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Abstract

Different energy sources can have very different characteristics in terms of power range and
energy demand/cost function also known as efficiency function or energy conversion function.
Introducing these energy sources characteristics in combinatorial optimization problems such
as energy resource allocation problems or energy-consuming activity scheduling problems
results into mixed-integer non-linear problems neither convex or concave. Approximations
via piecewise linear functions have been proposed in the literature. Non-convex optimization
models and heuristics exist to compute optimal breakpoint systems subject to the condition
that the piecewise linear continuous approximator (under- and overestimator) never deviates
more than a given delta-tolerance from the original continuous separable function over a
given finite interval, or to minimize the area between the approximator and the function. We
present an alternative solution method based on the upper and lower bounding of energy
conversion expressions using non necessarily continuous piecewise linear functions with a
relative epsilon-tolerance. Conditions under which such approach yields a pair of mixed
integer linear programs with a performance guarantee are analyzed. Models and algorithms
to compute the non necessarily continuous piecewise linear functions with absolute and relative
tolerances are also presented. Computational evaluations performed on energy optimization
problems for hybrid electric vehicles show the efficiency of the method with regards to the
state of the art.

Keywords: OR in energy, Combinatorial optimization, Non-linear efficiency functions, ,
Piecewise linear bounding

1 Introduction

Various optimization problems resulting from the introduction of energy conversion functions
into combinatorial optimization problems can be modeled as non linear problems or mixed
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S.U.N. : Piecewise linear bounding and ILP for energy optimization

integer non linear problems (MINLP). Let us consider for example energy optimization in
hybrid electric vehicles. In such vehicles the electrical powertrain system has multiple energy
sources that it can gather power from to satisfy the propulsion power requested by the vehicle
at each instant. The problem usually consists in finding at each instant the optimal power split
between the multiple energy sources to satisfy the power demand of a driver on a predefined
road section. The objective is to minimize the total fuel consumption of the vehicle performing
a predefined mission, taking into account the characteristics and the limitations of each energy
source, such as the energy losses happening during any energy transfer. Problem (P) models
such problem for a HEV operating with two energy sources: (1) a Fuel Cell stack (FC) able
to produce power from P 1

min up to P 1
max at each instant i ∈ {1...I}, (2) a storage element

(SE) able to retrieve power up to P 2
min and to produce power up to P 2

max at each instant
i ∈ {1...I}. The amount of energy stored in the SE is also called state of charge (SOC).
To avoid a premature aging of SE, its state of charge is only allowed to vary between Emin

and Emax, typically 25% and 100% of its energy capacity. Problem (P) can be modeled with
equations (1)-(5) where x1

i , x
2
i and x

3
i are the amount of energy produced by FC, produced by

SE and retrieved by SE at instant i ∈ {1...I}. Problem (P) is a (MI)NLP because of non-linear
energy conversion functions f1, f2 and f3 continuous on intervals [P 1

min, P
1
max], ]0, P 1

max] and
]0, P 1

max] respectively and verifying f1(0) = f2(0) = f3(0) = 0; f1(x) = 0,∀x < P 1
min, often

with a discontinuity at P 1
min that requires the insertion of binary variables to be modeled.

(P) min

I∑
i=1

f1(x1i ) //minimize total cost on FC (1)

subject to (s.t.)

x1i + x2i − x3i ≥ Pi, ∀i ∈ {1...I} //power demand satisfaction(2)
I∑

i=1

(f2(x2i )− f3(x3i )) ≤ 0 //final SOC ≥ initial SOC (3)

E0 − Emax ≤
i∑

k=1

(f2(x2k)− f3(x3k)) ≤ E0 − Emin, ∀i ∈ {1...I} //SOC limits (4)

x1i ∈ {0} ∪ [P 1
min, P

1
max], x2i ∈ [0, P 2

max], x3i ∈ [P 2
min, 0], ∀i ∈ {1...I} //domain definition (5)

It is possible for the resulting (MI)NLP modelling an energy optimization problem to be
neither convex or concave even when all energy conversion functions are convex or concave.
Therefore, only small instances may be tractable using standard MINLP solvers. Several
real-world applications have been addressed using piecewise linear approximations of the non
linear functions of the MINLP to obtain a MILP easier to solve (see for example Camponogara
et al. (2007), Borghetti et al. (2008), DAmbrosio et al. (2010), Boukouvala et al. (2016)). Such
approach presents the main advantage of producing solutions faster than purely MINLP-based
approaches if not too many additional binary variables or combinatorial conditions have been
introduced in the process, meaning that the number of pieces of the piecewise linear (pwl)
functions used should be kept to a minimum. Geißler et al. (2012) explain that the approach
suffers from a few drawbacks due to the fact that the nature of the nonlinearities inherent to
the problem may be lost and the solutions obtained from the MILP may have no meaning
for the MINLP. If the solution obtained is not satisfactory, a new pwl approximation may be
performed using a higher number of pieces, to obtain a new MILP to solve. This yields an
iterative solution procedure with a number of iterations unknown a priori which translates into
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high computing times, either because several iterations needed to be performed, or because
an unnecessary large number of pieces were chosen resulting into an unnecessarily large MILP
that required a high solution time.

As an alternative we propose a straightforward two-phase solution method. The first phase
consists in bounding each non linear term from above and below using a pair of piecewise
linear functions satisfying conditions that will be specified in the core of the paper. Contrary
to most publications on piecewise linear approximation which focus on the minimization of
the approximation error for a given number of pieces or breakpoints that may or may not be
equidistant, we aim at minimizing the number of pieces for a given error. The second phase
of the solution method proposed consists in solving two MILP obtained from the replacement
of the non linear functions with either one of the two piecewise linear functions. This paper
focusses on the first phase of the iterative procedure, assuming that the resulting MILPs can
be solved efficiently with a MILP solver. If it is not the case, then a specific solution method
for the resulting MILP may need to be designed and an example of such case is presented in
Ngueveu et al. (2016), which focused on the MILP solution without specifying how to obtain
the piecewise linear functions.

2 State of the art

Several publications exists on the application of piecewise linear (pwl) approximation on
non linear univariate functions to solve MINLP problems, but the issue addressed in the
large majority of them is to minimize the approximation error given a predefined number
of breakpoints or pieces. To the best of our knowledge, only three papers focused on the
specific problem of minimizing the number of breakpoints for a given precision or bounded
approximation error.

Rosen and Pardalos (1986) were the first to propose the computation of breakpoints for a
given error tolerance for concave quadratic functions. The pwl interpolators were built using
equidistant breakpoints and by concavity their interpolators were underestimators. Rosen
and Pardalos identified conditions on the number of breakpoints they required to achieve
a given error tolerance. Geißler et al. (2012) showed that certain cases of general MINLPs
can be solved by just applying techniques purely from the mixed integer linear programming
by approximating the nonlinearities with pwl functions. They proposed to compute a priori
errors for pwl approximations or a priori errors for over- and under- pwl estimators. However,
they did not focus on the computation of optimal (minimal) breakpoint systems.

Rebennack and Kallrath (2015) propose two exact approaches and two heuristics for the
computation of optimal continuous pwl approximators for univariate continuous functions
over a compactum D = [X−, X+]. Their methodology is also applicable if the function has
finitely many discontinuities. Their algorithms handle more general functions than the ones
of Rosen and Pardalos (1986). In addition, their breakpoints are distributed freely and shifts
from the function are allowed at breakpoints, which were shown to be important degrees of
freedom contributing to a significant reduction of the number of breakpoints. The work of
Rebennack and Kallrath (2015) differs from Geißler et al. (2012) in the following aspects.
Geißler et al. do not target on computing minimal breakpoint systems whereas Rebennack
and Kallrath do so. Then the latter solve non-convex NLP problems to global optimality to
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obtain the tightests approximators, tightest in the sense of minimizing the largest deviation.
In addition, Rebennack and Kallrath consider shift variables at breakpoints, which adds an
additional degree of freedom. Since their work is close to ours in some aspects, let us focus on
their contributions before highlighting the main differences and contributions of this paper.

Rebennack and Kallrath (2015) show that ensuring that the approximator and the original
function do not deviate more than a predefined tolerance δ from each other leads to sets of
constraints which have to hold over a continuum, resulting in a semi-infinite programming
(SIP) problem denoted OBSC for “Optimal Breakpoint System using a Continuum approach
for x”. The authors show that it is NP-hard to compute a δ-approximator for an arbitrary
continuous function and propose an iterative solution procedure based on the evaluation of
the continuum conditions only on a discrete set of grid points, resulting into a MINLP model
which is a relaxation of the SIP. The feasibility of the resulting solution with regards to OBSC
is then evaluated by solving an NLP on each interval corresponding to a line-segment of the
pwl approximator, to compute the true maximal deviation between the approximator and the
original function. The algorithm stops if the true deviation is less or equal to δ on all line-
segments. In this case the solution obtained is optimal for OBSC. Otherwise the grid is refined
to obtain a new MINLP to be solved. Two different discretization strategies were proposed,
resulting in MINLP models denoted OBSD and OBSI respectively. OBSI considers a uniform
discretization of the entire interval [X−, X+] whereas OBSD discretizes uniformly the intervals
between pairs of consecutive breakpoints. OBSC, OBSD and OBSI are in general too large
and difficult to solve to optimality even for small numbers of breakpoints and discretization
points, therefore Rebennack and Kallrath (2015) proposed two heuristic methods.

The heuristics methods were based on the successive computation of the breakpoints,
from X+ to X−, maximizing at each iteration the length of the interval corresponding to the
projection of the pwl approximation on the x-axis. This meant solving at each iteration a
problem denoted BSB that can be expressed as follows: given the breakpoint xi ending the
ith piece (which corresponds by continuity to the beginning of the i + 1th piece), compute
the next breakpoint xi+1 (end of the i + 1th piece) so as to maximize xi+1 while ensuring a
deviation of at most δ between the original function and the linear approximation on interval
[xi, xi+1]. Rebennack and Kallrath provided a counter-example showing that maximizing the
length of the intervals do not necessarily lead to an optimal breakpoint system i.e., to a δ-
approximator with the least number of breakpoints. Indeed, it might be beneficial, in certain
cases, to consider intervals between two breakpoints which are not of maximal length, contrary
to what is stated for example in Frenzen et al. (2010). The counter-example is illustrated on
Figure 1. It shows for a function f(x) defined with equation (6) on [X-,X+]=[0,5] that
the authors proposed, and δ = 0.25, that the unique optimal 0.25-approximator uses three
breakpoints whereas maximizing the interval length successively from X- to X+ obtains a
0.25-approximator using four breakpoints. The Forward Heuristic with Moving Breakpoints
(FHMB) solved each BSB problem to optimality with the iterative “grid discretization +
NLP solution” approach. Its main limitation was the necessity to solve many NLPs. The
α-Forward Heuristic with Backward Iterations (FHBI) solved each BSB problem heuristically
by trying different decreasing values for xi+1 with a predefined step parameter α. FHBI solves
less NLPs than FHBM and therefore requires less computing time, but FHBI obtains better
solutions. Using any of the heuristics, it is possible to obtain breakpoint systems satisfying
the required δ-tolerance, and more so, an upper bound on the minimal number of breakpoints.
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continous δ-approximator maximizing interval length
(unique) optimal continuous δ-approximator
f (x) δ-tube around f (x)

x

f
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)

Figure 1: Maximizing the length of the intervals successively is not optimal, in general — f
(x) — δ-tube around f (x) - - (unique) optimal δ-approximator ... δ-approximator maximizing
interval length successively (source: Rebennack and Kallrath (2015), page 628)

f(x) =


1 if x ∈ [0, 2[

0.75x− 0.5 if x ∈ [2, 3[
−0.5x+ 3.25 if x ∈ [3, 4[
0.5x− 0.75 if x ∈ [4, 5]

(6)

It is worth mentioning that there exists publications on piecewise linear approximation
with a minimum number of pieces given a predefined bound on the absolute error in the fields of
data reduction, pattern recognition or classification and ECG waveform preprocessing (Tomek
(1974a), Tomek (1974b), Gritzali and Papakonstantinou (1983)). The main difference with
our problem is that those publications consider as an input a discrete set of points. Their
objective is the find the piecewise linear function with a minimum number of pieces such that
the error for each of the sample point is less than the allowed value δ. Even in cases where
an analytical expression of a continuous function was available, the function was sampled
and the approximation was performed on the set of sample points. Therefore, the algorithms
proposed in these research fields do not ensure the respect of the predefined approximation
error on the entire interval [X−, X+]and are therefore not applicable to our problem. Finally,
the field of piecewise linear approximation of planar curves could be mentionned (Dunham
(1986),Papakonstantinou et al. (1994)), with applications related to shape analysis or pattern
classification, since a non linear fonction f(x) could be represented as a parametric curve
x(t) = t, y(t) = f(t). However, the algorithms proposed in that research field are not applica-
ble to our problems for two main reasons: (i) input curves considered are discrete or digitised,
not continuous ones as ours, and (ii) the error between a point of the original curve and the
approximating planar curve is the Euclidean distance of the point to the nearest point on the
piecewise linear curve, which does not correspond to the approximation error between original
function and the piecewise linear function.

In the view of the state-of-the-art, the contributions of the paper are the following: (1) in-
stead of using continuous pwl δ-approximators, we propose to approximate general univariate
continuous functions with non-necessarily continuous piecewise linear δ-approximators, adding
an additional degree of freedom to obtain a breakpoint system of equal or less breakpoints, (2)
we prove that when discontinuity is allowed, maximizing the interval length produces an opti-
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mal pwl δ-approximator, leading to an exact solution procedure based on the iterative solution
of adapted BSB problems, (3) we introduce relative ε-tolerance and show the benefit of using
it instead of the absolute δ-tolerance, (4) we show that when using relative ε-tolerance, it is
not possible to shift up (down) an optimal approximator to derive an optimal over- (under-)
estimator, contrary to what can be done for when using absolute δ-tolerance, (5) models and
algorithms to compute the discontinuous pwl under- and over-estimator with absolute or rel-
ative tolerance are presented, (6) for solving MINLP involving non linear univariate energy
conversion functions, we propose a solution method based on the upper and lower bounding
of energy conversion expressions using discontinuous piecewise linear functions with a rela-
tive ε-tolerance, and the solution of a pair of mixed integer linear programs, (7) we prove
that such approach yields a performance guarantee when the non linearity is restricted to the
objective-function and finally (8) computational results on energy optimization problems for
hybrid electric vehicles illustrate the efficiency of the method in comparison to state-of-the-art
methods including solution procedures based on approximations with absolute δ-tolerance.

3 Non-necessarily continuous pwl δ-approximation of continu-
ous non-linear functions

Let f : D = [X−, X+] → R be a function on the compact interval D ⊂ R. A function
g : D = [X−, X+] → R is a pwl function with ng ∈ N line-segments if ∃a ∈ Rng , b ∈
Rng , xmin ∈ [X−, X+]ng and if ∀i ∈ [1...ng],∃xmax

i ∈]xmin
i , X+], such that equations (7)-(10)

are verified. Such pwl function is said to be defined by G =
⋃ng
i=1([ai, bi], [x

min
i , xmax

i ]) and the
two end-points xmin

i and xmax
i of each line-segment i are called breakpoints.

g(x) = aix+ bi, ∀i ∈ [1...ng], ∀x ∈ [xmin
i , xmax

i ] (7)
xmax
i = xmin

i+1, ∀i ∈ [1...ng − 1] (8)
xmin

1 = X− (9)
xmax
ng = X+ (10)

A pwl function g is:

• continuous iff it verifies all equations (11)

• or discontinuous if it does not verify all equations (11), i.e ∃j ∈ [1, ng − 1] such that
(aix

max
i + bi) 6= (ai+1x

min
i+1 + bi+1)

• or non-necessarily continuous if the satisfaction of equations (11) is neither required or
forbidden

aix
max
i + bi = ai+1x

min
i+1 + bi+1,∀i ∈ [1, ng − 1] (11)

Definition 3.1 (δ-approximator): A pwl function g : D = [X−, X+] → R is called δ-
approximator of a function f : D = [X−, X+] → R with δ ∈ R+, iff inequation (12) is
verified.

maxx∈D|l(x)− f(x)| ≤ δ (12)
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case 1 (y = Xmax
1 ) : l̃ = l

continuous approximator: AB-BC-CD non necessarily continuous approximator: AE-EC-CD

case 2 (Xmax
1 ≤ y < Xmax

2 ) : n
l̃

= nl

continuous approximator: AB-BC-CD non necessarily continuous approximator: AE-E’C-CD

case 3 (Xmax
2 ≤ y) : n

l̃
< nl)

continuous approximator: AB-BC-CD non necessarily continuous approximator: AE-E’D

Figure 2: Maximization of the first interval (projection on D of the first line-segment)
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Proposition 3.2 Any optimal pwl continuous δ-approximator with n∗ line-segments can be
converted into a pwl non-necessarily continuous δ−approximator with n ≤ n∗ line-segments
where the projection of the first line-segment on interval D is of maximal length.

Proof Let l =
⋃nl
i=1([ai, bi], [x

min
i , xmax

i ]) be an optimal continuous δ-pwl approximator (nl =
n∗) of a continuous function f : D = [X−, X+] → R. Let y ∈ D be the solution value of
problem (PY):

(PY)


max y //maximize interval length

s.t.
|a1x+ b1 − f(x)| ≤ δ, ∀x ∈ [xmin

1 , y] //δ-approximation constraint
y ∈ [xmin

1 , xmax
i ] //domain definition

Let q ∈ [1...nl] be the piece number that verifies xmin
q ≤ y ≤ xmax

q . Breakpoint xmax
1 verifies

|a1x
max
1 + b1 − f(x)| ≤ δ, therefore y ≥ xmax

1 . If y = xmax
1 , then l̃ = l is a pwl continuous δ-

approximator of f with n = n∗ pieces where the projection of the first line-segment on interval
D is of maximal length. Otherwise y > xmax

1 in which case a discontinuous pwl δ-approximator
l̃ with n

l̃
≤ n∗ line-segments where the projection of the first line-segment on interval D is

of maximal length can be defined by L̃ =
⋃n

l̃
i=1([ãi, b̃i], [x̃

min
i , x̃max

i ]) = ([a1, b1], [xmin
1 , y]) ∪

([aq, bq], [y, x
max
q ]) ∪

(⋃n
l̃
i=q+1([ai, bi], [x

min
i , xmax

i ])
)
.

Theorem 3.3 For any continuous function f : D = [X−, X+] → R and any scalar δ ∈
R+, there exists an optimal non-necessarily continuous pwl δ-approximator g defined by G =⋃ng
i=1([ai, bi], [x

min
i , xmax

i ]) such that each line-segment i has a maximal length projection on
the interval [xmin

i , X+].

Proof There exists a continuous δ-approximator function for any continuous function f on
a compactum D and any scalar δ > 0 (Duistermaat and Kol, 2004). Proposition 3.2 can
be applied iteratively on an optimal continuous δ−approximator to obtain an optimal non-
necessarily continuous pwl δ−approximator with intervals of maximal length on D. i.e Ap-
plying proposition 3.2 ensures that the first line-segment has a maximal length projection on
interval D. Let y = x1

max be the resulting breakpoint, then proposition 3.2 can be applied for
function f̃ = f : [xmax

1 , X+] to find the next line-segment of maximal length projection. The
procedure can be repeated until the end of the compactum D is reached, i.e y = X+.

Figure 2 illustrates the three possible cases related to Proposition 3.2. Figure 3(a) illus-
trates the implications of theorem 3.3 for the function f defined with equation (6): maximizing
the length of intervals leads to a discontinous pwl 0.25-approximator of two line-segments,
which is the optimal number of line-segments for any non necessarily continuous pwl 0.25-
approximator of f . In this example optimal continuous and non necessarily continuous pwl
approximators have the same number of line-segments. Figure 3(b) illustrates an example
where it is not the case: one has more line-segments than the other. In the general case, it
can be easily proven that given a continuous function f : D = [X−, X+] → R and given a
scalar δ ∈ R+, if nnnc is the number of line-segments of an optimal non necessarily continuous
pwl δ-approximator of f and if nc is the number of line-segments of an optimal continuous
pwl δ-approximator of f , then

⌈
nc+1

2

⌉
≤ nnnc ≤ nc.
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0 1 2 3 4 5
0

1

2

nnc δ-approximator maximizing interval length
(unique) optimal continuous δ-approximator
f (x) δ-tube around f (x)

x

f
(x
)

0 1 2 3 4 5 6
0

1

2

nnc δ-approximator maximizing interval length
(unique) optimal continous δ-approximator
f (x) δ-tube around f (x)

x

f
(x
)

(a) (b)

Figure 3: Maximizing the length of the intervals successively is optimal for non necessarily
continuous δ-approximators: — f (x) — δ-tube around f (x) - - an optimal continuous δ-
approximator ... an optimal non necessarily continuous δ-approximator

The mathematical models and algorithms from Rebennack and Kallrath (2015) for com-
puting continuous pwl δ-approximators are modified to compute non-necessarily continuous
pwl δ-approximators by considering two shifts per breakpoint instead of one, namely s−b used
for the line-segment ending a breakpoint b and s+

b used for the line-segment starting at break-
point b. In particular, thanks to Theorem 3.3, Algorithm 1 resulting from the adaptation of
Rebennack and Kallrath’s Forward Heuristic with Moving Breakpoints yields an exact solu-
tion method for computing optimal non-necessarily continuous δ-approximators. It’s main
limitation is the necessity to solve an SIP. Section 4 presents, among other things, an exact
method applicable to convex and concave functions that does not need to solve any SIP or
any NLP. The method is shown to provide performance guarantees for functions that are
neither convex or concave but that can be decomposed into convex or concave pieces, if the
decomposition is part of the input.

Algorithm 1 Compute an optimal non-necessarily continuous pwl approximation
Input: Function f ; domain D = [X−;X+]; scalar δ > 0
Output: pwl function g defined by G
1: ng := 0; y = X−;G := ∅;xend := X+

2: while y < X+ do
3: xbegin := y
4: solve SIP (13)-(15) to obtain a, b and y
5: G := G ∪ ([(a, b), (xbegin, y)])
6: ng := ng + 1
7: end while

max y //maximize interval length (13)

s.t.

|ax+ b− f(x)| ≤ δ, ∀x ∈ [xbegin, y] //δ-approximation constraint (14)
y ∈ [xbegin, xend] //domain definition (15)
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4 From pwl δ-approximation to pwl δ-bounding

A benefit of computing δ-approximators optimal in terms of number of breakpoints or line-
segments is to minimize the number of additional binary variables added to obtain the MILP
resulting from the replacement of non linear terms with their pwl approximators. A draw-
back of applying δ-approximation is that the optimal solution of the resulting MILP can be
infeasible with respect to the original MINLP. In this case the solution may not be of interest
for the practitioners who formulated the original problem. An alternative is to use over- and
under-estimators defined as follows.

Definition 4.1 (δ-underestimator): A pwl function l : D → R is a δ-underestimator of a
function f : D→ R with δ ∈ R+ iff it verifies inequation (16).

l(x) ≤ f(x) ≤ l(x) + δ, ∀x ∈ D (16)

Definition 4.2 (δ-overestimator): A pwl function l : D→ R is a δ-overestimator of a func-
tion f : D→ R with δ ∈ R+ iff it verifies inequation (17).

l(x) ≥ f(x) ≥ l(x)− δ, ∀x ∈ D (17)

In the context of energy optimization for hybrid electric vehicles for example, replacing
each non-linear energy loss function with its pwl δ-overestimator yields a MILP solution where
a sufficient or excess amount of energy is produced at each time-step. Since excess energy can
be dissipated as heat (in a resistance inserted in the braking system or in mechanical brakes
present for security reasons) therefore the MILP solution is applicable on a test bench or on
the real world hybrid electric vehicle considered. Having ensured the feasibility of the solution
obtained, it is of interest to provide an estimate of the quality of the solution with respect to
the optimum of the original MINLP. This can be done using a pwl δ-underestimator of the
energy loss function and solving the resulting MILP problem to obtain a lower bound of the
MINLP. Each non-linear function is therefore bounded from above and below with two pwl
functions, yielding two MILPs whose optimal solutions cost verify: zMILP ≤ zMINLP ≤ zMILP.
Table 1 summarizes which estimator should be used for each non-linear term of a MINLP to
obtain a MILP or a MILP in the general case.

Origin non-linear term MILP MILP

Objective-function to minimize +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Constraint of type ≥ +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Constraint of type ≤ +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Table 1: Estimator in replacement of each non-linear term f(x) ≥ 0 to obtain MILP or MILP

Given an optimal continuous pwl δ-approximator g of a function f , an optimal continuous
pwl 2δ-over- (resp. under-) estimator can be obtained from shifting g by δ (resp. −δ),
as stated by Rebennack and Kallrath (2015) i.e. g(x) + δ (resp. g(x) − δ) is a 2δ-over
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(resp. under-) estimator of f . This result can be extended to non-necessarily continuous pwl
approximators and estimators. In addition, in the case of energy optimization for example,
the MINLP can be neither convex or concave even though the individual non-linear energy
loss functions or energy demand/cost conversion functions are convex or concave. Yet, if a
non-linear continuous function f : D→ R is convex (resp. concave) over D with a derivative
efficiently computable at any point of D, then taking advantage of equation (18) it is possible
to compute an optimal δ-underestimator (resp. δ-overestimator) without solving any SIP
or even NLP. Then shifting can be applied to obtain an optimal δ-overestimator (resp. δ-
underestimator).

f is convex over D⇔ f(y) ≥ f(x) + f ′(x)(y − x),∀x, y ∈ D (18)

Let us focus for example on the computation of the optimal δ-underestimator of a non-
linear continuous convex function f with a derivative efficiently computable. The reasoning
hereafter can be adapted to compute the optimal δ-overestimator of concave functions. Thanks
to Theorem 3.3 the objective at each iteration i of the algorithm is to maximize xmax

i for a
given xmin

i . Each line-segment i is tangent to f (otherwise it can be replaced with a line-
segment of identical slope but tangent to f). Therefore the objective at iteration i is to
identify a tangent point qi ∈ [xmin

i , xmax
i ] that defines the slope ai = f ′(qi) and the y-intercept

bi = f(qi)−f ′(qi)qi of line-segment i so that xmax
i is maximized given xmin

i . Given qi, the gap
in function of y defined as f(y)− (f ′(qi)y + f ′(qi)qi) increases when y decreases if y ≤ qi, or
when y increases if y ≥ qi. Therefore, for a given qi, checking whether the δ-approximation
constraint is verified at points xmin

i and xmax
i is sufficient to ensure the validity of the constraint

on the entire interval [xmin
i , xmax

i ]. In this context proposition 4.3 can be enunciated.

Proposition 4.3 Finding the line-segment that maximizes xmax
i for a given xmin

i is equivalent
to solving sequentially two separate problems: (1) maximizing qi for the given xmin

i , and then
(2) maximizing xmax

i for the previously computed qi.

Proof Let xmax
i (q

(k)
i ) be the maximal value possible of xmax

i for a given q(k)
i . The proof of

property 4.3 consists in proving that xmax
i (q

(2)
i ) ≥ xmax

i (q
(1)
i )⇒ q

(2)
i ≥ q

(1)
i . This is done using

equation (18) which leads to 0 ≤ f(y)− (a
(2)
i y + b

(2)
i ) ≤ f(y)− (a

(1)
i y + b

(1)
i ),∀y ≥ q(2)

i .

Algorithm 2 summarizes the resulting procedure that computes an optimal δ-underestimator
of a non-linear convex function f with a derivative efficiently computable at any point of
[X−, X+]. Problems (PQ) and (PY) can be solved to optimality with dichotomy search
methods as illustrated by algorithms 5 and 6 where parameter α is the number of signif-
icant digits for qi, xmin

i and xmax
i . Notice that at no time is there any need to solve an

SIP or NLP. It can be noted that any two consecutive line-segments ([ai, bi], [x
min
i , xmax

i ])
and ([ai+1, bi+1], [xmin

i+1 = xmax
i , xmax

i+1 ]) of the pwl function obtained verify ai 6= ai+1 and
aix

max
i + bi ≤ ai+1x

min
i+1 + bi+1. Their supporting straight lines intersect on a point C of co-

ordinates (xC , yC) such that yC = aixC + bi = ai+1xC + bi+1 and xmin
i ≤ xC ≤ xmax

i and
f(xC) − yC ≤ δ. Consequently, the non necessarily continuous pwl δ-under-estimator com-
puted with Algorithm 2 can be converted into a continuous pwl δ-under-estimator with the
same number of pieces.
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Algorithm 2 can be adapted to compute directly an optimal δ-overestimator of a convex
function: a tangent point qi in this case defines the slope ai = f ′(qi) and the y-intercept
bi = f(xmin

i ) − f ′(qi)xmin
i . It can also be adapted for the pwl bounding of concave functions

with derivatives efficiently computable. Let us consider the case of continuous functions that
are neither concave or convex but that can be decomposed into p pieces, each piece being either
concave or convex. If the decomposition is part of the input, then pwl bounding the function
can be done by bounding each piece separately using the algorithms previously described,
then aggregating the pwl functions obtained. To that end, let ki ∈ D,∀i ∈ {1..p + 1} be
a set of points such that (i) on each interval [ki, ki+1] the function f(x) is either convex or
concave, (ii) k1 = X−, (iii) kp+1 = X+, and (iv) ki < ki+1,∀i ∈ {1..p}. For each interval
[ki, ki+1], let gi be the optimal pwl over-(resp. under-) estimator of f computed with the
algorithms from Section 4. Let g be an over (resp. under) estimator of function f on interval
D, resulting from the union of pwl functions gi, i.e g = ∪i∈{1..p}gi. Let ngi (resp. ng) be the
number of line-segments of gi (resp. g). If n∗ is the number of line-segments of any optimal
pwl over-(resp. over-) estimator of f on interval D, then ng =

∑p
i=1 ngi and equation (19) is

verified.

n∗ ≤ ng ≤ n∗ + p− 1 (19)

Algorithm 2 Compute an optimal non-necessarily continuous pwl δ-underestimator
Input: Convex function f ; domain D = [X−;X+]; scalar δ > 0
Output: pwl function g defined by G
1: ng := 0; y = X−;G := ∅
2: while y < X+ do
3: xbegin := y
4: solve problem (PQ) to obtain q and deduce a = f ′(q), b = f(q)− f ′(q)q

(PQ)


max q //maximize tangent point

s.t.
f(xbegin)− (f(q) + f ′(q)(xbegin − q)) ≤ δ, //δ-approximation constraint

q ∈ [xbegin, X+] //domain definition
5: solve problem (PY) to obtain y

(PY)


max y //maximize ending breakpoint

s.t.
f(y)− (ay + b) ≤ δ, //δ-approximation constraint

y ∈ [q,X+] //domain definition
6: G := G ∪ ([(a, b), (xbegin, y)])
7: ng := ng + 1
8: end while

Algorithm 3 Solve problem (PQ)
Input: Convex function f ; xbegin;X+; δ > 0; α ∈ N
Output: tangent point q, slope a, y-intercept b
1: {q, a, b, 0, 0}=Dichotomy_q(f ,xbegin, X+,δ,α,xbegin, X+, 0, 0, 0) {use Algorithm 5}
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Algorithm 4 Solve problem (PY)
Input: Convex function f ;X+; δ > 0; α ∈ N; tangent point q, slope a, y-intercept b
Output: next breakpoint y
1: {q, 0, 0}=Dichotomy_y(f ,xbegin, X+,δ,α,q, X+, 0, 0, 0) {use Algorithm 6}

Algorithm 5 Dichotomy_q
Input: Convex function f ; xbegin;X+; δ > 0; α ∈ N; Bmin, Bmax; q; a; b
Output: tangent point q, slope a, y-intercept b, lower limit Bmin, upper limit Bmax

1: if Bmax −Bmin ≤ 10−α then
2: q = Bmin; a = f ′(q); b = f(q)− f ′(q)q
3: return q, a, b
4: else
5: ã = f ′(xbegin); b̃ = f(xbegin)− f ′(qi)qi
6: if f(xbegin)− (ãxbegin + b̃) ≤ δ then
7: Bmin = Bmax;Bmax = X+;
8: else
9: Bmax = Bmin + 0.5(Bmax −Bmin)

10: end if
11: {q, a, b, Bmin, Bmax}=Compute_q(f ,xbegin, X+,δ,α,Bmin, Bmax, q, a, b)
12: end if

Algorithm 6 Dichotomy_y
Input: Convex function f ; X+; δ > 0; α ∈ N; q; a; b; Bmin, Bmax

Output: next breakpoint y, lower limit Bmin, upper limit Bmax

1: if Bmax −Bmin ≤ 10−α then
2: y = Bmax

3: return y
4: else
5: if f(Bmax)− (aBmax + b) ≤ δ then
6: Bmin = Bmax;Bmax = X+;
7: else
8: Bmax = Bmin + 0.5(Bmax −Bmin)
9: end if

10: {y, Bmin, Bmax}=Compute_y(f , X+,δ,α,q, a, b,Bmin, Bmax)
11: end if

5 Drawbacks and limitations of pwl δ-bounding

When applying a “δ-bounding + MILP solution” procedure, choosing relevant δ values is a
challenging issue. The chosen value should be orders of magnitude smaller than the result-
ing solution cost to provide an acceptable precision level. After solving the MILP, verifying
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whether the chosen tolerance value δ was sufficiently small in the view of the resulting solu-
tion values is straightforward. If it was not the case then the value of δ is decreased before a
new round of pwl bounding then MILP solution. Such iterative procedure is not satisfactory
because the number of iterations is unknown a priori and the pwl bounding and/or the MILP
solution may require significant computational efforts during each single iteration. An alter-
native is to identify a target precision ∆ of the solution obtained from the MILP with regards
to the optimal MINLP solution value and precompute a priori the corresponding δ values in
function of the chosen ∆. When non linearity occurs in the constraints, the link between δ and
∆ is not obvious. But even when non linearity occurs only in the objective-function, solving
the MINLP resulting from the introduction of the non-linear energy conversion functions into
a combinatorial optimization problem, with the “δ-bounding + MILP solution” procedure and
a target precision ∆ presents significant drawbacks and limitations described in the remainder
of this section.

5.1 Data dependence leading to multiple δ values

Let us consider the problem (1)-(5) for a specific HEV, which, for simplicity, is assumed to have
an ideal supercapacitator (f2(x) = x, f3(x) = x). Therefore the non-linearity in the problem
comes from the objective-function which is composed of I univariate positive non-linear terms
f1(x). Ensuring a final precision of at least ∆ requires to bound f1 with a tolerance δ = ∆/I.
Even if the same target precision ∆ is chosen, different power profiles translate into different
δ values. Even two power profiles with the same time horizon I, may require different δ values
because different power profiles may translate into solution costs which can differ significantly
in order of magnitude, requiring different ∆ values, and therefore different δ values.

To summarize, for any new power profile provided, the pwl bounding of the same function
f1 may need to be redone with a value of δ suitable to the new data set, even though the non-
linear terms themselves remain unchanged. In addition, since the δ errors on the non linear
terms are additive, a longer time horizon means a higher number of univariate terms (f1(xi))
in equation (1), which means that a smaller tolerance δ may be required. This translates into
an increase of the number pieces for the pwl functions, and therefore more binary variables
which adds to the complexity of a MILP that was already penalized by the fact that long
time horizons meant a large set I thus more decision variables x1

i , x
2
i , x

3
i . These all contribute

to a substantial reduction of the size of instances that can be solved efficiently.

5.2 Solution dependence leading to unknown δ values

There exists several cases of MINLP where knowing ∆ is not sufficient to infer the corre-
sponding δ values. Let us consider for example problem (CF) modeling a scheduling problem
with a single energy source. There are a set of activities A, each activity a having a release
date ra, a due date da, a duration pa and an instantaneous energy demand ba. The efficency
function of the energy source used to satisfy the total demand of activities scheduled at each
time period is denoted ρ, i.e a cost or energy consumption of ρ(x) produces an amount of
usable energy x. Therefore ρ is defined on [0,

∑
i∈A bi] and verifies ρ(0) = 0. The goal is to

schedule the tasks so as to minimize the total energy cost. A resulting mathematical model
requires binary decision variable xat that is equal to 1 iff activity a is active at instant t ∈ T .
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Continuous variables wt represent the total energy demand at instant t ∈ T . In the resulting
problem (20)-(24) non-linearity comes from the objective-function which is comprised of |T |
univariate non-linear terms.

(CF) min
∑
t∈T

ρ(wt) //minimize total energy cost (20)

s.t. ∑
t∈T

αatxat ≥ pa, ∀a ∈ A //execute activity a during pa time periods (21)

wt −
∑
a∈A

baxat = 0, ∀t ∈ T //link variables xat and zt (22)

xat ∈ {0, 1}, ∀a ∈ A, t ∈ T //domain definition (23)
wt ∈ R+, ∀t ∈ T //domain definition (24)

Let (CF)∆ refer to the MILP derived from problem (CF) with a target tolerance ∆.
Identifying a relevant δ value for obtaining (CF)∆ is not straightforward. Indeed, in the
general case, the duration of the schedule for the optimal solution is not known a priori.
The only information available is the time horizon |T |, but this value may be far from the
real ending time of the optimal schedule. The “δ-bounding + MILP solution” methodology
requires the computation of a δ-estimator for each single term of the objective-function so
as to satisfy the global tolerance value of ∆. Doing so requires each term to be bounded
with a precision of ∆/|T |. Since |T | may be far from the optimal schedule duration, this can
result into unnecessarily small δ values which lead to pwl functions with a higher number of
pieces, which translates into more binary variables and MILPs more difficult to solve than
necessary given the target tolerance. As an illustration, consider an instance with a time
horizon |T | = 100 having an optimal solution with an ending time of 10 (i.e an optimal
solution x∗ that verifies

∑
a∈A x

∗
a,10 ≥ 1 and

∑
a∈A

∑
t>10 x

∗
at = 0). In this case only 10 terms

are active in the objective-function, therefore bounding each term with a tolerance δ = ∆/10
should have been sufficient to achieve the requested global tolerance ∆. Instead, because the
duration is unknown a priori, each term of the objective function has to be bounded with
precision δ = ∆/100. In summary, a pwl bounding tolerance 10 times higher than necessary
would be requested, leading to pwl bounding functions with many more line-segments pieces
than necessary, leading to a significant increase of the number of binary variables, leading to
MILPs more time consuming than necessary to solve given the tolerance target ∆.

6 Using ε-relative tolerance

To counter the drawbacks identified in Section 5, we propose to perform the upper and lower
bounding of energy conversion expressions using non-necessarily continuous pwl functions
with a relative ε-tolerance.

Definition 6.1 On a compactum D, pwl bounding a function f : D → R∗ with a tolerance
value ε ∈ [0, 100%] consists in identifying two pwl functions (f ε, f ε) that verify equations
(25)-(27).
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f ε(x) ≤ f(x) ≤ f ε(x), ∀x ∈ D (25)
|f(x)− f ε(x)| ≤ ε|f(x)|, ∀x ∈ D (26)

|f ε(x)− f(x)| ≤ ε|f(x)|, ∀x ∈ D (27)

Definition 6.1 generalizes the one of Ngueveu et al. (2016) by taking into account D ⊂ R
instead of D ⊂ R+.

The resulting “ε relative bounding + MILP solution” methodology shares the two advan-
tages of the “δ absolute bounding + MILP solution” methodology . Firstly, pwl bounding
can be applied directly on the univariate non-linear energy conversion function before its in-
sertion into the mathematical model, which may be convex or concave and therefore easier
to approximate or bound than the resulting objective or constraint. Secondly, two MILP
problems denoted (MILP

ε and MILPε) can obtained which provide upper and lower bounds
to the original MINLP. But in addition, thanks to the use of relative tolerance, guarantees
can be obtained on the quality of resulting bounds under conditions expressed in proposition
6.2. Models and algorithms from Sections 3 and 4 can be adapted to ensure satisfaction of
the relative ε tolerance constraints (25)-(27) instead of the absolute δ tolerance constraints
(16)-(17).

Proposition 6.2 Let (P) be a (MI)NLP linearly constrained and with an objective-function
decomposable into a sum of univariate positive linear or non linear functions, i.e verifying
equation (28) where gki : D→ R+, ∀k,∀i are linear or non linear functions. And let P ε (resp.
P ε) be the MILP resulting from the replacement of each non linear term gki with its over-
estimator gεki (resp. under-estimator gε

ki
). Then the solution values of the optimal solutions

z(P ), z(P ε) and z(P
ε
) of the corresponding problems verify equations (29).

(P) min or max z(P ) = g(x) =
∑
k

∑
i

gki(xi) s.t. Ax ≤ B (28)

(1− ε)z(P ) ≤ max

{
z(P ε),

z(P
ε
)

1 + ε

}
≤ z(P ) ≤ min

{
z(P

ε
),
z(P ε)

1− ε

}
≤ (1 + ε)z(P ) (29)

Proof It results from the combination of equations (25) with z(P ) ≤ z(P
ε
) ≤ (1 + ε)z(P ) and

(1− ε)z(P ) ≤ z(P ε) ≤ z(P )

Let f ε(x) (resp. f(x)ε) be an optimal ε-over- (resp. under-) estimator of f . Contrary to
the case of absolute tolerance, if relative tolerance is used then f ε(x)− ε (resp. f(x)ε + ε) is
not necessarily an under- (resp. over-) estimator of f(x). Therefore is not possible to deduce
an optimal ε-over- (resp. under-) estimator of f from applying a shift on an optimal ε-under-
(resp. over-) estimator of f . Each estimator has to be computed separately.

7 Computational results

7.1 Instances, parameter settings and table headings

In order to experimentally evaluate the solution method εPLB+MILP on instances of realis-
tic size, we consider the real-world problem of offline energy optimization for hybrid electric
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vehicles. Comparisons to the best known solution methods from the literature are done on
adapted instances from the real-world data of Ngueveu et al. (2017). The vehicle characteris-
tics are summarized in table 2. With regards to the mathematical model (1)-(5), f1 is a given
polynomial whereas f2 and f3 are linear. Function f1 is convex on [1; 7.04029] and concave
on [7.04029; 60]. The six different power demand profiles available 1 varied in size from I = 40
to I = 1400.

Parameter Value or expression
P 1

min 1 kW
P 1

max 60 kW
P 2

min -60 kW
P 2

max 60kW
Emin 400
Emax 1600 kWs
E0 900 kWs

f1(x) 0.0000002x5 − 0.0000274x4 + 0.00151450x3 − 0.02453270x2

+1.92434870x+ 5.90568630
f2(x) x/0.92470
f3(x) −0.930x

Table 2: HEV characteristics

To the best of our knowledge the best known solution method for the problem was proposed
by (Gaoua et al., 2013) and is based on the reformulation of the problem as a MILP based
on the use of efficiency points from the original data obtained experimentally for the FC.
This approach was replicated by (Chauvin et al., 2015) in an iterative procedure based on
the discretization of the non linear continuous efficiency function in equidistant efficiency
points and solution of the resulting sub-problems with a MILP solver. Applying such method
on problem (P) consists in defining a set KFC of efficiency points k denoted (x̃k, f1(x̃k)),
defining binary variables yki equal to 1 iff efficiency point k is used at time i, replacing xi
with

∑
k∈KFC

yki in the constraints and replacing each non linear term f1(xi) of the objective-
function with the linear term

∑
k∈KFC

f1(x̃k)yki . The resulting MILP is denoted (PK). The
resulting solution method is denote EP+MILP. The only known lower bound for the problem
was proposed by Ngueveu et al. (2017), based an assumption of ideal conditions: that the FC
efficiency remains at its maximum level when it is used, i.e. each term f1(x) is replaced with
αx where α = (maxy∈[P 1

min,P
1
max]

f1(y)
y ). The resulting relaxation was a MILP (Pideal) which

could then be solved to optimality.
Applying εPLB+MILP on problem (P) consists in identifying, for a given value of ε, two

pwl functions f1
ε
and f1ε verifying equations (25)-(27) to replace f1. The two resulting

MILPs are denoted (P
ε
) and (Pε). Four different ε values are tested: 5%, 1%, 0.5% and 0.1%.

Different number of pieces nε and nε of pwl functions f1
ε
and f1ε are obtained, as illustrated

in Tables 3 and 4. To ensure a fair comparison between (PK) and (P
ε
), the same number

1Power profiles derived from the real-wold test drive cycles (Ngueveu et al. (2017)) and available at
http://homepages.laas.fr/sungueve/Data/HEV_I_PowerProfiles.zip.
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of binary variables are is imposed by setting |KFC| = nε in Tables 5 and 6. The solutions
costs of (Pideal) and (Pε) are compared in Table 7. The new best known upper and lower
bounds are summarized in Table 8. Finally, in Table 9 is computed for each instance, each
tolerance value ε and the resulting upper bound UBP

ε , the largest absolute tolerance value
δ =

UBP
ε∗ε
I required to obtain a MILP whose solution cost would be equivalent to UBP

ε . Table
9 then compares the number of pieces of the resulting pwl functions in order to highlight the
differences in sizes of the resulting MILPs.

The PLB algorithms (dichotomic search, heuristic) are programmed with MATLAB R2015b
64bits. The parameter α of the dichotomic search is set to 4. The MILPs (Pε,Pε,PK,Pideal)
are solved with CPLEX 12.6.2 in the single computing thread mode on a desktop computer
Intel(R) Xeon(R) 2.90 GHz CPU E3-1271 v3 with 16 GB of RAM.

Results are reported with the following headings:

• DS: dichotomic search-based algorithm from Section 3 to compute f1ε or f1
ε

• H(1), H(0.5), H(0.1): heuristic obtained by replacing steps 4 and 5 of Algorithm 2 with a
heuristic trying different decreasing values with a step parameter α (= 1, 0.5 or 0.1) to
compute f1ε or f1

ε
, following the same logic as the α-Forward Heuristic with Backward

Iterations from Rebennack and Kallrath (2015)

• P
ε (resp. Pε): MILP to solve, generated by our εPLB+MILP solution method. It

provides an upper bound (resp. lower bound) of problem (P)

• PK: MILP to solve, generated by the EP+MILP solution method from Gaoua et al.
(2013),Chauvin et al. (2015). It provides an upper bound of problem (P)

• Pideal: MILP to solve, generated by the lower bounding procedure from Ngueveu et al.
(2017). It provides a lower bound of problem (P)

• nεXXX (resp. nεXXX ): number of pieces computed by XXX for f1 (resp. f
1) given

relative tolerance ε

• cpuXXX : computing time for XXX (algorithm or MILP solution)

• rlbXXX , UBXXX (resp. LBXXX): results from the solution of MILP XXX in terms
of best bound, best feasible solution cost that is an upper bound for (P) (resp. best
feasible solution cost that is a lower bound for (P))

• nδDS: number of pieces computed by DS for f1
δ
given absolute tolerance δ

• Ω(XXX ,YYY ) relative gap between values XXX and YYY computed with equation
(30)

Ω(XXX ,YYY ) = 100 ∗ XXX −YYY

YYY
% (30)

The remainder of this section is organised in three subsections. Algorithms to perform the
first phase (PLB) of our εPLB+MILP method are analyzed in subsection 7.2. The results of
the second phase and comparisons to the state-of-the-art are explored in subsection 7.3. A
study of the impact of the tolerance type (relative versus absolute) is done in subsection 7.4.
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7.2 Results of the first phase: the piecewise linear bounding of f 1

Tables 3 and 4 report for each value of ε the number of pieces and computing time for upper
and lower bounding the non linear energy conversion function f1. According to equation (19)
the difference between nεDS (resp. nεDS) and the optimum number of pieces of f1ε (resp. f1

ε
)

is at most one. Results show that the heuristic can much faster than the dichotomic search,
but can also obtain much more pieces if the step value chosen is too large. Finding the right
step value a priori is not straighforward and the higher number of pieces would lead to larger
MILPs to be solved in the second phase. For example, the two extra pieces for ε = 0.1%
lead to 2I additional binary variables, which corresponds to an additional number of binary
variables from 80 to 2800 on the given instances. Obviously the computing times of the PLB
algorithms reported in tables 3 and 4 would be reduced if all algorithms were implemented in
C or C++, but the relative differences would remain the same and the conclusion would not
differ.

Dichotomic Search Heuristic with different step values (1, 0.5, 0.1)
ε nεDS cpuDS nε

H(1) cpuH(1) nε
H(0.5) cpuH(0.5) nε

H(0.1) cpuH(0.1)

5.0 % 4 13.2 s 4 0.95 s 4 1.46 s 4 4.64 s
1.0 % 6 32.18 s 7 1.95 s 6 2.81 s 6 10.38 s
0.5 % 9 41.59 s 10 2.6 s 10 3.84 s 9 15.62 s
0.1 % 17 94.06 s 29 7.9 s 22 9.42 s 19 33.93 s

average 9.0 45.26 s 12.5 3.35 s 10.5 4.38 s 9.5 16.14 s

Table 3: Comparison of pwl ε−underestimators from DS, H(1), H(0.5) and H(0.1)

Dichotomic Search Heuristic with different step values (1, 0.5, 0.1)
ε nεDS cpuDS nε

H(1) cpuH(1) nε
H(0.5) cpuH(0.5) nε

H(0.1) cpuH(0.1)

5.0 % 4 10.58 s 4 0.99 s 4 1.3 s 4 4.29 s
1.0 % 6 22.07 s 7 2.01 s 7 2.97 s 6 10.45 s
0.5 % 8 46.81 s 11 3.25 s 10 4.44 s 9 14.99 s
0.1 % 17 73.17 s 29 8.72 s 24 10.62 s 19 33.87 s

average 8.8 38.16 s 12.8 3.74 s 11.3 4.83 s 9.5 15.9 s

Table 4: Comparison of pwl ε−overestimators from DS, H(1), H(0.5) and H(0.1)

7.3 Results of the second phase: the solution of (Pε) and MILP

In this subsection we investigate εPLB+MILP in comparison to best known upper and lower
bounding procedures from the literature. A time limit of 3600 s was set and the table of result
shows “- s” for instances where this time limit was reached. The default stopping criterion
of CPLEX with regards to the relative gap was left unchanged (0.01%). The table of results
shows “<0.01%” for instances where it was the reason for stopping.
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Table 5 compares (P
ε
) and (PK). Each MILP provides four outputs: the best lower bound

(rlb), the upper bound (UB), the relative gap between both bounds (Ω(UB,rlb)) and the
computing time (cpu). Column UBr displays the real total cost of the solution from (P

ε
),

obtained by using f1 instead of f1
ε
to recompute the cost of the solution provided by (P

ε
).

By definition, the recomputed cost can be either equal or up to ε% less than the original cost.
Such recomputation would leave unchanged the cost of (PK)’s solutions because the efficiency
points are belong to the set (x̃k, f1(x̃k)), therefore already verify f1. The results from Table
5 show that 18 instances of out 24 for (PK) reached the time limit while none from the (P

ε
)

did. 19 instances out of 24 for the (P
ε
) and 2 instances for the (PK stopped because of the

relative gap limit. Finally, a systematic improvement of the solution cost is obtained after
recomputation.

εPLB+MILP EP+MILP
Instance ε nε rlbP

ε UBP
ε Ω(UB,rlb) cpuP

ε UBr
P
ε K rlbPK UBPK Ω(UB,rlb) cpuPK

S_40 5.0 % 4 462.7 462.7 0.00 % < 1 s 461.6 4 469.7 487.5 3.67 % - s
1.0 % 6 454.3 454.3 < 0.01 % < 1 s 453.4 6 460.2 460.3 0.01 % 1 s
0.5 % 8 454.8 454.8 < 0.01 % < 1 s 454.4 8 457.2 457.3 0.01 % < 1 s
0.1 % 17 453.6 453.6 < 0.01 % < 1 s 453.5 17 454.6 454.6 0.01 % < 1 s

I_561 5.0 % 4 8885.7 8885.7 0.00 % 4 s 8826.8 4 8878.4 8880.2 0.02 % - s
1.0 % 6 8756.3 8756.4 < 0.01 % 6 s 8741.9 6 8794.5 8798.3 0.04 % - s
0.5 % 8 8765.3 8765.5 < 0.01 % 7 s 8758.7 8 8768.7 8770.6 0.02 % - s
0.1 % 17 8742.5 8742.5 0.00 % 8 s 8741.4 17 8748.2 8748.8 0.01 % - s

U_811 5.0 % 4 2699.7 2699.9 < 0.01 % 27 s 2697.1 4 2635.2 2638.4 0.12 % - s
1.0 % 6 2613.5 2613.5 < 0.01 % 13 s 2607.7 6 2633.3 2635.6 0.09 % - s
0.5 % 8 2618.3 2618.3 0.00 % 10 s 2615.6 8 2616.4 2618.9 0.09 % - s
0.1 % 17 2608.3 2608.5 < 0.01 % 1105 s 2608.2 17 2610.3 2611.4 0.04 % - s

H_734 5.0 % 4 19185.6 19185.6 0.00 % 9 s 18679.7 4 18705.6 18710.0 0.02 % - s
1.0 % 6 18625.3 18626.4 < 0.01 % 13 s 18578.8 6 18767.0 18770.3 0.02 % - s
0.5 % 8 18635.1 18635.2 < 0.01 % 12 s 18597.1 8 18628.0 18629.0 0.01 % 434 s
0.1 % 17 18575.9 18576.3 < 0.01 % 21 s 18571.7 17 18592.1 18593.7 0.01 % - s

N_1200 5.0 % 4 23892.6 23892.8 < 0.01 % 26 s 23592.3 4 23303.0 23313.1 0.04 % - s
1.0 % 6 23136.8 23138.9 < 0.01 % 43 s 23130.4 6 23422.7 23427.6 0.02 % - s
0.5 % 8 23172.1 23173.1 < 0.01 % 59 s 23151.7 8 23151.2 23154.4 0.01 % - s
0.1 % 17 23119.3 23119.8 < 0.01 % 49 s 23119.3 17 23139.4 23139.9 < 0.01 % 702 s

E_1400 5.0 % 4 27302.0 27303.5 < 0.01 % 64 s 27301.5 4 27506.2 27529.9 0.09 % - s
1.0 % 6 27087.5 27087.8 < 0.01 % 68 s 27075.1 6 27248.1 27252.2 0.01 % - s
0.5 % 8 27098.3 27098.7 < 0.01 % 61 s 27091.8 8 27130.1 27135.3 0.02 % - s
0.1 % 17 27076.3 27076.3 < 0.01 % 76 s 27075.4 17 27084.6 27084.7 < 0.01 % 127 s

average < 0.01 % 70 s 0.18 % 2580 s

Table 5: Upper bounds from εPLB+MILP versus EP+MILP

Table 6 gives a clearer picture of the upper bounding results by comparing relative gaps.
The first column shows that on average, recomputing the solution cost of (P

ε
) leads to a

improvement of 0.27% of its value. The next column shows the gaps between the upper
bounds from (P

ε
) and (PK). For high ε values, it is possible for (PK) to be better than (P

ε
).

This can be explained by the fact that efficiency points are chosen on the curve (x, f1(x))
whereas the overestimation f1

ε
can be up to ε% far from f1. However, when ε reduces, (P

ε
)

becomes better than (PK). On average there is a 0.48% gap in favor of (P
ε
). The last column

compares the recomputed upper bound from (P
ε
) with the lower bound from (PK). The goal

is to estimate the minimum predictable gap if (PK) was solved to optimality, for example if
the time limit was increased. It shows an average value of 0.30%, meaning that the average
gap in terms of solutions costs between εPLB+MILP and EP+MILP vary between 0.30% and

v1 2016, v2 2017 Technical report LAAS-CNRS n◦ 16358 20/ 26



S.U.N. : Piecewise linear bounding and ILP for energy optimization

0.48% in favor of εPLB+MILP.

εPLB+MILP εPLB+MILP vs EP+MILP
Instance ε nε Ω(UBr

P
ε ,UBP

ε) Ω(UBr
P
ε ,UB(PK)) Ω(UBr

P
ε ,rlb(PK))

S_40 5.0 % 4 -0.24 % -5.32 % -1.72 %
1.0 % 6 -0.20 % -1.49 % -1.48 %
0.5 % 8 -0.07 % -0.62 % -0.61 %
0.1 % 17 -0.02 % -0.25 % -0.24 %

I_561 5.0 % 4 -0.66 % -0.60 % -0.58 %
1.0 % 6 -0.16 % -0.64 % -0.60 %
0.5 % 8 -0.08 % -0.14 % -0.11 %
0.1 % 17 -0.01 % -0.09 % -0.08 %

U_811 5.0 % 4 -0.10 % 2.23 % 2.35 %
1.0 % 6 -0.22 % -1.06 % -0.97 %
0.5 % 8 -0.10 % -0.13 % -0.03 %
0.1 % 17 -0.01 % -0.12 % -0.08 %

H_734 5.0 % 4 -2.64 % -0.16 % -0.14 %
1.0 % 6 -0.26 % -1.02 % -1.00 %
0.5 % 8 -0.20 % -0.17 % -0.17 %
0.1 % 17 -0.02 % -0.12 % -0.11 %

N_1200 5.0 % 4 -1.26 % 1.20 % 1.24 %
1.0 % 6 -0.04 % -1.27 % -1.25 %
0.5 % 8 -0.09 % -0.01 % 0.00 %
0.1 % 17 0.00 % -0.09 % -0.09 %

E_1400 5.0 % 4 -0.01 % -0.83 % -0.74 %
1.0 % 6 -0.05 % -0.65 % -0.64 %
0.5 % 8 -0.03 % -0.16 % -0.14 %
0.1 % 17 0.00 % -0.03 % -0.03 %

average -0.27 % -0.48 % -0.30 %

Table 6: Relative gaps from solution methods εPLB+MILP and EP+MILP

Table 7 compares (Pideal) and (Pε). For each MILP two outputs are considered: the
optimal solution value which provides a lower bound (LB) for (P) and the computing time
(cpu). The last column shows the relative gap between the bounds, a positive value meaning
that our εPLB+MILP method improved the best known lower bound for the problem. The
results obtained show that (Pε) require a higher computing time than (Pideal) , which was
expected since one has I binary variables whereas the other has nεI binary variables. Also,
for high values of ε (Pε) can be provide worse bounds than (Pideal), which can be explained by
the fact that the underestimation f1

ε
can be up to ε% far from f1. However, for all ε ≤ 1%

the (Pε) was better than (Pideal), allowing εPLB+MILP to produce the now best known lower
bounds of problem (P).

Table 8 presents the best known upper and lower bounds resulting from εPLB+MILP.
Because of equations (25)-(27) a second lower bound LB2 can be deduced from upper bound
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literature εPLB+MILP Gap
Instance LBPideal

cpuPideal
ε nε LBPε cpuPε Ω(LBε

P,LBPideal
)

S_40 444.1 < 1 s 5.0 % 4 439.0 < 1 s -1.15 %
1.0 % 6 449.9 < 1 s 1.30 %
0.5 % 9 452.5 < 1 s 1.90 %
0.1 % 17 453.1 < 1 s 2.04 %

I_561 8626.2 < 1 s 5.0 % 4 8433.1 4 s -2.24 %
1.0 % 6 8668.4 5 s 0.49 %
0.5 % 9 8720.5 5 s 1.09 %
0.1 % 17 8733.8 8 s 1.25 %

U_811 2532.0 2 s 5.0 % 4 2559.6 10 s 1.09 %
1.0 % 6 2587.6 - 2.20 %
0.5 % 9 2605.2 10 s 2.89 %
0.1 % 17 2605.7 2762 s 2.91 %

H_734 18323.7 2s 5.0 % 4 18199.5 8s -0.68 %
1.0 % 6 18437.7 10 s 0.62 %
0.5 % 9 18541.7 12 s 1.19 %
0.1 % 17 18557.3 17 s 1.27 %

N_1200 22356.2 6 s 5.0 % 4 22663.8 45 s 1.38 %
1.0 % 6 22905.6 39 s 2.46 %
0.5 % 9 23056.5 29 s 3.13 %
0.1 % 17 23096.2 50 s 3.31 %

E_1400 26407.3 9 s 5.0 % 4 25923.4 41 s -1.83 %
1.0 % 6 26817.8 65 s 1.55 %
0.5 % 9 26960.5 52 s 2.09 %
0.1 % 17 27049.2 120 s 2.43 %

average 3 s 143 s 1.28 %

Table 7: Lower bounds from εPLB+MILP versus literature

UBP
ε using relation LB2=UBP

ε

1+ε . Likewise, a second upper bound UB2 can be deduced from

lower bound LBPε using relation UB2=LBPε

1−ε . The best lower (resp. upper) bound from
εPLB+MILP is the maximum (resp. minimum) of the two lower (resp. upper) bounds.
Results show that the final gap between the two bounds is as expected lower or equal to ε%.

7.4 Comparison of relative and absolute tolerance for piecewise linear
bounding

This section focuses on the impact of type of tolerance (relative or absolute) used for the
first phase of the PLB+MILP solution method. For each pair “instance, epsilon”, given the
resulting cost of the feasible solution obtained by P, we compute what would have been the
value of absolute tolerance δ to be used for pwl bounding with absolute tolerance in order to
obtain an equivalent solution cost. It is computed as :δ = UB∗ε

I . The value computed is used
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Upper bounds Lower bounds Gap
Instance ε UBP

ε UB2=LBPε

1−ε LBPε LB2=UBP
ε

1+ε Ω(UBbest,LBbest)

S_40 5.00 % 461.60 462.06 438.96 439.62 5.00 %
1.00 % 453.43 454.40 449.86 448.94 0.79 %
0.50 % 454.44 454.76 452.49 452.18 0.43 %
0.10 % 453.48 453.56 453.10 453.03 0.08 %

I_561 5.00 % 8826.80 8876.91 8433.06 8406.47 4.67 %
1.00 % 8741.92 8755.92 8668.36 8655.37 0.85 %
0.50 % 8758.73 8764.32 8720.49 8715.15 0.44 %
0.10 % 8741.39 8742.53 8733.79 8732.65 0.09 %

U_811 5.00 % 2697.13 2694.28 2559.57 2568.69 4.89 %
1.00 % 2607.73 2613.75 2587.61 2581.91 0.78 %
0.50 % 2615.57 2618.29 2605.20 2602.55 0.40 %
0.10 % 2608.19 2608.32 2605.72 2605.59 0.09 %

H_734 5.00 % 18679.75 19157.36 18199.49 17790.23 2.64 %
1.00 % 18578.84 18623.98 18437.74 18394.89 0.77 %
0.50 % 18597.12 18634.88 18541.70 18504.59 0.30 %
0.10 % 18571.66 18575.87 18557.30 18553.10 0.08 %

N_1200 5.00 % 23592.33 23856.59 22663.76 22468.88 4.10 %
1.00 % 23130.40 23137.01 22905.64 22901.39 0.98 %
0.50 % 23151.73 23172.37 23056.50 23036.54 0.41 %
0.10 % 23119.28 23119.35 23096.23 23096.18 0.10 %

E_1400 5.00 % 27301.52 27287.82 25923.43 26001.44 4.95 %
1.00 % 27075.06 27088.65 26817.76 26806.99 0.96 %
0.50 % 27091.81 27095.98 26960.50 26957.02 0.49 %
0.10 % 27075.40 27076.30 27049.23 27048.36 0.10 %

average 1.65 % 1.43 %

Table 8: Best bounds from εPLB+MILP, with UBbest = min(UBP
ε , UB2) and LBbest =

max(LBPε ,LB2)

to perform the pwl over-estimator f1
δ
and the resulting number of pieces nδ is presented.

Table 9 reports the results obtained.
Results show that the δ value varies from on instance to another: for example for ε = 1%,

the δ values vary between 0.032 and 0.254; consequently, the number of pieces vary, here
between 10 and 25. Overall, on average the absolute δ tolerance led to more than twice the
number of pieces than the relative ε tolerance. This can be expected to translate into larger
MILPs with a higher number of binary variables and therefore more difficult to solve in the
second phase of PLB+MILP applied on problem (P) if absolute tolerance was used, only to
reach solutions of similar quality as with relative tolerance.

v1 2016, v2 2017 Technical report LAAS-CNRS n◦ 16358 23/ 26



S.U.N. : Piecewise linear bounding and ILP for energy optimization

using relative tolerance ε using absolute tolerance δ Gap
Instance I ε nε cpuDSε UBMILP

ε δ = UB∗ε
I nδ cpuDSδ Ω(nδ, nε)

S_40 40 5.00 % 4 13.20 s 462.72 0.578 7 21.27 s 75.0 %
1.00 % 6 32.18 s 454.33 0.114 14 61.47 s 133.3 %
0.50 % 8 41.59 s 454.77 0.057 19 81.45 s 137.5 %
0.10 % 17 94.06 s 453.55 0.011 41 205.47 s 141.2 %

I_561 561 5.00 % 4 13.20 s 8885.73 0.792 6 28.28 s 50.0 %
1.00 % 6 32.18 s 8756.36 0.156 12 55.67 s 100.0 %
0.50 % 8 41.59 s 8765.48 0.078 16 80.90 s 100.0 %
0.10 % 17 94.06 s 8742.46 0.016 35 155.06 s 105.9 %

U_811 811 5.00 % 4 13.20 s 2699.92 0.166 12 49.16 s 200.0 %
1.00 % 6 32.18 s 2613.50 0.032 25 125.12 s 316.7 %
0.50 % 8 41.59 s 2618.26 0.016 35 161.68 s 337.5 %
0.10 % 17 94.06 s 2608.51 0.003 83 374.64 s 388.2 %

H_734 734 5.00 % 4 13.20 s 19185.64 1.307 5 21.48 s 25.0 %
1.00 % 6 32.18 s 18626.42 0.254 10 46.31 s 66.7 %
0.50 % 8 41.59 s 18635.21 0.127 13 65.06 s 62.5 %
0.10 % 17 94.06 s 18576.26 0.025 28 126.18 s 64.7 %

N_1200 1200 5.00 % 4 13.20 s 23892.82 0.996 6 24.41 s 50.0 %
1.00 % 6 32.18 s 23138.94 0.193 11 42.43 s 83.3 %
0.50 % 8 41.59 s 23173.09 0.097 15 67.63 s 87.5 %
0.10 % 17 94.06 s 23119.80 0.019 32 155.21 s 88.2 %

E_1400 1400 5.00 % 4 13.20 s 27303.47 0.975 6 19.57 s 50.0 %
1.00 % 6 32.18 s 27087.75 0.193 11 57.73 s 83.3 %
0.50 % 8 41.59 s 27098.73 0.097 15 66.59 s 87.5 %
0.10 % 17 94.06 s 27076.32 0.019 32 146.72 s 88.2 %

average 1.65 % 8.75 45.26 s 0.263 20.38 93.31 s 121.8 %

Table 9: Comparison of relative pwl bounding and absolute pwl bounding

8 Conclusion

The paper presents a two-phase solution method for combinatorial optimization problems
involving non linear energy conversion functions. The first phase consists in bounding the non
linear univariate functions from above and below with two piecewise linear non-necessarily
continuous functions with a relative ε tolerance. The second phase consists in solving the
two mixed integer linear programs obtained when replacing the non linear terms with their
piecewise linear overestimators or underestimators. Models and algorithms to perform the
piecewise linear bounding are presented. Computational results on an energy optimization
problem for hybrid electric vehicles show the efficiency of the εPLB+MILP solution method.
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