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Abstract

Different energy sources can have very different characteristics in terms of power range and
energy demand/cost function also known as efficiency function or energy conversion function.
Introducing these energy sources characteristics in combinatorial optimization problems such
as energy resource allocation problems or energy-consuming activity scheduling problems
results into mixed-integer non-linear problems neither convex or concave. Approximations
via piecewise linear functions have been proposed in the literature. Non-convex optimization
models and heuristics exist to compute optimal breakpoint systems subject to the condition
that the piecewise linear continuous approximator (under- and overestimator) never deviates
more than a given delta-tolerance from the original continuous separable function over a
given finite interval, or to minimize the area between the approximator and the function.
We present an alternative solution method based on the upper and lower bounding of energy
conversion expressions using discontinuous piecewise linear functions with a relative epsilon-
tolerance. We prove that such approach yields a pair of mixed integer linear programs with a
performance guarantee. Models and heuristics to compute the discontinuous piecewise linear
functions with a relative epsilon-tolerance will also be presented. Computational results have
shown the efficiency of the method in comparison to state-of-the-art methods on instances
derived from the literature and on real-world instances from various energy optimization
problems such as energy optimization in hybrid electric vehicles.

1 Introduction

Various optimization problems resulting from the introduction of energy conversion functions
into combinatorial optimization problems can be modeled as non linear problems or mixed
integer non linear problems (MINLP). Let us consider for example energy optimization in
hybrid electric vehicles. In such vehicles the electrical powertrain system has multiple energy
sources that it can gather power from to satisfy the propulsion power requested by the vehicle
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at each instant. The problem usually consists in finding at each instant the optimal power split
between the multiple energy sources to satisfy the power demand of a driver on a predefined
road section. The objective is to minimize the total fuel consumption of the vehicle overall the
mission, taking into account the characteristics and the limitations of each energy source, such
as the energy losses happening during any energy transfer. Problem (P) models such problem
for a HEV operating with two energy sources: (1) a Fuel Cell stack (FC) able to produce power
up to P 1

max at each instant, (2) a storage element (SE) able to retrieve power up to P 1
min and to

produce power up to P 2
max at each instant. In addition, the SE can only work if the quantity

of energy it stores is between Emin and Emax , typically 25% and 100% of its energy capacity.
The amount of energy stored in the SE is also called state of charge (SOC). Problem (P) can
be modeled with equations (1)-(5). Problem (P) is a (MI)NLP because of non-linear energy
conversion functions f1, f2 and f3 continuous on intervals ]0, P 1

max], ]0, P 1
max] and ]0, P 1

max]
respectively and verifying f1(0) = f2(0) = f3(0) = 0.

(P) min
∑
i∈I

f1(x1
i ) (1)

subject to (s.t.)

x1
i + x2

i − x3
i ≥ Pi, ∀i ∈ I (2)∑

i∈I
(f2(x2

i )− f3(x3
i )) ≤ 0 (3)

E0 − Emax ≤
i∑

k=1

(f2(x2
k)− f3(x3

k)) ≤ E0 − Emin, ∀i ∈ I (4)

x1
i ∈ [0, P 1

max], x2
i ∈ [0, P 2

max], x3
i ∈ [P 2

min, 0], ∀i ∈ I (5)

It is possible for the resulting (MI)NLP to be neither convex or concave even though all
energy functions were convex or concave. Therefore, only small instances may be tractable
using standard MINLP solvers. This is the case for various energy optimization problems.
Several real-world applications have been addressed using piecewise linear approximations of
the non linear functions of the MINLP to obtain a MILP easier to solve (for example Borghetti
et al. (2008), Camponogara et al. (2007)). Such approach presents the main advantage of
producing solutions faster than purely MINLP-based approaches if not too many additional
binary variables or combinatorial conditions have been introduced in the process, meaning
that the number of pieces of the piecewise linear (pwl) functions used should be kept to a
minimum. Geißler et al. (2012) explains that the approach suffers from a few drawbacks due
to the fact that the nature of the nonlinearities inherent to the problem may be lost and
the solutions obtained from the MILP may have no meaning for the MINLP. If the solution
obtained is not satisfactory, a new pwl approximation may be performed using a higher number
of pieces, to obtain a new MILP to solve. This leads to an iterative solution procedure with a
number of iterations unknown a priori which may translate into high computing times, either
because several iterations needed to be performed, or because an unnecessary large number of
pieces were chosen resulting into an unnecessarily large MILP requiring a high solution time.

As an alternative we propose a straightforward two-phase solution method. The first phase
consists in bounding each non linear term from above and below using a pair of piecewise
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linear functions satisfying conditions that will be specified in the core of the paper. Contrary
to most publications on piecewise linear approximation which focus on the minimization of
the approximation error for a given number of pieces or breakpoints that may or may not be
equidistant, we aim at minimizing the number of pieces for a given error. The second phase
of the solution method proposed consists in solving two MILP obtained from the replacement
of the non linear functions with either one of the two piecewise linear functions. This paper
focusses on the first phase of the iterative procedure, assuming that the resulting MILPs can
be solved efficiently with a MILP solver. If it is not the case, then a specific solution method
for the resulting MILP may need to be designed and an example of such case is presented in
Ngueveu et al. (2016).

2 State of the art

Several publications exists on the application of piecewise linear (pwl) approximation to solve
MINLP problems, but only a few focused on the specific problem of minimizing the number
of breakpoints with a given precision.

Rosen and Pardalos (1986) first proposed the computation of breakpoints for a given error
tolerance for concave quadratic functions. The pwl interpolators were built using equidistant
breakpoints and by concavity their interpolators were underestimators. Rosen and Pardalos
identified conditions on the number of breakpoints they required to achieve a given error
tolerance. Geißler et al. (2012) showed that certain cases of general MINLPs can be solved by
just applying techniques purely from the mixed integer linear programming by approximating
the nonlinearities with pwl functions. They proposed to compute a priori errors for pwl
approximations or a priori errors for over- and under- pwl estimators. However, they did not
focus on the computation of optimal (minimal) breakpoint systems.

Rebennack and Kallrath (2015) propose two exact approaches and two heuristics for the
computation of optimal continuous pwl approximators for univariate continuous functions
over a compactum D = {X−, X+}. Their methodology is also applicable if the function has
finitely many discontinuities. Contrary to work of Rosen and Pardalos (1986), the algorithms
proposed handle more general functions. In addition, the breakpoints are distributed freely
and shifts from the function are allowed at breakpoints, which were shown to be important
degrees of freedom contributing to a significant reduction of the number of breakpoints. The
work of Rebennack and Kallrath (2015) differs from Geißler et al. (2012) in the following
aspects. Geißler et al. did not target on computing minimal breakpoint systems whereas
Rebennack and Kallrath do so and solve non-convex NLP problems to global optimality lead-
ing to the tightests approximators, tightest in the sense of minimizing the largest deviation.
In addition, they consider shift variables at breakpoints, which adds an additional degree of
freedom. Since their work is close to ours in some aspects, let us focus on their contributions
before highlighting the main differences and contributions of this paper.

Rebennack and Kallrath (2015) show that ensuring that the approximator and the original
function do not deviate more than a predefined tolerance δ from each other leads to sets of
constraints which have to hold over a continuum, resulting in a semi-infinite programming
(SIP) problem denoted OBSC for “Optimal Breakpoint System using a Continuum approach
for x”. The authors show that it is NP-hard to compute a δ-approximator for an arbitrary
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Figure 1: Maximizing the length of the intervals successively is not optimal, in general - f (x)
- δ-tube around f (x) – (unique) optimal δ-approximator . . . δ-approximator maximizing
interval length successively (source: Rebennack and Kallrath (2015), page 628)

continuous function and propose an iterative solution procedure based on the evaluation of
the continuum conditions only at discrete points, resulting into a MINLP model which is a
relaxation of the SIP. The feasibility of the resulting solution with regards to OBSC is then
evaluated by solving NLPs to compute the true maximal deviation between the approximator
and the original function on each piece of the pwl approximator. The algorithm stops if the
true deviation is less or equal to δ. In this case the solution obtained is optimal for OBSC.
Otherwise the grid is refined to obtain a new MINLP to be solved. Two different discretization
strategies were proposed, resulting in MINLP models denoted OBSD and OBSI respectively.
OBSC, OBSD and OBSI are in general too large and difficult to solve to optimality even for
small numbers of breakpoints and discretization points, therefore Rebennack and Kallrath
(2015) proposed two heuristic methods. The heuristics methods were based on the successive
computation of the breakpoints, maximizing at each iteration the length of the successive
intervals corresponding to the projections of the pwl approximations on the x-axis. This meant
solving at each iteration a problem denoted BSB that can be expressed as follows: given the
breakpoint xi ending the ith piece (which corresponds by continuity to the beginning of the
i+ 1th piece), compute the next breakpoint xi+1 (end of the i+ 1th piece) so as to maximize
xi+1 while ensuring a deviation of at most δ between the original function and the linear
approximation on interval [xi, xi+1]. Rebennack and Kallrath provided a counter-example
showing that maximizing the length of the intervals do not necessarily lead to an optimal
breakpoint system i.e., a δ-approximator with the least number of breakpoints. Indeed, it
might be beneficial, in certain cases, to consider intervals between two breakpoints which are
not of maximal length. This counter-example is illustrated on Figure 1. It shows the function
f(x) defined on [X−, X+] = [0, 5] that the authors proposed, together with a (unique) optimal
δ = 0.25-approximator using three breakpoints and a δ = 0.25-approximator using four
breakpoints obtained by a method maximizing the interval length successively from X- to
X+. Using the heuristics, it was possible to obtain breakpoint systems satisfying the required
δ-tolerance, and more so, an upper bound on the minimal number of breakpoints.

In the view of the state-of-the-art, the contributions of the paper are the following: (1)
instead of using continuous pwl δ-approximators, we propose to approximate general univari-
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ate continuous functions with non-necessarily continuous piecewise linear δ-approximators,
adding an additional degree of freedom to obtain a breakpoint system of equal or less break-
points, (2) we prove that when discontinuity is allowed, maximising the interval length leads
to an optimal pwl δ-approximator, leading to an exact solution procedure based on the iter-
ative solution of adapted BSB problems, (3) we introduce relative ε-tolerance and show the
benefit of using it instead of the absolute δ-tolerance, (4) we show that when using relative
ε-tolerance, it is not possible to shift up (down) an optimal approximator to derive an optimal
over- (under-) estimator, contrary to what can be done for when using absolute δ-tolerance,
(5) for solving MINLP involving non linear univariate energy conversion functions, we propose
a solution method based on the upper and lower bounding of energy conversion expressions
using discontinuous piecewise linear functions with a relative ε-tolerance, (6) we prove that
such approach yields a pair of mixed integer linear programs with a performance guarantee
and dominates solution procedures based on approximations with absolute δ-tolerance, (7)
models and heuristics to compute the discontinuous pwl under- and over-estimator with a
relative ε-tolerance are presented and finally (8) Computational results show the efficiency of
the method in comparison to state-of-the-art methods on instances derived from the litera-
ture and on real-world instances from various energy optimization problems such as energy
optimization in hybrid electric vehicles.

3 From continuous to non-necessarily continuous pwl δ-approximation
of continuous non-linear functions

Let f : D = [X−, X+] → R be a function on the compact interval D ⊂ R. A function
g : D = [X−, X+] → R is a pwl function with ng ∈ N line-segments if ∃a ∈ Rng , b ∈
Rng , xmin ∈ [X−, X+]ng and if ∀i ∈ [1...ng],∃xmax

i ∈]xmin
i , X+], such that equations (6)-(9)

are verified. Such pwl function is said to be defined by G =
⋃ng
i=1([ai, bi], [x

min
i , xmax

i ]) and the
two end-points xmin

i and xmax
i of each line-segment i are called breakpoints.

g(x) = aix+ bi, ∀i ∈ [1...ng], ∀x ∈ [xmin
i , xmax

i ] (6)
xmax
i = xmin

i+1, ∀i ∈ [1...ng − 1] (7)
xmin

1 = X− (8)
xmax
ng = X+ (9)

A pwl function g is:

• continuous iff it verifies all equations (10)

• or discontinuous if it does not verify all equations (10), i.e ∃j ∈ [1, ng − 1] such that
aix

max
i + bi 6= ai+1x

min
i+1 + bi+1

• or non-necessarily continuous if the satisfaction of equations (10) is neither required or
forbidden

aix
max
i + bi = ai+1x

min
i+1 + bi+1,∀i ∈ [1, ng − 1] (10)
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Definition 3.1 (δ-approximator): A pwl function g : D = [X−, X+] → R is called δ-
approximator of a function f : D = [X−, X+] → R with δ ∈ R+, iff inequation (11) is
verified.

maxx∈D|l(x)− f(x)| ≤ δ (11)

Proposition 3.2 Any optimal pwl continuous δ-approximator with n∗ line-segments can be
converted into a pwl non-necessarily continuous δ−approximator with n ≤ n∗ line-segments
where the projection of the first line-segment on interval D is of maximal length.

Proof Let l =
⋃nl
i=1([ai, bi], [x

min
i , xmax

i ]) be an optimal continuous δ-pwl approximator (nl =
n∗) of a continuous function f : D = [X−, X+] → R. Let y ∈ D be the solution value of
problem

max y

subject to |a1x+ b1 − f(x)| ≤ δ, ∀x ∈ [xmin
1 , y]

Let q ∈ [1...nl] be the piece number that verifies xmin
q ≤ y ≤ xmax

q . Breakpoint xmax
1 verifies

|a1x
max
1 + b1 − f(x)| ≤ δ, therefore y ≥ xmax

1 . If y = xmax
1 , then l̃ = l is a pwl continuous δ-

approximator of f with n = n∗ pieces where the projection of the first line-segment on interval
D is of maximal length. Otherwise y > xmax

1 in which case a discontinuous pwl δ-approximator
l̃ with n

l̃
≤ n∗ line-segments where the projection of the first line-segment on interval D is

of maximal length can be defined by L̃ =
⋃n

l̃
i=1([ãi, b̃i], [x̃

min
i , x̃max

i ]) = ([a1, b1], [xmin
1 , y]) ∪

([aq, bq], [y, x
max
q ]) ∪

(⋃n
l̃
i=q+1([ai, bi], [x

min
i , xmax

i ])
)
.

Figure 3 illustrates Proposition 3.2 and it can be proven that n ∈ [n
∗+1
2 , n∗].

Theorem 3.3 For any continuous fonction f : D = [X−, X+] → R and any scalar δ ∈
R+, there exists an optimal non-necessarily continuous pwl δ-approximator g defined by G =⋃ng
i=1([ai, bi], [x

min
i , xmax

i ]) such that each line-segment i has a maximal length projection on
the interval [xmin

i , X+].

Proof There exists a continuous δ-approximator function for any continuous fonction f on
a compactum D and any scalar δ > 0 (Duistermaat and Kol, 2004). Proposition 3.2 can
be applied iteratively on an optimal continuous δ−approximator to obtain an optimal non-
necessarily continuous pwl δ−approximator with intervals of maximal length on D. i.e Ap-
plying proposition 3.2 ensures that the first line-segment has a maximal length projection on
interval D. Let y = x1

max be the resulting breakpoint, then proposition 3.2 can be applied for
function f̃ = f : [xmax

1 , X+] to find the next line-segment of maximal length projection. The
procedure can be repeated until the end of the compactum D is reached, i.e y = X+.

Let us investigate the implications of Theorem 3.3 on the example from Figure 1. Let
g be the pwl 0.25-approximator of f obtained by maximizing the length of the successive
intervals corresponding to the projections of the pwl approximations on the x-axis. Maxi-
mizing the length of the first interval given xmin

1 = X− = 0 results into xmax
1 = 11

3 and a
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case 1 (y = Xmax
1 ) : l̃ = l

case 2a (Xmax
1 ≤ y < Xmax

2 ) : n
l̃

= nl

case 2b (Xmax
2 ≤ y) : n

l̃
< nl)

Figure 2: Maximization of the first interval (projection on D of the first line-segment)
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line-segment defined by affine function y = 0.25x+ 0.75. Then, given xmin
2 = xmax

1 maximiz-
ing the length of the second interval results into xmax

2 = X+ = 5. Therefore discontinuous
pwl 0.25−approximator g is composed of ng = 2 line-segments. The existence of a 0.25-
approximator g′ of f composed of ng′ = 1 line-segment would contradict the assumption
that [0, 11

3 ] is the maximal length first interval. Therefore 2 is a lower bound of the optimal
number of line-segments of a 0.25-approximator of f , thereby g is an optimal non-necessarily
continuous 0.25-approximator of f .

It is possible for all mathematical models and algorithms proposed by Rebennack and
Kallrath (2015) for computing continuous pwl δ-approximators to be modified to compute non-
necessarily continuous pwl δ-approximators by considering two shifts per breakpoint instead
of one, namely s−b used for the line-segment ending a breakpoint b and s+

b used for the
line-segment starting at breakpoint b. In particular, thanks to Theorem 3.3, Algorithm 1
resulting from the adaptation of Rebennack and Kallrath’s Forward Heuristic with Moving
Breakpoints yields an exact solution method for computing optimal non-necessarily continuous
δ-approximators.

Algorithm 1 Compute an optimal non-necessarily continuous pwl approximation
Input: Function f ; domain D = [X−;X+]; scalar δ > 0
Output: pwl function g defined by G
1: ng := 0; y = X−;G := ∅;xend := X+

2: while y < X+ do
3: xbegin := y
4: solve SIP (12)-(14) to obtain a, b and y {for example using algorithm 2}
5: G := G ∪ ([(a, b), (xbegin, y)])
6: ng := ng + 1
7: end while

max y (12)

s.t.

|ax+ b− f(x)| ≤ δ, ∀x ∈ [xbegin, y] (13)
a ∈ R, b ∈ R, y ∈ [xbegin, xend] (14)

Algorithm 2 solve SIP (12)-(14) using discrete grid points xk
Input: Function f ; xbegin; xend; δ; initial grid size |K0|
Output: a; b; y
1: |K| = |K0|; z = +∞
2: while z > δ do
3: increase grid size |K|
4: solve NLP (15)-(19) to obtain a, b and y
5: solve NLP z = maxx∈[xbegin,y] |ãx+ b̃− f(x)| using ã = a and b̃ = b
6: end while
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max y (15)

s.t.

|axk + b− f(xk)| ≤ δ, ∀k ∈ K (16)

xk = xbegin +
k

|K|+ 1
(y − xbegin), ∀k ∈ K (17)

xk ∈ [xbegin, y] ∀k ∈ K (18)
a ∈ R, b ∈ R, y ∈ [xbegin, xend] (19)

4 From pwl δ-approximation to pwl δ-bounding

A benefit of computing optimal δ-approximators in terms of number of breakpoints or line-
segments is to minimize the number of additional binary variables added to obtain the MILP
resulting from the replacement of non linear terms with their pwl approximators. A down-
side of applying δ-approximation is that the optimal solution of the resulting MILP can be
infeasible with respect to the original MINLP. In this case the solution may not be of interest
for the practitioners who formulated the original problem. An alternative is to use over- and
under-estimators defined as follows.

Definition 4.1 (δ-underestimator): A pwl function l : D → R is a δ-underestimator of a
function f : D→ R with δ ∈ R+ iff it verifies inequation (20).

l(x) ≤ f(x) ≤ l(x) + δ, ∀x ∈ D (20)

Definition 4.2 (δ-overestimator): A pwl function l : D→ R is a δ-overestimator of a func-
tion f : D→ R with δ ∈ R+ iff it verifies inequation (21).

l(x) ≥ f(x) ≥ l(x)− δ, ∀x ∈ D (21)

In the context of energy optimization for hybrid electric vehicles for example, replacing
each non-linear energy loss function with its pwl δ-overestimator yields a MILP solution
where a sufficient amount of energy is produced at each time-step. Since excess energy can
be dissipated as heat (in a resistance inserted in the braking system or in mechanical brakes
present for security reasons) therefore the MILP solution is applicable on a test bench or on
the real life hybrid electric vehicle considered. Having ensured the feasibility of the solution
obtained, it is of interest to provide an estimate of the quality of the solution with respect to
the optimum. This can be obtained using a pwl δ-underestimator of the energy loss function
and solving the resulting MILP problem to obtain a lower bound of the MINLP. Each non-
linear function is therefore bounded from above and below with two pwl functions, yielding two
MILPs whose optimal solutions cost verify: zMILP ≤ zMINLP ≤ zMILP. Table 1 summarizes
which estimator should be used for each non-linear term of a MINLP to obtain a MILP or a
MILP in the general case.

Given an optimal continuous pwl δ-approximator g of a function f , an optimal continuous
pwl 2δ-over- (resp. under-) estimator can be obtained by shifting g by δ (resp. −δ) (Rebennack
and Kallrath, 2015), i.e. g(x) + δ (resp. g(x)− δ) is a 2δ-over (resp. under-) estimator of f .
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Origin non-linear term MILP MILP

Objective-function to minimize +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Constraint of type ≥ +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Constraint of type ≤ +f(x) +l(x) +l(x)

−f(x) −l(x) −l(x)

Table 1: Estimator in replacement of each non-linear term to generate MILP or MILP

This result can be extended to non-necessarily continuous pwl approximators and estimators.
In addition, in the case of energy optimization for example, the MINLP can be neither convex
or concave even if the individual non-linear energy loss functions or energy demand/cost
conversion functions are convex or concave. Yet, if a non-linear continuous function f : D→ R
is convex (resp. concave) over D with a derivative efficiently computable at any point of D,
then taking advantage of equation (22) it is possible to compute an optimal δ-underestimator
(resp. δ-overestimator) more efficiently. Then shifting can be applied to obtain an optimal
δ-overestimator (resp. δ-underestimator).

f is convex over D⇔ f(y) ≥ f(x) + f ′(x)(y − x),∀x, y ∈ D (22)

Let us focus on the computation of the optimal δ-underestimator of a non-linear convex
function f for example. The reasoning hereafter can later be adapted to concave functions
since their opposite is convex. Thanks to Theorem 3.3 the objective at each iteration i is to
maximize xmax

i for a given xmin
i . Each line-segment i is tangent to f (otherwise it can be

replaced with a line-segment of identical slope but tangent to f). Therefore the objective at
iteration i is to identify a tangent point qi that defines the slope ai = f ′(qi) and the y-intercept
bi = f(qi)− f ′(qi)qi of line-segment i so that xmax

i is maximized. In this context proposition
4.3 can be enunciated.

Proposition 4.3 Finding the line-segment that maximizes xmax
i for a given xmin

i is equivalent
to solving sequentially two separate problems: (1) maximizing qi for the given xmin

i , and then
(2) maximizing xmax

i for the previously computed qi.

Proof Let xmax
i (q1

i ) be the maximal value possible of xmax
i for a given q2

i . The proof of
property 4.3 consists in proving that xmax

i (q2
i ) ≥ xmax

i (q1
i ) ⇒ q2

i ≥ q1
i . This is done using

equation (22) which leads to f(y)− (a2
i y + b2i ) ≤ f(y)− (a1

i y + b1i ),∀y ≥ q2
i .

Also, because the gap f − g between the estimator g and the function f increases the
more the distance to the tangent point increases, therefore, the maximum gap is always at
the extremities, so the test of equation (20) can be restricted to the extremities (no need to
solve an SIP) as illustrated on Algorithm 3. If interval D is discretized into a grid |X | and
if step 4 is replaced by Algorithm 4 then the resulting heuristic can either fails or produce a
feasible pwl g with n∗g ≤ ng ≤ 2n∗g − 1 where n∗g − 1 is the optimal number of line-segments of
a δ-underestimator of f . It is also possible to replace step 5 of Algorithm 3 with Algorithm 5.
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Algorithm 3 Compute an optimal non-necessarily continuous pwl δ-underestimator
Input: Convex function f ; domain D = [X−;X+]; scalar δ > 0
Output: pwl function g defined by G
1: ng := 0; y = X−;G := ∅
2: while y < X+ do
3: xbegin := y
4: solve problem (PQ) with q ∈ D and deduce a = f ′(q), b = f(q)− f ′(q)q

(PQ) max q

subject to f(xbegin)− (f(q) + f ′(q)(xbegin − q)) ≤ δ

5: solve problem (PY) with y ∈ D

(PY) max y

subject to f(y)− (ay + b) ≤ δ

6: G := G ∪ ([(a, b), (xbegin, y)])
7: ng := ng + 1
8: end while

Algorithm 4 Compute q, a, b using grid X
Input: Convex function f ; xbegin; δ > 0; grid X
Output: slope a, y-intercept b, tangent point q
1: n = |X |+ 1; gap=+∞
2: while n ≥ 2 and gap ≥ δ do
3: n = n− 1; q := Xn; a = f ′(q); b = f(q)− f ′(q)q
4: gap := f(xbegin)− axbegin + b
5: end while
6: if gap ≤ δ then
7: return a,b,q
8: else
9: print Failed.

10: end if

Algorithm 5 Compute y using grid X
Input: Convex function f ; X+; xbegin; δ > 0; slope a, y-intercept b; grid X
1: n = |X |+ 1; gap=+∞
2: while n ≥ 2 and gap ≥ δ do
3: n = n− 1; y := Xn
4: gap := f(y)− ay + b
5: end while
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5 Drawbacks and limitations of pwl δ-bounding

One main challenge when applying a “δ-bounding + MILP solution” procedure is to choose
relevant δ values, which should be orders of magnitude smaller than the resulting solution
value to provide an acceptable precision level. Once the MILP has been solved, it is possible
assess whether the chosen tolerance value δ was sufficiently small in the view of the resulting
solution values. If it was not the case then the value of δ is decreased before a new round of pwl
bounding then MILP solution. However, such iterative procedure is not satisfactory because
the number of iterations is unknown a priori and the pwl bounding and/or the MILP solution
may require significant computational efforts during each single iteration. An alternative is
to identify a target precision ∆ of the solution obtained from the MILP with regards to the
optimal MINLP solution value and precompute the corresponding δ values in function of the
chosen ∆. But even if the target precision ∆ is known, the “δ-bounding + MILP solution”
procedure presents major drawbacks and limitations described in the remainder of this section.

5.1 Data dependence leading to multiple δ values

Let us consider the problem (1)-(5) for a specific HEV, which, for simplicity, is assumed
to have an ideal supercapacitator (f̃2(x) = x, f̃3(x) = x). Therefore the non-linearity in the
problem comes from the objective-function which is composed of n univariate non-linear terms
f1(x), where n is the number of time-period of the time horizon considered. Ensuring a final
precision of at least ∆ requires to bound f1 with a tolerance δ = ∆/n. Let us assume that the
chosen HEV has to perform |M| different tests drive cycles of durations (n(m),∀m ∈M time
periods), which translate into m different power profiles (Pi = P ki , ∀i ∈ [1..n(m)],∀m ∈M).

Despite the use of the same HEV which translates into the same non-linear function,
and even if the same target precision ∆ is chosen: (1) different power profiles translate
into different δ values; (2) Even if a profile is an portion of another (i.e. n(k) < n(k′) and
P ki = P k

′
i , ∀i ∈ [1..n(k)]) the full “δ-bounding + MILP solution” procedure has to be restarted

to solve each resulting instance. In addition, even if two power profiles have the same duration,
different δ values may be required because different power profiles may translate into solution
costs which can differ significantly in order of magnitude, requiring different ∆ values, and
therefore different δ values.

To summarize, for any new power profile provided, the pwl bounding of the same function
f1 may need to be redone with a value of δ suitable to the new data set, even though the
non-linear terms themselves have not changed. In addition, since the δ errors on the non linear
terms are additive, a longer time horizon means a higher number of univariate terms (f1(xi))
in equation (1), which means that a smaller tolerance δ may be required. This translates into
an increase of the number pieces for the pwl functions, and therefore more binary variables
which adds to the complexity of a MILP that was already penalized by the fact that long
time horizon meant a large set I thus more decision variables x1

i , x
2
i , x

3
i . These all contribute

to a substantial reduction of the size of instances that can be solved efficiently.

5.2 Solution dependence leading to unknown δ values

There exists several cases of MINLP where knowing ∆ is not sufficient to infer the corre-
sponding δ values. Let us consider for example problem (CF) modeling a scheduling problem
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with a single energy source. There are a set of activities A, each activity a having a release
date ra, a due date da, a duration pa and an instantaneous energy demand ba. The efficency
function of the energy source used to satisfy the total demand of activities scheduled at each
instant is denoted ρ, i.e a cost or energy consumption of ρ(x) produces an amount of us-
able energy x. Therefore ρ is defined on [0,

∑
i∈A bi] and verifies ρ(0) = 0. The goal is to

schedule the tasks so as to minimize the total energy cost. A resulting mathematical model
requires binary decision variable xat that is equal to 1 iff activity a is active at instant t ∈ T .
Continuous variables wt represent the total energy demand at instant t ∈ T . The objective
function (23) aims at minimizing the total energy cost. Constraints (24) set each task a in
process during at least pa instants. Constraints (25) link variables wt and xat. Constraints
(26)-(27) give the domains of the variables. In the resulting problem non-linearity comes from
the objective-function which is comprised of |T | univariate non-linear terms.

(CF) min
∑
t∈T

ρ(wt) (23)

s.t. ∑
t∈T

αatxat ≥ pa, ∀a ∈ A (24)

wt −
∑
a∈A

baxat = 0, ∀t ∈ T (25)

xat ∈ {0, 1}, ∀a ∈ A, t ∈ T (26)
wt ∈ R+, ∀t ∈ T (27)

Let (CF)∆ refer to the MILP derived from problem (CF) with a target tolerance ∆.
Identifying a relevant δ value for obtaining (CF)∆ is not straightforward. Indeed, in the
general case, the duration of the schedule for the optimal solution is not known a priori.
The only information available is the time horizon |T |, but this value may be far from the
real ending time of the optimal schedule. The “δ-bounding + MILP solution” methodology
requires the computation of a δ-estimator for each single term of the objective-function so
as to satisfy the global tolerance value of ∆. Doing so requires each term to be bounded
with a precision of ∆/|T |. Since |T | may be far from the optimal schedule duration, this can
result into unnecessarily small δ values which lead to pwl functions with a higher number of
pieces, which translates into more binary variables and MILPs more difficult to solve than
necessary given the target tolerance. As an illustration, consider an instance with a time
horizon |T | = 100 having an optimal solution with an ending time of 10 (i.e an optimal
solution x∗ that verifies

∑
a∈A x

∗
a,10 ≥ 1 and

∑
a∈A

∑
t>10 x

∗
at = 0). In this case only 10 terms

are active in the objective-function, therefore bounding each term with a tolerance δ = ∆/10
should have been sufficient to achieve the requested global tolerance ∆. Instead, because the
duration is unknown a priori, each term of the objective function has to be bounded with
precision δ = ∆/100. In summary, a pwl bounding tolerance 10 times higher than necessary
would be requested, leading to pwl bounding functions with much more pieces than necessary,
leading to a significant increase of the number of binary variables, leading to MILPs more
time consuming than necessary to solve given the tolerance target.
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5.3 Dependence on the instance

The two previous subsections focussed on problems where the non-linearity appeared in an
objective-function which could be decomposed into a sum of non-linear univariate terms. In
this case the given target tolerance ∆ can be split among the terms of the univariate terms
objective-function to deduce the δ-bounding tolerance. In the case where non-linearity exists
in the constraints, for example if the HEV vehicle uses a super-capacitor with non linear loss
functions f2 and f3, then the link between the target solution tolerance ∆ and the individual
δ-bounding tolerance to apply to functions f2 and f3 is not obvious.

The various drawbacks described in the current Section participate to the difficulty of
choosing a priori a relevant tolerance value δ when applying the “δ-bounding + MILP solution”
procedure to solve a MINLP resulting from the introduction of non-linear energy conversion
functions into a combinatorial optimization problem.

6 Using ε-relative tolerance

To counter the drawbacks identified in Section 5, we propose to perform the upper and lower
bounding of energy conversion expressions using non-necessarily continuous pwl functions
with a relative ε-tolerance.

Definition 6.1 Pwl bounding a function f on a compactum D with a tolerance value ε ∈
[0, 100%] consists in identifying two pwl functions (f ε, f ε) that verify equations (28)-(30).

f ε(x) ≤ f(x) ≤ f ε(x), ∀x ∈ D (28)
|f(x)− f ε(x)| ≤ ε|f(x)|, ∀x ∈ D (29)

|f ε(x)− f(x)| ≤ ε|f(x)|, ∀x ∈ D (30)

Definition 6.1 generalizes the one of Ngueveu et al. (2016) by taking into account D ⊂ R
instead of D ⊂ R+.

The resulting “ε relative bounding + MILP solution” methodology presents several ad-
vantages. Firstly, pwl bounding can be applied directly on the non-linear energy conversion
function before its insertion into the mathematical model, which is often a univariate function
that may be convex or concave and therefore easier to approximate or bound. Secondly, two
MILP problems denoted (MILP

ε and MILPε) can obtained which provide upper and lower
bounds to the original MINLP. Finally, thanks to the use of relative tolerance, guarantees
can be obtained on the quality of resulting bounds (see for example proposition 6.2). Models
and algorithms from Sections 3 and 4 can be adapted to ensure satisfaction of the relative ε
tolerance constraint instead of the absolute δ tolerance constraint.

Proposition 6.2 Let (P) be a (MI)NLP linearly constrained and with an objective-function
decomposable into a sum of univariate positive linear or non linear functions, i.e verifying
equation (31) where gki : D → R+,∀k, ∀i are linear or non linear functions. And let P ε

and P ε be the MILP resulting from the replacement of gki with over-estimator gεki or under-
estimator gε

ki
respectively. Then the solution values of the optimal solutions z(P ), z(P ε) and
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z(P
ε
) of the corresponding problems verify equations (32).

(P) min or max z(P ) = g(x) =
∑
k

∑
i

gki(xi) s.t. Ax ≤ B (31)

max

{
z(P ε),

z(P
ε
)

1 + ε

}
≤ z(P ) ≤ min

{
z(P

ε
),
z(P ε)

1− ε

}
(32)

Proof It results from the combination of equations (28) with z(P ) ≤ z(P
ε
) ≤ (1 + ε)z(P ) and

(1− ε)z(P ) ≤ z(P ε) ≤ z(P )

Given an optimal pwl ε-under- (resp. over-) estimator g of a function f , it is not straight-
forward to deduce a valid ε-over- (resp. under-) estimator of f because it is no longer possible
to apply a shift g by ε. Indeed f

ε
(x) − ε (resp. f(x)ε + ε) is not an under- (resp. over-)

estimator of f(x). Heuristics to obtain pwl upper and lower bounding functions for convex or
concave functions defined on R+ are available in Ngueveu et al. (2014).

7 Preliminary computational results

Results on a scheduling problem under a non-reversible energy source are available in (Ngueveu
et al., 2016). Algorithms proposed in (Ngueveu et al., 2014) were applied on convex or
concave sections of a realistic energy conversion function provided by researchers in Electrical
Engineering. The function expressed the energy demand in function of the energy cost and
could not be easily inverted. The resulting pwl functions could be easily inverted without
any loss of precision before their introduction into the mathematical model of the preemptive
scheduling problem. The computational evaluation on a large set of instances show final gaps
between the best upper and lower bounds found, in the best cases even smaller than half of
ε% and in the worst cases equal to ε%.

Hereafter are preliminary results on the problem of energy optimization for hybrid electric
vehicles introduced in Section 1. Recall that the hybrid electric system of the vehicle consid-
ered has two energy sources: a Fuel Cell stack (FC) and a Storage Element (SE). The energy
efficiency of each component is measured by the ratio between the amount of useful energy
produced by the component and the total energy spent by the component. The amount of
useful and usable energy is equal to the energy spent minus the energy losses. Figure 3 illus-
trates an instance used in computational evaluations in the literature. It is composed of an
efficiency curve of the FC, a loss curve of the SE and a power demand profile of a vehicle on a
highway. The goal is to minimize the total FC fuel cost for the vehicle which follows a given
profile of power demands, by optimizing, the distribution of the power at each instant on
the two sources taking into account their state of charge limitations and efficiency functions.
With regards to the mathematical model (1)-(5), f1 = fFC is a given polynomial whereas
f2(x) = ainx and f2 = aoutx where ain and aout are given constants.

To the best of our knowledge the best known solution method for the problem was proposed
by (Gaoua et al., 2013) and was based on the reformulation of the problem as a MILP based
on the use of efficiency points from the original data obtained experimentally for the FC.
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Figure 3: A hybrid electric vehicle instance

This approach was replicated by (Chauvin et al., 2015) in an iterative procedure based on the
discretization of the non linear continuous efficiency function in equidistant efficiency points
and solution of the resulting sub-problems with branch-and-bound. Tables 2 and 3 compare
the results obtained from that efficiency points based method and our piecewise-linear based
method on the instance illustrated on Figure 3. The total duration of the profile is 750s with
a time step of 1s which provides |I| = 750 instants.

Applying the efficiency points solution method on problem (P) consists in defining a set
KFC of efficiency points k denoted (x̃k, f1(x̃k)), defining binary variables yki equal to 1 iff effi-
ciency point k is used at time i, replacing xi with

∑
k∈KFC

yki in the constraints and replacing
each non linear term f1(xi) of the objective-function with the linear term

∑
k∈KFC

f1(x̃k)yki .
The resulting MILP is denoted (PKFC

). Applying the pwl bounding solution method on prob-
lem (P) consists in identifying two pwl functions f εFC and f ε

FC
verifying equations (28)-(30)

to replace f1. The two resulting MILPs are denoted (P
ε
) and (Pε). Different ε values lead to

different number of pieces nε and nε of pwl functions f εFC et f ε
FC

. To ensure a fair comparison
between the solution two methods being compared, the same number of binary variables have
been used by enforcing either |KFC| = nε or |KFC| = nε.

Table 2 show that the pwl bounding based method produced better feasible solutions
than the efficiency points based method. Table 3 show that the best upper and lower bounds
computed have a gap smaller than ε.

ε nε z(P
ε
) cpu(P

ε
) |KFC| z(PKFC

) cpu(PKFC
)

0.5 % 9 18691.6 kWs 63.9 s 9 18694.8 kWs 197.5 s
0.3 % 12 18653.8 kWs 89.5 s 12 18662.1 kWs 122.7 s
0.1 % 20 18629.4 kWs 54.4 s 20 18638.8 kWs 183.4 s

Table 2: Comparison of feasible solutions from efficiency points and pwl solution methods

8 Conclusion

This paper presents a two-phase solution method for combinatorial optimization problems
involving non linear energy conversion functions. The first phase consists in bounding the non
linear univariate functions from above and below with two piece-wise linear non-necessarily
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ε nε z(Pε) cpu(Pε) UB LB gap

0.5 % 9 18597.0 kWs 24.5 s 18598.6 kWs 18690.4 kWs 0.49%
0.3 % 12 18597.3 kWs 46.6 s 18598.0 kWs 18653.3 kWs 0.30%
0.1 % 20 18611.1 kWs 53.1 s 18611.1 kWs 18629.4 kWs 0.10%

LB = max
{
z(Pε),

z(Pε)
(1+ε)

}
, UB = min

{
z(P

ε
),
z(Pε)
(1−ε)

}
, gap=(UB-LB)/LB

Table 3: Lower bounds and best bounds from the pwl bounding-based solution method

continuous functions with a relative ε tolerance. The second phase consists in solving the
two mixed integer linear programs obtained when replacing the non linear terms with their
overestimators or underestimators. Models and algorithms to perform the pwl bounding are
presented. Preliminary computational results show the efficiency of the solution method on
energy optimization problems.
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