}
Re
{
E∗eq,m

} (17)

It must be emphasized that the resulting equivalent Young’s modulus and damp-

ing loss factor may depend on the frequency. In the following description of the

methodology proposed, averaged values for each third octave band will be consid-

ered for the frequency-dependant physical parameters. This is applied in particular

to the equivalent Young’s modulus and the damping loss factors. The approach

described in this section was programmed using an in-house Fortran code called

MOVISAND and validated numerically by comparison with 3D - FEM calcula-

tions [44].

3.2.2 Acoustic cavity including poroelastic materials

Biot’s theory [45] is commonly used when modelling poroelastic materials like

fibrous materials or various types of foams. However, it requires knowledge of a

large number of physical parameters that are not all easily measurable. To overcome

this difficulty, the equivalent fluid model [8, 46–48] is often used as an alternative
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since it considerably simplifies the Biot model. In some situations, the effect of the

solid phase deformation on the material response can be neglected and the problem

can be formulated in terms of fluid pressure only. This is verified when the fluid

inertial forces dominate the elastic ones or when the elastic stresses are weak [47].

The first case (i.e. rigid model, [49]) can be found when the porous material is

placed in front of the vibrating panel without being coupled to it whereas the second

one (i.e. limp model, [50]) is found when the bulk modulus of the porous skeleton

is close to zero (for instance, for glass-wool or fibrous materials). As light weight

fibrous materials are generally used for noise control in car and truck cabins, the

limp model might be more pertinent than the rigid model for our applications. In the

following, we consider the equivalent fluid model which describes the behaviour of

the fluid phase with an equation similar to the Helmholtz one:

∆P

ρ∗eq,f
− ω2 P

K∗eq,f
= 0 (18)

where ρ∗eq,f and K∗eq,f are the complex equivalent fluid density and the complex

equivalent fluid compressibility, respectively.

Whereas the Biot model requires at least five different macroscopic material pa-

rameters, the equivalent fluid is characterized by only two parameters (i.e. ρ∗eq,f and

K∗eq,f). The latter can be estimated from acoustic tube measurements. The two cav-

ities method proposed by Utsuno et al. [51] gives the characteristic impedance Z∗c

and the propagation constant k∗eq,f of the material from transfer functions measured

with two different back cavities behind the material. The equivalent fluid parame-

ters are deduced by:

K∗eq,f =
Z∗cω

k∗eq,f
(19)
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and

ρ∗eq,f =
(Z∗c )2

K∗eq,f
(20)

These two quantities are complex numbers. Therefore, we can express two damping

loss factors:

χeq,f =
Im
{
ρ∗eq,f

}
Re
{
ρ∗eq,f

} (21)

and

ηeq,f =
Im
{
K∗eq,f

}
Re
{
K∗eq,f

} (22)

χeq,f is a negative quantity related to the inertial characteristic of the equivalent

fluid and expresses the dissipation of energy by viscous effect [52]. On the other

hand, ηeq,f is a positive quantity related to the compressibility characteristic of the

equivalent fluid and expresses the dissipation of energy by thermal effect [52]. In

addition, a constant density for the air ρair and a constant real part of the fluid

compressibility K∗air will be considered in the following, whereas the damping loss

factor of the air ηair =
Im {K∗air}
Re {K∗air}

will be estimated experimentally for the empty

cavity.

3.3 Estimation of the modal damping loss factor

3.3.1 Finite element model

For each subsystem treated (i.e. structure, cavity), and for each frequency band,

a finite element (FE) model is created including the homogenized model of the

dissipative material.

- Plate damped by viscoelastic patches
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The damped structure is meshed by 2D shell elements. The properties obtained

with the homogenized material model described in section 3.2.1 are assigned to the

elements corresponding to the patch positions, whereas the mechanical properties

of the other elements of the mesh correspond to the untreated structure.

The equations of motion of the FE model of the structure treated can be written in

the frequency domain:

{
K∗ba + K∗eq,m − ω2(Mba + Meq,m)

}
W = F (23)

where the subscripts “ba” and “eq,m” refer to the bared part and the equivalent mul-

tilayer part of the structure, respectively. K∗ba and K∗eq,m are the complex stiffness

matrices whereas Mba and Meq,m are the mass matrices.

Taking into account that each part is characterized by a complex Young’s modulus

(i.e. E∗ba and E∗eq,m), the complex stiffness matrices can be written as:

K∗ba = E∗baK
e
ba = (1 + jηba) K̄ba

K∗eq,m = E∗eq,mKe
eq,m = (1 + jηeq,m) K̄eq,m

(24)

where Ke
ba and Ke

eq,m are the stiffness elementary matrices, K̄ba and K̄eq,m are the

stiffness matrices of the conservative (i.e. undamped) system.

- Cavity with an absorbent material

For the damped cavity, the cavity and the porous materials are meshed by 3D el-

ements. The properties obtained with the equivalent fluid model described in sec-

tion 3.2.2 are assigned to the poroelastic material elements, while the air properties

are assigned to the air elements.
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The equations of motion of the FE model of the cavity treated can be written in the

frequency domain [8]:

{
Kair + K∗eq,f − ω2(M∗

air + M∗
eq,f)

}
P = ω2CTW (25)

The subscripts “air” and “eq,f” refer to the air and the equivalent fluid, respectively.

Kair and K∗eq,f are the kinetic energy matrices, M∗
air and M∗

eq,f are the strain energy

matrices.

Taking into account that each part is described by a density (ρair, ρ∗eq,f) and a fluid

compressibility (K∗air, K
∗
eq,f) and assuming that ηair << 1, ηeq,f << 1, the following

equations can be written as:

Kair =
1

ρair
Ke

air = K̄air

M∗
air =

1

K∗air
Me

air = (1− jηair) M̄air

K∗eq,f =
1

ρ∗eq,f
Ke

eq,f =
1− jχeq,f

1 + χ2
eq,f

K̄eq,f

M∗
eq,f =

1

K∗eq,f
Me

eq,f = (1− jηeq,f) M̄eq,f

(26)

where the matrices with the superscript “e” are the elementary matrices and the

matrices with the bar symbol “ .̄ ” are the matrices of the conservative system.

The estimation of the modal loss factors for each subsystem is proposed in the next

section from the FE equations of motion.

3.3.2 Galerkin method considering the normal subsystem modes

- Plate damped by viscoelastic patches
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Let us consider the normal mode m satisfying the eigenvalue problem of the con-

servative system:

{
K̄ba + K̄eq,m − ω2

m(Mba + Meq,m)
}

Wm = 0 (27)

The Galerkin method consists in introducing the modal expansion of the displace-

ment (3) in Eq. (23) and in multiplying the resulting equation by WT
m on the left. By

taking into account the subsystem mode orthogonality properties (i.e. WT
m′(Mba +

Meq,m)Wm = 0, WT
m′(Kba + Keq,m)Wm = 0 for m′ 6= m), we obtain the modal

equation:

(ω2
m−ω2)Mmam + j

∑
m′∈N∗

[
ηbaW

T
mK̄baWm′ + ηeq,mWT

mK̄eq,mWm′

]
am′ = WT

mF

(28)

These equations contain cross-modal terms (i.e. m′ 6= m). This is due to the fact

that the normal modes of the conservative system have been considered instead

of the complex modes of the non-conservative system. It is well-known that in

some situations (for instance when the viscoelastic layer covers a large part of the

panel considered and the damping loss factors are small compared to one), these

cross-modal terms can be neglected. This is generally called the Rayleigh or Basile

assumption [53]. On the contrary, for systems with locally highly damped mate-

rial, they may play a significant role in describing the vibratory field in the vicinity

of the damped material. In the framework of the methodology proposed, we ne-

glect these cross modal terms. Consequently, the results of our approach will be an

approximation of the global energy of each subsystem. By neglecting these terms,

Eq. (28) can be approximated by:

[
ω2
m

{
1 + j

ηbaW
T
mK̄baWm + ηeq,mWT

mK̄eq,mWm

ω2
mMm

}
− ω2

]
Mmam ≈WT

mF

(29)
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By analogy with the standard modal equation of motion [ω2
m {1 + jηm} − ω2]Mmam =

WT
mF where ηm is the modal damping loss factor, we identify:

ηm ≈
ηbaW

T
mK̄baWm + ηeq,mWT

mK̄eq,mWm

ω2
mMm

(30)

- Cavity with an absorbent material

Let us consider that the normal mode n satisfies the eigenvalue problem of the

conservative system:

{
K̄air + K̄eq,f − ω2

n(M̄air + M̄eq,f)
}

Pn = 0 (31)

The Galerkin method is applied again by introducing the modal expansion (4) in

Eq. (25) and by multiplying the resulting equation by PT
n on the left. The mode

orthogonality properties are considered (i.e. PT
n′(M̄air + M̄eq,f)Pn = 0, PT

n′(K̄air +

K̄eq,f)Pn = 0 for n′ 6= n), but certain cross modal terms (i.e. PT
nK̄eq,fPn′ ,

PT
nM̄airPn′ , PT

nM̄eq,fPn′ for n′ 6= n) do not vanish. As with the damped panel, we

are led to neglect these cross-modal terms. We then obtain:

[
ω̄2
n

{
1− j χeq,f

1 + χ2
eq,f

PT
nK̄eq,fPn

ω̄2
nMn

}
− ω2

{
1− j 1

Mn

(
ηairP

T
nM̄airPn

+ηeq,fP
T
nM̄eq,fPn

)} ]
Mnbn ≈ ω2PT

nC
TW

(32)

where ω̄2
n is the modified eigenfrequency induced by the viscous effect of the poroe-

lastic material:

ω̄2
n =

1

Mn

(PT
nK̄airPn +

1

1 + χ2
eq,f

PT
nK̄eq,fPn) (33)
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By assuming that the modal damping effects are essentially produced at the reso-

nance frequency (ω = ω̄n), Eq. (32) becomes:

[
ω̄2
n

{
1 + j

1

Mn

(
− χeq,f

1 + χ2
eq,f

PT
nK̄eq,fPn

ω̄2
n

+ ηairP
T
nM̄airPn + ηeq,fP

T
nM̄eq,fPn

)}

−ω2

]
bn ≈ ω2PT

nC
TW

(34)

Finally, the modal damping loss factor can be deduced through comparison with

the standard modal equation:

ηn ≈
1

Mn

(
− χeq,f

1 + χ2
eq,f

PT
nK̄eq,fPn

ω̄2
n

+ ηairP
T
nM̄airPn + ηeq,fP

T
nM̄eq,fPn

)
(35)

In conclusion, we use Eq. (30) and (35) to estimate the modal damping loss factors

of the panel damped by viscoelastic patches, and of the cavity including absorbing

material, respectively. These formula have been obtained by neglecting cross-modal

terms resulting from the modal projection. Comparisons between these off-diagonal

terms with the diagonal terms of the modal damping matrix will be presented in

section 4.4 in the test case.
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4 Test Case Application

4.1 Description of the test case and the different configurations of dissipative

materials

4.1.1 Plate-Cavity system

The cavity-panel system described in Fig. 3 is considered for the present appli-

cation. The vibrating rectangular panel is coupled with a rigid-walled rectangu-

lar acoustic cavity. The homogeneous plate is made of steel (mass density ρ =

7800 kg m−3, with a Young’s modulus of E = 2× 1011 Pa) and its dimensions are

0.5 m x 0.6 m x 1 mm. It is assumed to be clamped at its 4 edges and excited by a

normal point force exerted at point Me as shown in Fig. 3. The cavity is filled with

air (mass density ρair = 1.29 kg m−3, celerity cair = 342 m s−1) and has a depth

of 0.7 m (z-axis). In terms of modelling, the behaviour of the plate is described by

the Kirchhoff equation, whereas the Helmholtz equation is considered for the fluid

domain. In the following, this configuration without any dissipative treatment will

be called the ‘Bare’ configuration.

4.1.2 Configurations of dissipative materials

In addition to the ‘Bare’ configuration, three configurations with dissipative treat-

ments applied to the plate-cavity system are considered, as shown in Fig. 4. They

are named and defined as follows:

• Visc1 configuration: The plate is treated with one viscoelastic damping patch

whereas the cavity remains empty.

• Visc2 configuration: The plate is treated with two viscoelastic damping patches
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whereas the cavity remains empty.

• Poro configuration: The cavity is treated with a fibrous material whereas the plate

remains untreated.

The viscoelastic layer is a 2.6 mm thick prefabricated damping patch currently

used in the automotive industry. It can be semi-permanently attached to the plate

by heating. A single damping patch occupies 15 % of the plate surface area and its

mass is approximately 19 % of the plate mass.

The fibrous material consists of 3 cm thick mineral fiber fixed at the bottom of the

cavity. It occupies around 2 % of the cavity volume.

4.2 Equivalent parameters of the dissipative treatments

4.2.1 Plate with the viscoelastic patch

The mechanical properties of the homogenized material model of the viscoelastic

layer patch (i.e. steel plate + viscoelastic layer) are estimated as described in sec-

tion 3.2.1 using the equivalent single layer model implemented with MOVISAND

software. The complex elastic modulus of the viscoelastic material E∗visc is de-

termined using the time-temperature superposition principle (empirical William-

Landel-Ferry “WLF” equation) [54]. The frequency-dependent curves of isother-

mal properties at different temperatures were estimated experimentally by the man-

ufacturer using a dynamic mechanical analyser (DMA+300 from METRAVIB com-

pany). Measurements were performed at several temperatures from -30 ◦C to 70 ◦C

(step of 10 ◦C) in a frequency range from 1 to 200 Hz, giving a reliable Young′s

modulus and loss factor extraction at 20 ◦C for the whole audible range.

Table 1 and Fig. 5 present the mechanical properties of the plate steel, the vis-
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coelastic material at 20 ◦C and the equivalent model estimated with MOVISAND.

Note that the damping loss factor of the plate steel was estimated experimentally on

the bare plate using the high-resolution modal analysis method [39], as described

in Appendix A. It can be observed that the equivalent parameters (E∗eq, ηeq) vary

gradually with frequency. Although these quantities are frequency-dependent, the

slight variations make it reasonable to consider averaged values for each third oc-

tave and to perform modal analysis for each of these bands.

4.2.2 Cavity with the fibrous material

The equivalent characteristic impedance Z∗c and the equivalent wavenumber k∗eq of

the fibrous material were estimated with two impedance tubes (B&K type 4206).

A large 10 cm diameter tube was used for frequencies up to 1.6 kHz whereas a

small 3 cm diameter tube was used from 1.6 kHz to 6.4 kHz. The equivalent fluid

parameters of the fibrous material are then deduced from Eq. (19) and Eq. (20). The

values averaged for each third octave band are shown in Fig. 6. The equivalent den-

sity decreases as a function of the frequency whereas the equivalent compressibil-

ity increases. These results are in accordance with the Delany-Bazelay model [55]

considering the flow resistivity of the fibrous material. It can be seen that the χeq,f

damping loss factors are significant compared to unity, justifying it being taken into

account (compared to one) in Eq. 26.

4.3 Modal analysis of subsystems

Once the parameters of the equivalent models for the viscoelastic multilayer and the

fibrous material were estimated, a finite element mesh of each subsystem was cre-

ated. The plate was represented with 13 776 quadrilateral shell elements whereas
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the cavity was represented with 4 031 412 tetrahedral solid elements. The mesh

sizes were chosen in order to have a minimum of six elements per bending wave-

length at 8 kHz for the plate and per acoustic wavelength at 6 kHz for the cavity.

Then, we checked that these element sizes permitted conforming to the criterion

of six elements per wavelength for the equivalent single layer model and for the

equivalent fluid for all the frequencies between 315 Hz and 8 kHz for the plate and

between 315 Hz and 6 kHz for the cavity. It should be underlined that the validity of

the cavity mesh was limited to 6 kHz (compared to 8 kHz for the plate) because no

fibrous properties above this frequency were available. For the treated configura-

tions, the properties of the elements corresponding to the dissipative material were

based on the properties of the equivalent model for the third octave band consid-

ered. For the other mesh elements, their properties corresponded to those described

in section 4.1.1 for the bare case. The damping loss factors were estimated exper-

imentally, as described in section 4.2.1 for the steel plate and as will be described

in section 4.4.2 for the air cavity.

The modal analysis was performed for each subsystem for each third octave band

using the MSC/NASTRAN code and the Lanczos method. A NASTRAN DMAP pro-

gram allowed estimating the modal damping loss factors (see Eq. (30) and Eq. (35))

in the same run as the modal analysis. The natural frequencies, the mode shapes

normalized to a unit modal mass (i.e. Mm = 1 kg m2 for a panel mode m or

Mn = 1 kg m2 s−2 for a cavity mode n), and the damping loss factors for all the

modes of the frequency band considered were saved in a MATLAB file at the end of

the calculation. The process was automated as it was repeated for each frequency

band of interest. For the different frequency bands, a MATLAB program allowed

creating the input NASTRAN data file with the appropriate properties for the ele-

ments corresponding to the equivalent material (depending on the frequency band),

in order to run the NASTRAN calculation and export the NASTRAN outputs in a
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MATLAB file.

Table 2 presents the number of subsystem modes per third octave band for each

configuration. It can be seen that in general the configurations treated have only

slightly fewer modes than the bare case, indicating that the modal densities are not

greatly affected by the considered dissipative materials.

4.4 Modal damping loss factor results

4.4.1 Plate with the viscoelastic patches

Eq. (29) was obtained from Eq (28) by neglecting the off-diagonal terms of the

modal damping matrix (in comparison with the diagonal terms). To illustrate this

assumption in the present case, Fig. 7 shows the modal damping matrix for the first

ten modes of the third octave band 1600 Hz. It can be seen that the assumption is

correctly respected for the Visc2 plate whereas several off-diagonal terms presents

moderate values for several couples of modes for the Visc1 plate. For latter case, it

can be seen that the mode presenting the lower value on the diagonal matrix (i.e.

n=7) is weakly coupled with the other modes. For all the other modes, the term on

the diagonal also dominates the off-diagonal terms. The assumption is then globally

verified for these modes of the Visc1 plate. This figure clearly highlights that the

validity of the assumption depends on the distribution of the viscoelastic patches.

The best case would be when the viscoelastic layer covers entirely the plate. The

modal damping matrix would then be diagonal (resulting from the orthogonality

property of the modeshapes).

Fig. 8 presents the modal damping loss factors of Visc1 and Visc2 plates in compar-

ison with the damping loss factors of the steel plate and the equivalent model of the
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viscoelastic multilayer. It can be seen that the damping pads provide substantially

high damping compared to the bare plate. Their effects decrease slightly with in-

creasing frequencies, similar to the decreasing values of the damping loss factors of

the equivalent viscoelastic model. The damping values can vary substantially from

one mode to another for the same configuration. This indicates that some modes ex-

hibiting low strains at the pad positions are less influenced by the damping pad than

others. This is illustrated in Fig. 9, where the spatial shapes of two modes of Visc1

(identified by two red circles on Fig. 8) are plotted: the first has a natural frequency

of 1584 Hz and a damping loss factor of 0.007, whereas the second has a natural

frequency of 1818 Hz and a damping loss factor of 0.05. It can be clearly seen that

the first mode does not exhibit significant spatial deformation around the damp-

ing pad, contrary to the second mode. Compared to the Visc1 configuration, Visc2

presents averaged values roughly 50% higher and lower variations from one mode

to another. This can be explained by the fact that the two damping pads occupied

an area twice as large as a single pad.

4.4.2 Cavity with fibrous material

To study the cross-modal terms neglected in Eq. (32), two modal matrices present

in the Galerkin method are plotted in Fig.10. These results concern the first ten

cavity modes of the third octave band 1000 Hz. In Fig. 10a, the modal matrix con-

cerns the air cavity. The off-diagonal terms are negligible compared to the diagonal

ones. This result is not surprising because the air cavity occupies almost the whole

volume of the subsystem while the pressure modeshapes satisfy its property of or-

thogonality. On the contrary, several off-diagonal terms are significant in Fig. 10b

which concerns the equivalent fluid domain (i.e. fibrous material). This results from

the fact that the fibrous material occupies only a small volume of the subsystem.
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However, for a given mode n, the diagonal term is generally greater than the off-

diagonal terms concerning the same mode. This may lead to the assumption that

the coupling between the different modes (having different natural frequencies) is

weak. Modes n=4 and n=9 are exceptions to this rule as the off-diagonal term is

equivalent to the diagonal one. As with the damped panel, this clearly underlines

that the assumption of neglecting the cross-modal terms in the Galerkin method is

a considerable approximation in the estimation of the modal damping loss factors.

The damping loss factors of the cavity treated with the fibrous material were esti-

mated with Eq. (35) and plotted in Fig. 11. The damping loss factors of the empty

cavity are also shown in this figure for comparison. These values were estimated

experimentally when the cavity was closed with a 12 cm thick concrete panel. As

for the bare plate, the high-resolution modal analysis method [39] was used to es-

timate the modal damping of resonant modes. We underline that these values were

considered in the FE model for the elements corresponding to the non-treated part

of the air cavity.

Fig. 11a presents the contributions of the different parts of Eq. (35):

- ηMKE = − χeq,f

1 + χ2
eq,f

PT
nK̄eq,fPn

ω̄2
nMn

depending on the modal kinetic energy [27] of

the equivalent fluid (i.e. PT
nK̄eq,fPn), and,

- ηMSE =
1

Mn

[
ηair(P

T
nM̄airPn) + ηeq,f(P

T
nM̄eq,fPn)

]
depending on the modal strain

energies [26] of the air cavity (i.e. PT
nM̄airPn) and of the equivalent fluid (i.e.

PT
nM̄eq,fPn).

It can be seen that the first terms are in general predominant, except below 500 Hz

and for some high frequency modes. This indicates that the viscous effect leads to

more energy dissipation than the thermal effect. It should be emphasized here that

the modal damping factors are not directly proportional to the sound pressure. This
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would lead to erroneous modelling of the viscous effect, since the normal fluid par-

ticle velocity close to a rigid wall is low whereas the acoustic pressure is generally

significant. In the present approach, the viscous effect is represented by the term

ηMKE, which is proportional to the modal kinetic energy of the equivalent fluid.

This depends on the pressure gradient, and then on the acoustic velocity. This par-

ticular point is illustrated on the mode of natural frequency 469 Hz. The pressure

modeshape presents significant values at the location of the absorbing material, as

shown in Fig.12a whereas ηMKE is small compared to ηMSE as it is underlined by cir-

cles in Fig.11a (i.e. 0.006 for ηMKE again 0.014 for ηMSE). The pressure modeshape

is significant at the equivalent fluid location but its spatial variations there are small.

Therefore the modal kinetic energy is small, thus ηMKE is small. This is consistent

with the fact that the acoustic velocity for this mode is low and the viscous drag is

low at the location of the absorbing material.

Fig. 11b shows the modal damping loss factors that vary significantly from one

mode to another. For instance, for the 1 kHz third-octave band, the highest damping

value occurred for the mode at 946 Hz (indicated by a cross in Fig. 11b). It presents

a mode shape with strong variations of the pressure amplitudes in the fibrous ma-

terial domain (inducing a high acoustic velocity tangential to the wall) as seen in

Fig. 12b, which explains why it is strongly damped by the viscous effect in the

fibrous material. On the contrary, the mode at 1003 Hz has a relatively uniformly

distributed spatial shape inside the cavity, as seen in Fig.12c. The modal (kinetic

and strain) energies are spread inside the entire volume, and not in particular inside

the absorbing material. Consequently, this mode is relatively weakly influenced by

the presence of the dissipative material. It presents the lowest damping values of

the third octave as it is underscored by a second cross in Fig. 11b.
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4.5 SmEdA results

The final step of the methodology proposed consists in performing the SmEdA

calculations, considering a normal point force exerted at point Me, as shown on

Fig. 3. This involves calculating the modal injected powers from Eq. (11) and then

solving the SmEdA equations (15) depending on the subsystem modal information

estimated previously (i.e. modal frequency, mode shapes, and modal damping loss

factors).

In this section the SmEdA results are compared between the different configura-

tions.

4.5.1 Intermodal coupling factors and subsystem modal energies

The influence of the dissipative material on the SmEdA intermodal coupling fac-

tors and on the modal energy distribution for the cavity are illustrated in Fig. 13,

by comparing these quantities between the Bare and Visc2 configurations. These

results concern the 1 kHz third octave band for which the Bare plate and the Visc2

plate have 19 and 18 modes, respectively, whereas the empty cavity has 21 modes.

It can be seen that for the Bare case, only two couples of plate-cavity modes ((4, 3)

and (10, 10)) have significant intermodal coupling factor values. This shows that

the coupling strength between these couples of modes is high compared to the other

couples. Although the number of subsystem modes is relatively high in this band,

few of them participate significantly in the energy sharing between the two sub-

systems. This is in particular due to the fact that the frequency coincidences play a

significant role when the damping is low. On the contrary, for the Visc2 configura-

tion, a large number of couples have significant values for the intermodal coupling

factors and participate in the energy sharing between the plate and the cavity. Al-
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most all the cavity modes are significantly coupled to at least one plate mode. As

observed in Fig. 13 the result is that the distribution of the modal energies of the

cavity is more uniform than for the Bare configuration: a variation of 35 dB for the

Bare configuration compared to 20 dB for the Visc2 configuration.

Moreover, a considerable decrease of the highest values of the intermodal coupling

factors between the two configurations can be seen: 12.5 Hz for the Bare config-

uration versus 1.5 Hz for the Visc2 configuration. In the latter case, more cavity

modes are significantly coupled with the plate modes, but with less intensity. These

phenomena have the opposite effect on the energy sharing between the two subsys-

tems. Defining which phenomenon is predominant in energy sharing can only be

achieved by analysing the final result.

4.5.2 Subsystem energy

Subsystem energies are finally obtained by summing the modal energies of each

subsystem. Fig. 14 gives these subsystem energies for each third octave band and

for each configuration. Note that the SmEdA analysis for the Poro case is carried

out up to the 5 kHz band according to the available frequency range of the fibrous

material characterization.

As can be expected, the fibrous material has little influence on the plate energies.

Indeed, the latter are directly excited by the mechanical force and since the cavity-

plate coupling is weak [32], the behaviour of the cavity does not significantly in-

fluence the plate behaviour. For the cavity, if we exclude the first band (which is

particular as the cavity has only 2 modes), it can be seen that the fibrous material

reduces the energy from 1.5 dB to 8 dB as a function of the frequency band. These

reductions should be compared to the variation of the modal damping loss factors

of the cavity between the Bare and Poro configuration (see Fig. 11b). Although the
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damping loss factors of many modes of the Poro configuration are ten times higher

than those of the Bare configuration, the energy reduction is less than 10 dB. This is

due to the fact that the mostly damped cavity modes correspond to localized modes

in the fibrous material (as shown in fig.12) and do not participate in the energy

sharing between the plate and the cavity. This is illustrated by the mode shown in

Fig. 12b which presents a high damping loss factor but low intermodal coupling

loss factors with the plate modes (values between 8 ·10−6 Hz and 0.08 Hz, whereas

the highest value for the different couples of modes is 3.1 Hz for the 1 kHz third

octave band). Using SmEdA to describe the behaviour of each mode also allows

describing these phenomena.

The energy difference between the Bare and the Visc1 configuration decreases with

frequency (around 12 dB at 315 Hz and reaches 6 dB at 8 kHz). This decrease as a

function of the frequency induced by the damping pad can be directly linked to the

decrease of the modal damping loss factors of the Visc1 plate observed in Fig. 8.

Adding a supplementary damping pad (Visc2 configuration) permits a supplemen-

tary decrease of cavity energy of around 3 dB. This decrease can be linked to the

increase of around 50% of the plate modal damping loss factors between the Visc1

and Visc2 configurations, as observed in Fig. 8. Fig. 15 shows the subsystem energy

ratios (E2/E1) for the different configurations. This allows us to characterize the

energy transmission between the plate and the cavity. Few differences can be seen

between the Bare, Visc1 and Visc2 configurations between 2 kHz and 5 kHz. Al-

though the damping pads have considerable opposite effects on the modal coupling

strengths (as discussed in section 4.5.1), it can be seen here that these effects have

a tendency to cancel each other in these frequency bands. Above 5 kHz, the energy

ratio increases, in particular for the damped cases. The frequency bands concerned

are closer to the critical frequency of the plate (around 11 kHz). This explains why

the plate radiates more significantly into the cavity, and why the energy ratio in-
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creases. Below 2 kHz, it is more difficult to establish a tendency between the Bare,

Visc1 and Visc2 configurations. As the modal densities are low, the energy ratio is

strongly influenced by the frequency coincidences, and then the natural frequency

of each mode. For the Poro configuration, the energy ratio is between 1.5 and 8 dB

lower than for the bare configuration (except for the first band). This is mainly due

to the fact that the poroelastic material dissipates energy inside the cavity but has

little influence on the plate behaviour.

5 Experimental Validation

In this section, the SmEdA results are compared to the experimental results for

the different configurations. After describing the experimental set-up, two types of

comparison are made:

- the first addresses the modal damping loss factors, which constitute intermediary

data of the SmEdA methodology proposed. The modal damping loss factors ob-

tained with Eq. (30) and (35) are compared with those obtained experimentally by

a recently developed high resolution technique [39];

- the second addresses the noise radiated by the plate into the cavity. The energy ra-

tios calculated by SmEdA are compared with those estimated experimentally from

several point measurements.

5.1 Experimental setup

As shown in figure 17, the cavity was bounded by 7-cm thick walls made of con-

crete, and by a steel plate. The dimensions of the plate and the cavity are the same

as those used in the simulations (see section 4.1.1). The plate is fixed at its bound-

40



aries (2 cm wide) with four metal bars screwed to the top edges of the cavity. A

stationary harmonic transverse force was exerted on the plate using a shaker at the

same point considered in the numerical models. The measurements were performed

for two frequency domains as a function of the excitation spectrum. A sweep signal

was used for the low domain from 1 Hz to 3.2 kHz with a resolution 0.5 Hz and the

high domain from 3.2 kHz to 10 kHz with a resolution 1.5625 Hz. The force was

measured with an impedance head at the point of excitation.

A Polytec laser scanning vibrometer (OFV-3001 controller, OFV-056 scanning

head and PSV-Z-040-H junction box) was used to measure the plate velocity at

120 points. The B&K electrodynamic mini-shaker Type 4810 and the scanning de-

vice were mounted above the plate-cavity system, as seen in Fig. 17a. The force

was measured using an impedance head PCB288D01.

The cavity pressure was measured with four 1/4 inch PCB 130D21 condenser mi-

crophones, mounted on a beam that could be rotated inside the closed cavity by

turning the connecting shaft, as shown in Fig. 17b . With this device, 64 micro-

phone positions were considered inside the cavity. The responses measured with

the vibrometer and the microphones were normalized with the input force.

The plate acceleration and cavity pressure measurements were treated with a multi-

channel FFT analyser OROS OR35. All the quantities measured were post-processed

with MATLAB.

For each discrete frequency fi, the space-averaged quadratic velocity of the plate

v2
i and the space-averaged quadratic pressure inside the cavity p2

i were estimated
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from the mean of the measured point quadratic velocities and from the measured

point quadratic pressures, respectively.

Finally, the subsystem energies for each third octave band f1/3 were estimated by

using the relations [10]:

E1 = ρhLxLy
∑

i/fi∈f1/3

v2
i δf (36)

E2 =
LxLyLz
ρairc2

air

∑
i/fi∈f1/3

p2
i δf (37)

where δf is the frequency resolution.

5.2 Comparison of the modal damping loss factors with the experiment

The modal damping loss factors of the plate and the cavity were estimated ex-

perimentally for the different configurations. They were obtained from the time

responses measured on each separated subsystem and using the high-resolution

modal analysis method [39] based on the ESPRIT algorithm. The details of this

method are given in Appendix A. For this experiment, the plate corresponding to

each configuration (i.e. Bare, Visc1, Visc2) was excited by an impact hammer PCB

086E80 and the time responses were measured at several locations with a piezo-

electric B&K accelerometer type 4508. Furthermore, the top opening of the cavity

was closed with a 5 cm concrete slab (to replace the steel plate and avoid flanking

energy transmission) and excited by a loudspeaker with a white noise spectrum.

The pressure decays were measured as the sound source was turned off. Three po-

sitions of the loudspeaker and two microphone locations per source position were

considered for the Bare and Poro configurations.

Fig. 18 presents the experimental modal damping loss factors in comparison with

the numerical ones obtained with Eq. (30) for the plate and Eq. (35) for the cavity
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(see sections 3.3). A zoomed view of the high frequency domain of Fig. 18c is

proposed in Fig. 19 in order to facilitate the comparison for this region presenting

a high modal density for the cavity. Good agreements can be observed in general

when taking into account the fact that the ESPRIT method permits estimating only

the damping loss factors of the lightly damped modes. Indeed, the noise to signal

ratio is not high enough to extract the modal information in the time signal if the

mode is strongly damped or if it does not participate significantly in the response

at the points measured. This is highlighted in particular for the cavity modes with

the poroelastic material for which numerous modes localized in the material are

strongly damped and do not participate in the response at the points measured (out-

side the material). This explains why only a few values of the modal damping loss

factors were estimated experimentally in comparison to the numerical values (see

Fig. 18c). In conclusion, for these cases the good agreement between the calcula-

tions and the measures allowed us to validate the numerical process used to estimate

the modal damping loss factors of the subsystems and the effect of dissipative ma-

terials. Moreover, we underline that regarding these comparisons, the assumption

of neglecting the cross-modal terms appears acceptable in order to approximate the

modal damping loss factors.

5.3 Comparison of the subsystem energy ratios with the experiment

Fig. 20 compares the numerical and experimental energy ratios for the different

configurations. Globally good agreement can be observed above 1 kHz whereas

some discrepancies can be noticed below 1 kHz whatever the configuration. SmEdA

is based on the coupling of resonant modes excited by broadband forces. For low

frequency predictions, two difficulties appear because of reduced modal density
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but also small frequency band excitation. At least one mode has to be resonant in

the band and the coupling coefficient can be badly estimated due to calculations

assuming a large excitation band. The method appears applicable down to the third

octave 315 Hz (see table (2)). The discrepancies observed are likely due to the fact

that the experimental plate boundary conditions do not strictly correspond to the

clamped boundary conditions considered in the calculations. The result is that the

spatial and spectral couplings between the subsystem modes are significantly dif-

ferent. This effect is important only in the low frequency bands because of small

number of resonant modes. Because of averaging, the higher the frequency, the

lower the effect of the boundary conditions, as observed in the earliest develop-

ments of the SEA method [10]. To improve prediction with the present approach,

larger frequency bands can be considered instead of the third octave. It will be also

possible to couple SmEdA with an uncertainty quantification technique in order to

quantify the variance of the energy response, in particular to boundary conditions.

This work is however outside the scope of the present paper and will require further

investigations for which the papers of [11, 56] will serve as starting points.

At 8 kHz, a 5 dB discrepancy can be observed for the V isc configurations. We

associate this discrepancy with a non-modal behaviour of the panel due to con-

siderable damping (i.e. high modal overlap). The direct field may be significant

compared to the reverberant field and it cannot be correctly predicted by SEA type

methods [14, 57].

The SmEdA methodology gives a good estimation of the energy transmission be-

tween the panel and the cavity between these two frequency domains for which the

subsystem behaviour is weakly sensitive to the boundary conditions and dominated

by the reverberant field. It is noteworthy that for the validation, the test case was

designed to stay as close as possible to the assumptions of the methodology pro-
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posed, in particular the assumptions relating to the use of the equivalent models.

The steel panel is flat with no increase in thickness and the viscoelastic layer is

thin. On the other hand, the porous material was placed on a rigid surface and pre-

sented a sufficiently high porosity to neglect the effect of the skeleton. In addition

the use of the equivalent fluid model was well adapted. Apart from these consider-

ations, the present comparisons clearly validate the application of the methodology

proposed on the laboratory test case considered. In the conclusions of the present

paper, and the applicability and limitations of the approach proposed will be dis-

cussed for predicting the viboacoustic behaviour of industrial structures including

viscoelastic layers and porous materials.

6 Conclusions

A methodology was proposed in the framework of SmEdA for predicting the ef-

fect of dissipative materials (i.e. viscoelastic layer patches, poroelastic materials)

on the vibro-acoustic behaviour of complex mechanical structures. The SmEdA

model was based on Finite Element models of the uncoupled-subsystems, taking

the dissipative treatments into account through homogenized material models that

facilitate their introduction in FE models. This also reduced computing times in

comparison to a full model, a feature that is important for re-analysis in view to

optimization. A key point of this approach relied on the use of the Galerkin proce-

dure with the normal modes for estimating the modal damping loss factors of the

subsystems treated. These factors expressed the energy dissipation in the SmEdA

model and depended on the characteristics and the position of the dissipative ma-

terial in the subsystems treated. It should be recalled that the resulting cross-modal

coupling terms associated with subsystem heterogeneities were neglected. Hence,

the modal damping loss factors used were the results of an approximation.

45



The present methodology was applied to a plate-cavity test case with different con-

figurations of dissipative treatments. Two types of comparisons with experiments

were carried out:

- the first concerned the modal damping loss factors which were compared with

experimental values measured by a high-resolution modal technique. Although

some off-diagonal terms of the modal damping matrix may appear significant

compared to the diagonal terms (especially for the cavity with the absorbing

material), good agreements between the calculations and measurements were

observed, thereby validating the equivalent models for these cases and the use

of the Galerkin procedure with normal modes for estimating the modal damping

loss factors;

- The second consisted in comparing the energy ratios predicted and those esti-

mated from point measurements. Discrepancies appeared below 1 kHz, which

can be linked to the plate boundary conditions. Good agreement above 1 kHz

was observed for energy transmissions predicted by SmEdA in different config-

urations of added damping patches and absorbing materials.

For the purposes of validation, the methodology proposed was applied to a test

case conforming to the assumptions of the equivalent homogenized models. We

expect to widen its applicability to more complex systems, which is necessary in

an industrial environment, for instance, to model the vibroacoustic behaviour of a

passenger car or a truck cabin, including the effect of trims and damped treatments.

The use of subsystem modal information estimated by the finite element method as

input data of our numerical process allows us to deal with systems with complex

geometries and mechanical properties with spatial variations. However, some issues

were identified and have to be addressed attentively:

- As underlined in this paper, an important assumption of the present approach
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consists in neglecting the cross-modal terms in the results of the Galerkin method.

This assumption was correctly complied with in the cavity-panel case and it can

be expected to be valid when the dissipative treatment is lightly damped and

covers a large part of the system considered, even if the system has a complex

geometry. However, investigations should be carried out in the future to define

practical criteria to ensure the validity of this assumption;

- The reliability of the finite element modelling of subsystems including the dis-

sipative treatments has to be considered. Attention should be given to the use of

the equivalent models for the dissipative treatments. The equivalent multi-layer

model considered in the present paper can be expected to be a good approxima-

tion for modelling slightly curved panels with added thin viscoelastic layers. For

instance, for truck applications, when the viscoelastic patches are fixed on a rel-

atively flat part of the cabin structure, the model may be assumed to be adapted.

On the contrary, if the pads are fixed on ribs or very curved parts, the equivalent

model considered will be not adapted. For these cases, the use of 3-dimensional

solid elements to represent the viscoelastic materials in the finite element model

may be more appropriate. Likewise, the equivalent fluid model of the porous

material is relevant when the solid phase deformation of the material response

can be neglected. This is the case, for instance, when the bulk modulus of the

porous skeleton is close to zero. This situation is often encountered in car and

truck applications since light weight fibrous materials are commonly used. On

the contrary, modelling a soundproofing material including a heavy mass and an

acoustic spring layer can be problematic. The use of a Biot model for modelling

the stiffness of the acoustic layer may be required. However, in this case, further

developments would be necessary to adapt the process for estimating the modal

damping loss factors with the Galerkin method.

Works are currently in progress to apply the approach proposed to predict sound
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radiated into a truck cabin, including dissipative treatments when the floor is excited

by normal point forces. Comparisons with experimental measurements are being

carried out and several intermediate results can be found in [31].
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Appendix A Modal damping loss factor estimations - ESPRIT algorithm

In order to precisely identify the experimental damping loss factors of the damped

plates and cavity up to the high frequency domain with high modal overlap, we

used a high-resolution modal analysis technique [39] based on the ESPRIT algo-

rithm [38]. This high-resolution method assumes that the signal s(t) is a sum of

complex exponentials x(t) (the modal signal to be determined) and white noise

β(t):

s(t) = x(t) + β(t) =
K∑
k=1

ake
−αktej(2πfkt+φk) + β(t) =

K∑
k=1

bkz
t
k + β(t) (A.1)
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where K is the number of complex exponentials, bk = ake
jφk are the complex am-

plitudes (with ak and φk the modal amplitudes and phases at the point of interest),

and zk = e−αktej2πfk the so-called poles (with fk the modal frequencies in Hz and

αk the modal damping factors in s−1). The modal damping factor αk (also called

modal decay constant in s−1), the modal decay time τk (in s) and the modal damping

loss factor ηk (dimensionless) are linked to each other as follows:

αk =
1

τk
=
ηkωk

2
, ηk =

∆fk,−3 dB

fk
=

αk
πfk

(A.2)

where ωk is the modal angular frequency (in rad.s−1) and ∆fk,−3 dB the half-power

modal bandwidth. The rotational invariance property of the signal subspace (see

Roy et al. [38] for mathematical developments) is used to estimate the modal pa-

rameters: frequencies, damping factors and complex amplitudes. The dimensions

of both subspaces - the signal subspace (spanned by the sinusoids) and the noise

subspace (its supplementary) - must be chosen beforehand and the quality of the es-

timation greatly depends on the correct choice of these parameters. The best choice

for the dimension of the signal subspace is the number of complex exponentials

actually present in the signal. This number (K) is twice the number of real de-

caying sinusoids (modes). Prior to the modal analysis itself, an estimate of this

number is obtained using the ESTER (ESTimation ERror) technique [58] which

consists in minimizing the error on the rotational invariance property of the sig-

nal subspace spanned by the sinusoids. The three main steps of the high-resolution

method are: (a) reconstruction of the acceleration impulse response; (b) signal con-

ditioning (band-pass filtering, downsampling, etc.) as proposed by Laroche [59];

(c) order detection and determination of modal parameters. More details on the dif-

ferent steps of the method are given in Ege et al. [39], where the method is validated

on measured and synthesized signals for the frequency domain where the Fourier
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transform meets its limits (due to high modal overlap or a poor signal-to-noise ra-

tio). Recently, the method has also been successfully applied to orthotropic ribbed

plates [60] and multilayer sandwich composites [61].
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Figures

Figure 1. Vibrating panel coupled with an acoustic cavity and excited by a mechanical point
force

Figure 2. Schematic representation of equivalent single layer modelling for a plate treated
with viscoelastic materials
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Figure 3. Schematic representation of the plate-cavity system excited by a point force (Bare
configuration).

(a) (b) (c)

Figure 4. Description of the three configurations of dissipative treatments: (a) Visc1 config-
uration; (b) Visc2 configuration; (c) Poro configuration.
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Figure 5. (a) Young’s modulus averaged in third octave bands: 2, Eba (1 mm steel plate);
©, Evisc (3 mm viscoelastic layer) and ♦, Eeq,m (4 mm equivalent single layer); (b) Com-
ponent damping loss factor averaged in the third octave band: 2, ηba (1 mm steel plate);
©, ηvisc (3 mm viscoelastic layer) and ♦, ηeq,m (4 mm equivalent single layer)
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Figure 6. Equivalent fluid parameters of the fibrous material in third octave bands: (a) Den-
sity, (b) Compressibility, (c) Damping Loss factors: 2, −χeq,f;©, ηeq,f
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(a)

(b)

Figure 7. Absolute values of the modal damping matrix coefficients
ηbaW

T
mK̄baWm′ + ηeq,mWT

mK̄eq,mWm′ (see Eq.(28)): (a), Visc1 plate; (b), Visc2
plate. Results for the first ten modes of third octave bands 1600 Hz.
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Figure 8. Plate modal damping loss factors as a function of the modal frequency (results of
Eq. (30)): ×, Visc1 plate; •, Visc2 plate. Component damping loss factors by third octave
bands: 2: steel plate ; �: equivalent viscoelastic multilayer.

(a)

(b)

Figure 9. Example of two modeshapes of plate for the Visc1 configuration: (a) At 1584 Hz,
(b) At 1828 Hz
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(a)

(b)

Figure 10. Absolute values of two modal matrices resulting of the Galerkin method: (a),
ηair(P

T
nM̄airPn′); (b), −χeq,f

1+χ2
eq,f

PT
nK̄eq,fPn′
ω̄nω̄n′

. Results for the first ten cavity modes of third oc-

tave bands 1000 Hz.
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Figure 11. Cavity modal damping loss factors as a function of the modal frequency (re-
sults of Eq. (35)): (a), contributions of the different parts of Eq. (35): · , −χeq,f
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;

×, 1
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[
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T
nM̄airPn) + ηeq,f(P
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]
; (b), Total modal damping loss factors (©,

ηn). (2, Experimental empty cavity damping averaged in third octave bands)
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(a)

(b) (c)

Figure 12. Example of three modeshapes of the cavity for the Poro configuration: (a),
469 Hz;(b), 946 Hz; (c), 1003 Hz. Upside down representation of the cavity for ease vi-
sualization.
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Figure 13. SmEdA results for the third-octave band 1 kHz band (Modes indexed with in-
creasing natural frequencies): (a) and (b), modal coupling loss factors between the cavity
modes and the plate modes (βmn); (c) and (d), distribution of modal energy for the cavity
(i.e. mode energy in function of the modal order). Two configurations: (a) and (c), Bare ;
(b) and (d), Visc2.
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(a)

(b)

Figure 14. Subsystem energies in third octave bands for the 4 configurations: (a) Plate
energies, (b) Cavity energies
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Figure 15. Subsystem energy ratio E2/E1 in third octave bands for the 4 configurations: ?,
Bare configuration; 2, Visc1 configuration;©, Visc2 configuration; ♦, Poro configuration
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(a) (b) (c)

Figure 16. Pictures of the different treated subsystems used experimentally: (a), plate of the
Visc1 configuration; (b), plate of the Visc2 configuration; (c), cavity with microphones of
the Poro configuration.

(a) (b) (c)

Figure 17. Experimental setup: (a) Plate-cavity system and the mounted laser vibrometer;
(b) Microphones mounted inside the empty cavity; (c) Excitation device.
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Figure 18. Modal damping loss factors for the treated subsystems: (a), plate of the Visc1
configuration; (b), plate of the Visc2 configuration; (c), cavity of the Poro configuration.
Comparison of two results: •, experimental; ×, numerical
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Figure 20. Subsystem energy ratio in third octave bands for the different configurations:
(a), Bare configuration; (b), Visc1 configuration; (c), Visc2 configuration; (d), Poro config-
uration. Comparison of two results: Solid, experimental; dashed, SmEdA prediction74



Tables

Steel Visco-elastic Equivalent

Thickness (mm) 1 3 4

E (Pa) 2.03e11 Evisc(f) Eeq,m(f)

ρ(kg/m2) 7523 1533 3196

v 0.33 0.35 0.34

η ηba(f) ηvisc(f) ηeq,m(f)

Table 1
Mechanical properties of the plate, viscoelastic layer and equivalent plate model. Frequency
dependent values given in Fig. 5. (Equivalent parameters computed with MOVISAND soft-
ware.)

1/3 octave (Hz) 315 400 500 630 800 1k 1.25k 1.6k

Bare Plate 6 7 10 11 16 19 24 35

Visc1 Plate 6 7 9 14 13 21 25 31

Visc2 Plate 5 6 8 11 15 18 23 30

Empty Cavity 2 3 2 8 14 21 41 90

Poro Cavity 2 3 4 7 14 25 46 82

2k 2.5k 3.15k 4k 5k 6.3k 8k

Bare Plate 41 50 69 87 106 144 185

Visc1 Plate 40 60 65 79 105 134 169

Visc2 Plate 37 49 58 76 100 125 160

Empty Cavity 151 282 567 1154 2096 4227 8754

Poro Cavity 151 288 543 1004 1864
Table 2
Number of subsystem modes in third octave bands for each configuration.
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