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DEGREES OF ITERATES OF RATIONAL MAPS ON NORMAL PROJECTIVE

VARIETIES
NGUYEN-BAC DANG

ABSTRACT. Let X be a normal projective variety defined over an algebraically closed field of arbi-
trary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant
rational selfmap of X, recovering former results by Dinh, Sibony [DS05b], and by Truong [Trul6).
Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their
birational invariance. Our approach exploits intensively positivity properties in the space of numer-
ical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality
first obtained by Xiao [Xiald| and Popovici [Pop16], which generalizes Siu’s inequality to algebraic
cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up
to a uniform constant by the norm of its action by pull-back on the space of numerical classes in
X.
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INTRODUCTION

Let f : X --» X be any dominant rational self-map of a normal projective variety X of dimension
n defined over an algebraically closed field x of arbitrary characteristic. Given any big and nef (e.g
ample) Cartier divisor wx on X, and any integer 0 < k < n, one defines the k-th degree of f as
the intersection product:

degk,HX(f) = (WTH?(_k : W;Hég(),
where m; and 7y are the projections from the graph of f in X x X onto the first and the second
factor respectively.

The behaviour of the sequence of degrees (degy, 5. (f?)), and especially its growth when p — 400
is of crucial importance in the study of the dynamics of f. It controls the topological entropy of
[ ([Yom87], [Gro87], [DS05D]), and the growth of the number of isolated periodic points when the
period goes to infinity ([DNTIL6]). Its understanding is also the key for the construction of ergodic
invariant measures ([BS92|, [Sib99],[DS05a], [Gue05|, [DTV10|, [DS10], [DDG11]). The growth of
the degrees appears as an essential tool when exploring algebraic properties of groups of birational
transformations of projective varieties (see [Giz80], [DE01], [Canll], [BD15], [BC16] for surfaces,
|DS04a] for the study of commutative automorphism groups in dimension > 3 and |[CZ12|, [Zhal4]
for some characterizations of positive entropy automorphisms in higher dimension).

Our main theorem can be stated as follows.

Theorem 1. Let X be a normal projective variety of dimension n and let Hx be a big and nef
Cartier divisor on X.

(i) There is a positive constant C' > 0 such that for any dominant rational self-maps f,g on
X, one has:

degk,HX(f 0g) < Cdegk,HX(f> degk,HX (9)-
(ii) For any big nef Cartier divisor H on X, there exists a constant C' > 0 such that for any
rational self-map f on X, one has:

1 < degy, 17, (f) <cC.

C - degk,H;( (f)

Observe that Theorem (ii) implies that the degree growth of f is a birational invariant, in the
sense that there is a positive constant C' such that for any birational map ¢g : X' --» X with X’
projective, and any big nef Cartier divisor Hxs on X', one has

l o degk,HX (f7) <C.

C  degyy,, (97 o frog) —
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for any p € N. Fekete’s lemma and Theorem (1) also imply the existence of the dynamical degree
(first introduced in [RS97| for rational maps of the projective space) as the following quantity:

Me(f) = pli)ffoo degk,HX (fp)l/p .

The independence of A (f) under the choice of Hy, and its birational invariance are the consequence
of Theorem [1} (ii) .

When k = C, Theorem [l| was proved by Dinh and Sibony in [DS05b], and further generalized
to compact Kéhler manifolds in [DS04b]|. The core of their argument relied on a procedure of
regularization for closed positive currents of any bidegree ([DS04b, Theorem 1.1|) and was therefore
transcendental in nature. By the Lefschetz principle Dinh and Sibony’s argument also proves
that the k-th dynamical degree of any rational dominant map is well-defined when « is a field
of characteristic zero. Recently, Truong [Trul5| managed to get around this problem and proved
Theorem [I] for arbitrary smooth varieties using an appropriate Chow-type moving lemma. He went
further in [Trul6] and obtained Theorem [1|for any normal variety in all characteristic by applying
de Jong’s alteration theorem (|Jon96]). Note however that he had to deal with correspondences
since a rational self-map can only be lifted as a correspondence through a general alteration map.
Our approach avoids this technical difficulty.

To illustrate our method, let us explain the proof of Theorem (1} when X is smooth, £ = 1 and
f, g are regular following the method initiated in [BFJO8, Proposition 3.1]. Recall that a divisor
a on X is pseudo-effective and one writes a > 0 if for any ample Cartier divisor H on X, and any
rational € > 0, a suitable multiple of the Q-divisor a+ € H is linearly equivalent to an effective one.

Recall also the fundamental Siu inequalityf] ([Laz04, Theorem 2.2.13], [Cutl5]) which states:

(- B
a < n— —-———=-0, 1
5 B (1)
for any nef divisor «, and any big and nef divisor 5.
Since the pullback by a dominant morphism of a big nef divisor remains big and nef, we may

apply toa=g"f"Hx and = f*Hy, and we get

degkz,HX (f )
(H%)
Intersecting with the cycle Hy ! yields the submultiplicativity of the degrees with the constant
C=n/(HY).
We observe that the previous inequality can be easily extended to complete intersections by

cutting out by suitable ample sections. In particular, we get a positive constant C' such that for
any big nef divisors o and 3, one has:

g f*Hx <n g Hx .

(@* - )
b X P gk 9

a’ <O D) B (2)
Such inequalities have been obtained by Xiao ([Xial5]) and Popovici (|[Popl6]) in the case k = C.
Their proof uses the resolution of complex Monge-Ampére equations and yields a constant C' = (fl)
On the other hand, our proof applies in arbitrary characteristic and in fact to more general classes
than complete intersection ones. We refer to Theorem |3 below and the discussion preceding it for
more details. Note however that we only obtain C' = (n — k + 1)¥, far from the expected optimal
constant of Popovici and Xiao. Once (2)) is proved, Theorem (1] follows by a similar argument as in
the case k = 1.

Lthis inequality is also referred to as the weak transcendantal holomorphic Morse inequality in [LXT5]
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Going back to the case where X is a complex smooth projective variety, recall that the degree
of f is controlled up to a uniform constant by the norm of the linear operator f**, induced
by pullback on the de Rham cohomology space H2:(X)g ([DS05D, Lemma 4]). One way to
construct f** is to use the Poincaré¢ duality isomorphisms 1y : H¥ (X R) — Hy, (X, R),
Yr, : HiE(Dy, R) — Hano,(T'y, R) where Hi(X,R) denotes the k-th simplicial homology group of
X. The operator f** is then defined following the commutative diagram below:

1 %

Yr
H;(Tr,R) — Hypop (', R) ——= Hyy 0 (X, R)

| 5

Hip (X, R) Hip(X,R),

f.’k

where I'y is a desingularization of the graph of f in X x X, and 7, w3 are the projections from I's
onto the first and second factor respectively.

To generalize this control to our setting we need to find a replacement for the de Rham
cohomology group H2%(X)g and define suitable pullback operators. When X is smooth, one
natural way to proceed is to consider the spaces Nk(X )r of algebraic R-cycles of codimension
k modulo numerical equivalence. The operator f** is then simply given by the composition
T o : NF(X)p — N¥(X)g.

When X is singular, then the situation is more subtle because one cannot intersect arbitrary
cycle classes in general One can consider two natural spaces of numerical cycles N*(X)g and
Ny (X)r on which pullback operations and pushforward operations by proper morphisms are defined
respectively. More specifically, the space of numerical k-cycles Ni(X)g is defined as the group of
R-cycles of dimension k£ modulo the relation z = 0 if and only if (p*z- Dy - ... Deyy) = 0 for any
proper flat surjective map p : X’ — X of relative dimension e and any Cartier divisors D; on X'.
One can prove that N (X)g is a finite dimensional vector space and one defines N*(X)g as its dual
HOIIl(Nk (X)[R, R)

Note that our presentation differs slightly from Fulton’s definition (see Appendix [A|for a com-
parison), but we also recover the main properties of the numerical groups.

As in the complex case, we are able to construct Poincaré duality maps ¢x : N¥(X)g —
N,k(X)gr and Yr, : Nk(Ff)R — N,_x(I'f)r, but they are not necessarily isomorphisms due to
the presence of singularities. As a consequence, we are only able to define a linear map f** as
fok =1, 0 Yr, 0Ty : N*(X)gr — Np_ix(X)r between two distinct vector spaces. Despite this
limitation, we prove a result analogous to one of Dinh and Sibony. The next theorem was obtained
by Truong for smooth varieties ([Trul6l Theorem 1.1.(5)]).

Theorem 2. Let X be a normal projective variety of dimension n. Fix any norms on Nk(X)R

and N,,_i(X)r, and denote by || - || the induced operator norm on linear maps from N*(X)g to

N, x(X)r. Then there is a constant C > 0 such that for any rational selfmap f: X --» X, one
has: .
1 *

S 5

5 h degk,HX (f)

Our proof of Theorem |2 exploits a natural notion of positive classes in Nk’(X )r combined with
a strengthening of to these classes that we state below (see Theorem .

2an arbitrary curve can only be intersected with a Cartier divisor, not with a general Weil divisor.
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To simplify our exposition, let us suppose again that X is smooth. As in codimension 1, one
can define the pseudo-effective cone Psef*(X) as the closure in N*(X)g of the cone generated by
effective cycles of codimension k. Its dual with respect to the intersection product is the nef cone
Nef" (X)), which however does not behave well when & > 2 (see [DELV1I]). Some alternative
notions of positive cycles have been introduced by Fulger and Lehmann in [FL14b|, among which
the notion of basepoint free classes emerges. Basepoint free classes have many good properties
such as being both pseudo-effective and nef, being invariant by pull-backs by morphisms and by
intersection products, and forming a salient convex cone with non-empty interior. Denote by
BPF*(X) the cone of basepoint free classes. It is defined as the closure in N*(X)g of the cone
generated by R-cycles of the form p.(D; - ... D.y) where D; are ample Cartier R-divisors and
p: X' — X is a flat surjective proper morphism of relative dimension e.

For basepoint free classes, we are able to prove the following generalization of .

Theorem 3. Let X be a normal projective variety of dimension n. Then there exists a constant
C > 0 such that for any basepoint free class o € BPF*(X), for any big nef divisor B, one has in
N¥(X)g:
(a-B"")
a< C———= x g~ (4)
R CD

Theorem 2| follows from by observing that f** BPF¥(X) C Psef*(X), so that the operator
norm ||f**|| can be computed by evaluating f** only on basepoint free classes.

In the singular case, the proof of Theorem [2|is completely similar but the spaces N* (X)gr and
N,.—x(X)g are not necessarily isomorphic in general. As a consequence, several dual notions of
positivity appear in N¥(X)g and Ny(X)g that make the arguments more technical.

Finally, using the techniques developed in this paper, we give a new proof of the product formula
of Dinh, Nguyen, Truong ([DN11, Theorem 1.1],|DNT12, Theorem 1.1]) which they proved when
x = C and which was later generalized by Truong (|Trul6, Theorem 1.1.(4)]) to normal projective
varieties over any field.

The setup is as follows. Let ¢ : X — Y be any proper surjective morphism between normal
projective varieties, and fix two big and nef divisors Hy, Hy on X and Y respectively. Consider
two dominant rational self-maps f : X --+ X, g : Y --» Y, which are semi-conjugated by ¢,

i.e. which satisfy g o f = g o ¢. To simplify notation we shall write X/,Y I, X/,Y when these
g
assumptions hold true.
Recall that the k-th relative degree of X/,Y I, X/,Y is given by the intersection product
g

reldeg, (f) «= (wj (HY™* 78 g Hy™ V) - mi HY),

where 7; and 7o are the projections from the graph of f in X x X onto the first and the second
component respectively. One can show a relative version of Theorem [l| (see Theorem ,
and define as in the absolute case, the k-th relative dynamical degree A\p(f, X/Y) as the limit
lim, , o reldeg, (fP)1/P. It is also a birational invariant, and does not depend on the choices of
Hyx and Hy. When ¢ : X --» Y is merely rational and dominant, then we define (see Section @
the k-th relative degree of f by replacing X with the normalization of graph of q. We prove the
following theorem.

Theorem 4. Let X,Y be normal projective varieties. For any dominant rational self-maps [ :
X --+» X, g:Y - Y which are semi-conjugated by a dominant rational map q : X --+ Y, we
have

Me(f) = max Ak (@A (f, X/Y)) (5)

max(0,k—1)<j<min(k,e)
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Observe that we are only able to relate the dynamical degrees of a rational map with the relative
dynamical degrees and the dynamical degree on the base. Unfortunately, we do not know how
to control the degree growth of f with respect to the degree growth of ¢ on the base Y and
on the fibers of ¢ : X — Y except when e = 0, since in that case Theorem [I}(2) proves that
1/C < degk,HX(f)/degk,HY (9) <C.

Our proof follows closely Dinh and Nguyen’s method from [DN11] and relies on a fundamental
inequality (see Corollary below) which follows from Kiinneth formula at least when x = C.
To state it precisely, consider 7 : X’ — X a surjective generically finite morphism and ¢ : X — Y
a surjective morphism where X', X and Y are normal projective varieties such that n = dim X =
dim X’ and such that [ = dimY. We prove that for any basepoint free classes o € BPF*(X') and
B € BPF"*(X"), one has:

(B-a)<C > Uja) x (8- 7*(¢" Hy - HY)), (6)

max(0,k—1)<j<min(k,e)

where Hy and Hy are big and nef divisors on Y and X respectively, and U;(«) is the intersection
product given by U;(a) = (x*(¢*Hy " - HE 7Y - a).

In the singular case, Truong has obtained this inequality using Chow’s moving intersection
lemma. We replace this argument by a suitable use of Siu’s inequality and Theorem 3| in order
to prove a positivity property for a class given by the difference between a basepoint free class in
X’ x X" and the fundamental class of the diagonal of X’ in X’ x X’ (see Theorem [7.1.1]). Inequality
@ is a weaker version of [DN11, Proposition 2.3|] proved by Dinh-Nguyen when Y is a complex
projective variety, and was extended to a field arbitrary characteristic by Truong when Y is smooth
([Trul@, Lemma 4.1]).

Organization of the paper. In the first Sections [I] and [2] we review the background on the
Chow groups and recall the definitions of the spaces of numerical cycles and provide their basic
properties. In §3] we discuss the various notions of positivity of cycles and prove Theorem
In §4 we define relative numerical cycles and canonical morphisms which are the analogous to
the Poincaré morphisms ¢y in a relative setting. In we prove Theorem [1, Theorem [2| and
Theorem Finally we give an alternate proof of Dinh-Sibony’s theorem in the Ké&hler case
(IDS05bL Proposition 6]) in §8| using Popovici [Popl6] and Xiao’s inequality [Xial5]. Note that
these inequalities allow us to avoid regularization techniques of closed positive currents but rely
on a deep theorem of Yau. In Appendix [A] we prove that our presentation and Fulton’s definition
of numerical cycles are equivalent, hence proving that any numerical cycles can be pulled back by
a flat morphism.

Acknowledgements. Firstly, I would like to thank my advisor C. Favre for his patience and our
countless discussions on this subject. T thank also S. Boucksom for some helpful discussions and
for pointing out the right argument for the appendix, T. Truong, L. Fantini, J. Xie, M. Fulger, B.
Lehmann and R. Mboro for their precious comments on my previous drafts and for providing me
some references.

1. CHOW GROUP

1.1. General facts. Let X be a normal projective variety of dimension n defined over an alge-
braically closed field  of arbitrary characteristic.

The space of cycles Z,(X) is the free abelian group generated by irreducible subvarieties of X of
dimension k, and Z;(X)g, Zx(X)r will denote the tensor products Z;(X) ®z Q and Z,(X) @z R.
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Let ¢ : X — Y be a morphism where Y is a normal projective variety. Since X and Y are
respectively projective, the map ¢ is proper. Following [Ful98|, we define the proper pushforward
of the cycle [V] € Z,(X) as the element of Z;(Y') given by:

V] :{ 0 if dim(q(V)) < dimV
" k() = w(a(m)] x [g(V)] i dimV = dim(g(V)).
where V' is an irreducible subvariety of X of dimension k, n is the generic point of V' and x(n),

k(q(n)) are the residue fields of the local rings O, and Oq(n respectively. We extend this map by
linearity and obtain a morphism of abelian groups ¢, : Zx(X) — Z,(Y).

Let C' be any closed subscheme of X of dimension k£ and denote by (', ..., C, its k-dimensional
irreducible components. Then C defines a fondamental class [C] € Z;(X) by the following formula:

C] = Z loci,c (OC%,CMC%']?
i=1

where [4(M) denotes the length of an A-module M (|Eis95) section 2.4|).

For any flat morphism ¢ : X — Y of relative dimension e between normal projective varieties,
we can define a flat pullback of cycles ¢* : Zp(Y) — Zpie(X) (see [Ful98, section 1.7]). If C is
any subscheme of Y of dimension k, the cycle ¢*[C] is by definition the fundamental class of the
scheme-theoretic inverse by ¢:

¢'[C] = [a7(C)] € Zy+e(X).

Let W be a subvariety of X of dimension £+ 1 and ¢ be a rational map on W. Then we define

a cycle on X by:
[div(e Z ordy (i

where the sum is taken over all irreduc1ble subvarieties V' of dlmension k of X. A cycle o defined
this way is rationally equivalent to 0 and in that case we shall write o~ 0.

The k-th Chow group Ax(X) of X is the quotient of the abelian group Z;(X) by the free group
generated by the cycles that are rationally equivalent to zero. We denote by A4(X) the abelian
group ©A,(X).

We recall now the functorial operations on the Chow group, which result from the intersection
theory developped in [Ful98§].

Theorem 1.1.1. Let q : X — Y be a morphism between normal projective varieties. Then we
have:
(1) The morphism of abelian groups q. : Zx(X) — Zi(Y') induces a morphism of abelian groups
(2) If the morphism q is flat of relative dimension e, then the morphism ¢* : Zp(Y) = Ziio(X)
induces a morphism of abelian groups q¢* : Ap(Y) — Apre(X).

Assertion (1) is proved in [Ful98, Theorem 1.4] and assertion (2) is given in [Ful98, Theorem
1.7].

Remark 1.1.2. Let ¢ : X — Y is a flat morphism of normal projective varieties. Suppose a € Ax(Y')
is represented by an effective cycle o~ n;[V;] where the n; are positive integers. Then ¢*« is
also represented by an effective cycle.

Any cycle a € Zy(X)z is of the form ) n;[p;] with p; € X (k) and n; € Z. We define the degree
of a to be deg(a) := > n; and we shall write:

(@) == deg(a) = > n;.
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The morphism of abelian groups deg : Zy(X)z — Z induces a morphism of abelian groups
deg : Ag(X) — Z.

1.2. Intersection with Cartier divisors. Let X be a normal projective variety and D be a
Cartier divisor on X. Let V be a subvariety of of dimension k in X and denote by j : V — X the
inclusion of V' in X. We define the intersection of D with [V] as the class:
D - [V]:=j.[D'] € Ap_1(X),

where D’ is a Cartier divisor on V' such that the line bundles j*Ox (D) and Oy (D') are isomorphic.
We extend this map by linearity into a morphism of abelian groups D- : Zy(X) — Ax_1(X).
Theorem 1.2.1. Let X be a normal projective variety and D be a Cartier divisor on X. The map
D-: 73 (X) = Ak_1(X) induces a morphism of abelian groups D- : Ag(X) — Ax_1(X). Moreover,
the following properties are satisfied:

(1) For all Cartier divisors D and D' on X, for all class a € Ar(X), we have:

(D'+D)-a=D"-a+D -«

(2) (Projection formula) Let q : X — Y be a morphism between normal projective varieties.
Then for all class f € Ap(X) and all Cartier divisor D on'Y, we have in Ax_1(Y):

Definition 1.2.2. For all normal projective varieties X, the group CI'“(X) 1s the free group gen-
erated by elements of the form Dy -...- Dy where Dy, ..., Dy are Cartier divisors on X.

1.3. Characteristic classes.

Definition 1.3.1. Let X be a normal projective variety of dimension n and L be a line bundle on
X. There exists a Cartier divisor D on X such that the line bundles L and Ox (D) are isomorphic.
We define the first Chern class of L as:

(L) :=[D] € A,_1(X).

Definition 1.3.2. Let X be a normal projective variety and E be a vector bundle of rank e+ 1 on
X. Given any vector bundle E on X, we shall denote by P(E) the projective bundle of hyperplanes
in E following the convention of Grothendieck. Let p be the projection from P(E*) to X and § =
c1(Opg+)(1)). We define the i-th Segre class s;(E) as the morphism s;(E)L- : Ag(X) — Aei(X)
given by:

si(E)La:=p. (" pra). (7)

Remark 1.3.3. When X is smooth of dimension n, we can define an intersection product on the
Chow groups Ay (X) x A;(X) — Ap_x—(X) (see [Ful98, Definition 8.1.1]) which is compatible with
the intersection with Cartier divisors and satisfies the projection formula (see [Ful98, Example
8.1.7]). Applying the projection formula to (7)), we get

si(E)La=p. (&) o,
so that s;(E) is represented by an element in A,_;(X). To simplify we shall also denote s;(E) this

element.

As Segré classes of vector bundles are operators on the Chow groups A.(X), the composition of
such operators defines a product.

Theorem 1.3.4. (c¢f [Ful98, Proposition 3.1]) Let ¢ : X — Y be a morphism between normal
projective varieties. For any vector bundle E and F on'Y, the following properties hold.

(1) For all « € Ax(Y') and all i <0, we have s;(E) L a = 0.
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(2) For all « € AR(Y), we have so(E) L a = a.
(3) For all integers 1,7, we have s;(E)(s;(F)La) = s;(F)(si(E)La).
(4) (Projection formula) For all f € Ap(X) and any integer i, we have q.(s;(¢*E)Lp) =
SZ(E) L q*/@
(5) If the morphism q : X — Y is flat, then for all « € Ag(Y) and any integer i, we have
si(@E)cq'a = ¢ (si(E) La)).
The i-th Chern class ¢;(E) of a vector bundle F on X is an operator ¢;(E) : Ae(X) — Ao
defined formally as the coefficients in the inverse power series:
(148 (E)t+s(E)* +..) ' =14+ c(E)t+. ...+ (BT
A direct computation yields for example ¢;(F) = —s1(E), c2(E) = (s1(F)? — s2(F)).
Definition 1.3.5. Let X be a normal projective variety. The abelian group A¥(X) is the subgroup
of Hom(A(X), Ae—i(X)) generated by product of Chern classes c;, (E1)-...-c;,(Ep,) where iy, ...,

ir, are integers satisfying i1 + ... + 1, = k and where Ey, ..., E, are vector bundles over X. We
denote by A*(X) the group ®AF(X).

Observe that by definition, A*(X) contains the image of CI*(X).

Recall that the Grothendieck group K°(X) is the free group generated by vector bundles on X
quotiented by the subgroup generated by relations of the form [E1] + [Es] — [Es] where there is an
exact sequence of vector bundles:

0 £y Ey By 0.

Moreover, the group K°(X) has a structure of rings given by the tensor product of vector bundles.

Recall also that the Chern character is the unique morphism of rings ch : (K°(X),+,®) —
(A*(X),+, -) satisfying the following properties (see [Ful98, Example 3.2.3|).

(1) If L is a line bundle on X, then one has:
(L)
ch(L) =) s
i>0
(2) For any morphism ¢ : X’ — X and any vector bundle E on X, we have ¢* ch(E) = ch(¢*E).
For any vector bundle E on X, we will denote by chy(E) the term in A*(X) of ch(FE).

We recall Grothendieck-Riemann-Roch’s theorem for smooth varieties.

Theorem 1.3.6. (see [Ful98, Corollary 18.3.2]) Let X be a smooth variety. Then the Chern
character induces an isomorphism:

ch [X]: F e K'X)®Q — ch(F)L[X] € 4,(X) ® Q.

2. SPACE OF NUMERICAL CYCLES

2.1. Definitions. In all this section, X, Y, X7, X5, X3 and X’ are normal projective varieties and
X is of dimension n. Two cycles a and [ in Z(X) are said to be numerically equivalent and we
will denote by o = 5 if for all flat morphisms p; : X; — X of relative dimension e and all Cartier
divisors Dy, ..., D,y in X, we have:

(D1'-~'De+k'q*04):(D1'~~'De+k‘q*5)-

Definition 2.1.1. The group of numerical classes of dimension k is the quotient N(X) = Zx(X)/ =.
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By construction, the group Ni(X) is torsion free and there is a canonical surjective morphism
Ar(X) — Ng(X) for any integer k.

Remark 2.1.2. Observe also that for £k = 0, two cycles are numerically equivalent if and only if
they have the same degree. Since smooth points are dense in X (see [Dan94, Theorem 11.4.7]) and
are of degree 1, this proves that the degree realizes the isomorphism Ny(X) ~ Z.

We set Ni(X)g and Ni(X)g the two vector spaces obtained by tensoring by Q and R respectively.

Remark 2.1.3. This definition allows us to pullback numerical classes by any flat morphism ¢ :
X — Y of relative dimension e. Our presentation is slightly different from the classical one given
in [Ful98, Section 19.1]. We refer to Appendix [A| for a proof of the equivalence of these two
approaches.

Proposition 2.1.4. Let ¢ : X — Y a morphism. Then the morphism of groups q. : Zp(X) —
Z(Y) induces a morphism of abelian groups q. : Ni(X) — Ng(Y).

Proof. Let n be the dimension of X and [ be the dimension of Y, and let a be a cycle in Z;(X)
such that « is numerically trivial. We need to prove that ¢.« is also numerically trivial.

Take p; : Y7 — Y a flat morphism of relative dimension e;. Let X7 be the fibred product X xy Y;
and let p] and ¢’ be the natural projections from X; to X and Y; respectively.

XILX

v

le 1
The morphism p/ is flat and ¢’ is proper. Pick any cycle v whose class is in CI**™(Y}). We want to
prove that (v-p1*¢.«) = 0. By [Ful98, Proposition 1.7], we have that pig.c = ¢.p} " in Z, 1 (Y1).
Applying the projection formula, we get:

VP = - dipia~ g (¢t - py o).

Because p} is flat and ¢*y € CI*"*(X)), we have (¢ - pfa) = 0 so that (y - pig.a) = 0 as
required. 0

The numerical classes defined above are hard to manipulate, we want to define a pullback of
numerical classes by any proper morphism. We proceed and define dual classes.

We denote by Z*(X) = Homgz(Z,,(X), Z) the space of cocycles. If p; : X1 — X is a flat morphism
of relative dimension ey, then any element v € CI®*™(X,) induces an element [y] in Z*(X) by the
following formula:

V] € Zp(X) = (v-pia) € Z. (8)

Definition 2.1.5. The abelian group N*(X) is the subgroup of Z*(X) generated by elements of
the form [y] where v € CIVF(X,) and X, is flat over X of relative dimension e;.

Remark 2.1.6. By definition, the map deg : Zo(X) — Z is naturally an element of Z°(X). More-
over, one has using Theorem [1.3.4](2) that:

2 € Zy(X) = (so(E)Lz) =deg(z) € Z,

for any vector bundle E on X. Hence, deg defines an element of N°(X) by definition of Segré
classes (Definition [7).
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Proposition 2.1.7. By definition of the numerical equivalence relation, any element of N*(X)
induces an element of the dual Homz(Ng(X),Z). Hence, we can define a natural pairing between
N*(X) and Ny(X). For any normal projective variety, the pairing N*(X) x Ny(X) — Z is non
degenerate.

Proof. 1t follows directly from the definition of N*(X) and N4 (X).
U

A priori, an element of N*(X) is a combination of elements [y,] + [y2] + ... + [v]. The following
proposition proves one can always take ¢+ = 1 at least if we tensor all spaces by Q.

Proposition 2.1.8. Any element of N*(X) is induced by v € CI*™(X|)q where p1 : X1 — X is
a flat morphism of relative dimension e;.

Proof. By an immediate induction argument, we are reduced to prove the assertion for the sum
of two elements [y;] + [y2] where v; € CI%™(X;)g and p; : X; — X are flat morphisms of relative
dimension e; and ey respectively.

Let us consider X' the fibre product X; x X5 over X and p; the flat projections from X’ to X;
for i = 1,2. By linearity , we only need to show that there exists an element | € CI¢*e2k(X7)
such that [v]] = [y1] in N¥(X).

X1><X2

P
P
X, X5
p1
D2
X
Take an ample Cartier divisor Hx, on X, and Ay an integer such that pg*H)efz ~ X\[X]. Setting

1
v = /\—p’l*Hfg2 - pyy1, we need to prove that for any a € Z,(X), one has (v, - pja) = (7] - p5pia).

2
By [Ful98, Proposition 1.7], we have the equality ph, pi" HY, = pip2,HY, in Z°(X5), hence:
Pa. Py HE, = Aapi[X].

Since X is reduced and pi[X] is a cycle of codimension 0 in X, we have p{[X] = [X;]. Hence by
the projection formula, we have:

1 . 1 -
A—Qp’g*(p’;(% pia) - piHR) = A—Q(pla M) - ey HE
1
= )\—(pf&'%)‘/\ﬂxl]
2
= p*{a-%.

In particular, the degrees are equal and [y;] = [;] € N*(X) as required.

By the same argument, there exists a class 4 € CI® T2 (X x X5) such that [y,] = [v4] € N¥(X),
hence [11] + [v2] =[] + [] = [11 + 4] € N*(X) as required. O

Definition 2.1.9. We define No(X) (resp. N*(X)) by @p Np(X) (resp. ©pNF(X)).
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2.2. Algebra structure on the space of numerical cycles. We now define a structure of
algebra on N°*(X), and prove that No(X) has a structure of N*(X) module.

Pick v € C161+k(X1)Q where p; : X7 — X is a flat morphism of relative dimension e;. The
element ~ induces a morphism in the Chow group:

YLt a € A(X) = pr(y-pia) € Ak (X). 9)

The morphism yo- : A(X) — A;_;(X) induces a morphism of abelian groups from N;(X) to
N (X).

Proposition 2.2.1. Any element a € N*(X) induces a morphism aL-: Ny(X) — Ne_(X) such
that the following conditions are satisfied.

(i) If « is induced by v € CIelJrk(Xl)@ where py : X5 — X s a flat morphism of relative
dimension ey, then for any integer | and any z € Ny(X), one has in N;_p(X):

aLz="yLz
(ii) For any o, 3 € N*(X) and any z € Ni(X), we have:
(a+B)Lz=aLz+PLz

Proof. Let us consider o € N*(X) and suppose it is induced by v, € CI***(X)q where p; : X; —
X is a flat morphism of relative dimension e;. We define the map oL - as :

aLz="L2%,
for any z € N;(X). We show that the morphism does not depend on the choice of the class v,
and (i) is follows from Proposition Once (i) is satisfied, then (i7) follows directly from the

linearity of the intersection product.

Suppose that [11] = [72] € N¥(X) where 7, € CI®?™*(X5)g and ps : X5 — X is a flat morphism
of relative dimension ey, then we need to prove that:

pl*(% 'PIZ) = Pz*(’h -pSZ),

for any fixed z € Z;(X). Take B € CI*"*(X3) where ps : X3 — X is flat morphism of relative
dimension e3, we only need to show that:

(B - p3p1.(n - piz) = (B pipa. (72 - p3z))-

Let X{ and X} the fibre products X; x X3 and X3 x X3, and p) : X{ — X3, py : X] — Xj,
g2 X5 — X3, g3 : X, — X, be the corresponding flat projection morphisms such that we obtain
the following commutative diagrams:

X5
q2
VCIIRN
X X

Xi
N
P
X3 X3 2 3
p1 p2
p3 p3
X X.

As above, we have pip,, = p|,p5, hence:
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g pl*p S (M Z))
’*6 Py (1 piz))
Py P2 p1 )

(8- pspra(n - piz) = E
(Pt

= EW P, DY (P32 - B))
(

Y1 - Pip3. (P32 - B))
Yo - Psp3. (P32 - B))-

By a similar argument, we show that (8 - pipa, (72 - p52)) = (72 - pips.(piz - £)) which implies the
desired equality:

(B pap1.(m - p12)) = (B p3p2.(72 - P32))-
O

Proposition 2.2.2. There ezists a unique structure of commutative graded ring with unit (deg) on
N*(X) compatible with the action _ on No(X). Hence, the abelian group No(X) has the structure
of a graded N*(X)-module.

Proof. Take oy € N¥(X) and o, € N'(X) and define ¢ € ZF+/(X) by the formula:
v:2€ Zpn(X) = (arL(aaL 2)).

We prove that ¢ is an element of N*™(X).

By linearity, we can suppose that o is induced by v; € CI*¥"“(X;) where p; : X; — X is a flat
morphism of relative dimension e; for i = 1,2. Let X’ = X; xXx X5 be the fibre product, let p}
and pf, be the projections from X’ to X; and X, respectively such that we have the commutative

/\
\/

By the projection formula, we obtain for all z € Z;,;(X):
p(2) = (72 - P57 - P5PI2). (10)

In particular, we have shown that ¢ is induced by pfvy, - piyy € CIT2T (X" hence ¢ is an
element of N**(X). Moreover, the commutativity of the intersection product in ([I0)) proves that
(oL 2)) = (g L(agL 2)) for any z € Np(X), hence oy - ay = as - ;.

Pick a vector bundle £ on X. As the element deg € N°(X) is equal to z — (so(F) L z) in N°(X)
(see Remark , we get using Theorem [1.3.4](2) that:
(aLz) = (a(so(E)Lz)) = (so(E)L(arz)) = ((a-deg)L z) = (deg-a) L 2
for any z € N;(X) and any a € N'(X). Hence, deg is a unit of N*(X).
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2.3. Pullback on dual numerical classes. Let us consider ¢ : X — Y a proper morphism.
We define for any integer k the pullback ¢* : N¥(Y) — Homgz(Ny(X),Z) as the dual of the
pushforward operation ¢, : N,(X) — Ni(Y) with respect to the pairing N*(X) x Np(X) — Z
defined in Proposition 2.1.7]

Proposition 2.3.1. Let ¢ : X — Y be a proper morphism. The morphism ¢* induces a morphism
of graded rings ¢* : N*(Y) — N*(X) which satisfies the projection formula:

Va € N*(Y),Vz € Ni(X), ¢ ("L 2) = aL g,z

Proof. We only need to prove that the image ¢*(N*(Y)) is contained in N¥(X) and that the
projection formula is satisfied as it directly implies that ¢* : N*(Y) — N°*(X) is a morphism of
rings since:

(@-Brgz=q(a-flrz=avrq(dfrz) = (¢"a-¢"F)Lz
for any o € N*(Y), 8 € N (V) and any z € Ny (X).

Consider a class o € Nk(Y) which is induced by v € CI“H“(Yl) where p; : Y7 — Y is a flat
proper morphism of relative dimension e;. Setting X; to be the fibre product Y; x X and p}, ¢
the projections from X; to X and X; respectively, one remarks using the equality ¢.p}" = piq.
([Ful98, Proposition 1.7]) that ¢*« is induced by ¢*v, hence ¢*a € N¥(X) as required. And the
projection formula follows easily from the projection formula on divisors (Theorem [1.2.1] (ii)).

O
Let us sum up all the properties of numerical classes proven so far :
Theorem 2.3.2. Let q : X — Y be a proper morphism. For any integer 0 < k < dim X and
0<I<dimY:

(i) The pushforward morphism q. : Zp(X) — Zi(Y) induces a morphism of abelian groups
(ii) The dual morphism q* : Z\(Y) — ZYX) maps N'(Y) into N'(X).
(iii) The induced morphism ¢* : N*(Y') — N*(X) preserves the structure of graded rings.
(iv) (Projection formula)For all o € N(Y) and all z € Ni(X), we have ¢.(¢*aL 2) = aL ¢,z in
Neo(Y).

2.4. Canonical morphism.

Theorem 2.4.1. There exists a unique canonical morphism hx : N*(X) — N,,_(X) which satis-
fies the following properties.

(i) The image of the morphism deg : Zo(X) — Z seen as an element of Z°(X) is given by
Yx(deg) = [X].
(ii) The morphism 1x is N*(X)-equivariant, i.e for all o« € N*(X) and all 3 € N'(X), we have:

Ux(a-fB)=aLvx(B).

(iii) Suppose q : X — Y is a generically finite morphism where Y is of dimension n, then we
have the following identity:

@0 ¥x 0 ¢ = deg(q) X Py
Proof. We define ¢y for any a € N¥(X) by setting:
Yx(a) =ar[X].

By construction, we have that ¥ x(deg) = [X]| and (i7) follows directly from the definition and
Proposition [2.2.2]
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Assertion (i) is then a consequence of the projection formula (see Theorem [2.3.2](iv)) and the
fact that q¢.[X]| = deg(q)[Y].

Let us prove that tx is unique. Suppose that ¢ : N¥(X) — N,_,(X) satisfies the hypothesis
of the theorem. Since ¢(deg) = [X] and since deg is the unit element of the ring N*(X), we have
that for any a € N*(X), a = a - deg. By (i),

p(a) = p(a-deg) = aLp(deg) = aL[X] = Px(a),

as required.

Now we prove some properties of 1)x in some particular cases.

Theorem 2.4.2. The following properties are satisfied.
(i) If X is smooth, then for all integers 0 < k < n, the induced morphism ¢¥x : N¥(X)g —
Ny—x(X)g is an isomorphism.
(ii) If X is smooth and q : X — Y is a surjective generically finite morphism where Y is a
normal projective variety. Then we have for all integer k:

¢ (Wy(N"H(Y)g)") = ¢ (N*(Y)g) NKer(q. o ¢ox : N*(X)g — Nu_p(Y)g). (11)

Proof. (i) Let us show that ¥y is surjective. By the Grothendieck-Riemann-Roch’s theorem (The-
orem [1.3.6), the Chern character induces an isomorphism:

ch[X]: E € K%X) ®Q — ch(E) L[X] € A.(X) ® Q.

This implies that the morphism 9x : N¥(X)g — N, _4(X)g is surjective because any Chern class
is the image of a product of Cartier divisors by a flat map (see Remark [1.3.3).

We now prove that 1x : N*(X)g — N, x(X)g is injective. Take a; € N¥(X)q such that
Yx (1) =0. By Proposition the class «; is induced by v; € CIel+k(X1)Q where p; : X7 — X
is a flat morphism of relative dimension e;. The condition ©x(cy) = 0 is equivalent to the equality
Py = 0 € N, (X). We need to show that (71 - piz) = 0 for any cycle z € Z,(X). As X is
smooth, we may compute intersection products inside the Chow group A.(X) directly by Remark
1.3.3| and we get:

(1 p12) = (Pro(m - pi2)) = (P11 - 2) =0
as the class z € N (X) is the image of an element of N"7*(X)q by surjectivity of ¢x.

(77) We have the following series of equivalence:

Bevy(N"F(Y)g)t & VaeN"FY)
& Vae N"RHY)
& VYa e N"HY)g,
& VYa e N (Y)q,
& ¢*B € Ker(q. ovx : N¥(X)g = Npi(Y)g,

where the second equivalence follows from Theorem [2.4.2/(3), the third and the fourth equivalence
from the projection formula, and the last equivalence is a consequence of the fact that iy is
self-adjoint :

(Briy(a)) = (Br(aclY])) = (ac(BLY]) = (ar iy (B)),
where o € N*(Y) and 8 € N"*(Y).
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Remark 2.4.3. The proof of Theorem [2.4.2](¢) shows that when X is smooth, Nj(X)g is the quotient
of Zr(X)q by cycles z € Zi(X)g such that for any cycle 2’ € Z,,_(X)q, one has (z-2') =0.

Remark 2.4.4. When X is smooth and when x = C, denote by Alg"(X) the subgroup of the de
Rham cohomology H?*(X,C) generated by algebraic cycles of dimension k in X. Then there is a
surjective morphism Alg"(X) — N¥(X)g

2.5. Numerical spaces are finite dimensional.
Theorem 2.5.1. Both Q-vector spaces Ni(X)g and N*(X)q are finite dimensional.

Proof. If X is smooth, then using Remark Ni(X)g is the quotient of Zy(X)g by the
equivalence relation which identifies cycles a and f in Z;(X)g if for any cycle z € Z,_1(X)g,
(z-a) = (z-B). In particular, the vector-space Ni(X)q is finitely generated (see [Mill3, Theorem
23.6] for a reference), and so is N*(X)q using Theorem M(z)

If X is not smooth, by DeJong’s alteration theorem (cf |[Jon96, Theorem 4.1]), there exists a
smooth projective variety X’ and a generically finite surjective morphism ¢ : X’ — X. We only
need to show that the pushforward g, : Ng(X')g — Ni(X)g is surjective. Indeed this first implies
that N,(X)q is finite dimensional. Since the natural pairing N*(X)g x Nz(X)g — Q is non
degenerate we get an injection of N¥(X)g onto Homg(Nx(X)g, Q) which is also finite dimensional.

We take V an irreducible subvariety of codimension k in X. If dim¢~' (V) = dim V/, then the
class g.[¢ (V)] in Ngimy (X)g is represented by a cycle of dimension dim V' which is included in
V. As V is irreducible, we have ¢.[¢* (V)] = A\[V] for some )\ € N*.

If the dimension of ¢=*(V) is strictly greater than V', we take W an irreducible component of
g~ '(V) such that its image by ¢ : W — V is dominant. We write the dimension of W as dim V +r
where r > 0 is an integer. Fix an ample divisor Hy on X. The class H% ([W] € Ngimv(X')g
is represented by a cycle of dimension dimV in W. So the image of the class q¢.(HY L[W]) €
Naim v (X)g is a multiple of [V] which implies the surjectivity of g..

0

Corollary 2.5.2. For any integer 0 < k < n, the pairing N*(X)g x Np(X)r — R is perfect.

Corollary 2.5.3. Suppose that the dimension of X is 2n, then the morphism ¥x : N*(X)g —
N,.(X)q is an isomorphism.

Proof. We apply to an alteration X’ of X where ¢ : X’ — X is a proper surjective morphism
and where X’ is a smooth projective surface. This proves that ¢x : N"(X)g — N,(X)g is
surjective. By duality, this gives that ¢¥x : N"(X)g — N, (X)g is injective. As a consequence, we
have that ¥x : N"(X)g — N,(X)g is an isomorphism.

0

Corollary 2.5.4. Let X be a complex normal projective variety with at most rational singularities.
We suppose that X is numerically Q-factorial in the sense of [BAFFULL|. Then the morphisms
Vx : NY(X)g = N, 1(X)g and ¢¥x : N1 X)g — Ni(X)q are isomorphisms.

Proof. Using [BAFFUI5, Theorem 5.11|, then any Weil divisor which is numerically Q-Cartier is
Q-Cartier. In particular, ¥x : N'(X)g — N,_1(X)g is surjective. Using to an alteration of
X' applied to k = 1, we have that ¥y : N'(X)g — N,_1(X)g is injective. Hence N'(X)g and
N,,_1(X)g are isomorphic and by duality N""*(X)g and N;(X)q are also isomorphic. O
FErample 2.5.5. When X = X(A) be a toric variety associated to a complete fan A. The map
Yx : NY(X)g — N, _1(X)g is an isomorphism if and only if A is a simplicial fan using [Ful93|
exercice p65 section 3.4].



DEGREES OF ITERATES OF RATIONAL MAPS 17

3. PosIiTiviTy

The notion of positivity is relatively well understood for cycles of codimension 1 and of dimension
1. For cycles of intermediate dimension this situation is however more subtle and was only recently
seriously considered (see [DELV1I], [CC15|, [CLO16] and the recent series of papers by Fulger and
Lehmann (|[FL14al, [FL14D]).

For our purpose, we will first review the notions of pseudo-effectivity and numerically effective
classes. Then we generalize the construction of the basepoint free cone introduced by [FLI4b]
to normal projective varieties. This cone is suitable for stating generalized Siu’s inequalities (see

Section [3.4)).

3.1. Pseudo-effective and numerically effective cones. As in the previous section, X is a
normal projective variety of dimension n. To ease notation we shall also write N*(X) and Nj(X)
for the real vector spaces N*(X)g and Nj(X)g.

Definition 3.1.1. A class o € Nyi(X) is pseudo-effective if it is in the closure of the cone generated
by effective classes. This cone is denoted Psefy(X).

When k = 1, Psef,(X) is the Mori cone (see e.g [KM98, Definition 1.17]), and when k =n — 1,
Psef,,_1(X) is the classical cone of pseudo-effective divisors, its interior being the big cone.

Definition 3.1.2. A class 3 € N¥(X) is numerically effective (or nef) if for any class a €
Psef, +(X), (BLa) > 0. We denote this cone by Nef*(X).

When k = 1, the cone Nef'(X) is the cone of numerically effective divisors, its interior is the
ample cone.

We can define a notion of effectivity in the dual N*(X).

Definition 3.1.3. A class o € N*(X) is pseudo-effective if Vx(a) € Psef,_(X). We will write
this cone as Psef*(X).

Definition 3.1.4. A class z € Ni(X) is numerically effective if for any class o € Psef*(X), one
has (oL z) = 0. This cone is denoted Nefy(X).

By convention, we will write @ < § (resp. a < ) for any a, f € Nx(X) (resp. a, € N¥(X))
if B—a € Psefg(X) (resp. B — a € Psef*(X)).

When X is smooth, the morphism ¢y induces an isomorphism between N*(X) and N,,_(X),
and we can identify these cones:

Nef*(X) = Nef, _4(X),
Psef®(X) = Psef,,_1(X).

3.2. Pliant classes. We recall the definition of pliant classes introduced in |[FL14bl Definition
3.1] and their main properties.

Definition 3.2.1. The pliant cone PL*(X) is defined as the conver cone generated by product of
Schur polynomials of globally generated vector bundle.

We denote by PL"(X) the set of pliant classes of codimension k in X.

Theorem 3.2.2. (see [FLI14D, Theorem 1.3]) The pliant cone PLF(X) satisfies the following prop-
erties.
(i) The cone PLF(X) is a closed convex salient cone with non-empty interior in N*(X)g.

(ii) The cone PL*(X) contains product of ample Cartier divisors in its interior.
(iii) For all integer k,l, we have PL*(X) - PLY(X) c PLF(X).
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(iv) For any (proper) morphism q: X — Y, one has that ¢* PL*(Y) ¢ PL*(X).
We recall another proposition which we will reuse in our proofs.

Proposition 3.2.3. (¢f [FL14b, Example 3.13]) Let G be a Grassmannian variety. Then PL*(G) =
Psef*(G).

3.3. Basepoint free cone on normal projective varieties. In this section, we define a cone
BPF’“(X) and prove in Corollary that this cone is equal to the basepoint free cone defined by
Fulger-Lehmann when X is smooth. This generalizes [FL14b, Theorem 1.7| to normal projective
varieties and our proof follows closely Fulger-Lehmann’s approach.

Recall that a complete intersection v € CI***(X’) on X’ where p : X’ — X is a flat morphism
of relative dimension e and where X’ is an equidimensional projective scheme induces naturally
(see Definition an element [y] € N¥*(X)g = Homg(Ny(X)g, R) by intersecting the class v
with the pullback by p of a k-dimensional cycle in X. We also refer to Proposition for the
definition of the product N*(X)g x N'(X)g — N*™(X)g.

Definition 3.3.1. The cone BPF*(X) is the closure of the convex cone in N*(X)g generated by
products of the form [y] - ... [y] where each ~y; is a product of e; + k; ample Cartier divisors on
an equidimensional projective scheme X; which is flat over X of relative dimension e; and where
k; are integers satisfying k1 + ...+ k; = k.

Remark 3.3.2. By definition, the cone BPF’“(X) contains the products of ample Cartier divisors
and Segre classes of anti-ample vector bundles.

Recall also that if ¢ : X — Y is a flat morphism of relative dimension e between projective
schemes, then the pushforward is well-defined on numerical cycles ¢, : N*(X)g — N*¢(Y)g (see

Corollary [A.5]).

Theorem 3.3.3. The cone BPFk(X) 15 the smallest cone which satisfies the following properties.
(i) The cone BPF*(X) is a salient, closed, convex cone with non-empty interior in N*(X)g.

(ii) The cone BPF*(X) contains products of ample Cartier divisors in its interior.

(iii) For all integer k and I, we have BPF*(X) - BPF'(X) c BPFF(X).

(iv) For any (proper) morphism q : X — Y, we have ¢* BPF*(Y) C BPFF(X).

(v) For any integer k, we have BPF*(X) C Nef*(X) N Psef*(X).

(vi) In codimension 1, one has BPF*(X) = Nef'(X).

(vii) For any flat morphism q : X — Y between equidimensional projective schemes of relative

dimension e and any integer k > e, we have ¢, BPF*(X) c BPF*¢(Y).

Proof. We prove successively the items (iii), (vit), (v), (vi), (iv), (ii) and (7).
(#i), (vii) This follows from the definition of BPF*(X).

(v) Tt is sufficient to prove that for any effective cycle z € Z, ;(X) and any basepoint free
class & € BPF*(X), then aL z € Psef,_;_;(X). Indeed, apply this successively to z = [X] and
z € Psefy,(X) give the inclusions BPF*(X) C Psef*(X) and BPF*(X) C Nef*(X). By definition
of basepoint free classes and by linearity, we can suppose that « is equal to a product [y1]-.. .- [7,]
where v; € CI% ki (X;)r are products of ample Cartier divisors on X; where p; : X; — X is a flat
proper morphism of relative dimension e, and where k; are integers such that ky + ...+ k, = k.
By definition, one has [yi1]L 2z = p1,(71 - piz). Because the cycle z is pseudo-effective, the cycle
piz remains pseudo-effective as p; is a flat morphism. As 7 is a positive combination of products
of ample Cartier divisors, we deduce that the cycle 7 - piz is pseudo-effective. Hence, [y1]L 2z €
Psef,,_;,_1(X). Iterating the same argument, we get that aL z € Psef,,_;_;(X) as required.
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(vi) The interior of Nef'(X) is equal to the ample cone of X so by definition:
Int(Nef! (X)) C BPF!(X).

As the closure of the ample cone is the nef cone by [Laz04, Theorem 1.4.21.(i)], one gets Nef! (X)) C
BPF'(X). Conversely, the cone BPF'(X) is included in the cone Nef'(X), so we get BPF!(X) =
Nef*(X).

(1v) By linearity and stability by products, we are reduced to treat the case of a class [D] induced
by an ample Cartier divisor on Y; where p; : Y7 — Y is a flat proper morphism, and prove that
¢*[D] is a limit of ample Cartier divisors on a flat variety over X. Let X; be the fibre product of
Y1 and X and let ¢’ be the natural projection from X to Y7, observe that ¢*[D] is induced by ¢*D
which remains nef on X; as ¢’ is proper. In particular, it is the limit of ample divisors on Nl(Xl).

(i) Take o € BPF¥(X) such that —a € BPF*(X). Then for all z € Psef;(X), one has that
(v z) =0 as a is nef by (5). Since effective classes of dimension k generate Z(X), it follows that
(L z) = 0 for any z € Ni(X)g which implies by definition that o = 0. This shows BPF*(X) is
salient.

(i3) We show now that BPF¥(X) contains product of ample divisors in its interior. To do so we
prove that PLF(X) € BPF*(X) for any integer k > 1.

For k = 1, BPF*(X) = Nef!(X), and by definition, the divisor 4 is ample so it is in the interior
of the nef cone and we are done. Take a globally generated line bundle F of rank » on X and
consider the induced morphism ¢ given by:

¢: X = G=G(rPH X, E))).

Since PLF(X) = ¢* PL*(G) and since these cones are preserved by pullbacks, we are then reduced
to proving that PL*(G) ¢ BPF*(G). Denote by G = PGL(H°(X,E)*) and consider a class
a € N¥(G)g. Since G is smooth, g : N*(G)g — N,,_1(G)g is an isomorphism by Theorem
and « is represented by an effective cycle z € Z,,_(G)g. Consider the closed scheme W in G x G
given by:
W= {(gvg ’ x)}gEG,sz CGxG.

By construction, W is a projective scheme and the projection p : W — G onto G is a flat
morphism. Denote by ¢ : W — G the projection onto g. By construction the general fiber of ¢
over ¢ is numerically equivalent to z and we have that:

P*q*Hg:imG =o€ ank<G)R7

where H¢ is an ample divisor on GG. This proves that o € BPFk(G) since ¢*Hg is a nef divisor as
required.
Since PL*(X) has non-empty interior in N*(X)g by Theorem M(ii), we have proved (i7).

Let us prove that the cone BPF¥(X) is the smallest cone satisfying the seven conditions. Denote
by BPF’ the minimal cone satisfying these conditions. We have that BPF*(X) c BPF*(X) by
minimality. Take ¢ : X; — X a flat morphism of relative dimension e where X; is an equidimen-
sional projective scheme and consider a € C1k+6(X1) a product of ample Cartier divisors on Xj.
Since ¢, : N*(X;)g — N*7%(X)g and since o € BPF*™(X}), we have that ¢.a € BPF*(X) by
(vii), hence BPF*(X) C BPF*(X) as required.

O

We recall Fulger-Lehmann’s construction of the basepoint free cone. A class o € N,,_,(X)g is
strongly basepoint free if there is:
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e an equidimensional quasi-projective scheme U of finite type over x,

e a flat proper morphism s : U — X

e and a proper morphism p : U — W of relative dimension n — k to a quasi-projective scheme
W such that each component of U surjects onto W

such that
8|k, ([Fp]) = «,

where [F}] is the fundamental class of a general fiber of p. We denote by BPF"*(X) the closure of
the convex cone generated by strongly basepoint free classes in this sense.

Corollary 3.3.4. Suppose X 1is smooth, then the cone BPF’“(X) 15 equal to the basepoint free cone
BPF*(X).

Proof. Since the basepoint free cone satisfies the conditions of Theorem one has that BPF*(X)
BPF*(X). Let us prove the reverse inclusion BPF*(X) ¢ BPF*(X). Take p: U — W a projec-
tive morphism onto an equidimensional quasi-projective variety W where U is a quasi-projective
scheme and a flat map s: U — X such that s,[F,] = a where F, is a general fiber of p. Take Hy,
an ample divisor on W, then the class « satisfies:

o= s,p HEF € N, 1(X)g.

Choose an ample divisor H on U, since the class p* Hy, is nef, for any € > 0, the divisor p*Hy +€eH
is ample.

Since the morphism s : U — X is also quasi-projective and there exists an integer [ (which
depends on €) such that the following diagram is commutative

P
U——— X
where i, : U — P is an immersion induced by p*Hy + ¢H and 7 : P, — X is the flat projection

onto X.
Let ¢ be the relative class ¢1(Op (1)) on P, then one has that for any cycle z € Z(X)g:

(" Hy + eH)He - 572) = (€4 72),
since 17§ = p*Hw + eH. Hence, we obtain:
(5.(p*Hy + eH)" . 2) = (m,.8"¢ . 2).

Since the class €€ is nef and since , we have that 7,(¢"+¢) C BPF*(X). Taking the limit as
¢ — 0, we have that s,(p*Hy + eH)* — o = s,p* HE™, hence o € BPF¥(X) since each class
s.(p* Hy + eH)F+¢) € N¥(X)g belongs to BPF*(X).

U

We give here a detailed proof of the fact that the pseudo-effective cone is salient (see also [FL14bl,
Corollary 3.17]). The proof uses a useful proposition that we will use later on.

Proposition 3.3.5. Let a € Psef, (X) be a pseudo-effective class on X and v € BPF"*(X)
be class lying in the interior of the basepoint free cone. Then we have (yL ) = 0 if and only if
a=0.
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Proof. Let us fix two basepoint free classes 3 and v in N"7*(X), and a norm || - || on N"7*(X)g.
As 7 is in the interior of BPF"*(X) by Theorem MQ), there exists a positive constant C' > 0
such that for any 8 € BPF"*(X), one has:

Cl|Bllnn—r Y — B € BPF"*(X).

Intersecting with o € Psef,,_(X) and using Theorem [3.3.3/(5), we have that (5 -«a) = 0. Since
the basepoint free cone BPF"*(X) generates all N" (X ) by Theorem M(l), we have proved
that (8 La) =0 for any 3/ € N"7%(X), hence a = 0 as required. O

Corollary 3.3.6. The pseudo-effective cone Psef, (X) is a closed, convex, full dimensional
salient cone in N,,_(X)g.

Proof. We take u € Psef,_;(X) such that —u € Psef,_;(X), then for any ample Cartier divisor
Hx on X, the products (H% ™" - u) and (—u - H%*) are non-negative hence (u - H% *) = 0. This
implies that u = 0 by Proposition [3.3.5]

U

3.4. Siu’s inequality in arbitrary codimension. We recall Siu’s inequality:

Proposition 3.4.1. (|Laz04, Theorem 2.2.13]) Let V' be a closed subscheme of dimension r in X
and let A, B be two Q-divisors nef on X such that Ay is big, then we have in Ny_1(X),

r((A™"- B)L[V])
(A7 [V])

BI_[V] < AI_[V}.

Remark 3.4.2. The case V = X is a consequence of the bigness criterion given in [Laz04, Theorem
2.2.13|.

Remark 3.4.3. The proof of the previous proposition implies that By < r(A™™1-BL[V])/(A"L[V])X
A}y in the Chow group Al(V). However, since we want to work in the numerical group, we compare
these classes in X (we look at their pushforward by the inclusion of V' in X).

Proof. The proof is the same as in [Laz04, Theorem 2.2.13], that is to find a section of the line
bundle Oy (m(A — B)). We choose m general elements FE; of | B| and consider the exact sequence:

0 —— Oy(mA —mB) — Oy(mA) — Oyg,(mA) — 0.

Taking long exact sequence associated, one obtains the minoration:
ho(‘/, Ov(mA — mB) = hO(V, Ov(mA)) — hO(inlEi, OU;'LlEi (TTLA))
Observe that [UE;] = > [E;] = mB L[V]. Applying [GGJT16, Corollary 3.6.3] to the nef divisor

A, we get hO(V, OV(mA)i)le m”/(r)(A"L[V]) + o(m") and

m
hO(UE;, Oum g, (mA)) = Z (r—1)!
i=1 '

A" BL[V] 4 o(m”).

Hence,
ROV, Oy (mA — mB)) > “—(A” = rA""L - B) L[V] + o(m").
7!
In particular, this implies the required inequality. O

The next result is a key for our approach to controlling degrees of dominant rational maps.
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Theorem 3.4.4. Let k be an integer and V' be a closed subscheme of dimension r in X. For any
Cartier diwvisors oo, ...,ar and B which are big and nef on V, then there exists a constant C > 0
depending only on r and k such that:

coag s BTTRLV))
(Br[V])
Remark 3.4.5. Observe that (") > 0 since [ is big.

(g oorap) V] < (r—k+ 1)k<0&1 x BLIV] € No_p(X).

Proof. By continuity, we can suppose that «; and b are ample Cartier divisors. We apply suc-
cessively Siu’s inequality by restriction to subschemes representing the classes ag - ... apL[V]

Brag-...-apL[V], ..., BEL ap V]

(... ap - BT7RL[V])

ap-ag .ol [V] < (T—/{:—l—l)(ﬁr_kﬂ‘QQ..”‘akL[V])xﬂ-ag-...-ozkl_[V],
e ax WOON
Brag...-ap[V] < (r—k+1)ggrk+2‘zz.:::_2i$ﬂ;><52-a3-...-04k|_[\/],
BEL - gL [V] < (r—k+1)(5ﬁ;3’;ﬁgvbxﬁhm.
This gives the required inequality:
al-...-akL[V]<<n—k+1)k(o‘1""'O"“'ﬁrﬂm)xﬁhm

O

Corollary 3.4.6. Let k be an integer, then for any a € BPF*(X) and any big nef Cartier divisor

b on X, one has:

aé(n—k—i—l)k%

Proof. By linearity and stability by product, we just need to prove the inequality for a = Dy - ... -
D, 1 € CIe“Lk(Xl), where D; are ample Cartier divisors X, where p; : X; — X is a flat proper

x b¥.

morphism of relative dimension e;. We apply Theorem toad = Dey1-... Dejyg - Z and
b' = bz where Z = Dy -...- D,.,. We obtain:
. bn—k)
<k )OI ey
a<(n +1) o Z)
As the restriction of p; on Z is generically finite, by the projection formula, we get:
. bnfk
a < (n—k—l—l)k(a—) x b

(b")
0

The previous inequality can be applied when we have positivity hypothesis on a birational model
as follows.

Corollary 3.4.7. Let X,Y be two normal projective varieties of dimension n. Let B be a class in
BPF’“(Y), we suppose there exists a birational morphism q : X — 'Y and an ample Cartier divisor
A on X such that A* < q*3. Then there exists a class B* € Ny(X)g N Psef(X) such that for any
class a € BPF*(X), we have:

a < () x B.
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(n—k+1)*

Proof. We just have to set f* = an

q*le(A"_k)-
0
Remark 3.4.8. We conjecture that for any basepoint free class a € BPF¥*(X) and any big nef

divisor b, one has
n\ (a-0"7%)
a < —=b". 12
(%) “w 2
One can show that this inequality (if true) is optimal since equality can happen when X is an
abelian variety.

3.5. Norms on numerical classes. In this section, the positivity properties combined with Siu’s
inequality allows us to define some norms on Nj(X)g and on N*(X)g.

3.5.1. Norms on Ni(X)r. Let k < n be an integer and let v € BPF¥*(X) be a basepoint free class
on X. Any cycle z € Ni(X)g can be written z = 2* — 2z~ where 2™ and 2z~ are pseudo-effective.
We define :

B()= inf  {(yez)+ (o)) (13)

z=zt—2~
2t 27 €Psef (X)

Proposition 3.5.1. For any class v € BPF*(X) lying in the interior of the basepoint free cone,

the function F, defines a norm on Ny(X)r. In particular, if we fix a norm || - ||n,x). 01 Ni(X)g,
there exists a constant C' > 0 such that for any pseudo-effective class z € Psefy(X), one has:

1

allellneos < (ve2) < Cllzlleos- (14)

Proof. The ounly point to clarify is that F.(z) = 0 implies z = 0. Observe that Proposition
implies the result for z € Psefy(X). In general, pick any two sequences (2} )yen and (2, )pen
in Psef,(X) such that » = 27 — 2 and such that v -z + v -2, —0. Since z and z, are
pseudo-effective and ~ is basepoint free, it follows from Theorem (5) that

lim (y-27)= lim (y-z,)=0.

p—+00 p——+o00

As v lies in the interior of BPF¥*(X), given any 8 in BPF¥(X), one has that Cy — 3 is still in
BPF*(X) for some sufficently large constant C' > 0. Intersecting with the pseudo-effective classes
zy and z, and using Theorem W(E)), we have lim, ,o.(BL2)) = lim, (6L z,) = 0, thus
(BLz) = 0. Since the basepoint free cone BPF¥(X) generates all N*(X) by Theorem M(l), we
conclude that z = 0 as required. 0
3.5.2. Norms on N¥(X)g.

Definition 3.5.2. We define the subcone BPF§(X) of BPF¥(X) as the classes a € BPF¥(X) such
that for any birational map q : X' — X, there exists an ample Cartier divisor A on X' such that
ga > AF.

Proposition 3.5.3. When X is smooth, the cone BPF(I)(X) 15 equal to the big nef cone. In

particular BPF’S 15 neither closed nor open in general.

Proof. Take a € Nl(X)R a big nef divisor. Then for any birational map ¢ : X’ — X and any

ample Cartier divisor A, one has by Theorem [3.4.4) applied to A and ¢*a:

(A-ga")
(")

*

A<n
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Hence, a € BPF{(X). Conversely, take a class a € BPFj(X), then there exists an ample divisor
A on X such that > A. Since ample divisors are big, we have that a is big. Moreover, since
BPF!(X) = Nef!'(X) N Psef'(X), we have that « is big and nef as required. O

Proposition 3.5.4. The cone BPFE(X) is a convex open subset of BPF¥(X) that contains the
classes induced by products of big nef divisors.

Proof. The cone BPF(X) contains the products of big and nef Cartier divisors. The fact that
BPF(X) is convex is a consequence of Siu’s inequality. We take two elements o and /3 in BPFE(X)
and any birational map ¢ : X’ — X. By definition, there exists some ample Cartier divisors A and
B on X' such that ¢*a > A* and ¢*8 > B*. As A and B are ample, there is a constant C' > 0
such that A* > CB* using the generalization of Siu’s inequality (Theorem [3.4.4). This proves that
¢ (txa+(1—t)xp) = (tC+ (1 —1t)) x B¥ for any t € [0,1]. Hence t x a + (1 —t) x 3 € BPFE(X)
and the cone BPF}(X) is convex.

We prove that BPF{(X) is an open subset of BPF*(X). We take o € BPFE(X). We take any
ample Cartier divisor Hy on X such that a — tH% is in BPF*(X) for small ¢ > 0. We just need
to show that o — tH% stays in BPF§(X) when ¢ is small enough. Let ¢ : X’ — X be a birational
map where X' is projective and normal. By definition of «, there exists an ample Cartier divisor
A on X’ such that ¢*a > A*. By Siu’s inequality, there exists a constant C' such that:

(A% - g HY ™)

¢HY <C — x AF.
* (H%)
This implies the inequality:
Ak 3 Hn—k:
£B— i HY > (1 - tC’—X) < AP, (15)
H

As A* < ¢*a, we have the following upper bound:
(A" HYy ") < (¢a- ¢ HY).

We get the following minoration which depends only on o and H:

C . Hn—k C Ak . Hn—k
1_tM<1_t¥ (16)
(HY) (HX)
H’n
Using and ((L6)), one gets that for ¢ < %, the class a — tHY is in BPFE(X).
- X
0

Remark 3.5.5. The cone BPF’S(X) is not always equal to the cone generated by complete inter-
sections. Following [LX15, Example 9.6], there exists a smooth toric threefold such that the cone
generated by complete intersections in N;(X)g is not convex, so it cannot be equal to BPFa(X)
using the following proposition.

Let X be a normal projective variety of dimension n. Any class a € Nk(X)R can be decomposed
as at — o~ where o and o~ are basepoint free classes. For any v € BPFy*(X), we define the
function:

G(a):= inf  {(y-a*)+(y-a")} (17)

a=at—a~
at,a~ €BPF*(X)
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Proposition 3.5.6. For any v € BPF} *(X), the function G, defines a norm on N¥(X)g. In
particular, for any norm || - |[xx(x), on N¥(X)g, there is a constant C' > 0 such that for any class
o € BPFF(X):

1

GHO‘HN’“(X)R <(v-a)< C’laHNk(X)R'

Proof. The only fact which is not immediate is the fact that G,(a) = 0 implies @ = 0. We are

reduced to treat the case where o € BPF¥(X).

Suppose first that X is smooth. Since v belongs to the interior of the basepoint free cone by
Proposition , one has that for any basepoint free class g € BPF”_k(X), there exists a constant
C > 0 such that:

ClIBlly — 6 € BPF""(X).
In particular, since « is nef, one has:
0=Gy(a) =Cl|Bl[(y-a) = (8- a) 2 0.

Hence (3 - «) = 0 for any basepoint free class 3 € BPF"*(X) and o = 0 € N*(X)g since the
basepoint free cone generates all N ™"(X)g by Theorem [3.3.3](i).

Suppose that X is not smooth. Fix an ample Cartier divisor Hx on X. Take an alteration
7 : X' — X of X. Since the morphism 7* : N*(X)g — N¥(X")g is injective, we are reduced to
prove that 7*a = 0. Consider € BPF"*(X), we have by the projection formula that:

(77 - 7*a) = (@ 7).
Since v belongs to the interior of the basepoint free cone, there exists a constant C' > 0 such that:
H;L(_k < Cr.
In particular, this implies that:
(T*HY ™ . 1) = (HY ™" - a) = 0.

Since 7*Hx is a big nef Cartier divisor, the class 7* H% * belongs to BPFy*(X’) by Proposition
hence 7*a = 0 by the previous argument.
O

Remark 3.5.7. In fact, the above proof gives a stronger statement: for any generically finite mor-
phism ¢ : X’ — X and any v € BPFj *(X), the function G-, defines a norm on N*(X').

4. RELATIVE NUMERICAL CLASSES

4.1. Relative classes. In this section, we fix ¢ : X — Y a surjective proper morphism between
normal projective varieties where dim X = n, dimY = [ and we denote by e = dim X —dim Y the
relative dimension of q.

Definition 4.1.1. The abelian group Ni(X/Y') is the subgroup of Ni(X) generated by classes of
subvarieties V' of X such that the image q(V) is a point in Y.

Observe that by definition, there is a natural injection from N (X/Y") into Ny (X):
Definition 4.1.2. The abelian group N*(X/Y) is the quotient of Z*(X) by the equivalence relation

=y where o =y 0 if for any cycle z € Z,(X) whose image by q is a collection of points in' Y, we
have (aL z) = 0.
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Therefore, one has the following exact sequence:
N¥(X) — N*(X/Y) —0.

As before, we write Nu(X/Y)r = Nu(X/Y) @z R, N¥(X/Y)r = N*(X/Y) @ R, NJ(X/Y) =
®NL(X/Y) and N*(X/Y) = @ NF(X/Y).

Proposition 4.1.3. The abelian groups Ni(X/Y) and N*(X/Y') are torsion free and of finite type.
Moreover, the pairing Niy(X/Y)ox N*(X/Y)g — Q induced by the pairing Nix(X)ox N¥(X)g — Q
15 perfect.

Proof. Since Ni(X/Y') is a subgroup of Ny(X), it is torsion free and of finite type. The group
N*(X/Y) is also torsion free. Indeed pick o € Z*(X) such that pa =y 0 for some integer p, then
for any cycle z whose image by ¢ is a union of points, we have (parz) = p(arLz) = 0 hence
a =y 0. Finally, since there is a surjection from N*(X) to N*(X/Y), the group N*(X/Y) is also
of finite type.

Let us show that the pairing is well defined and non degenerate. Take a cycle z € Z;(X)g such
that q(2) is a finite number of points in Y, then if o € N¥(X) such that its image is 0 in N*(X/Y),
then (oL z) = 0 and the pairing N*(X/Y) x N.(X/Y) — Z is well-defined. Let us suppose that
for any a € N*(X/Y)g, (L 2) = 0. This implies that for any 8 € N*(X), the intersection product
(BLz) = 0, thus z = 0. Conversely, suppose that (aLz) = 0 for any z € Ni(X/Y), then by

definition o =y 0.
O

Ezample 4.1.4. When Y is a point, we have N (X/Y) = Ni(X) and N*(X/Y) = N*(X).

Ezample 4.1.5. If the morphism ¢ : X — Y is finite, then we have N°(X/Y) = No(X/Y) = Z and
N¥(X/Y) = Np(X/Y) = {0} for k > 1.

Ezxample 4.1.6. When k = 1, the group N;(X/Y) is generated by curves contracted by ¢ so that
N'(X/Y) is the relative Neron-Severi group and its dimension is the relative Picard number.

Remark 4.1.7. When k is greater than the relative dimension, the relative classes might not be
trivial. For example if ¢ : X — Y is a birational map, then e = 0 but the space N*(X/Y)g is
generated by classes of exceptional divisors of q.

Proposition 4.1.8. The intersection product on N*(X) induces a structure of algebra on N*(X/Y').
Moreover, the action from N*(X) on No(X) induces an action from N*(X/Y) on No(X/Y), so
that the vector space No(X/Y)r becomes a N*(X/Y )r-module.

Proof. Observe that if z € Z,(X) such that ¢(z) is a union of points in Y and a € N'(X), then
aL z lies in Ni_;(X/Y). Indeed, by definition, the class a.L z is represented by a cycle supported
in z, so its image by ¢ is a collection of points in Y.

Let us now prove that the product is well-defined in N*(X/Y). Take a € N¥(X) such that
o = 0in N¥(X/Y) and 8 € NY(X), we must prove that o - 3 = 0 in N*(X/Y). Pick a cycle
2z € Zpu(X) whose image by ¢ is a collection of points, by the properties of the intersection
product, ((a-B)Lz) = (ac(Brz)). As frz is in Ng(X/Y), we get that ((av- f)Lz) = 0 as
required.

OJ

As an illustration, we give an explicit description of these groups in a particular example.
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Proposition 4.1.9. Suppose ¢ : X = P(E) — Y where E is a vector bundle of rank e+ 1 onY.
Then for any integer 0 < k < e, one has:

N(X/Y) =7 &7 g [pt],

NY(X/Y) =27 &,
where & = ¢1(Opg)(1)).
Proof. Since the pairing N*(X/Y)xNy(X/Y) — Zis non degenerate and since (&% L (£°7% L ¢*[pt])) =
1, the second equality is an immediate consequence of the first one. We suppose first that & > 0.
Pick a € Z,(X) which defines a class in Ni(X/Y). Using [Ful98, Theorem 3.3.(b)], « is rationally

equivalent to >, . &' q*a; where «; is an element of the Chow group Ag_.,;(Y). Since the
image of « by ¢ is a union of points in Y, we have that g.a = 0 in A,(Y"). Observe that

¢ (§ L q ) = a,
and that for any 7 < e, one has that
q*(ﬁl I—q*Oéz‘) =0
since the support of the cycle a; is of dimension k — e + i < k and ¢.(§°L ¢"a;) belongs to Ax(Y).
Hence the conditions ¢.ov = 0 implies that o, = 0 in A(Y)q. Since &' L a defines also a class in

Ny_i(X/Y), this implies also that c._; = 0 in Ay_.;(Y) for any i < k. We have finally that in
Ni(X/Y):

a=E gty
Since . belongs to Ay(Y) and No(Y) = Z[pt], the Z-module N, (X/Y) is generated by £~ L ¢*[pt]
for k > 0.

For k = 0, the groups No(X) and No(X/Y) are isomorphic to Z, so we get the desired conclusion.
0

4.2. Pullback and pushforward. In this section, we fix any two (proper) surjective morphisms
g X1 — Y1, ¢ Xo = Y5 between normal projective varieties. To simplify the notation, we

write X;/,, Y1 ER Xs/4, Y2 when we have two regular maps f : X7 — X5 and g : Y7 — Y5 such that
g

gof=goq. When f: X; --» X5 and g : Y; --» Y5 are merely rational maps, then we write
f
Xl/qlifl _;') X2/Q2yé'

Proposition 4.2.1. Let X;/,Y; EN Xo/4,Ya be a morphism. Then the morphism of abelian groups
9
fe : Np(X1) = Ni(Xs2) induces a morphism of abelian groups f. : Np(X1/Y1) = Np(X2/Y2).

Proof. Take a cycle z € Z;(X;) such that ¢1(2) is a union of points of Y;. Then the image of the
cycle z by g2 o f is also a union of points of Y5 due to the fact that gs o f = goq;. Hence f, maps
Nik(X71/Y1) to Np(Xo/Y3). O

Proposition 4.2.2. Let X/, Y1 EN Xo/4,Y2 be a morphism. Then the morphism of graded rings
g
f*:N*(Xy) = N*(X3) induces a morphism of graded rings f*: N*(X;/Y1) — N*(X5/Y5).

Proof. This results follows immediately by duality from the previous proposition since the pairing
N*(X;/Y;) x Np(X;/Y;) = Z is non degenerate. O
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4.3. Restriction to a general fiber and relative canonical morphism. Recall that dim X =
n, dimY = [ and that the relative dimension of ¢: X — Y is e.

Proposition 4.3.1. There exists a unique class ax;y € NZ(X)@ satisfying the following conditions.
(1) The image ¥ x(ax/y) belongs to the subspace No(X/Y )g of Ne(X)q.
(2) For any class f € Ni(X)q, ¢.8 = (ax/y L) [Y].
Moreover, for any open subset V' of Y such that the restriction q to U = ¢~ (V') is flat, and for all
y € V and any irreducible subvariety I of the scheme-theoretic fiber X, we have:

Ux(axyy) = [Xy] = k[F],
where k is a rational number which only depends on F and where [X,]| (resp. [F]|) denotes the
fundamental class of X, (resp. F).

Remark 4.3.2. Recall that by generic flatness (see [FGIT05, Theorem 5.12]), one can always find
an open subset V of Y such that the restriction of ¢ to ¢~ (V) is flat over V.

Proof. Fix an ample Cartier divisor Hy on Y, we set

R 1 * 7yl l
ax/y = (Hé,)q Hy € N'(X)q-
By definition, it satisfies (1) and (2) follows from the projection formula (Theorem [2.3.2(4)).
Let us show that any class satisfying (1) and (2) is unique. Suppose there is another one o/ €
N'(X)g. Then for any class 8 € Ny(X)q, ((ax/y — ') 3) = 0 so that @ = o since the pairing
NY(X)g x Ni(X)g — Q is non degenerate.

Let us prove the last assertion. By generic flatness [FGIT05, Theorem 5.12|, Let V' be an open
subset of Y such that the restriction ;-1 : ¢7'(V) — V is flat and such that the dimension
of every fiber is e. Since Hy is ample, we can find some hyperplanes of H; C Y such that
Hy, N ...N H represents the class HL and such that Hy N...N H; C V. In particular, by [Ful98,
Proposition 2.3.(d)|, the pullback ¢*H! is represented by a cycle in the fiber of H; N ... N H,.
Denote by i : V — Y and j : U — X the inclusion maps of V and U into Y and X respectively.
The morphisms j and ¢ are open embedding hence are flat. Moreover we have the following
commutative diagram.

%

*>X

<

qu q

—

L}Y

<

Since the class Hl is equal in Ay(Y) to:

Hy =Y ailp] (18)

where p; € V() are points in V and a; are positive integers satisfying > a; = (HY). Using [Ful98|
Example 2.4.2|, one has that for any 8 € A;(X):

(" Hy L 8) = (qu" (Hy) i ).
Using (18], one obtains in A.(X):
Gig Hy = quj*(Z a;[pi]) = Z ailg™ (pi));

which is well-defined since the restriction of ¢ on U is flat. By [Ful98, Theorem 10.2|, we have that
[Xp,] = [Xy] € Ne(X) for any p;,y € V. In particular, we have:

¢X(q*H§/) = (Z a;)[Xy] = (Hé,) [X,] € Ne(X),
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where y is a point in V, which proves that ¢ x (ax/y) = [X,] in N.(X)g for any point y in V. By
the Stein factorization theorem, there exists a morphism ¢’ : X — Y’ with connected fibres and a
finite morphism f : Y’ — Y such that ¢ = ¢’ o f. Since (H})[X,] = ¢*H} = ¢* f*H, and since
f*HL € N'(Y")g which is canonically isomorphism to R, we have that f*HL = p-[y] € N'(Y')r
where p is an integer and where [y/] is a general point in f~!(y). We have thus proven that:

P -1y
[Xy] = l9 (4] € Ne(X),
T(HY)
and ¢'~'(y’) is an irreducible component of X, as required. O

The class previously constructed allows us to define a restriction morphism.

Definition 4.3.3. Suppose that dimY = [ and that Hy s an ample Cartier divisor on Y, then
we define Resx/y : No(X)g = Ne—i(X/Y)q by setting:

RGSX/y(6> = Oéx/y L 6
This morphism does not depend on the choice of Hy .

We shall denote by Resy )y : 8 € N*(X/Y)q — ax)y B € N*"(X)q the dual morphism induced
by RGSX/y.

Proposition 4.3.4. Recall that dimY = 1. The following properties are satisfied.
(1) For any class a € N*(X)q, one has:
¥x o Resy )y (a) = Resxy othx ().
(2) For any morphism X'/, Y’ EN X/Y where dim X' = dim X = n and dimY’ = dimY =1
such that the topological deg;ee of g is d, we have for any a € Nk_l(X/Y)@:
d x Resy, yrof*a = f* o Resy y a.

The definition of the restriction morphism gives a natural way to generalize the definition of the
canonical morphism 1x : N*(X) — N,,_x(X) to the relative case.

Definition 4.3.5. Recall that the relative dimension of the morphism q : X — 'Y is e. For any
integer k > 0, we define the canonical morphism Vx;y by:

Uy = ¥x o Resky 1 8 € NM(X/Y)g — ¢x(axy - 8) € Ne(X/Y)g.
Remark 4.3.6. When k > e by convention the map 1 x/y is zero.
We give here a situation where this map is an isomorphism.

Proposition 4.3.7. Suppose q : X — Y is a smooth morphism of relative dimension e, then for
any integer 0 < k < e, the map xy : N*(X/Y)g = Ne_n(X/Y)q is an isomorphism.

Proof. Since the pairing N*(X/Y)g x Nx(X/Y)g — Q is perfect by Proposition we have
that the dual morphism ¢y N“*(X/Y)g — Ne(X/Y)g of ¥x/y is surjective whenever ¢x/y :
N¥(X/Y)g — Nex(X/Y)q is injective. We are thus reduced to prove the injectivity of ¢,y :
N¥(X/Y)g — Ne—x(X/Y)q. Take a € N¥(X/Y)q such that ¢x/y(a) = 0, and choose a class

a € Nk(X)@ representing a. We fix a subvariety V' of dimension k in a fiber X, of ¢ where y is a
point in Y. We need to prove that (ac[V]) = 0.

By Proposition the condition 1 x,y (o) = 0 implies that:
Oél_[Xy} =0e€ Ne_k(X)Q.
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Since X, is smooth, by Theorem , there exists a class § € Ne_k(Xy)@ such that:
pelXy] =[V].
In particular, we get:
(@ [V]) = (a(BL[Xy)) = (Br(a[X,]) =0

as required. O

Ezample 4.3.8. If X = P(E) where E is a vector bundle on Y, then Proposition implies that
Uxyy : N¥(X/Y)g — Ne_p(X/Y)q is an isomorphism for any integer 0 < k < e.

Ezample 4.3.9. If X is the blow-up of P' x P! at a point and ¢ is the projection from P! x P* to the
first component Y = P! composed with the blow-down from X to P' x P'. Then the morphism
Uxy : NY(X/Y)g — Ni(X/Y)g is not surjective and 1x/y : N'(X/Y)g — No(X/Y)q is not

injective.

5. APPLICATION TO DYNAMICS

In this section, we shall consider various normal projective varieties X; and Y; respectively of
dimension n and [ and we write e = n — [ Recall from Section that the notation X;/,Y; means

that ¢; : X; — Y, is a surjective morphism of relative dimension e and that X/,Y N X'/ Y
9

means that f: X --» X' and g : Y --» Y’ are dominant rational maps such that ¢’ o f = g oq.
We shall also fix Hy, and Hy, big and nef Cartier divisors on X; and Y; respectively.
In this section we prove Theorem [I] and Theorem 2l They will follow from Theorem and

Theorem respectively.

5.1. Degrees of rational maps.

Definition 5.1.1. Let us consider a rational map X1/4,Y1 4, Xo/pYa and let Ty (resp. T',) be
g

the normalization of the graph of f (resp. g) in X1 x Xy (resp. Y1 x Yy) such that we have the
following diagram.

Ly
PR B
lql - lqz
Yi-----f -2
N

I

The k-th relative degree of f is defined by the formula:
reldegy,(f) := (m (H" - (g1 Hy,)') - w5 (Hx,)").
When Yy and Yy are reduced to a point, we simply write deg,(f) = reldeg,(f).
Remark 5.1.2. If e = 0, then reldeg,(f) = (¢fHY,) if k = 0 and reldeg,(f) = 0 for k > 0.

Note that the degrees always depend on the choice of the big nef divisors, but to simplify the
notations, we deliberately omit it.
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We now explain how to associate to any rational map X/, Y] R X3/, Y2 a pullback operator
g
(f.9)**

Definition 5.1.3. Let X;/,Y; —J—C+ Xo/p Y2 be a rational map and let m; and 7 be the projections
g

from the graph of f in X1 x Xy onto the first and the second factor respectively. We define the
linear morphisms (f, 9)** and (f, 9)ex by the following formula:

(f.9)*" 1 0 € N (Xp/Ya)r — (M1, 0 ¥ r, 0 m5)(@) € Neo (X1 / V).

(f, 9ok = B€ N*(X1/Y1)r — (2, 0 ¥r, 1, © 11)(B) € Neei(Xa/ V).
Remark 5.1.4. When Y] and Y3 are reduced to a point, then we simply write f**(a) := (f, Idgy)"* (@)
and for(8) == (f, Id{pep)er(5)-

Remark 5.1.5. Since Nk(X/Y) = 0 and N,_4x(X) = 0 when k > e, it implies that (f,g)** and
(f, 9)ex are identically zero for any k > e.

5.2. Sub-multiplicativity.

Theorem 5.2.1. Let us consider the composition X1/, Y1 - + Xo/pYo ——+ X3/4Ys of dominant

rational maps. Then for any integer 0 < k < e, there exists a constant C > 0 which depends only
on the choice of Hx,, Hy,, k, | and e such that:

reldeg, (f2 o f1) < Creldeg,(f1) reldeg,(f2).
More precisely, C = (e — k+1)*/(HS, - ¢;HL,).

Proof. We denote by I'y, (resp. I'y,, Fgl,ng) the normalization of the graph of fi (resp. fa, 91, g2)
and my, my (resp.ms, w4, ), m, and 7}, 7)) the projections onto the first and the second factor
respectively. We set I' as the graph of the rational map 7r3_1 ofiom : 'y, ==+ I'y,, w and v the
projections from I" onto I'y, and I'y, and w; the restriction on I'y, of the projection from X; x X4
to Y; x Y,y for each i = 1,2. We have thus the following diagram.

N
/\/\\

(19)

——————— —)XQ————————>X3
ml w1 QZJ w2 QSJ
Y-l____gl____>Y-2____g2____>Y,3

N LA N A

r r

g1 g2

By Proposition applied to gz om0 u : I' = Y3, the class ¢r(u*nhq3HY,) is represented by
the fundamental class [V] where V is subscheme of dimension e in I" which is a general fiber
of g o ™ 0o u. We apply Theorem 4] by restriction to V to the class a = v* *H§(3 L[V] and
b=u*r;Hyx,[V]. We obtain:
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(v'miHy, - w'msHG  L[V])
(w3 HY, L[V])

Let us simplify the right hand side of inequality (20)). Since myou = w300, Yr(u*nigsHy,) = [V] €
N.(I") and since the morphism v is generically finite, one has that:

(miHY, W' mHG V]) = (0 (miHY, - mHG - migsHy,)) = d x reldegy (), (21)

vmiHY, V] < (e — k4 1)* wryHY, L[V] € Ney(D).  (20)

where d is the topological degree of v. The same argument gives:
(w3 HS, L[V]) = d x (HY, - ¢:Hy,). (22)
Using , , inequality can be rewritten as:
gy Hy, - v Hy, < Creldegy(fo) w'nyHY, - u*rsqs Hy, € NER (DY,

where C' = (e — k+1)*/(HS, - ¢3HY,). Since the class uw*n; Hg,* € N°¥(I') is nef, we can intersect
this class in the previous inequality to obtain:

(w'(rp HY,' ™8 - migs Hy,) - o™i HY, ) < C'veldegy (fo) (u'my HY, - w'myas Hy, - w'n Hi ' 7F). (23)
Let us simplify the expressions in inequality (23). Because m3q3HY, = winy Hy, and deg;(g1) =
(w5 HL,), we deduce that:

deg;(g1) deg;(g1)

x %17l x 1% 7l * % 77l
WQQQHYQ = (Hifl) wﬂﬂ HY1 = (Héfl) 7T1Q1HY1- (24)
Applying (24)), the inequality (23]) can be translated as:
deg g * % n—I{— * * % deg g * * * % * rrn—Il—
(I}l( )1)(“ 7T1(Hxll k‘(hHgfl)'U 7T4H§<3) <C (I—_;l( )1> reldegy (fa2)(u (7T2H§(2'7T1Q1H§q '7V1HX1l k))
Y1 Yl

We obtain thus:
deg;(91) deg;(91)
(Hi,) (Hy,)

This concludes the proof of the inequality after dividing by deg;(¢1)/(HY, ). O

reldeg,(fao fi) < C reldeg, (f1) reldeg,(f2).

5.3. Norms of operators associated to rational maps. The proof of Theorem [2| relies on an
easy but crucial lemma which is as follows.

Lemma 5.3.1. Let us consider (V,||-||) a finite dimensional normed R-vector space and let C be
a closed convex cone with non-empty interior in V. Then there exists a constant C > 0 such that
any vector u € V' can be decomposed as v = vt — v~ where u™ and u~ are in C such that:

[0/~ < Clfo]].
Proof. Let us define the map f: V — R* given by:
f)=mf{||V'||+ || =v|| |V €C, v —veC}

We check easily that f defines a norm on V' which is similar to the proof of Proposition [3.5.1]
Since V' is finite dimensional, there exists a constant C' such that for any v € V, one has:

f(v) < Clvl],
Hence [[vT|| < C||v|| and [[v~]] < C||v]]. O
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Theorem 5.3.2. Let X/,Y R X/,Y be a rational map. We fiz an integer k < e, some norms
g

on N¥(X/Y)g, on N._(X/Y)g. Then there is a constant C' > 0 such that for any rational map
X/Y A, X/,Y, we have:
9

ok
C' ~ reldeg(f)

In particular, the k-th relative dynamical degree of f satisfies the following equality:
M(f, X/Y) = T |(f7,g7) M
p—+o00

Moreover, when'Y s reduced to a point, we obtain:

A — ] D\ e,k 1/p.

() = Tim 1G]

Remark 5.3.3. The proof of Theorem [2] follows directly from Theorem since N¥(X/Y) =
N*(X) and N._(X/Y) = N._(X) when Y is reduced to a point.

Proof. We denote by m; and w5 the projections from the graph I'; of f onto the first and the second
component respectively. Since we want to control the norm of f** by the k-th relative degree of
f, we first find an appropriate norm to relate the norm on N._;(X)g with an intersection product.
As No_(X/Y)r is a subspace of N._;(X)r, we can extend the norm || - ||x,_,(x/v)s into a norm
on Ne_x(X)r. As N._x(X)r is a finite dimensional vector space and since H)e(_k is a class in the
interior of the basepoint free cone BPFe’k(X), we can suppose by equivalence of norms that the
norm on N._(X)g given by
lell= it ) ()

z=zT—z"
21,27 €Psefo_(X)

as in Proposition [3.5.1]

Let us prove that the lower bound of ||(f, g)**||/ reldeg,(f) is 1. We denote by ¢ : N*(X) —
N*(X/Y) the canonical surjection. Since HY is basepoint free, it implies that the class (f, g)*(o(H%)) €
Ne—k(X/Y)r C Ne—p(X)g is pseudo-effective. In particular, this implies that its norm is exactly
reldeg, (f). We have thus by definition:

1(f, )1 _ (£, 9)**l
reldeg,,(f) <||(f, g)”’“w(Hﬁ)II) b

as required.

Let us find an upper bound for ||(f,9)**||/||(f,9)**o(H%)||. First we fix a morphism s :
N*(X/Y)r — N¥(X)g such that ¢ o s = Id. Take @ € N¥(X/Y)g of norm 1, then the class
u = s(a) € N¥(X)g is a representant of a. By construction, the norm of u is bounded by
[ullxr(x) < Chllallnr(x/v), = C1 where Cy is the norm of the operator s. Since by Proposition
1.3.4(2), Resp, p, oy = (1/ degy(g)) x 75 o ResYy, we have therefore:

(f.9)""a = deg,(g) X T, 0 ¢r, 0 T o Res,y(a) = Resy)y foFu.
l

By Theorem the pliant cone BPF*(X) has a non-empty interior in N*(X)r and we can apply
Lemma |5.3.1] There exists a constant Cy, > 0 which depends only on BPF¥(X) and the choice of

the norm on N*(X)g such that the class u can be decomposed as u = u; —uy where u; € BPFF(X)
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such that [|u;|[xr(x), < Collullyex), for i = 1,2 We set oy = ¢(u;) for all i € {1,2}. By the
triangular inequality, we have:

1(F, 9)**allneoomy _ 10 9)* anllne w0e 9" Faa|IN, ()
1(f.g) e(HE)I ~ [I(f, 9)Fo(HY)I| 1(f; 9)**o(HE)]

We have to find an upper bound of ||(f, g)**a||x,_,(x/v), for each i = 1,2. Applying Corollary
to a = myu; and b = w5 Hx and then composing with Resx,y omy, o wpf gives

||ui||Nk(X)R

(H%)
where Cj5 is a positive constant which depends only on the choice of big nef divisors. This implies
by intersecting with H)e{k the inequality:

Resx/y (f**(u;)) < Cy x Resx,y (f**(HY)),

II((f,g)"k(Ozi)lNefk(X/Y)R<03H (HN) “[1(f, 9 (e HI N, x/v -

In particular we have shown that:

H(f? g>.7ka| Ne_x(X/Y)r < 2010203
h ||(fvg).’k90(H§() |Ne—k(X/Y)]R h (H;L() ’

which concludes the proof.

6. SEMI-CONJUGATION BY DOMINANT RATIONAL MAPS

In this section, we consider a more general situation than in the previous section. We still
suppose that the varieties X; and Y; are of dimension n and [ respectively such that the relative
dimension is e = n — [, but we suppose the maps ¢; : X; --» Y; merely rational and dominant:
they may exhibit indeterminacy points. Recall also that Hx, and Hy, are again big and nef Cartier
divisors on X; and Y; respectively.

Definition 6.0.4. Let f: X7 --» X9, g : Y] -—» Yo, q1 : Xy --» Y] and ¢z : Xo --» Y5 be four
dominant rational maps such that go o f = go q. We define the k-th relative dynamical degree
of f (still denoted reldeg,(f)) as the relative degree reldeg,(f) with respect to the rational map

L,/ Y1 R Iy, /Yo where 'y, are the normalization of the graphs of q; in X; x Y; for each integer
9
i € {1,2} respectively and f : Ty, --» [y, is the rational map induced by f.
Theorem 6.0.5. (1) Consider now the following commutative diagram:
Xl—jil%XQ—é—)Xg

I
I 91 I g2 | g3

v 91 - 92 v
Yi-5 Y- oY

where fi: Xi ==» Xip1, g2 Yi - Y, ¢t 0 Xy -2 Y1, @t Xo --» Yo, @3 X5 -+ V3
are dominant rational maps for any integer i € {1,2,3} such that q;41 0 fi = gi o q; for
any integer i € {1,2}. Then there exists a constant C' > 0 which depends only e, k and the
choice of big nef Cartier divisors such that:

reldeg, (f2 o f1) < Creldeg,(f2) reldeg,(f1).
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(2) Consider now the following commutative diagram:

! /
/Xl __________ _/>X27
®1 // l Y2 // !
T l
k
Xl—————i—|————>X2}< \
| | | |
\ [ a2 \
[ + I +
| @1 Y/--——--=-—-- Y]
¢1/// [ ///
| - | ~
¢k// g "’z//@
BE----fo--- - Y

where f: X1 --» Xo, g Y] —— Yy, q1 : X1 -2 Yy, @0 1 Xo —-» Y5 are four dominant
rational maps such that gz o f = go q;. We consider some birational maps ¢; : X! --+ X;
and ¢; Y --+ Y, fori = 1,2 such that f= w0y ofop and G = ¢y ogody. Then for any
integer 0 < k < e, there exists a constant C' > 0 which depends on e, k and on the choice

of big nef Cartier divisors such that:

1 -
c reldeg, (f) < reldeg,(f) < Creldeg,(f). (25)
Proof. (1) Let fi : Iy, --» T'y;., be the rational maps induced by f; on the graph I'y, of g; for

i € {1, 2} respectively Then (1) results directly from Theorem applied to the composition
lh/}/l—')rlh/yé ')F‘a/y?’

(2) Let us suppose first that the maps ¢; : X; — Y; and ¢} : X! — Y/ are all regular fori=1,2.

Let us apply successively Theorem [5.2.1|to the composition X}/, Y/ —sp—+ X1/ Y1 —g+ Xo/p Yo £3+

2

X5/qYs. We obtain :

reldegy(py " o fopr) < Careldegy(f o 1) reldeg (5 ') < C1Cyreldegy,(f) reldegy (1) reldegy (5 ),
(26)
where Cy = (e — k+ 1)*/(H%, - ¢;H},) and Cy = (e — k + 1)*/(HY, - ¢3HY,). This proves that:

reldeg, (5 Yo fo 1) < C'reldeg,(f),
where
(e — k + 1)%* reldeg, (¢1) reldeg, (05 1)
(HS, - @i Hy,)(H, - ¢ Hy,)
The proof follows easily from the regular case since the maps 'y --» 'y, and 'y, --» I'y, are
birational where I'y; are the graphs of ¢; in X x Y for i = 1,2. O

Proof of Theorem[f} (1) We apply Theorem [5.2.1]to Y; = Y> = Y3 = Spec(k), X1 = X = X3 =

X and Hx, = Hx, = HXd Hy, we get thus the desired conclusion:
k
deen(g o ) < "B I deg (1) dese o).
(H%)

(2) Applying Theorem [6.0.5](2) to the varieties X| = X = X; = Xo = X, Y/ =Y/ =Y, =Y, =
Spec(x), to the choice of big nef divisors Hx; = Hx; = HY, Hy; = Hy; = Hy, Hx, = Hx, = Hx
and to the rational maps o1 = o = Idx, ¢1 = ¢2 = g = Idgpec(n), f : X --» X yields the desired
result.

C:
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7. MIXED DEGREE FORMULA

Let us consider three dominant rational maps f: X --+ X, ¢: X --» Y, g:Y --» Y such that
go f = goq. Theorem [6.0.5/(1) implies that for any integer k < e the sequence reldeg(f™) is
submultiplicative. Define k-th relative dynamical degree as follows.

Ae(f, X/Y) = (veldegy(f7))"”.

When Y is reduced to a point, then we simply write A\, (f) := \e(f, X/{pt}).

lim
p—+o00

Remark 7.0.6. Since reldeg,(f?) € N is an integer, one has that A\.(f, X/Y) > 1.

Remark 7.0.7. Theorem [6.0.5](2) implies that Az(f, X/Y) does not depend on the choice of big
nef Cartier divisors and on any choice of varieties X’ and Y’ which are birational to X and Y
respectively.

Our aim in this section is to prove Theorem To that end, we follow the approach from
IDNT12|. The main ingredient (Corollary is an inequality relating basepoint free classes
which generalizes to arbitrary fields (see [DN11, Proposition 2.3] and [DNTI12, Proposition 2.5]).
This inequality is a direct consequence of Theorem which estimates the positivity of the
diagonal in a quite general setting. After this, we prove in Theorem the submultiplicativity
formula for the mixed degrees. Once the submultiplicativity of these mixed degrees holds, the
proof follows from a linear algebra argument.

7.1. Positivity estimate of the diagonal. In this section, we prove the following theorem.

Theorem 7.1.1. Let q : X — Y be a surjective morphism such that dimY = [ and such that q

15 of relative dimension e. There exists a constant C' > 0 such that for any surjective generically
finite morphism m : X' — X and any class v € BPF'T(X’ x X'):

(YL[Ax]) S C x (v- (m x 7)*(H - Hy)), (27)
where p1 and py are the projections from X' x X' to the first and the second factor respectively,

Hx = piHx + p5Hx and Hy = piq*Hy + p5q*Hy, and where Ay, (resp. Ax) is the diagonal of
X' (resp. of X)in X' x X' (resp. in X x X ).

Remark 7.1.2. The fact that the constant C' > 0 does not depend on 7 but only on Hx, Hy is
crucial in the applications. Moreover, we believe that the following conjecture, which is a stronger
version of (27)), should be true:

[Ax/] < Cxrexe((m x m)*(HY - Hy)) € Niye(X' x X' (28)

We shall use several times the following lemma.

Lemma 7.1.3. Let X, /,Y) R Xs/ 4, Y2 be two dominant rational maps where dimY; = dim Y,y = [
g

and dim X; = dim Xy = e + 1. We denote by I'y and I'y the normalizations of the graph of f and
g in X1 x Xy and Yy x Y, respectively, my, mo, my, 7 are the projections from I'y and I'y, on the first
and the second factor respectively. Then there exists a constant C' > 0 such that for any surjective
generically finite morphism 7 : X' — Ty, any integer 0 < j < 1 and any class f € BPFT I (X"),
one has:

deg;(g)
(Hlyvl)

where deg; (g) is the j-th degree of the rational map g with respect to the divisors Hy, and Hy,.

(8- w33 Hy,) < O x (8- mmigr HY,),
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Proof of Theorem By Siu’s inequality, we can suppose that both the classes Hy and Hy
are ample in X and Y respectively. We proceed in three steps. Fix 7 : X' — X.

Step 1: We suppose first that X = P! x P°, Y = P! and ¢ is the projection onto the first factor.
Since X x X is smooth, the pullback (7 xm)* is well-defined in N, (X x X)g because the morphism

Vxxx 1 NTYX x X)g — Nipo(X x X)g is an isomorphism. Our objective is to prove that there
exists a constant C; > 0 such that

[Ax/] < Oy x xrexi((m x m)* (HY - HY)) € Nppo (X! % X )g.
As X x X is homogeneous, we apply the following lemma analogous to [Trul6l Lemma 4.4] which

we prove at the end of the section.

Lemma 7.1.4. Let X be a homogeneous projective variety of dimension n and let w: X' — X be
a surjective generically finite morphism. Then one has that :

[Ax] < (1 x 1) [Ax] € No(X % X')g.

We denote by pi,p, (resp. pf,p4) the projections from Y x Y (resp. from X x X) onto the
first and the second factor respectively. Since the basepoint free cone has a non-empty interior by
Theorem [3.3.3] (1) and since the class p}*Hy + pi Hy is ample on Y x Y, there exists a constant
Cy > 0 such that the class —[Ay] + Co(p Hy + pi Hy)' € NY(Y x Y)g is basepoint free. Since
Ax = Ay x Ape and by intersection and by pullback, we have that the class:

—[Ax] + Cy x Hy - p*[Ape] € NTHX x X)

is basepoint free where p denotes the projection from X x X to P° x P°. By the same argument,
there exists a constant C3 > 0 such that the class —p*[Ape] + C5HS € N°(X x X)g is basepoint
free. We have proved that the class:

—[Ax] + Cy,O03HY, - H € N*H(X x X)g
is basepoint free. Since the basepoint free cone is stable by pullback, we have thus:
[Ax/] < (7 x 1) [Ax] < C1 X Yo (1 x @) (Hy - HY)) € Nigo (X' % X',
where C = (3 x (5 as required.
Step 2: We now suppose that X = Y x P°. Since Y is projective, there exists a dominant

rational map ¢ : Y --» P'. Let Y’ be the normalization of the graph of ¢ in X x P° x P! and we
denote by ¢; and ¢ the projections from Y’ onto the first and the second factor respectively. Let
@y Y x P = PLx P° (resp. ¢y : Y’ x P® — X) the map induced by ¢; (resp. ¢1). Let X” be the
fibred product of X’ with Y’ x IP® so that ¢3, 7’ are the projections from X” onto X’ and Y’ x P¢
respectively. We obtain the following commutative diagram:

X< X"
3

™ ™

YXPeTY,XPG

/
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where pys and pp are the projections from Y’ x P and P! x P° onto Y’ and P! respectively and
where the horizontal arrows are birational maps. Let us prove that there exists a constant Cy > 0

which does not depend on the morphism 7 : X’ — X such that for any basepoint free class
7' € BPF“™(X" x X"), one has:

(7' L[Ax]) < Ca(y' - (d3 X @) (w x m)"(HY - Hy)).
Fix a class v € BPF“"(X” x X"”). We apply the conclusion of the first step to the surjective
generically finite morphism 7”7 := @yo7’ : X” — P! x P, There exists a constant C; > 0 such that

[AX”] < Ole”XX”((Tr” X W/,)*(HIZPl . ];l XIP8>> e Nl_ﬁ,_e(X” X X”)R7 (29)
where Hpi , pe is an ample Cartier divisor in (P x P¢)? and Hyp is the pullback by pp X pp of an

ample Cartier divisor in P! x P'. Let us apply Theorem to the class (7" x 7")*Hg, .. and to
the class (" x ©')*(¢9 X ¢2)* Hx, there exists a constant Cs > 0 such that:

(" x )" ((f2 % G2) HY™ - (02 X p2) Hyi 1))
(x> )" (62 x do) HY' ™)
X (7' x ') (P2 X ¢o)*HS € N(X” x X" )g.
Since ((7' x 7')*a) = deg(n') () for any class a € N*2¢((Y' x P?)?)g, we have thus:
(7" x 7VHE o < Coln' x 1) (o X o) HE € NE(X" x X")g, (30)

P! x pe
where Cg = Cs((o X ¢o) HET - (05 x 02) HE )/ (2 X ¢2)*HET2¢) > 0 does not depend on

P! x Pe
m: X" — X. Using and (29)), we obtain:

[AX”] < 07 X ¢X”><X”((7T” X W//)*HIIPZ . <¢3 X d)g)*('ﬂ' X W)*H)e() S Nl—‘,—e(X” X X”)R, (31)
where C'; = Cg x C]. Since the basepoint free cone is contained in the nef cone by Theorem
3.3.31(5), we have thus:

(7' L[Ax]) < Cr(y' - (d3 x @) (m x )" HY - (7" x 7")" Hy). (32)
Let us denote by X; = (Y x P9)?, X, = (P'xP)%, ¥, =Y x VY, Y, = P'xP and let f :=
(P20pyt X pa0¢yt): X1 - Xy and g:= (pr100;" X pro¢;!) : Y] ——» Y3 be the corresponding
dominant rational maps. Let us apply Lemma to the class (7' x 7')*(2 X )" H, and to the

class (7' x 7')* (g X ¢o)* Hi,, there exists a constant Cg > 0 which is independent of the morphism
' x 7 X" x X" = (Y’ x P)? such that for any class f € BPF*T (X" x X"):

" I1\* 17€
(ﬂ- Xﬂ-) ]plxpe<05

(8 (% ) (2  00)" Hi) < TR (5 (60 % )’ )" ), (33)

Using and to the class 8 =7 - (¢3 x ¢3)*(m x m)*Hs € BPF'™¢(X” x X", we obtain:
(7' L[Ax]) < Ca(y'~ (03 x ¢5)"(m x )" (HY - Hy)),
where C; = Oy x Cgs(deg;(g))/(HZ) > 0 does not depend on 7. The conclusion of the theorem

follows from the projection formula and from the fact that ¢5 x ¢3 is a birational map. Indeed, we
apply the previous inequality to v = (¢3 X ¢3)*y where v € BPF™¢(X’ x X'), we obtain

(vi[Ax]) = (95 x ¢3) v [Axn]) < Culy - (7 x 7)"(Hy - Hy))

as required.

Step 3: We prove the theorem in the general case. Suppose ¢ : X — Y is a surjective morphism
of relative dimension e and fix a class § € BPF'"(X’ x X’). Since X is projective over Y, there
exists a closed immersion i : X — Y x PV such that ¢ = Py o7 where pl, is the projection of Y x PN
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onto Y. Let us choose a projection Y x PY --s Y x P° so that the composition with i gives a
dominant rational map f: X --» Y x P°. Let us denote by I'; the normalization of the graph of
fin X xY x P° and 7, 7, the projections of I'y onto the first and the second factor respectively.
We set X" the fibred product of X’ with I'y and we denote by 7’ and ¢ the projection of X" to
I'y and X' respectively. We get the following commutative diagram:

X/< X//
o]
X+ Ty

[ ]
N 2
N

YWYX]PB

where py is the projection of Y x P® onto Y. We apply the result of Step 2 to the class (¢ x ¢)*f €
BPF™(X"” x X”) and to the diagonal of X”. There exists a constant C; > 0 which does not
depend on 7 such that:

(6 x @) B[Axn]) < Cal(d x )" (8- (m x 1) Hy) - (m2 0 7) X (5 0 7'))* Hy pe). (34)
Let us apply Theorem to the class ((maon’) x (maon’))* HE  pe and to the class (¢px¢)*(mx7)Hx.
There exists a constant C9 > 0 such that:
(7" x ') ((m X m2)* Hy e - (m X m1)"HY ™))

(7! x 7/)*(my x mp)* HaT2e)
(0 x @) (m x m)Hg € N9(X" x X")g.
Since (7' x 7)*((ma X 7o) HE pe - (w1 x m)*HET)) /(7' x 7Y (m x 7)) HE2¢) = deg,(f x
£)/(H¥*?)and using (34)), we obtain:
(0 x ¢)*BLAxn]) < C((¢ x ¢)*(B - (m x 7)*(HS - Hy))),

where C' = C,Cydeg,(f x f)/(HY). Since the morphism m; : 'y — X is birational, the
map ¢ : X” — X’ is also birational and we conclude using the projection formula and since

(¢ X ¢)u[Axr] = [Ax]:

(w2 0 7) x (73 0 7)) H e < C

(BeAx]) S OB (n x 7)*(HY - Hy))-
OJ
Corollary 7.1.5. Let g : X — Y be a surjective morphism of relative dimension e where dimyY =

l. Then there exists a constant C' > 0 such that for any surjective generically finite morphism
7 : X' — X such that for any class o € BPF*(X') and any class f € BPF*(X"), one has:

B-a)<C Y Umatw(e) x (8- 7 (¢ HY T - HY)), (35)
max(0,k—1)<j<min(k,e)
where U;(mapxi(a)) = (HS? - ¢ Hy ™V L by ().

Remark 7.1.6. Note that when k < e, then the inequality is already a consequence of Siu’s in-
equality (Theorem [3.4.4)). Indeed, the term on the right hand side of with j = k corresponds

exactly to the term C(7*HY % - a) x m* H%.
Remark 7.1.7. Equation proves that the class
—dx(a)+C Y Ulmax(@) x xo(m (¢ Hy - HY)) € Noi(X)

max(0,k—1)<j<min(k,e)



40 NGUYEN-BAC DANG

is in the dual of the basepoint free cone BPF”"“(X’). Moreover, if is satisfied, then this class
is pseudo-effective.

Proof. We apply Theorem to the class v = pif - psja € BPF" (X’ x X'). There exists a
constant C7 > 0 such that for any surjective generically finite morphism 7 : X’ — X and any class
~v € BPF"(X’ x X’), one has:
(ve[Ax])) < Ci(y - (m x m)*(H - Hy)).
We denote by p; and ps the projections of X’ x X’ onto the first and the second factors respectively.
Fix o € BPF*(X') and 8 € BPF"*(X’). Let us apply the previous inequality to v = pi3 - pja €
BPF"(X’ x X'). We obtain:
(B-a) = (piB-prac[Ax]) < CL(piB - pho- (m x )" (H - Hy)).
Since (pim*(Hi - ¢*HY) - piy(n*(¢* H ' - HS?) - ) = 0 when i + j # k, we obtain :
(B-a)<C Z (" (¢ Hy " - H) - o) (w* (¢ Hy 7 - Hy) - )

max(0,k—1)<j<min(e,k)

where C' = (1 + max ) ( ))> Hence by the projection formula, we have proved
the required inequality:

(B-a)<C >, U (mapxr(@) x (B-7*(q"HE - HY,))).

max(0,k—1)<j<min(e,k)
0J

Proof of Lemma[7.1.4} (see [Trul6l, Lemma 4.4]) Since X is homogeneous, it is smooth. Let G be
the automorphism group of X x X, we denote by - the (transitive) action of G on X x X. By generic
flatness (see [FGIT05, Theorem 5.12]), there exists a non empty open subset V' C X x X such that
the restriction of 7 x 7 to U := (7 x7)~}(V) is flat over V. Recall that two subvarieties V' C X x X
and W C X x X intersect properly in X x X if dim(V N W) =dimV +dim W — 2n. Since G acts
transitively on X x X, there exists by [Ful98, Lemma B.9.2| a Zariski dense open subset O C G
such that for any point g € O, the cycle g-[Ax]| intersects properly every component of X x X\ V.
In particular, there exists a one parameter subgroup 7 : G,, — G such that 7(1) = Id € G and
such that 7 maps the generic point of G,, to a point in O. Let S be the closure in X’ x X’ x P!
of the set {(2/,t) € U x G,, | (m x m)(2') € 7(t) - Ax}. Let p: X' x X' x P! — X' x X’ be
the projection onto X’ x X’ and let f : S — P! be the morphism induced by the projection of
X' x X' x P! onto P'. As in [Ful98, Section 1.6, we denote by S, := p,[f~'(t)] € Z,(X' x X') for
any t € G,,. By construction the cycle S; € Z,(X’ x X’) is effective and its support contains the
diagonal Ay, in X’ x X', hence:

[AX/] <S5 € Nn<X/ X X/)R.
Let t € G,, such that 7(t) € O. Since S; = S, € A,(X' x X') for any ¢t € P, we have thus:
[Ax/] < St S Nn<X/ X X,)]R.

Since the cycle 7(t) - [Ax]| intersects properly every component of X x X \ V, we apply the result
in [Ful98, Example 11.4.8.(b)| to the morphism 7 x 7 : X’ x X’ — X x X so that

Sy = [(m x W)E(T(t) Ax)] = (r x ) [Ax] € A (X' x X).
We have thus proved:

[Ax] < (7 x )" [Ax] € No(X' x X)s.
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Proof of Lemma Observe that one has the following commutative diagram:

X/

L'y
X1 3x,
J{ql J/qQ
Yi------3Y

) ™

FQ

Fix a class 3 € BPF*"7(X’). By linearity and by Proposition [2.1.8] we can suppose that the
class § is induced by a product of nef divisors Dy - ... D tct;—; where D; are nef divisors on X|

where p : X — X' is a flat morphism of relative dlmensmn e1. The intersection (8 -7 WQQQH{/Q) is
thus given by the formula:

(8- W*WSQSH{@) = (D1 Deytetij - p W*W;q;H‘f’z)‘

Take A an ample Cartier divisor on X/ and set o = (D; + €A) - ... (De e + €A) € NT(X] )R
for any € > 0. Since the class a, is a complete intersection, there exists a cycle V. € Z;(X])g such
that ¥x/(a.) = {Vc} € Ni(X])r and such that the restrictions of the morphisms 7, o 7 o p and
my 0w o p to the support of V, are surjective and generically finite onto Y; and Y5 respectively. We
apply Theorem [3.4.4 to the class (p*m 7r2q2H{/2)‘VE and to (p*7*7iqi Hy, )y, we get:

(p*m* (myqs Hy, - 71 Hy,”) L{V}) : :
o 1 X p*rniqi HY, - e € NPT X)g.
(prm 7T1(11":[{/1 {Ve)) H '

By the projection formula applied to the morphism wop, we have that (p*m* (75 q; H{/Z fHé,:j) AV (pr gt
dog; (9)/(H ). hence:

p*ﬂ*ﬂzq’;]—]{é cae < C

deg .
p*w*wgq*HJ <C g]l(g>p*7r ﬁq*Hj cae € NIFate (X,
(Hy,)
We intersect with the class (Dg,qet1 - - -+ Deyteri—j) € N77(X])g and take the limit as ¢ tends to
zero. We obtain:
(ﬁ i 7T2CI2HY2> = (Dl oo Deyyeqi—j pm 7T2Q2HY2) (Hl ) (ﬁ ™ 7T1Q1Hyl)a
Y1

as required. m

7.2. Submultiplicativity of mixed degrees.

Definition 7.2.1. Let X;/,Y) —f+ Xo/pp Y2 be rational maps where e = dim X; — dimY; and
g

| =dimY; fori=1,2. We fix some ample divisors Hx, and Hy, on each variety respectively. We
define for any integer 0 < k < n:
-7 e+j—k ° . .
w( ) e d (7 HET™S Cpa(g,) i max(0.k = ) < <1,
A 0 otherwise.
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Remark 7.2.2. For j = 0, it is the k-th relative degree ayo(f) = reldeg,(f) and when j = [, it
corresponds to the k-th degree of f, ax;(f) = deg,(f).

Theorem 7.2.3. Let q1 : X1 — Y1, o : Xo = Y5, q3 : X3 — Y3 be three surjective morphisms

such that dim X; = e+ 1 and dimY; =1 for all i € {1,2,3}. Then there ezists a constant C > 0

such that for any rational maps Xi/,Y1 LN Xo/p Y2, Xa/p,Yo EEN X3/ Y3 and for all integers
91 g2

0< jo< It

akjo(f20 fi) < C > degi—;(91)ann—;(f2)a55+jo-r(f1)-

max(0,k—1)<j<min(e,k)

Proof. Since we are in the same situation as Theorem , we can consider the diagram and
we keep the same notations. We denote by n = e + [ the dimension of Xj.

Let us denote by d the topological degree of the map f,. We apply Corollary to the pliant
class o := (1/d)v*m;H%, € BPF*(), to the class 3 := u*ﬂ(H}e(_lkHO -q{Hé,:jO) € BPF"™(I') and
to the morphism m = ¢ o 3 o v. There exists a constant C; > 0 which depends only on the choice
of divisors Hy,«pe and Hy, such that:

kg (f2 0 f1) < C > Ui(metpr(a))(8 - 7 (HY, - g5 Hy, 7)),

max(0,k—1)<j<min(e,k)

where U;(y) = (H;;j : qg‘Hgkﬂ Ly) for any class v € N,,_(X2)r. We observe that U;(m.¢r(a)) =
ay—j(f2). We have thus:

arso(f20 1) < Cy 3 ap i (fo) (u (m (HS, 70 g Hy ) -y (HY, - a3 Hy, 7). (36)

max(0,k—1)<j<min(e,k)

Applying Lemmal7.1.3[to the class u*r5qs Hy, ” € BPFF™(I') and to 8/ = B-u*nyHY, € BPF"#H(I),
there exists a constant Cy > 0 such that :

(8- umsgs Hy, 7)< Cadegy(g0) (u (wi (HY, "™ - qi Hy, ™) - myHY, ).
Since the map w : I' = I'y, is birational, we have that:
(" (my (H, 7 - gy Hy ) -y (HY, - a3y, 7)) < Ca degy(91)aj o (f1)- (37)
Finally, and imply:
kg (f20 1) <C > e o—j (f2) @5 jo+j—k(f1) degy_;(g1),

max(0,k—1)<j<min(e,k)

where C' = C5C'; > 0 is a constant which is independent of f; and f5 as required.
O

7.3. Proof of Theorem [4 By definition of the relative degrees, we are reduced to prove the
theorem when ¢ : X — Y is a proper surjective morphism. Recall that dim X =n and dimY =1
such that ¢ : X — Y has relative dimension e = n — [. Let us consider the following commutative
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diagram:
Iy (38)
x---Ll - Sx
lq w q
Y---24-5Y
DN
r

where f: X --» X, g:Y --» Y are dominant rational maps, I's,I'; are the normalization of the
graph of f and g respectively, m, 7o, 7], 7, are the projections from I'y and I'; onto the first and
second factor respectively and @ : I'y — I'; is the restriction of ¢ x ¢ to I'y. The following lemma
proves that max;<,(\;(f, X/Y)A—;(9)) < A(f).

Lemma 7.3.1. For any integer max(0,k —[) < j < min(k, e), we have that \;(f, X/Y ) \—;(g) <
Ak(f)-

Proof. We are reduced to show that for any max(0,k — 1) < j < min(k, e), there exists a constant
C > 0 such that:

degk—j(g) reldegj(f) < Cdegy(f).
For this, it suffices to consider the product (73 (HS - ¢* Hy ") - wi(H) - ¢*Hy 7). Since m0q =
w o, for i € {1,2}, we obtain:
* e—j * pyl—k+j * j * rrk—J * * prl—k+j * rrk—J * pre—J * 7]
(ry(HY - " Hy ") - my(Hy - q" Hy ) = (@0 (my " Hy ™ - my Hy ) - iy Hy - m ).
Moreover, one has that 7/ Hy **7 . gl Hy 7 = (2l HS M nlr HET) [po] = degy,_;(9) [po] where pg

is a general point in I'j. We can hence apply Proposition to the morphism @ : I'y — I'y and
obtain:

(mi(H? - ¢ Hy ") - my(Hy - ¢ Hy ) = degy,_;(9)(niHy * - w3 Hy LTy, )
Since 7} is a birational morphism, a general fiber of w is equal to a general fiber of 7} o . In
other words, we have that Resr, r, = Resr,y and since my Hy 7 -m3 Hy L [I'y | = Resr, r, (miHy -
T3 HY,), we obtain:
(Wi (Hy 7 - g Hy ™) - my(H - g Hy ™)) = degy_j(g) x reldeg; (f).
As Hyx is ample, we apply Theorem to the classes m5¢*Hy and 75 Hy:

(myq” Hy ' - myHY ")
(w5 HY)
where C} = (n— k+j + 1) (¢*HE 7 - H;_Hj)/(H;;) depends only on n, k and the choice of big

nef Cartier divisors. Intersecting with m; H% * - 5 H, one obtains:
deg,_;(g) - reldeg;(f) < Cr(my HY - mi(Hy - ¢"Hy ™).

By the same argument, there exists a constant C'y > 0 which depends only on Hy, Hx and k such
that:

g HE T < (n—k+j 4+ 1) mHY T = Oy HY 7 e NF9(X)g,

mig Hy " < Comt HTFH.
Hence, we obtain:
degk7j<g> reldegj(f) < Cdeg,(f),
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where C = 0102. O
Let us prove the converse inequality. We fix an integer 0 < k < n. Let us apply Theorem
to fi = f, fo=f?, g1 = g and ¢go = ¢”, we can rewrite the inequality as:
ay o (f7*) < C > deg;(g)ar—j,jo—j (f)an; (f7). (39)
max(0,k—e)<j<min(k,l)

Let us denote by Ug(f) the column vector given by:
axo(f)

ak,l(f)
Let us also denote by M;(f) the (I 4+ 1) x (I + 1) lower-triangular matrix given by:
My (f) := (deg;(9)ar—ji—j (f) X Wik—emin(e) (F))o<i<to<i<ts
where ¥ 4 denotes the characteristic function of the set A. Therefore, can be rewritten as:
Ue(f") < CM(f) - U(f7),

where - denotes the linear action on Z*!. A simple induction proves:

U(f7) < CP(My(£))"~" - Ui(f)
Since the (I + 1)-th entry of the vector Uy(f?) corresponds to deg,(f7), we deduce that:

degy (f7)"7 < C {er, (Mi(F))" - U F)' (40)

where (eg, . . ., ¢;) denotes the canonical basis of Z*!. In particular, deg, (f?)'/? is controlled up to a
constant by the eigenvalues of the matrix My(f) which are deg;(g) reldeg,_;(f) for max(0,k—e) <
j < min(k, 1) since My(f) is lower-triangular. Applying to f7, we get:

Ui(f) = (ari(f))o<ict =

degk(fpr)l/(pr) < Cl/THUk(f’”)Hl/pr max (degj(g’”) reldegk_j(f’"))l/r.

max(0,k—e)<j<min(k,l)
We conclude by taking the lim sup as r — 400, p — +00:

max(0,k—1)<j<min(k,e)

Remark 7.3.2. Note that the previous theorem gives information only on the dynamical degrees of
f. Lemma [7.3.1| provides a lower bound on the degree of fP. However, one cannot find an upper
bound for deg,(f?) which would only depend on the relative degrees and the degree on the base.
If X = F x E is a product of two elliptic curves and if f : (z,w) € E X E — (2,2 + w) is an
automorphism of X, then the degree growth of f? is equivalent to p? whereas the degree on the
base and on any fiber are trivial.

8. KAHLER CASE

We prove the submultiplicativity of the k-th degrees in the case where (X,w) is a complex
compact Kéhler manifold. For any closed smooth (p, ¢)-form a on X, we denote by {a} its class
in the Dolbeault cohomology H?( X )g.

Definition 8.0.3. Let (X,w) be a compact Kihler manifold. A class o € HY(X)g is nef if for
any € > 0, the class o+ e{w} is represented by a Kihler metric.

Definition 8.0.4. Let (X,w) be a compact Kihler manifold of dimension n. A class o of degree
(k, k) is pseudo-effective if it can be represented by a closed positive current T'. Moreover, one says
that « is big if there exists a constant 6 > 0 such that T — dw is a closed positive current and we
write T > dw".
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Theorem 8.0.5. (cf [Xialbl Remark 3.1])Let (X,w) be a compact Kihler manifold of dimension
n. Let k be an integer and a, B be two nef classes in HY(X) such that o € H**(X) is big and

such that fX a — ( Z ) fX a" A B > 0. Then the class of — B¥ is big.

Recall that the degree of a meromorphic selfmap f : X --+ X when (X, w) is given by:
degy(f) i= [ miw™* A,
Ly

where I'f is the desingularization of the graph of f and m; are the projections from I'y onto the
first and the second factor respectively.

Corollary 8.0.6. Let (Xi,wx,), (X2, wx,) and (X3,wx,) be some compact Kdihler manifolds of
dimension n. Then there exists a constant C' > 0 which depends only on the choice of the Kdhler
classes wy, such that for any dominant meromorphic maps f1 : X; --» X5 and fo : Xy --» Xj,
one has:

degy(f2 0 f1) < Cdegy(f1) degy(f2).
Moreover, the constant C' may be chosen to be equal to ( Z ) /(Jx, @w%,)-

Proof. The previous theorem gives that for any big nef class ¥ € H¥*(X), for any nef class

a € HY(X), one has:
ke (T Jxab AprE k
a\(k> [ x 3", (41)
Then, the proof is formally the same as Theorem Indeed, one only needs to consider
the diagram where Y7 = Y, = Y3 are reduced to a point and where I'y,I'y,, I" are the
desingularizations of the graph of f1, fo and 73 *o fi o respectively. We apply to a = v'mjwx,
and 8 = v*mjwy, to obtain:

VT Wy, S e T. X U TaWy, -
X2 X2

*_x, n—k

By intersecting the previous inequality with the class u*rjwy ", we finally get:

deg;(fao f1) < ( Z ) degk(fJCQ)j;gk(fl)

APPENDIX A. COMPARISON WITH FULTON’S APPROACH

In [Ful98, Chapter 19|, a cycle z € Z,(X) on a variety X is defined to be numerically trivial if
(cLz) for any product ¢ = ¢;, (Ey) - ... - ¢;,(E,) € A¥(X) of Chern classes ¢;,(E;) where E; is a
vector bundle on X and 7; + ... 44, = k. This appendix is devoted to the proof of the following
result:

Theorem A.1. Let X be a normal projective variety of dimension n. For any z € Zy(X), the
following conditions are equivalent:

(i) For any product of Chern classes ¢ = ¢;,(Eq) - ... ¢; (E,) € A*(X)r where E; are vector
bundles on X and iy + ...+ i, =k, we have (cL z) = 0.

(ii) For any integer e, any flat morphism p; : X1 — X of relative dimension e where X,
is a projective scheme and any Cartier divisors Dy, ..., Deip on Xy, we have (Dy - ... -
DeyrLpiz) =0.
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(iii) For any integer e, any flat morphism p1 : X1 — X of relative dimension e between nor-
mal projective varieties and any Cartier divisors Dy, ..., Doy on Xi, we have (Dy - ... -
DeyrLpiz) =0.

The implication (i) = (i) follows immediately from the definition of Chern classes. The impli-
cation (i1) = (7i7) is also straightforward. For the converse implications (i) = (i7) and (i) = (ii7),
we rely on the following proposition.

Proposition A.2. Let ¢ : X — Y be a flat morphism of relative dimension e where X is a
projective scheme and Y s a normal projective variety. For any Cartier divisors Dy, ..., Deyy
be some ample Cartier divisors on X, there exist vector bundles Ej, and a homogeneous polyno-
mial ¢ = P(c;, (E1),...,¢,(E,)) of degree k with respect to the weight (iy, ..., i), with rational
coefficients such that for any cycle z € Zp(X), (¢-2) = (D1 ...  Deyr - ¢*2).

Proof. We take some ample Cartier divisors Dy, ..., D,y on X. We denote by £; the line bundle
Ox(D;). By Grauert’s Theorem (cf [Har77, Corollary 12.9]), the sheaves Riq.(L{" @ ... ® L5")

are locally free. By [Har77, Theorem 8.8, we have that R'q. (L ®...® L,\5/*) =0 for i > 0 and
Metk

m; large enough since the line bundle £; are ample. So the sheaf ¢,(£7" ® ... ® L, ") is locally
free and we have in Ky(Y'):

G @ . @ LT =) ()R (LM @ . @ L)) = (gL @ @ LI (42)

Lemma A.3. For any j < k:
(1) The function (mq,...,merk) — chj(q (L7 @ ... ®@ LI'SG*)) € N (Y)g is a polynomial of
degree e + j with coefficients in N’ (Y').
(2) For any cycle z € Z;(Y), the coefficient in my - ... Meyy, in (chj(q (L7 ®.. QL)) L 2)
is (D1-...- Desp)Lq*2).

Proof. Let us set F = L1 ®@ ... ® L5*. We prove the result by induction on 0 < j < k.

For j = 0, choosing a point y € Y (x), the number chy(g.(F)) is equal to h(X,, Fix,). By
asymptotic Riemann-Roch, for my, ..., m.y; large enough, it is a polynomial of degree dim X, = e.
Moreover, Snapper’s theorem (see [Deb01l, Definition 1.7]) states that the coefficient in m;-. . .-meip
is the number (Dy - ... Doy L[X,]).

We suppose by induction that ch;(¢g.(F)) is a polynomial of degree e 4 i for any i < j where
j < k — 1. For any subvariety V of dimension j 4+ 1 in Y, we denote by W its scheme-theoretic
preimage by ¢.
For any scheme V', let us denote by 7y the morphisms:
v Kog(V)@Q — A. (V) ® Q.

We refer to [Ful98, Theorem 18.3] for the construction of this morphism and its properties. We
apply Grothendieck-Riemann-Roch’s theorem for singular varieties (see [Ful98, Theorem 18.3.(1)])

and using (42)), we get in A,(Y)g:
ch(g (L @ ... @ LIG*)) L1v(Ov) = ¢u(ch(LT" @ ... @ LTS5 L mw (Ow)). (43)
The term in Ao(Y)g in the left handside of the previous equation is equal to:
chj1 ((F)) L[V + D chilgu(F)) L 1va(Ov),
i<j
where 7/;,(Oy) is the term in A;(Y) of 7,(Oy). By the induction hypothesis, every ch;(q.F) is

a polynomial of degree e + i, and the right hand side of equation (43]) is a polynomial of degree
e+j+1, 50 chjp (¢ (L7 @ ... @ L]}*)) is also a polynomial of degree e + j + 1. Now we
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identify the coeflicients in my - ... - meys of the term in No(Y') in equation (43)). It follows from
[Eul98| example 18.3.11] that 7w (Ow) = [W] + Rw where Ry is a linear combination of cycles of
dimension < e + k. Therefore, the coefficient in my - ... - me,x of the right hand side of equation
(43) in No(Y) is ((D1 - ... Deyg) L[W]) if j + 1 =k or 0 otherwise.
We have proved that the coefficient of chj1 (¢ (L7 ®@... @ LIG*))L[V]is (Dr-. ..+ Deyr) L[W])
if dimV = k or 0 otherwise. Extending it by linearity, one gets the desired result.
0

We have that chy(q. (L7 @...® L]'7}*)) is by definition a polynomial in Chern classes of vector
bundles on Y. Using the previous lemma, the coefficient U(D;, ..., Deyg) in my - ... - Meyp of
chi (g (LT ®. .. QL)) s equal to P(c;, (E), ..., ¢, (E,)) where P is a homogeneous polynomial
with rational coefficients of degree k with respect to the weight (i1, ... ,4,) and E; are vector bundles
on Y. We have proven that for any cycle z € Z,(Y):

(P(ciy(Er), .. vei (B))z) = ((Dy+ ... Dest)Lq"2).

As any Cartier divisor can be written as a difference of ample Cartier divisors. The proposition
provides a proof for the implication (i) = (i7) of Theorem [A.1

U
Remark A.4. In codimension 1, the intersection product (D; - ... DeyqL q*z) is represented by
Deligne’s product Ix(Ox(Dy),...,,O0x(D.11)) € N'(X)g (see [Gar00] for a reference). Indeed,
one has by [Gar00, Section 6] that for any cycle z € Ny(X):
Cl(Ix(Ox(Dl), RSN 0)((D6+1))) L2 = D1 ot De+1 I_(]*Z.

This gives an answer to the question of numerical pullback formulated in [FLI4D, section 1.2].

Corollary A.5. Let q : X — Y be a flat morphism of relative dimension e between normal
projective varieties. Then the morphism ¢* @ Ae(Y)g — Acto(X)g induces a morphism of abelian
groups q¢* : Ne(Y)g — Neiro(X)g. By duality, the morphism q. : A*(X)g — A*°(Y)q induces a
morphism of abelian groups q. : N*(X)g — N*7%(Y)q.
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