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DEGREES OF ITERATES OF RATIONAL MAPS ON NORMAL PROJECTIVE
VARIETIES

NGUYEN-BAC DANG

Abstract. Let X be a normal projective variety defined over an algebraically closed field of arbi-
trary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant
rational selfmap of X, recovering former results by Dinh, Sibony [DS05b], and by Truong [Tru16].
Precisely, we give a new proof of the submultiplicativity properties of these degrees and of its bira-
tional invariance. Our approach exploits intensively positivity properties in the space of numerical
cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first
obtained by Xiao [Xia15] and Popovici [Pop16], which generalizes Siu’s inequality to algebraic cy-
cles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to
a uniform constant by the norm of its action by pull-back on the space of numerical classes in X.
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Introduction

Let f : X 99K X be any dominant rational self-map of a normal projective varietyX of dimension
n defined over an algebraically closed field κ of arbitrary characteristic. Given any big and nef (e.g
ample) Cartier divisor ωX on X, and any integer 0 6 k 6 n, one defines the k-th degree of f as
the intersection product:

degk,ωX (f) = (π∗1ω
n−k
X · π∗2ωkX),

where π1 and π2 are the projections from the graph of f in X ×X onto the first and the second
factor respectively.

The behaviour of the sequence of degrees (degk,ωX (fp))p and especially its growth when p→ +∞
is of crucial importance in the study of the dynamics of f . It controls the topological entropy of
f ([Yom87], [Gro87], [DS05b]), and the growth of the number of isolated periodic points when the
period goes to infinity ([DNT16]). Its understanding is also the key for the construction of ergodic
invariant measures ([BS92], [Sib99],[DS05a], [Gue05], [DTV10], [DS10], [DDG11]). The growth of
the degrees appears as an essential tool when exploring algebraic properties of groups of birational
transformations of projective varieties (see [Giz80], [DF01], [Can11], [BD15], [BC16] for surfaces,
[DS04a] for the study of commutative automorphism groups in dimension ≥ 3 and [CZ12], [Zha14]
for some characterizations of positive entropy automorphisms in higher dimension).

Our main theorem can be stated as follows.

Theorem 1. Let X be a normal projective variety of dimension n and let ωX be a big and nef
Cartier divisor on X.

(1) There is a positive constant C > 0 such that for any dominant rational self-maps f, g on
X, one has:

degk,ωX (f ◦ g) 6 C degk,ωX (f) degk,ωX (g).

(2) For any big nef Cartier divisor ω′X on X, there exists a constant C > 0 such that for any
rational self-map f on X, one has:

1

C
6

degk,ωX (f)

degk,ω′X (f)
6 C.

Observe that Theorem 1.(2) implies that the degree growth of f is a birational invariant, in the
sense that there is a positive constant C such that for any birational map g : X ′ 99K X with X ′
projective, and any big nef Cartier divisor ωX′ on X ′, one has

1

C
6

degk,ωX (fp)

degk,ωX′ (g
−1 ◦ fp ◦ g)

≤ C,

for any p ∈ N. Fekete’s lemma and Theorem 1.(1) also imply the existence of the dynamical degree
(first introduced in [RS97] for rational maps of the projective space) as the following quantity:

λk(f) := lim
p→+∞

degk,ωX (fp)1/p .
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The independence of λk(f) under the choice of ωX , and its birational invariance are the consequence
of Theorem 1.(2) .

When κ = C, Theorem 1 was proved by Dinh and Sibony in [DS05b], and further generalized
to compact Kähler manifolds in [DS04b]. The core of their argument relied on a procedure of
regularization for closed positive currents of any bidegree ([DS04b, Theorem 1.1]) and was therefore
transcendental in nature. By Lefschetz principle Dinh and Sibony’s argument also proves that
the k-th dynamical degree of any rational dominant map is well-defined when κ is a field of
characteristic zero. Recently, Truong [Tru15] managed to get around this problem and proved
Theorem 1 for arbitrary smooth varieties using an appropriate Chow’s moving lemma. He went
further in [Tru16] and obtained Theorem 1 for any normal variety in all characteristic by applying
de Jong’s alteration theorem ([Jon96]). Note however that he had to deal with correspondences
since a rational self-map can only be lifted as a correspondence through a general alteration map.
Our approach avoids this technical difficulty.

To illustrate our method, let us explain the proof of Theorem 1, when X is smooth, k = 1 and
f , g are regular following the method initiated in [BFJ08, Proposition 3.1]. Recall that a divisor
α on X is pseudo-effective and one writes α > 0 if for any ample Cartier divisor ω on X, and any
rational ε > 0, a suitable multiple of the Q-divisor α+ εω is linearly equivalent to an effective one.

Recall also the fundamental Siu’s inequality1 ([Laz04, Theorem 2.2.13], [Cut15]) which states:

α 6 n
(α · βn−1)

(βn)
β, (1)

for any nef divisor α, and any big and nef divisor β.
Since the pullback by a dominant morphism of a big nef divisor remains big and nef, we may

apply (1) to α = g∗f ∗ωX and β = f ∗ωX , and we get

g∗f ∗ωX 6 n
degk,ωX (f)

(ωnX)
× g∗ωX .

Intersecting with the cycle ωn−1
X yields the submultiplicativity of the degrees with the constant

C = n/(ωnX).
We observe that the previous inequality (1) can be easily extended to complete intersections by

cutting out by suitable ample sections. In particular, we get a positive constant C such that for
any big nef divisors α and β, one has:

αk 6 C
(αk · βn−k)

(βn)
βk. (2)

Such inequalities have been obtained by Xiao ([Xia15]) and Popovici ([Pop16]) in the case κ = C.
Their proof uses the resolution of complex Monge-Ampère operators and yields a constant C =

(
k
n

)
.

On the other hand, our proof applies in arbitrary characteristic and in fact to more general classes
than complete intersection ones. We refer to Theorem 3 below and the discussion preceding it for
more details. Note however that we only obtain C = (n− k + 1)k, far from the expected optimal
constant of Popovici and Xiao. Once (2) is proved, Theorem 1 follows by a similar argument as in
the case k = 1.

Going back to the case where X is a complex smooth projective variety, recall that the degree
of f is controlled up to a uniform constant by the norm of the linear operator f •,k, induced
by pullback on the de Rham cohomology space H2k

dR(X)R ([DS05b, Lemma 4]). One way to
construct f •,k is to use the Poincaré duality isomorphisms ψX : H2k

dR(X,R) → H2n−2k(X,R),
1this inequality is also referred to as the weak transcendantal holomorphic Morse inequality in [LX15]
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ψΓf : H2k
dR(Γf ,R) → H2n−2k(Γf ,R) where Hk(X,R) denotes the k-th simplicial homology group of

X. The operator f •,k is then defined following the commutative diagram below:

H2k
dR(Γf ,R)

ψΓf
// H2n−2k(Γf ,R)

π1∗
// H2n−2k(X,R)

ψ−1
X
��

H2k
dR(X,R)

f•,k
//

π∗2

OO

H2k
dR(X,R),

where Γf is the desingularization of the graph of f in X ×X, and π1, π2 are the projections from
Γf onto the first and second factor respectively.

To generalize this control to our setting we need to find a replacement for the de Rham
cohomology group H2k

dR(X)R and define suitable pullback operators. When X is smooth, one
natural way to proceed is to consider the spaces Nk(X)R of algebraic R-cycles of codimension
k modulo numerical equivalence. The operator f •,k is then simply given by the composition
π1∗ ◦ π∗2 : Nk(X)R → Nk(X)R.

When X is singular, then the situation is more subtle because one cannot intersect arbitrary
cycles in general 2. One can consider two natural spaces of numerical cycles Nk(X)R and Nk(X)R
on which pullback operations and pushforward operations by proper morphisms are defined re-
spectively. More specifically, the space of numerical k-cycles Nk(X)R is defined as the group of
R-cycles of dimension k modulo the relation z ≡ 0 if and only if (p∗z ·D1 · . . . ·De+k) = 0 for any
proper flat surjective map p : X ′ → X of relative dimension e and any Cartier divisors Di on X ′.
One can prove that Nk(X)R is a finite dimensional vector space and one defines Nk(X)R as its dual
Hom(Nk(X)R,R).

Note that our presentation differs slightly from Fulton’s definition (see Appendix A for a com-
parison), but we also recover the main properties of the numerical groups.

As in the complex case, we are able to construct Poincaré linear maps ψX : Nk(X)R → Nn−k(X)R
and ψΓf : Nk(Γf )R → Nn−k(Γf )R, but they are not necessarily isomorphisms due to the presence of
singularities. As a consequence, we are only able to define a linear map f •,k as f •,k := π1∗◦ψΓf ◦π∗2 :

Nk(X)R → Nn−k(X)R between two distinct vector spaces. Despite this limitation, we prove a result
analogous to the one of Dinh and Sibony. The next theorem was obtained by Truong for smooth
varieties ([Tru16, Theorem 1.1.(5)]).

Theorem 2. Let X be a normal projective variety of dimension n. Fix any norms on Nk(X)R
and Nn−k(X)R, and denote by ‖ · ‖ the induced operator norm on linear maps from Nk(X)R to
Nn−k(X)R. Then there is a constant C > 0 such that for any rational selfmap f : X 99K X, one
has:

1

C
6
||(f)•,k||

degk,ωX (f)
6 C. (3)

Our proof of Theorem 2 exploits a natural notion of positive classes in Nk(X)R combined with
a strengthening of (2) to these classes that we state below (see Theorem 3).

To simplify our exposition, let us suppose again that X is smooth. As in codimension 1, one
can define the pseudo-effective cone Psefk(X) as the closure in Nk(X)R of the cone generated by
effective cycles of codimension k. Its dual with respect to the intersection product is the nef cone
Nefn−k(X), which however does not behave well when k > 2 (see [DELV11]). Some alternative
notions of positive cycles have been introduced by Fulger and Lehmann in [FL14b], among which

2an arbitrary curve can only be intersected with a Cartier divisor, not with a general Weil divisor.
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the notion of pliant classes emerges. Pliant classes have many good properties such as being both
pseudo-effective and nef, being invariant by pull-backs by morphisms and by intersection products,
and forming a salient convex cone with non-empty interior. We shall consider a subcone of the
pliant cone that formally satisfies the same properties as the pliant cone (see Theorem 3.2.4) but is
better suited to our purposes. We call it the strongly pliant cone of X and denote it by Ck(X). It
is defined as the closure in Nk(X)R of the cone generated by R-cycles of the form p∗(D1 · . . . ·De+k)
where Di are ample Cartier R-divisors and p : X ′ → X is a flat surjective proper morphism of
relative dimension e.

For strongly pliant classes, we are able to prove the following generalization of (2).

Theorem 3. Let X be a normal projective variety of dimension n. Then there exists a constant
C > 0 such that for any strongly pliant class α ∈ Ck(X), for any big nef divisor β, one has in
Nk(X)R:

α 6 C
(α · βn−k)

(βn)
× βk. (4)

Theorem 2 follows from (4) by observing that f •,k Ck(X) ⊂ Psefk(X), so that the operator norm
||f •,k|| can be computed by evaluating f •,k only on strongly pliant classes.

In the singular case, the proof of Theorem 2 is completely similar but the spaces Nk(X)R and
Nn−k(X)R are not necessarily isomorphic in general. As a consequence, several dual notions of
positivity appear in Nk(X)R and Nk(X)R that make the arguments more technical.

Finally, using the techniques developed in this paper, we give a new proof of the product formula
of Dinh, Nguyen, Truong ([DN11, Theorem 1.1],[DNT12, Theorem 1.1]) which they proved when
κ = C and which was later generalized by Truong ([Tru16, Theorem 1.1.(4)]) to normal projective
varieties over any field.

The setup is as follows. Let q : X → Y be any proper surjective morphism between normal
projective varieties, and fix two big and nef divisors ωX , ωY on X and Y respectively. Consider two
dominant rational self-maps f : X 99K X, g : Y 99K Y , which are semi-conjugated by q, i.e. which
satisfy q ◦ f = g ◦ q. To simplify notation we shall write X/qY

f
99K
g
X/qY when these assumptions

hold true.
Recall that the k-th relative degree of X/qY

f
99K
g
X/qY is given by the intersection product

reldegk(f) := (π∗1(ωdimX−dimY−k
X · q∗ωdimY

Y ) · π∗2ωkX),

where π1 and π2 are the projections from the graph of f in X ×X onto the first and the second
component respectively. One can show a relative version of Theorem 1 (see Theorem 5.2.1),
and define as in the absolute case, the k-th relative dynamical degree λk(f,X/Y ) as the limit
limp→+∞ reldegk(f

p)1/p. It is also a birational invariant, and does not depend on the choices of
ωX and ωY . When q : X 99K Y is merely rational and dominant, then we define (see Section 6)
the k-th relative degree of f by replacing X with the normalization of graph of q. We prove the
following theorem.

Theorem 4. Let X, Y be normal projective varieties. For any dominant rational self-maps f :
X 99K X, g : Y 99K Y which are semi-conjugated by a dominant rational map q : X 99K Y , we
have

λk(f) = max
max(0,k−l)6j6min(k,e)

(λk−j(g)λj(f,X/Y )) . (5)

Observe that we are only able to relate the dynamical degrees of a rational map with the relative
dynamical degrees and the dynamical degree on the base. Unfortunately, we do not know how
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to control the degree growth of f with respect to the degree growth of g on the base Y and
on the fibers of q : X → Y except when e = 0, since in that case Theorem 1.(2) proves that
1/C 6 degk,ωX (f)/ degk,ωY (g) 6 C.

Our proof follows closely Dinh and Nguyen’s method from [DN11] and relies on a fundamental
inequality (see Corollary 7.1.5 below) which follows from Künneth formula at least when κ = C.
To state it precisely, consider π : X ′ → X a surjective generically finite morphism and q : X → Y
a surjective morphism where X ′, X and Y are normal projective varieties such that n = dimX =
dimX ′ and such that l = dimY . We prove that for any pliant classes α ∈ Ck(X ′) and β ∈ Cn−k(X ′),
one has:

(β · α) 6 C
∑

max(0,k−l)≤j≤min(k,e)

Uj(α)× (β · π∗(q∗ωY · ωjX)), (6)

where ωY and ωX are big and nef divisors on Y and X respectively, and Uj(α) is the intersection
product given by Uj(α) = (π∗(q∗ωl−k+j

Y · ωe−jX ) · α).
In the singular case, Truong has obtained this inequality using Chow’s moving intersection

lemma. We replace this argument by a suitable use of Siu’s inequality and Theorem 3 in order to
prove a positivity property for a class given by the difference between a strongly pliant class in
X ′×X ′ and the fundamental class of the diagonal of X ′ in X ′×X ′ (see Theorem 7.1.1). Inequality
(6) is a weaker version of [DN11, Proposition 2.3] proved by Dinh-Nguyen when Y is a complex
projective variety, and was extended to a field arbitrary characteristic by Truong when Y is smooth
([Tru16, Lemma 4.1]).

Organization of the paper. In the first Sections 1 and 2, we review the background on the
Chow groups and recall the definitions of the spaces of numerical cycles and provide their basic
properties. In §3, we discuss the various notions of positivity of cycles and prove Theorem 3.
In §4, we define relative numerical cycles and canonical morphisms which are the analogous to
the Poincaré morphisms ψX in a relative setting. In §5, we prove Theorem 1, Theorem 2 and
Theorem 4. Finally we give an alternate proof of Dinh-Sibony’s theorem in the Kähler case
([DS05b, Proposition 6]) in §8 using Popovici [Pop16] and Xiao’s inequality [Xia15]. Note that
these inequalities allow us to avoid regularization techniques of closed positive currents but relies
on a deep theorem of Yau. In Appendix A, we prove that our presentation and Fulton’s definition
of numerical cycles are equivalent, hence proving that any numerical cycles can be pulled back by
a flat morphism.

Acknowledgements. Firstly, I would like to thank my advisor C. Favre for his patience and our
countless discussions on this subject. I thank also S. Boucksom for some helpful discussions and
for pointing out the right argument for the appendix, T. Truong, L. Fantini and R. Mboro for their
precious comments on my previous drafts and for providing me some references.

1. Chow group

1.1. General facts. Let X be a normal projective variety of dimension n defined over an alge-
braically closed field κ of arbitrary characteristic.

The space of cycles Zk(X) is the free group generated by irreducible subvarieties of X of dimen-
sion k, and Zk(X)Q, Zk(X)R will denote the tensor products Zk(X)⊗Z Q and Zk(X)⊗Z R.

Let q : X → Y be a morphism where Y is a normal projective variety. Since X and Y are
respectively projective, the map q is proper. Following [Ful98], we define the proper pushforward
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of the cycle [V ] ∈ Zk(X) as the element of Zk(Y ) given by:

q∗[V ] =

{
0 if dim(q(V )) < dimV
[κ(η) : κ(q(η)]× [q(V )] if dimV = dim(q(V )),

where V is an irreducible subvariety of X of dimension k, η is the generic point of V and κ(η),
κ(q(η)) are the residual fields of the local rings Oη and Oq(η) respectively. We extend this map by
linearity and obtain a morphism of abelian groups q∗ : Zk(X)→ Zk(Y ).

Let C be any subscheme of X of dimension k and denote by C1, . . . , Cr its irreducible compo-
nents. Then C defines a fondamental class [C] ∈ Zk(X) by the following formula:

[C] :=
r∑
i=1

lOCi,C (OCi,C)[Ci],

where lA(M) denotes the length of an A-module M ([Eis95, section 2.4]).
For any flat morphism q : X → Y of relative dimension e between normal projective varieties,

we can define a flat pullback of cycles q∗ : Zk(Y ) → Zk+e(X) (see [Ful98, section 1.7]). If C is
any subscheme of Y of dimension k, the cycle q∗[C] is by definition the fundamental class of the
scheme-theoretic inverse by q:

q∗[C] := [q−1(C)] ∈ Zk+e(X).

Let W be a subvariety of X of dimension k+ 1 and ϕ be a rational map on W . Then we define
a cycle on X by:

[div(ϕ)] :=
∑

ordV (ϕ)[V ],

where the sum is taken over all irreducible subvarieties V of dimension k of X. A cycle α defined
this way is rationally equivalent to 0 and in that case we shall write α∼ 0.

The k-th Chow group Ak(X) of X is the quotient of the abelian group Zk(X) by the free group
generated by the cycles that are rationally equivalent to zero. We denote by A•(X) the abelian
group ⊕Ak(X).

We recall now the functorial operations on the Chow group, which results from the intersection
theory developped in [Ful98].

Theorem 1.1.1. Let q : X → Y be a morphism between normal projective varieties. Then we
have:

(1) The morphism of abelian groups q∗ : Zk(X)→ Zk(Y ) induces a morphism of abelian groups
q∗ : Ak(X)→ Ak(Y ).

(2) If the morphism q is flat of relative dimension e, then the morphism q∗ : Zk(Y )→ Zk+e(X)
induces a morphism of abelian groups q∗ : Ak(Y )→ Ak+e(X).

Assertion (1) is proved in [Ful98, Theorem 1.4] and assertion (2) is given in [Ful98, Theorem
1.7].

Remark 1.1.2. Let q : X → Y is a flat morphism of normal projective varieties. Suppose α ∈ Ak(Y )
is represented by an effective cycle α∼

∑
ni[Vi] where the ni are positive integers. Then q∗α is

also represented by an effective cycle.

Any cycle α ∈ Z0(X)Z is of the form
∑
ni[pi] with pi ∈ X(κ) and ni ∈ Z. We define the degree

of α to be deg(α) :=
∑
ni and we shall write:

(α) := deg(α) =
∑

ni.

The morphism of abelian groups deg : Z0(X)Z → Z induces a morphism of abelian groups
deg : A0(X)→ Z.
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1.2. Intersection with Cartier divisors. Let X be a normal projective variety and D be a
Cartier divisor on X. Let V be a subvariety of of dimension k in X and denote by j : V ↪→ X the
inclusion of V in X. We define the intersection of D with [V ] as the class:

D · [V ] := j∗[D
′] ∈ Ak−1(X),

where D′ is a Cartier divisor on V such that the line bundles j∗OX(D) and OV (D′) are isomorphic.
We extend this map by linearity into a morphism of abelian groups D· : Zk(X)→ Ak−1(X).

Theorem 1.2.1. Let X be a normal projective variety and D be a Cartier divisor on X. The map
D· : Zk(X)→ Ak−1(X) induces a morphism of abelian groups D· : Ak(X)→ Ak−1(X). Moreover,
the following properties are satisfied:

(1) For all Cartier divisors D and D′ on X, for all class α ∈ Ak(X), we have:

(D′ +D) · α∼D′ · α +D · α.
(2) (Projection formula) Let q : X → Y be a morphism between normal projective varieties.

Then for all class β ∈ Ak(X) and all Cartier divisor D on Y , we have in Ak−1(Y ):

q∗(q
∗D · β)∼D · q∗(β).

Definition 1.2.2. For all normal projective varieties X, the group ICk(X) is the free group gen-
erated by elements of the form D1 · . . . ·Dk where D1, . . ., Dk are Cartier divisors on X.

1.3. Characteristic classes.

Definition 1.3.1. Let X be a normal projective variety of dimension n and L be a line bundle on
X. There exists a Cartier divisor D on X such that the line bundles L and OX(D) are isomorphic.
We define the first Chern class of L as:

c1(L) := [D] ∈ An−1(X).

Definition 1.3.2. Let X be a normal projective variety and E be a vector bundle of rank e+ 1 on
X. Given any vector bundle E on X, we shall denote by P(E) the projective bundle of hyperplanes
in E following the convention of Grothendieck. Let p be the projection from P(E∗) to X and ξ =
c1(OP(E∗)(1)). We define the i-th Segré class si(E) as the morphism si(E) x · : A•(X)→ A•−i(X)
given by:

si(E) xα := p∗(ξ
e+i · p∗α). (7)

Remark 1.3.3. When X is smooth of dimension n, we can define an intersection product on the
Chow groups Ak(X)×Al(X)→ An−k−l(X) (see [Ful98, Definition 8.1.1]) which is compatible with
the intersection with Cartier divisors and satisfies the projection formula (see [Ful98, Example
8.1.7]). Applying the projection formula to (7), we get

si(E) xα = p∗(ξ
e+i) · α,

so that si(E) is represented by an element in An−i(X). To simplify we shall also denote si(E) this
element.

As Segré classes of vector bundles are operators on the Chow groups A•(X), the composition of
such operators defines a product.

Theorem 1.3.4. (cf [Ful98, Proposition 3.1]) Let q : X → Y be a morphism between normal
projective varieties. For any vector bundle E and F on Y , the following properties hold.

(1) For all α ∈ Ak(Y ) and all i < 0, we have si(E) xα = 0.
(2) For all α ∈ Ak(Y ), we have s0(E) xα = α.
(3) For all integers i, j, we have si(E) x(sj(F ) xα) = sj(F ) x(si(E) xα).
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(4) (Projection formula) For all β ∈ Ak(X) and any integer i, we have q∗(si(q
∗E) x β) =

si(E) x q∗β.
(5) If the morphism q : X → Y is flat, then for all α ∈ Ak(Y ) and any integer i, we have

si(q
∗E) x q∗α = q∗(si(E) xα)).

The i-th Chern class ci(E) of a vector bundle E on X is an operator ci(E) : A•(X) → A•−i
defined formally as the coefficients in the inverse power series:

(1 + s1(E)t+ s2(E)t2 + . . .)−1 = 1 + c1(E)t+ . . .+ cr+1(E)tr+1.

A direct computation yields for example c1(E) = −s1(E), c2(E) = (s1(E)2 − s2(E)).

Definition 1.3.5. Let X be a normal projective variety. The abelian group Ak(X) is the subgroup
of Hom(A•(X), A•−k(X)) generated by product of Chern classes ci1(E1) · . . . · cip(Ep) where i1, . . .,
ik are integers satisfying i1 + . . . + ip = k and where E1, . . . , Ep are vector bundles over X. We
denote by A•(X) the group ⊕Ak(X).

Observe that by definition, Ak(X) contains ICk(X).

Recall that the Grothendieck group K0(X) is the free group generated by vector bundles on X
quotiented by the subgroup generated by relations of the form [E1] + [E3]− [E2] where there is an
exact sequence of vector bundles:

0 // E1
// E2

// E3
// 0 .

Moreover, the group K0(X) has a structure of rings given by the tensor product of vector bundles.
Recall also that the Chern character is the unique morphism of rings ch : (K0(X),+,⊗) →

(A•(X),+, ·) satisfying the following properties (see [Ful98, Example 3.2.3]).
(1) If L is a line bundle on X, then one has:

ch(L) =
∑
i>0

c1(L)i

i!
.

(2) For any morphism q : X ′ → X and any vector bundle E on X, we have q∗ ch(E) = ch(q∗E).

For any vector bundle E on X, we will denote by chk(E) the term in Ak(X) of ch(E).
We recall Grothendieck-Riemann-Roch’s theorem for smooth varieties.

Theorem 1.3.6. (see [Ful98, Corollary 18.3.2]) Let X be a smooth variety. Then the Chern
character induces an isomorphism:

ch x[X] : E ∈ K0(X)⊗ Q→ ch(E) x[X] ∈ A•(X)⊗ Q.

2. Space of numerical cycles

2.1. Definitions. In all this section, X is a normal projective variety of dimension n, and all the
varieties we consider are also normal and projective. Two cycles α and β in Zk(X) are said to
be numerically equivalent and we will denote by α ≡ β if for all flat morphisms p1 : X1 → X of
relative dimension e and all Cartier divisors D1, . . . , De+k in X1, we have:

(D1 · . . . ·De+k · q∗α) = (D1 · . . . ·De+k · q∗β).

Definition 2.1.1. The group of numerical classes of dimension k is the quotient Nk(X) = Zk(X)/ ≡.

By construction, the group Nk(X) is torsion free and there is a canonical surjective morphism
Ak(X)→ Nk(X) for any integer k.
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Remark 2.1.2. Observe also that for k = 0, two cycles are numerically equivalent if and only if
they have the same degree. Since smooth points are dense in X (see [Dan94, Theorem II.4.7]) and
are of degree 1, this proves that the degree realizes the isomorphism N0(X) ' Z.

We set Nk(X)Q and Nk(X)R the two vector spaces obtained by tensoring by R and C respectively.

Remark 2.1.3. This definition allows us to pullback numerical classes by any flat morphism q :
X → Y of relative dimension e. Our presentation is slightly different from the classical one given
in [Ful98, Section 19.1]. We refer to Appendix A for a proof of the equivalence of these two
approaches.

Proposition 2.1.4. Let q : X → Y a morphism. Then the morphism of groups q∗ : Zk(X) →
Zk(Y ) induces a morphism of abelian groups q∗ : Nk(X)→ Nk(Y ).

Proof. Let n be the dimension of X and l be the dimension of Y , and let α be a cycle in Zk(X)
such that α is numerically trivial. We need to prove that q∗α is also numerically trivial.

Take p1 : Y1 → Y a flat morphism of relative dimension e1. Let X1 be the fibred product X×Y Y1

and let p′1 and q′ be the natural projections from X1 to X and Y1 respectively.

X1

q′

��

p′1
// X

q

��

Y1

p1
// Y

The morphism p′1 is flat and q′ is proper. Pick any cycle γ whose class is in ICe1+k(Y1). We want to
prove that (γ · p1

∗q∗α) = 0. By [Ful98, Proposition 1.7], we have that p∗1q∗α = q′∗p
′
1
∗α in Ze1+k(Y1).

Applying the projection formula, we get:
γ · p∗1q∗α = γ · q′∗p′∗1 α∼ q′∗(q′∗γ · p′∗1 α).

Because p′1 is flat and q′∗γ ∈ ICe1+k(X1), we have (q′∗γ · p′∗1 α) = 0 so that (γ · p∗1q∗α) = 0 as
required. �

The numerical classes defined above are hard to manipulate, we want to define a pullback of
numerical classes by any proper morphism. We proceed and define dual classes.

We denote by Zk(X) = HomZ(Zk(X),Z) the space of cocycles. If p1 : X1 → X is a flat morphism
of relative dimension e1, then any element γ ∈ ICe1+k(X1) induces an element [γ] in Zk(X) by the
following formula:

[γ] : α ∈ Zk(X)→ (γ · p∗1α) ∈ Z. (8)

Definition 2.1.5. The abelian group Nk(X) is the subgroup of Zk(X) generated by elements of
the form [γ] where γ ∈ ICe1+k(X1) and X1 is flat over X of relative dimension e1.

Remark 2.1.6. By definition, the map deg : Z0(X) → Z is naturally an element of Z0(X). More-
over, one has using Theorem 1.3.4.(2) that:

z ∈ Z0(X)→ (s0(E) x z) = deg(z) ∈ Z,
for any vector bundle E on X. Hence, deg defines an element of N0(X) by definition of Segré
classes (Definition 7).

Proposition 2.1.7. By definition of the numerical equivalence relation, any element of Nk(X)
induces an element of the dual HomZ(Nk(X),Z). Hence, we can define a natural pairing between
Nk(X) and Nk(X). For any normal projective variety, the pairing Nk(X) × Nk(X) → Z is non
degenerate.
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Proof. It follows directly from the definition of Nk(X) and Nk(X).
�

A priori, an element of Nk(X) is a combination of elements [γ1] + [γ2] + . . .+ [γi]. The following
proposition proves one can always take i = 1 at least if we tensor all spaces by Q.

Proposition 2.1.8. Any element of Nk(X) is induced by γ ∈ ICe1+k(X1)Q where p1 : X1 → X is
a flat morphism of relative dimension e1.

Proof. By an immediate induction argument, we are reduced to prove the assertion for the sum
of two elements [γ1] + [γ2] where γi ∈ ICei+k(Xi)Q and pi : Xi → X are flat morphisms of relative
dimension e1 and e2 respectively.

Let us consider X ′ the fibre product X1 × X2 and p′i the flat projections from X ′ to Xi for
i = 1, 2. By linearity , this amounts to show that there exists an element γ′1 ∈ ICe1+e2+k(X ′) such
that [γ′1] = [γ1] in Nk(X).

X1 ×X2

p′2zzuuuuuuuuu p′1

$$IIIIIIIII

X1
p1

$$JJJJJJJJJJ X2

p2
zztttttttttt

X

Take an ample Cartier divisor ωX2 on X2 and λ2 an integer such that p2∗ω
e2
X2
∼λ2[X]. Setting

γ′1 =
1

λ2

p′∗1 ω
e2
X2
· p′∗2 γ1, we need to prove that for any α ∈ Zk(X), one has (γ1 · p∗1α) = (γ′1 · p′∗2 p∗1α).

By [Ful98, Proposition 1.7], we have the equality p′2∗p
′∗
1 ω

e2
X2

= p∗1p2∗ω
e2
X2

in Ze2(X2), hence:

p′2∗p
′∗
1 ω

e2
X2

= λ2p
∗
1[X].

Since X1 is reduced and p∗1[X] is a cycle of codimension 0 in X1, we have p∗1[X] = [X1]. Hence by
the projection formula, we have:

1

λ2

p′2∗(p
′∗
2 (γ1 · p∗1α) · p′∗1 ω

e2
X2

) ∼ 1

λ2

(p∗1α · γ1) · p2∗p
′∗
1 ω

e2
X2

∼ 1

λ2

(p∗1α · γ1) · λ2[X1]

∼ p∗1α · γ1.

In particular, the degrees are equal and [γ1] = [γ′1] ∈ Nk(X) as required. �

Definition 2.1.9. We define N•(X) (resp. N•(X)) by ⊕k Nk(X) (resp. ⊕k Nk(X)).

2.2. Algebra structure on the space of numerical cycles. We now define a structure of
algebra on N•(X), and prove that N•(X) has a structure of N•(X) module.

Pick γ ∈ ICe1+k(X1)Q where p1 : X1 → X is a flat morphism of relative dimension e1. The
element γ induces a morphism in the Chow group:

γ x · : α ∈ Al(X)→ p1∗(γ · p∗1α) ∈ Al−k(X). (9)

The morphism γ x · : Al(X) → Al−k(X) induces a morphism of abelian groups from Nl(X) to
Nl−k(X).

Proposition 2.2.1. Any element α ∈ Nk(X) induces a morphism α x · : N•(X)→ N•−k(X) such
that the following conditions are satisfied.
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(1) If α is induced by γ ∈ ICe1+k(X1) where p1 : X1 → X is a flat morphism of relative
dimension e1, then for any integer l and any z ∈ Nl(X), one has in Nl−k(X):

α x z = γ x z.

(2) For any α, β ∈ Nk(X) and any z ∈ Nl(X), we have:

(α + β) x z = α x z + β x z.

Hence, the space N•(X) has a structure of N•(X)-module.

Proof. Let us consider α ∈ Nk(X) and suppose it is induced by γ1 ∈ ICe1+k(X1)Q where p1 : X1 →
X is a flat morphism of relative dimension e1. We define the map α x · as :

α x z = γ1 x z,

for any z ∈ Nl(X). We show that the morphism does not depend on the choice of the class γ1

and (1) is follows from Proposition 2.1.8. Once (1) is satisfied, then (2) follows directly from the
linearity of the intersection product.

Suppose that [γ1] = [γ2] ∈ Nk(X) where γ2 ∈ ICe2+k(X2)Q and p2 : X2 → X is a flat morphism
of relative dimension e2, then we need to prove that:

p1∗(γ1 · p∗1z) ≡ p2∗(γ2 · p∗2z),

for any fixed z ∈ Zl(X). Take β ∈ ICe3+l−k(X3) where p3 : X3 → X is flat morphism of relative
dimension e3, we only need to show that:

(β · p∗3p1∗(γ1 · p∗1z)) = (β · p∗3p2∗(γ2 · p∗2z)).

Let X ′1 and X ′2 the fibre products X1 × X3 and X2 × X3, and p′1 : X ′1 → X3, p′3 : X ′1 → X1,
q2 : X ′2 → X3, q3 : X ′2 → X2 be the corresponding flat projection morphisms such that we obtain
the following commutative diagrams:

X ′1
p′1

  
BBBBBBBB

p′3~~||||||||
X ′2

q2

  
BBBBBBBB

q3
~~||||||||

X1
p1

!!CCCCCCCC
X3

p3
}}{{{{{{{{

X2
p2

!!CCCCCCCC
X3

p3
}}{{{{{{{{

X X.

As above, we have p∗3p1∗ = p′1∗p
′∗
3 , hence:

(β · p∗3p1∗(γ1 · p∗1z)) = (β · p′1∗p′∗3 (γ1 · p∗1z))
= (p′∗1 β · p′∗3 (γ1 · p∗1z))
= (p′∗3 γ1 · p′∗1 p∗3z · p′∗1 β)
= (γ1 · p′3∗p′∗1 (p∗3z · β))
= (γ1 · p∗1p3∗(p

∗
3z · β))

= (γ2 · p∗2p3∗(p
∗
3z · β)).

By a similar argument, we show that (β · p∗3p2∗(γ2 · p∗2z)) = (γ2 · p∗2p3∗(p
∗
3z · β)) which implies the

desired equality:
(β · p∗3p1∗(γ1 · p∗1z)) = (β · p∗3p2∗(γ2 · p∗2z)).

�

Proposition 2.2.2. There exists a unique structure of commutative graded ring with unit (deg)
on N•(X) compatible with the action x on N•(X).
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Proof. Take α1 ∈ Nk(X) and α2 ∈ Nl(X) and define ϕ ∈ Zk+l(X) by the formula:

ϕ : z ∈ Zk+l(X)→ (α1 x(α2 x z)).

We prove that ϕ is an element of Nk+l(X).
By linearity, we can suppose that αi is induced by γi ∈ ICk+ei(Xi) where pi : Xi → X is a flat

morphism of relative dimension ei for i = 1, 2. Let X ′ = X1 ×X X2 be the fibre product, let p′1
and p′2 be the projections from X ′ to X1 and X2 respectively such that we have the commutative
diagram:

X ′
p′1

!!BBBBBBBB

p′2}}||||||||

X1
p1

!!CCCCCCCC
X2

p2
}}||||||||

X.

By the projection formula, we obtain for all z ∈ Zk+l(X):

ϕ(z) = (p′∗1 γ2 · p′∗2 γ1 · p′∗2 p∗1z). (10)

In particular, we have shown that ϕ is induced by p′∗1 γ2 · p′∗2 γ1 ∈ ICe1+e2+k+l(X ′), hence ϕ is an
element of Nk+l(X). Moreover, the commutativity of the intersection product in (10) proves that
(α2 x(α1 x z)) = (α1 x(α2 x z)) for any z ∈ Nk+l(X), hence α1 · α2 = α2 · α1.

Pick a vector bundle E on X. As the element deg ∈ N0(X) is equal to z → (s0(E) x z) in N0(X)
(see Remark 2.1.6), we get using Theorem 1.3.4.(2) that:

(α x z) = (α x(s0(E) x z)) = (s0(E) x(α x z)) = ((α · deg) x z) = (deg ·α) x z,

for any z ∈ Nl(X) and any α ∈ Nl(X). Hence, deg is a unit of N•(X).
�

2.3. Pullback on dual numerical classes. Let us consider q : X → Y a proper morphism. We
define for any integer k the pullback q∗ : Nk(Y )→ Nk(X) as the dual of the pushforward operation
q∗ : Nk(X)→ Nk(Y ) with respect to the pairing Nk(X)×Nk(X)→ Z defined in Proposition 2.1.7.

Proposition 2.3.1. Let q : X → Y be a proper morphism. The morphism q∗ : N•(Y ) → N•(X)
is a morphism of graded rings which satisfies the projection formula:

∀α ∈ Nk(Y ),∀z ∈ Nl(X), q∗(q
∗α x z) = α x q∗z.

Proof. We only need to prove the projection formula as it directly implies that q∗ : N•(Y )→ N•(X)
is a morphism of rings since:

(α · β) x q∗z = q∗(α · β) x z = α x q∗(q
∗β x z) = (q∗α · q∗β) x z,

for any α ∈ Nk(Y ), β ∈ Nl(Y ) and any z ∈ Nk+l(X).

Consider a class α ∈ Nk(Y ) which is induced by γ ∈ ICe1+k(Y1) where p1 : Y1 → Y is a flat
proper morphism of relative dimension e1. Setting X1 to be the fibre product Y1 × X and p′1, q′
the projections from X1 to X and X1 respectively, one remarks using the equality q′∗p′∗1 = p∗1q∗
([Ful98, Proposition 1.7]) that q∗α is induced by q′∗γ. And the projection formula follows easily
from the projection formula on divisors (Theorem 1.2.1.(2)).

�
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Let us sum up all the properties on numerical classes proven so far :

Theorem 2.3.2. Let q : X → Y be a proper morphism. For any integer 0 6 k 6 n:
(1) The pushforward morphism q∗ : Zk(X) → Zk(Y ) induces a morphism of abelian groups

q∗ : Nk(X)→ Nk(Y ).
(2) The dual morphism q∗ : Zk(Y )→ Zk(X) maps Nk(Y ) into Nk(X).
(3) The induced morphism q∗ : N•(Y )→ N•(X) preserves the structure of graded rings.
(4) (Projection formula)For all α ∈ Nk(Y ) and all z ∈ Nl(X), we have q∗(q∗α x z) ≡ α x q∗z in

Nl−k(Y ).

2.4. Canonical morphism.

Theorem 2.4.1. There exists a canonical morphism ψX : Nk(X) → Nn−k(X) which satisfies the
following properties.

(1) The image of the morphism deg : Z0(X) → Z seen as an element of Z0(X) is given by
ψX(deg) = [X].

(2) The morphism ψX is Nk(X)-equivariant, i.e for all α ∈ Nk(X) and all β ∈ Nl(X), we have:

ψX(α · β) = α xψX(β).

(3) Suppose q : X → Y is a generically finite morphism where Y is of dimension n, then we
have the following identity:

q∗ ◦ ψX ◦ q∗ = deg(q)× ψY .

Proof. We define ψX for any α ∈ Nk(X) by setting:

ψX(α) = α x[X].

By construction, we have that ψX(deg) = [X] and (2) follows directly from the definition and
Proposition 2.2.2.

Assertion (3) is then a consequence of the projection formula (see Theorem 2.3.2.(4)) and the
fact that q∗[X] = deg(q)[Y ].

�

Now we prove some properties of ψX in some particular cases.

Theorem 2.4.2. The following properties are satisfied.
(1) If X = X ′/G is the quotient of a smooth variety X ′ by a finite group G, then for all integer

0 6 k 6 n, the induced morphism ψX : Nk(X)Q → Nn−k(X)Q is an isomorphism.
(2) If X is smooth and q : X → Y is a surjective generically finite morphism where Y is a

normal projective variety. Then we have for all integer k:

q∗(ψY (Nn−k(Y )Q)⊥) = q∗(Nk(Y )Q) ∩Ker(q∗ ◦ ψX : Nk(X)Q → Nn−k(Y )Q). (11)

Proof. (1) Suppose that X is smooth. Let us show that ψX is surjective. By Grothendieck-
Riemann-Roch’s theorem (Theorem 1.3.6), the Chern character induces an isomorphism:

ch x[X] : E ∈ K0(X)⊗ Q→ ch(E) x[X] ∈ A•(X)⊗ Q.

This implies that the morphism ψX : Nk(X)Q → Nn−k(X)Q is surjective because any Chern class
is the image of a product of Cartier divisors by a flat map (see Remark 1.3.3).

We now prove that ψX : Nk(X)Q → Nn−k(X)Q is injective. Take α1 ∈ Nk(X)Q such that
ψX(α1) = 0. By Proposition 2.1.8, the class α1 is induced by γ1 ∈ ICe1+k(X1)Q where p1 : X1 → X
is a flat morphism of relative dimension e1. The condition ψX(α1) = 0 is equivalent to the equality
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p1∗γ1 ≡ 0. We need to show that (γ1 · p∗1z) = 0 for any cycle z ∈ Zk(X). As X is smooth, we may
compute intersection products inside the Chow group A•(X) directly by Remark 1.3.3 and we get:

(γ1 · p∗1z) = (p1∗(γ1 · p∗1z)) = (p1∗γ1 · z) = 0

as the class z ∈ Nk(X) is the image of an element of Nn−k(X)Q by surjectivity of ψX .

Let us consider X the quotient of X ′ by G where X ′ is a smooth projective variety and G
is a finite group. We prove that ψX is surjective. Pick β ∈ Nn−k(X)Q, we only need to find
a vector bundle E on X such that chk(E) x[X] = β. Since the projection map q : X ′ → X
from X ′ to X is finite, the class β ∈ Nn−k(X)Q is the image by q of a class α′ ∈ Nn−k(X

′)Q '
Nk(X ′)Q. Applying Grothendieck-Riemann-Roch’s theorem, there exists a vector bundle E ′ such
that chk(E

′) = α′. Setting E =
∑

g∈G g
∗E ′ where any element g acts on X ′ by multiplication. By

construction, chk(E) = |G|×α where |G| is the cardinal of the group G and the vector bundle E is
G-equivariant, hence descends to a vector bundle E|X on X. We have then chk(E|X) x[X] = |G|×β
as required. The injectivity of ψX is a consequence of the surjectivity of ψX since ker(ψX |Nk(X)Q

) ⊂
Im(ψX |Nn−k(X)Q

)⊥ = {0} where the orthogonal is taken with respect to the non-degenerate pairing
Nk(X)Q × Nk(X)Q → Z.

(3) We have the following series of equivalence:

β ∈ ψY (Nn−k(Y )Q)⊥ ⇔ ∀α ∈ Nn−k(Y )Q, (β xψY (α)) = 0
⇔ ∀α ∈ Nn−k(Y )Q, (β x(q∗ψXq∗α)) = 0
⇔ ∀α ∈ Nn−k(Y )Q, (q

∗β · q∗α) = 0
⇔ ∀α ∈ Nn−k(Y )Q, (α x q∗ψXq∗β) = 0
⇔ q∗β ∈ Ker(q∗ ◦ ψX : Nk(X)Q → Nn−k(Y )Q,

where the second equivalence follows from Theorem 2.4.2.(3), the third and the fourth equivalence
from the projection formula, and the last equivalence is a consequence of the fact that ψX is
self-adjoint :

(β xψY (α)) = (β x(α x[Y ])) = (α x(β x[Y ])) = (α xψY (β)),

where α ∈ Nk(Y ) and β ∈ Nn−k(Y ).
�

Remark 2.4.3. The proof of Theorem 2.4.2.(1) shows that when X is smooth, Nk(X)Q is the
quotient of Zk(X)Q by cycles z ∈ Zk(X)Q such that for any cycle z′ ∈ Zn−k(X)Q, one has (z ·z′) = 0.

Remark 2.4.4. When X is smooth and when κ = C, denote by Algk(X) the subgroup of the de
Rham cohomology H2k(X,C) generated by algebraic cycles of dimension k in X. Then there is a
surjective morphism Algk(X)→ Nk(X)Q

2.5. Numerical spaces are finite dimensional.

Theorem 2.5.1. Both Q-vector spaces Nk(X)Q and Nk(X)Q are finite dimensional.

Proof. If X is smooth, then using Remark 2.4.3, Nk(X)Q is the quotient of Zk(X)Q by the
equivalence relation which identifies cycles α and β in Zk(X)Q if for any cycle z ∈ Zn−k(X)Q,
(z · α) = (z · β). In particular, the vector-space Nk(X)Q is finitely generated (see [Mil13, Theorem
23.6] for a reference), and so is Nk(X)Q using Theorem 2.4.2.(1).

If X is not smooth, by DeJong’s alteration theorem (cf [Jon96, Theorem 4.1]), there exists
a smooth projective variety X ′ and a generically finite surjective morphism q : X ′ → X. We
only need to show that the pushforward q∗ : Nk(X

′)Q → Nk(X)Q is surjective. Indeed this first
implies that Nk(X)Q is finite dimensional. Since the natural pairing Nk(X)Q×Nk(X)Q → Q is non
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degenerate we get an injection of Nk(X)Q onto HomQ(Nk(X)Q,Q) which is also finite dimensional.

We take V an irreducible subvariety of codimension k in X. If dim q−1(V ) = dimV , then the
class q∗[q−1(V )] in NdimV (X)Q is represented by a cycle of dimension dimV which is included in
V . As V is irreducible, we have q∗[q−1(V )] ≡ λ[V ] for some λ ∈ N∗.

If the dimension of q−1(V ) is strictly greater than V , we take W an irreducible component of
q−1(V ) such that its image by q|W : W → V is dominant. We write the dimension ofW as dimV +r
where r > 0 is an integer. Fix an ample divisor ωX on X. The class ωrX x[W ] ∈ NdimV (X ′)Q
is represented by a cycle of dimension dimV in W . So the image of the class q∗(ωrX x[W ]) ∈
NdimV (X)Q is a multiple of [V ] which implies the surjectivity of q∗.

�

Corollary 2.5.2. For any integer 0 6 k 6 n, the pairing Nk(X)R × Nk(X)R → R is perfect.

Corollary 2.5.3. Suppose that the dimension of X is 2n, then the morphism ψX : Nn(X)Q →
Nn(X)Q is an isomorphism.

Proof. We apply (11) to an alteration X ′ of X where q : X ′ → X is a proper surjective morphism
and where X ′ is a smooth projective surface. This proves that ψX : Nn(X)Q → Nn(X)Q is
surjective. By duality, this gives that ψX : Nn(X)Q → Nn(X)Q is injective. As a consequence, we
have that ψX : Nn(X)Q → Nn(X)Q is an isomorphism.

�

Corollary 2.5.4. Let X be a complex normal projective variety with at most rational singularities.
We suppose that X is numerically Q-factorial in the sense of [BdFFU15]. Then the morphisms
ψX : N1(X)Q → Nn−1(X)Q and ψX : Nn−1(X)Q → N1(X)Q are isomorphisms.

Proof. Using [BdFFU15, Theorem 5.11], then any Weil divisor which is numerically Q-Cartier is
Q-Cartier. In particular, ψX : N1(X)Q → Nn−1(X)Q is surjective. Using (11) to an alteration of
X ′ applied to k = 1, we have that ψX : N1(X)Q → Nn−1(X)Q is injective. Hence N1(X)Q and
Nn−1(X)Q are isomorphic and by duality Nn−1(X)Q and N1(X)Q are also isomorphic. �

Example 2.5.5. When X = X(∆) be a toric variety associated to a complete fan ∆. The map
ψX : N1(X)Q → Nn−1(X)Q is an isomorphism if and only if ∆ is a simplicial fan using [Ful93,
exercice p65 section 3.4].

3. Positivity

The notion of positivity is relatively well understood for cycles of codimension 1 and of dimension
1. For cycles of intermediate dimension this situation is however more subtle and was only recently
seriously considered (see [DELV11], [CC15], [CLO16] and the recent series of papers by Fulger and
Lehmann ([FL14a], [FL14b]).

For our purpose, we will first review the notions of pseudo-effectivity and numerically effective
classes. Then we will focus on the strongly pliant cone, which is a cone which have the same prop-
erties as the pliant cone introduced by [FL14b] but which is more suitable for stating generalized
Siu’s inequalities (see Section 3.3).

3.1. Pseudo-effective and numerically effective cones. As in the previous section, X is a
normal projective variety of dimension n. To ease notation we shall also write Nk(X) and Nk(X)
for the real vector spaces Nk(X)R and Nk(X)R.

Definition 3.1.1. A class α ∈ Nk(X) is pseudo-effective if it is in the closure of the cone generated
by effective classes. This cone is denoted Psefk(X).
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When k = 1, Psef1(X) is the Mori cone (see e.g [KM98, Definition 1.17]), and when k = n− 1,
Psefn−1(X) is the classical cone of pseudo-effective divisors, its interior being the big cone.

Definition 3.1.2. A class β ∈ Nk(X) is numerically effective (or nef) if for any class α ∈
Psefn−k(X), (β xα) > 0. We denote this cone by Nefk(X).

When k = 1, the cone Nef1(X) is the cone of numerically effective divisors, its interior is the
ample cone.

We can define a notion of effectivity in the dual Nk(X).

Definition 3.1.3. A class α ∈ Nk(X) is pseudo-effective if ψX(α) ∈ Psefn−k(X). We will write
this cone as Psefk(X).

Definition 3.1.4. A class z ∈ Nk(X) is numerically effective if for any class α ∈ Psefk(X), one
has (α x z) > 0. This cone is denoted Nefk(X).

By convention, we will write α 6 β (resp. α 6 β) for any α, β ∈ Nk(X) (resp. α, β ∈ Nk(X) )
if β − α ∈ Psefk(X) (resp. β − α ∈ Psefk(X)).

When X is smooth, the morphism ψX induces an isomorphism between Nk(X) and Nn−k(X),
and we can identify these cones:

Nefk(X) = Nefn−k(X),
Psefk(X) = Psefn−k(X).

3.2. Strongly pliant classes.

Definition 3.2.1. The strongly pliant cone Ck(X) is the closure of the convex cone in Nk(X)R
generated by products of the form [γ1] · . . . · [γl] where each γi is a product of ei + ki ample Cartier
divisors on a normal projective variety Xi which is flat over X of relative dimension ei and where
ki are integers satisfying k1 + . . .+ kl = k.

Remark 3.2.2. By definition, the cone Ck(X) contains the products of ample Cartier divisors and
Segre classes of anti-ample vector bundles.

Remark 3.2.3. Recall the definition of pliant classes introduced in [FL14b, Definition 3.1]. The
pliant cone is defined as the convex cone generated by product of Schur polynomials of globally
generated vector bundle. We conjecture that the pliant cone and the strongly pliant cone are equal.

Theorem 3.2.4. The strongly pliant cone satisfies the following properties.
(1) The cone Ck(X) is a salient, closed, convex cone with non-empty interior in Nk(X)R.
(2) The cone Ck(X) contains products of ample Cartier divisors in its interior.
(3) For all integer k and l, we have Ck(X) · Cl(X) ⊂ Ck+l(X).
(4) For any proper surjective morphism q : X → Y , we have q∗ Ck(Y ) ⊂ Ck(X).
(5) For any integer k, we have Ck(X) ⊂ Nefk(X) ∩ Psefk(X).
(6) In codimension 1, one has C1(X) = Nef1(X).

Proof. We prove successively the items (3), (5), (6), (4), (2) and (1).
(3) This follows from the definition of Ck(X).

(5) It is sufficient to prove that for any effective cycle z ∈ Zn−l(X) and any strongly pliant
class α ∈ Ck(X), then α x z ∈ Psefn−k−l(X). Indeed, apply this successively to z = [X] and
z ∈ Psefk(X) give the inclusions Ck(X) ⊂ Psefk(X) and Ck(X) ⊂ Nefk(X). By definition of
strongly pliant classes and by linearity, we can suppose that α is equal to a product [γ1] · . . . · [γp]
where γi ∈ ICei+ki(Xi)R are products of ample Cartier divisors on Xi where pi : Xi → X is a flat
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proper morphism of relative dimension ei and where ki are integers such that k1 + . . . + kp = k.
By definition, one has [γ1] x z = p1∗(γ1 · p∗1z). Because the cycle z is pseudo-effective, the cycle
p∗1z remains pseudo-effective as p1 is a flat morphism. As γ1 is a positive combination of products
of ample Cartier divisors, we deduce that the cycle γ1 · p∗1z is pseudo-effective. Hence, [γ1] x z ∈
Psefn−l1−l(X). Iterating the same argument, we get that α x z ∈ Psefn−k−l(X) as required.

(6)The interior of Nef1(X) is equal to the ample cone of X so by definition:

Int(Nef1(X)) ⊂ C1(X).

As the closure of the ample cone is the nef cone by [Laz04, Theorem 1.4.21.(i)], one gets Nef1(X) ⊂
C1(X). Conversely, the cone C1(X) is included in the cone Nef1(X), so we get C1(X) = Nef1(X).

(4) By linearity and stability by products, we are reduced to treat the case of a class [D] induced
by an ample Cartier divisor on Y1 where p1 : Y1 → Y is a flat proper morphism, and prove that
q∗[D] is a limit of ample Cartier divisors on a flat variety over X. Let X1 be the fibre product of
Y1 and X and let q′ be the natural projection from X1 to Y1, observe that q∗[D] is induced by q′∗D
which remains nef on X1 as q′ is proper. In particular, it is the limit of ample divisors on N1(X1).

(1) Take α ∈ Ck(X) such that −α ∈ Ck(X). Then for all z ∈ Psefk(X), one has that (α x z) = 0
as α is nef by (5). Since effective classes of dimension k generate Zk(X), it follows that (α x z) = 0
for any z ∈ Nk(X)R which implies by definition that α = 0. This shows Ck(X) is salient.

(2) We show now that Ck(X) contains product of ample divisors in its interior.
Let h1, . . . , hk, h be k+1 ample Cartier divisors on X. Pick m large enough such that the divisor

mhi−h is very ample for all i 6 k. We thus have mkh1 ·h2 · . . . ·hk = hk +R where R is an element
of Ck(X). So we just need to prove that hk is in the interior of Ck(X) for any ample Cartier divisor
h. We shall prove by induction on k that hk is in the interior of Ck(X) for any k 6 n.

For k = 1, C1(X) = Nef1(X), and by definition, the divisor h is ample so it is in the interior
of the nef cone and we are done. Now suppose that the product of ample divisors hi lies in the
interior of Ci(X) for i < k.

Take a class α ∈ Nk(X)R, by Proposition 2.1.8, the class α is induced by an element γ ∈
ICe1+k(X1)R where p1 : X1 → X is a flat morphism of relative dimension e1. Let us fix an ample
Cartier divisor ωX1 on X1. It is sufficient to prove that the induced class [Mωe1X1

·p∗1hk−γ] ∈ Ck(X)
for M large enough. This amounts to prove that there is an M large enough such that the class
Mωe1X1

· p∗1hk − ω
e1+k
X1

induces an element of Ck(X). Indeed, we can write γ1 = ωe1+k
X1
−R′ where R′

is a positive combination of products of ample divisors. By the induction hypothesis, there is an
integer m such that [mωe1X1

· p∗1hi−ω
e1+i
X1

] ∈ Ci(X) for any i < k. We can suppose by replacing ωX1

by a multiple of itself that ωX1 + p∗1h is an ample divisor on X1. We set U = ωe1X1
· (ωX1 + p∗1h)k.

By definition of U , its induced class is strongly pliant [U ] ∈ Ck(X), and we have.

U =
∑

16i6k−1

(
k
i

)
p∗1h

i · ωe1+(k−i)
X1

+ p∗1h
k · ωkX + ωe1+k

X1

For i > k, for any cycle z ∈ An−k(X), hi · z ∈ An−k+i(X), so we have hi · z = 0 for any
z ∈ An−k(X). We have thus:

[U ]− [ωe1+k
X1

] +
∑

i6k−1

(
k
i

)
[p∗1h

i · (mωe1X1
· p∗1hk−i − ω

e1+(k−i)
X1

)] = M × [p∗1h
k · ωe1X1

]− [ωe1+k
X1

],
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where M = 1 +m
∑

i6k−1

(
k
i

)
. As [U ]− [ωe1+k

X1
] ∈ Ck(X), because it is a linear combination of

products of strongly pliant classes, we deduce that M [p∗1h
k · ωe1X1

]− [ωe1+k
X1

] ∈ Ck(X), which proves
that [hk] is in the interior of Ck(X).

�

We give here a detailed proof of the fact that the pseudo-effective cone is salient (see also [FL14b,
Corollary 3.17]). The proof uses a useful proposition that we will use later on.

Proposition 3.2.5. Let α ∈ Psefn−k(X) be a pseudo-effective class on X and γ ∈ Cn−k(X) be
class lying in the interior of the strongly pliant cone. Then we have (γ xα) = 0 if and only if
α = 0.

Proof. Let us fix two strongly pliant classes β and γ in Nn−k(X), and a norm || · || on Nn−k(X)R.
As γ is in the interior of Cn−k(X) by Theorem 3.2.4.(2), there exists a positive constant C > 0
such that for any β ∈ Cn−k(X), one has:

C||β||Nn−k(X)R
γ − β ∈ Cn−k(X).

Intersecting with α ∈ Psefn−k(X) and using Theorem 3.2.4.(5), we have that (β ·α) = 0. Since the
strongly pliant cone Cn−k(X) generates all Nn−k(X)R by Theorem 3.2.4.(1), we have proved that
(β′ xα) = 0 for any β′ ∈ Nn−k(X), hence α = 0 as required. �

Corollary 3.2.6. The pseudo-effective cone Psefn−k(X) is a closed, convex, full dimensional
salient cone in Nn−k(X)R.

Proof. We take u ∈ Psefn−k(X) such that −u ∈ Psefn−k(X), then for any ample Cartier divisor
ωX on X, the products (ωn−kX · u) and (−u · ωn−kX ) are non-negative hence (u · ωn−kX ) = 0. This
implies that u = 0 by Proposition 3.2.5.

�

3.3. Siu’s inequality in arbitrary codimension. We recall Siu’s inequality:

Proposition 3.3.1. ([Laz04, Theorem 2.2.13]) Let V be a closed subscheme of dimension r in X
and let A,B be two Q-divisors nef on X such that A|V is big, then we have in Nk−1(X),

B x[V ] 6
r((Ar−1 ·B) x[V ])

(Ar x[V ])
A x[V ].

Remark 3.3.2. The case V = X is a consequence of the bigness criterion given in [Laz04, Theorem
2.2.13].

Remark 3.3.3. The proof of the previous proposition implies that B|V 6 r(Ar−1·B x[V ])/(Ar x[V ])×
A|V in the Chow group A1(V ). However, since we want to work in the numerical group, we compare
these classes in X (we look at their pushforward by the inclusion of V in X).

Proof. The proof is the same as in [Laz04, Theorem 2.2.13], that is to find a section of the line
bundle OV (m(A−B)). We choose m general elements Ei of |B| and consider the exact sequence:

0 OV (mA−mB) OV (mA) ⊕OEi(mA) 0.

Taking long exact sequence associated, one obtains the minoration:

h0(V,OV (mA−mB) > h0(V,OV (mA))−
∑
i6m

h0(Ei,OEi(mA)).
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Applying [GGJ+16, Corollary 3.6.3] to the nef divisorA, we get h0(V,OV (mA)) = mr/(r!)(Ar x[V ])+
o(mr). Hence,

h0(V,OV (mA−mB)) >
mr

r!
(Ar − rAr−1 ·B) x[V ] + o(mr).

In particular, this implies the required inequality. �

The next result is a key for our approach to controlling degrees of dominant rational maps.

Theorem 3.3.4. Let k be an integer and V be a closed subscheme of dimension r in X. For any
Cartier divisors α1, . . . , αk and b which are big and nef on V , then there exists a constant C > 0
depending only on r and k such that:

(α1 · . . . · αk) x[V ] 6 (r − k + 1)k
(α1 · . . . · αk · br−k x[V ])

(br x[V ])
× bk x[V ] ∈ Nr−k(X).

Remark 3.3.5. Observe that (bn) > 0 since b is big.

Proof. By continuity, we can suppose that αi and b are ample Cartier divisors. We apply suc-
cessively Siu’s inequality by restriction to subschemes representing the classes α2 · . . . · αk x[V ] ,
b · α3 · . . . · αk x[V ], . . ., bk−1 · αk x[V ]:

α1 · α2 · . . . · αk x[V ] 6 (r − k + 1)
(α1 · . . . · αk · br−k x[V ])

(br−k+1 · α2 · . . . · αk x[V ])
× b · α2 · . . . · αk x[V ],

b · α2 · . . . · αk x[V ] 6 (r − k + 1)
(br−k+1 · α2 · . . . · αk x[V ])

(br−k+2 · α3 · . . . · αk x[V ])
× b2 · α3 · . . . · αk x[V ],

. . . . . .

bk−1 · αk x[V ] 6 (r − k + 1)
(br−1 · αk x[V ])

(br x[V ])
× bk x[V ].

This gives the required inequality:

α1 · . . . · αk x[V ] 6 (n− k + 1)k
(α1 · . . . · αk · br−k x[V ])

(br x[V ])
× bk x[V ].

�

Corollary 3.3.6. Let k be an integer, then for any a ∈ Ck(X) and any big nef Cartier divisor b
on X, one has:

a 6 (n− k + 1)k
(a · bn−k)

(bn)
× bk.

Proof. By linearity and stability by product, we just need to prove the inequality for a = D1 · . . . ·
De1+k ∈ ICe1+k(X1), where Di are ample Cartier divisors X1, where p1 : X1 → X is a flat proper
morphism of relative dimension e1. We apply Theorem 3.3.4 to a′ = De1+1 · . . . · De1+k · Z and
b′ = b|Z where Z = D1 · . . . ·De1 . We obtain:

a 6 (n− k + 1)k
(a · bn−k)
(bn · Z)

× bk · Z.

As the restriction of p1 on Z is generically finite, by the projection formula, we get:

a 6 (n− k + 1)k
(a · bn−k)

(bn)
× bk.

�
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The previous inequality can be applied when we have positivity hypothesis on a birational model
as follows.

Corollary 3.3.7. Let X, Y be two normal projective varieties of dimension n. Let β be a class in
Ck(Y ), we suppose there exists a birational morphism q : X → Y and an ample Cartier divisor A
on X such that Ak 6 q∗β. Then there exists a class β∗ ∈ Nk(X)R ∩ Psefk(X) such that for any
class α ∈ Ck(X), we have:

α 6 (α x β∗)× β.

Proof. We just have to set β∗ =
(n− k + 1)k

(An)
q∗ψX(An−k).

�

Remark 3.3.8. We conjecture that for any strongly pliant class a ∈ Ck(X) and any big nef divisor
b, one has

a 6

(
n
k

)
(a · bn−k)

(bn)
bk. (12)

One can show that this inequality (if true) is optimal since equality can happen when X is an
abelian variety.

3.4. Norms on numerical classes. In this section, the positivity properties combined with Siu’s
inequality allows us to define some norms on Nk(X)R and on Nk(X)R.

3.4.1. Norms on Nk(X)R. Let k 6 n be an integer and let γ ∈ Ck(X) be a strongly pliant class on
X. Any cycle z ∈ Nk(X)R can be written z = z+ − z− where z+ and z− are pseudo-effective. We
define :

Fγ(z) := inf
z=z+−z−

z+,z−∈Psefk(X)

{(γ x z+) + (γ x z−)}. (13)

Proposition 3.4.1. For any class γ ∈ Ck(X) lying in the interior of the strongly pliant cone, the
function Fγ defines a norm on Nk(X)R. In particular, if we fix a norm || · ||Nk(X)R on Nk(X)R,
there exists a constant C > 0 such that for any pseudo-effective class z ∈ Psefk(X), one has:

1

C
||z||Nk(X)R 6 (γ x z) 6 C||z||Nk(X)R . (14)

Proof. The only point to clarify is that Fγ(z) = 0 implies z = 0. Observe that Proposition 3.2.5
implies the result for z ∈ Psefk(X). In general, pick any two sequences (z+

p )p∈N and (z−p )p∈N
in Psefk(X) such that z = z+

p − z−p and such that γ · z+
p + γ · z−p −→0. Since z+

p and z−p are
pseudo-effective and γ is strongly pliant, it follows from Theorem 3.2.4.(5) that

lim
p→+∞

(γ · z+
p ) = lim

p→+∞
(γ · z−p ) = 0.

As γ lies in the interior of Ck(X), given any β in Ck(X), one has that Cγ − β is still in Ck(X)
for some sufficently large constant C > 0. Intersecting with the pseudo-effective classes z+

p and
z−p and using Theorem 3.2.4.(5), we have limp→∞(β x z+

p ) = limp→∞(β x z−p ) = 0, thus (β x z) = 0.
Since the strongly pliant cone Ck(X) generates all Nk(X) by Theorem 3.2.4.(1), we conclude that
z = 0 as required. �
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3.4.2. Norms on Nk(X)R.

Definition 3.4.2. We define the subcone Ck0(X) of Ck(X) as the classes α ∈ Ck(X) such that for
any birational map q : X ′ → X, there exists an ample Cartier divisor A on X ′ such that q∗α > Ak.

Proposition 3.4.3. The following assertions are satisfied.
(1) Let α ∈ Nk(X) be a strongly pliant class in X. Suppose there exists a normal projective

variety X ′ and a birational map q : X ′ → X such that q∗α > Ak for an ample Cartier
divisor A on X ′, then α ∈ Ck0(X).

(2) Let q : X ′ → X be a generically finite surjective morphism. Then q∗ Ck0(X) ⊂ Ck0(X ′).
(3) When X is smooth, the cone C1

0(X) is equal to the big nef cone. In particular Ck0 is neither
closed nor open in general.

Proof. (1) and (2) follow immediately from Theorem 3.3.4.
(3) Any big and nef divisor is by definition in C1

0(X) and the converse holds using again Theorem
3.3.4. �

Proposition 3.4.4. The cone Ck0(X) is a convex open subset of Ck(X) that contains the classes
induced by products of big nef divisors.

Proof. The cone Ck0(X) contains the products of big and nef Cartier divisors. The fact that Ck0(X)
is convex is a consequence of Siu’s inequality. We take two elements α and β in Ck0(X) and any
birational map q : X ′ → X. By definition, there exists some ample Cartier divisors A and B on
X ′ such that q∗α > Ak and q∗β > Bk. As A and B are ample, there is a constant C > 0 such
that Ak > CBk using the generalization of Siu’s inequality (Theorem 3.3.4). This proves that
q∗(t× α+ (1− t)× β) > (tC + (1− t))×Bk for any t ∈ [0, 1]. Hence t× α+ (1− t)× β ∈ Ck0(X)
and the cone Ck0(X) is convex.

We prove that Ck0(X) is an open subset of Ck(X). We take α ∈ Ck0(X). We take any ample
Cartier divisor ωX on X such that α− tωkX is in Ck(X) for small t > 0. We just need to show that
α − tωkX stays in Ck0(X) when t is small enough. Let q : X ′ → X be a birational map where X ′
is projective and normal. By definition of α, there exists an ample Cartier divisor A on X ′ such
that q∗α > Ak. By Siu’s inequality, there exists a constant C such that:

q∗ωkX 6 C
(Ak · q∗ωn−kX )

(ωnX)
× Ak.

This implies the inequality:

q∗β − tq∗ωkX >
(

1− tCA
k · ωn−kX

ωnX

)
× Ak. (15)

As Ak 6 q∗α, we have the following upper bound:

(Ak · ωn−kX ) 6 (q∗α · q∗ωn−kX ).

We get the following minoration which depends only on α and ωX :

1− tC(α · ωn−kX )

(ωnX)
6 1− tC(Ak · ωn−kX )

(ωnX)
. (16)

Using (15) and (16), one gets that for t <
(ωnX)

C(α · ωn−kX )
, the class α− tωkX is in Ck0(X).

�
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Remark 3.4.5. The cone Ck0(X) is not always equal to the cone generated by complete intersections.
Following [LX15, Example 9.6], there exists a smooth toric threefold such that the cone generated
by complete intersections in N1(X)R is not convex, so it cannot be equal to C2

0(X) using the
following proposition.

Let X be a normal projective variety of dimension n. Any class α ∈ Nk(X)R can be decomposed
as α+ − α− where α+ and α− are strongly pliant classes. For any γ ∈ Cn−k0 (X), we define the
function:

Gγ(α) := inf
α=α+−α−

α+,α−∈Ck(X)

{(γ · α+) + (γ · α−)}. (17)

Proposition 3.4.6. For any γ ∈ Cn−k0 (X), the function Gγ defines a norm on Nk(X)R. In
particular, for any norm || · ||Nk(X)R

on Nk(X)R, there is a constant C > 0 such that for any class
α ∈ Ck(X):

1

C
||α||Nk(X)R

6 (γ · α) 6 C||α||Nk(X)R
.

Proof. The only fact which is not immediate is the fact that Gγ(α) = 0 implies α = 0.
Up to taking an alteration of X, we can suppose that X smooth as Ck0(X) is stable by generically

finite morphisms (using Proposition 3.4.3.(2)). Moreover, we are reduced to treat the case where
α ∈ Ck(X) as the strongly pliant cone is stable by pullback by generically finite morphism using
Theorem 3.2.4.(4). Take an ample Cartier divisor ωX on X such that γ > ωn−kX , as the class α is
nef, one has:

0 = Gγ(α) = (γ · α) > (ωn−kX · α) > 0.

As the class α is pseudo-effective, we have that α = 0 using Proposition 3.2.5.
�

Remark 3.4.7. In fact, the above proof gives a stronger statement: for any generically finite mor-
phism q : X ′ → X and any γ ∈ Cn−k0 (X), the function Gq∗γ defines a norm on Nk(X ′)R.

4. Relative numerical classes

4.1. Relative classes. In this section, we fix q : X → Y a surjective proper morphism between
normal projective varieties where dimX = n, dimY = l and we denote by e = dimX − dimY the
relative dimension of q.

Definition 4.1.1. The abelian group Nk(X/Y ) is the subgroup of Nk(X) generated by classes of
subvarieties V of X such that the image q(V ) is a union of points in Y .

Observe that by definition, there is a natural injection from Nk(X/Y ) into Nk(X):

0 // Nk(X/Y ) // Nk(X).

Definition 4.1.2. The abelian group Nk(X/Y ) is the quotient of Zk(X) by the equivalence relation
≡Y where α ≡Y 0 if for any cycle z ∈ Zk(X) whose image by q is a collection of points in Y , we
have (α x z) = 0.

Therefore, one has the following exact sequence:

Nk(X) // Nk(X/Y ) // 0.

As before, we write Nk(X/Y )R = Nk(X/Y ) ⊗Z R, Nk(X/Y )R = Nk(X/Y ) ⊗ R, N•(X/Y ) =
⊕Nk(X/Y ) and N•(X/Y ) = ⊕Nk(X/Y ).
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Proposition 4.1.3. The abelian groups Nk(X/Y ) and Nk(X/Y ) are torsion free and of finite type.
Moreover, the pairing Nk(X/Y )Q×Nk(X/Y )Q → Q induced by the pairing Nk(X)Q×Nk(X)Q → Q

is perfect.

Proof. Since Nk(X/Y ) is a subgroup of Nk(X), it is torsion free and of finite type. The group
Nk(X/Y ) is also torsion free. Indeed pick α ∈ Zk(X) such that pα ≡Y 0 for some integer p, then
for any cycle z whose image by q is a union of points, we have (pα x z) = p(α x z) = 0 hence
α ≡Y 0. Finally, since there is a surjection from Nk(X) to Nk(X/Y ), the group Nk(X/Y ) is also
of finite type.

Let us show that the pairing is well defined and non degenerate. Take a cycle z ∈ Zk(X)Q such
that q(z) is a finite number of points in Y , then if α ∈ Nk(X) such that its image is 0 in Nk(X/Y ),
then (α x z) = 0 and the pairing Nk(X/Y ) × Nk(X/Y ) → Z is well-defined. Let us suppose that
for any α ∈ Nk(X/Y )Q, (α x z) = 0. This implies that for any β ∈ Nk(X), the intersection product
(β x z) = 0, thus z ≡ 0. Conversely, suppose that (α x z) = 0 for any z ∈ Nk(X/Y ), then by
definition α ≡Y 0.

�

Example 4.1.4. When Y is a point, we have Nk(X/Y ) = Nk(X) and Nk(X/Y ) = Nk(X).

Example 4.1.5. If the morphism q : X → Y is finite, then we have N0(X/Y ) = N0(X/Y ) = Z and
Nk(X/Y ) = Nk(X/Y ) = {0} for k > 1.

Example 4.1.6. When k = 1, the group N1(X/Y ) is generated by curves contracted by q so that
N1(X/Y ) is the relative Neron-Severi group and its dimension is the relative Picard number.

Remark 4.1.7. When k is greater than the relative dimension, the relative classes might not be
trivial. For example if q : X → Y is a birational map, then e = 0 but the space N1(X/Y )R is
generated by classes of exceptional divisors of q.

Proposition 4.1.8. The intersection product on N•(X) induces a structure of algebra on N•(X/Y ).
Moreover, the action from N•(X) on N•(X) induces an action from N•(X/Y ) on N•(X/Y ), so
that the vector space N•(X/Y )R becomes a N•(X/Y )R-module.

Proof. Observe that if z ∈ Zk(X) such that q(z) is a union of points in Y and α ∈ Nl(X), then
α x z lies in Nk−l(X/Y ). Indeed, by definition, the class α x z is represented by a cycle supported
in z, so its image by q is a collection of points in Y .

Let us now prove that the product is well-defined in N•(X/Y ). Take α ∈ Nk(X) such that
α = 0 in Nk(X/Y ) and β ∈ Nl(X), we must prove that α · β = 0 in Nk(X/Y ). Pick a cycle
z ∈ Zk+l(X) whose image by q is a collection of points, by the properties of the intersection
product, ((α · β) x z) = (α x(β x z)). As β x z is in Nk(X/Y ), we get that ((α · β) x z) = 0 as
required.

�

As an illustration, we give an explicit description of these groups in a particular example.

Proposition 4.1.9. Suppose q : X = P(E) → Y where E is a vector bundle of rank e + 1 on Y .
Then for any integer 0 6 k 6 e, one has:

Nk(X/Y ) = Z ξe−k x q∗[pt],

Nk(X/Y ) = Z ξk,

where ξ = c1(OP(E)(1)).
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Proof. Since the pairing Nk(X/Y )×Nk(X/Y )→ Z is non degenerate and since (ξk x(ξe−k x q∗[pt])) =
1, the second equality is an immediate consequence of the first one. We suppose first that k > 0.
Pick α ∈ Zk(X) which defines a class in Nk(X/Y ). Using [Ful98, Theorem 3.3.(b)], α is rationally
equivalent to

∑
e−k6i6e ξ

i x q∗αi where αi is an element of the Chow group Ak−e+i(Y ). Since the
image of α by q is a union of points in Y , we have that q∗α = 0 in Ak(Y ) hence αe = 0 in Ak(Y )Q
using Theorem 1.3.4. Since ξi xα defines also a class in Nk−i(X/Y ), this implies also that αe−i = 0
in Ak−e+i(Y ) for any i < k. We have finally that in Nk(X/Y ):

α = ξe−k x q∗αe−k.

Since αe−k belongs toA0(Y ) and N0(Y ) = Z[pt], the Z-module Nk(X/Y ) is generated by ξe−k x q∗[pt]
for k > 0.

For k = 0, the groups N0(X) and N0(X/Y ) are isomorphic to Z, so we get the desired conclusion.
�

4.2. Pullback and pushforward. In this section, we fix any two proper surjective morphisms
q1 : X1 → Y1, q2 : X2 → Y2. To simplify the notation, we write X1/q1Y1

f→
g
X2/q2Y2 when we have

two regular maps f : X1 → X2 and g : Y1 → Y2 such that q2 ◦ f = g ◦ q1. When f : X1 99K X2 and
g : Y1 99K Y2 are merely rational maps, then we write X1/q1Y1

f
99K
g
X2/q2Y2.

Proposition 4.2.1. Let X1/q1Y1
f→
g
X2/q2Y2 be a morphism. Then the morphism of abelian groups

f∗ : Nk(X1)→ Nk(X2) induces a morphism of abelian groups f∗ : Nk(X1/Y1)→ Nk(X2/Y2).

Proof. Take a cycle z ∈ Zk(X1) such that q1(z) is a union of points of Y1. Then the image of the
cycle z by q2 ◦ f is also a union of points of Y2 due to the fact that q2 ◦ f = g ◦ q1. Hence f∗ maps
Nk(X1/Y1) to Nk(X2/Y2). �

Proposition 4.2.2. Let X1/q1Y1
f→
g
X2/q2Y2 be a morphism. Then the morphism of graded rings

f ∗ : N•(X1)→ N•(X2) induces a morphism of graded rings f ∗ : N•(X1/Y1)→ N•(X2/Y2).

Proof. This results follows immediately by duality from the previous proposition since the pairing
Nk(Xi/Yi)× Nk(Xi/Yi)→ Z is non degenerate. �

4.3. Restriction to a general fiber and relative canonical morphism. Recall that dimX =
n, dimY = l and that the relative dimension of q : X → Y is e.

Proposition 4.3.1. There exists a unique class αX/Y ∈ Nl(X)Q satisfying the following conditions.
(1) The image ψX(αX/Y ) belongs to the subspace Ne(X/Y )Q of Ne(X)Q.
(2) For any class β ∈ Nl(X)Q, q∗β = (αX/Y x β) [Y ].

Moreover, for any open subset V of Y such that the restriction q to U = q−1(V ) is flat, and for all
y ∈ V and any irreducible subvariety F of the scheme-theoretic fiber Xy, we have:

ψX(αX/Y ) = [Xy] = k[F ],

where k is a rational number which only depends on F and where [Xy] (resp. [F ]) denote the
fundamental class of Xy (resp. F ).

Remark 4.3.2. Recall that by generic flatness (see [FGI+05, Theorem 5.12]), one can always find
an open subset V of Y such that the restriction of q to q−1(V ) is flat over V .
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Proof. Fix an ample Cartier divisor ωY on Y , we set

αX/Y :=
1

(ωlY )
q∗ωlY ∈ Nl(X)Q.

By definition, it satisfies (1) and (2) follows from the projection formula (Theorem 2.3.2.(4)).
Let us show that any class satisfying (1) and (2) is unique. Suppose there is another one α′ ∈
Nl(X)Q. Then for any class β ∈ Nl(X)Q, ((αX/Y − α′) x β) = 0 so that α = α′ since the pairing
Nl(X)Q × Nl(X)Q → Q is non degenerate.

Let us prove the last assertion. By generic flatness [FGI+05, Theorem 5.12], Let V be an open
subset of Y such that the restriction q|q−1(V ) : q−1(V ) → V is flat and such that the dimension of
every fiber is e. Since ωY is ample, we can find some hyperplanes of Hi ⊂ Y such that H1∩ . . .∩Hl

represents the class ωlY and such that H1 ∩ . . . ∩ Hl ⊂ V . In particular, by [Ful98, Proposition
2.3.(d)], the pullback q∗ωlY is represented by a cycle in the fiber ofH1∩. . .∩Hl. Denote by i : V → Y
and j : U → X the inclusion maps of V and U into Y and X respectively. The morphisms j and
i are open embedding hence are flat. Moreover we have the following commutative diagram.

U

q|U
��

i
// X

q

��

V
j
// Y

As the class ωlY is equal in A0(Y ) to:

ωlY =
∑

ai[pi] (18)

where pi ∈ V (κ) are points in V and ai are positive integers satisfying
∑
ai = (ωlY ). Using [Ful98,

Example 2.4.2], one has that for any β ∈ Al(X):

(q∗ωlY x β) = (q∗|Uj
∗(ωlY ) x i∗β).

Using (18), one obtains in Ae(X):

q∗|Uj
∗ωlY = q∗|Uj

∗(
∑

ai[pi]) =
∑

ai[q
−1(pi)],

which is well-defined since the restriction of q on U is flat. By [Ful98, Theorem 10.2], we have that
[Xpi ] = [Xy] ∈ Ne(X) for any pi, y ∈ V . In particular, we have:

ψX(q∗ωlY ) = (
∑

ai)[Xy] = (ωlY ) [Xy] ∈ Ne(X),

where y is a point in V , which proves that ψX(αX/Y ) = [Xy] in Ne(X)Q for any point y in V . By
the Stein factorization theorem, there exists a morphism q′ : X → Y ′ with connected fibres and a
finite morphism f : Y ′ → Y such that q = q′ ◦ f . �

The class previously constructed allows us to define a restriction morphism.

Definition 4.3.3. Suppose that dimY = l and that ωY is an ample Cartier divisor on Y , then we
define ResX/Y : N•(X)Q → N•−l(X/Y )Q by setting:

ResX/Y (β) := αX/Y x β.

We shall denote by Res∗X/Y : β ∈ N•(X/Y )Q → αX/Y ·β ∈ N•+l(X)Q the dual morphism induced
by ResX/Y .

Proposition 4.3.4. Recall that dimY = l. The following properties are satisfied.
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(1) For any class α ∈ N•(X)Q, one has:

ψX ◦ Res∗X/Y (α) = ResX/Y ◦ψX(α).

(2) For any morphism X ′/q′Y
′ f→
g
X/qY where dimX ′ = dimX = n and dimY ′ = dimY = l

such that the topological degree of g is d, we have for any α ∈ Nk−l(X/Y )Q:

d× Res∗X′/Y ′ ◦f ∗α = f ∗ ◦ Res∗X/Y α.

The definition of the restriction morphism gives a natural way to generalize the definition of the
canonical morphism ψX : Nk(X)→ Nn−k(X) to the relative case.

Definition 4.3.5. Recall that the relative dimension of the morphism q : X → Y is e. For any
integer k > 0, we define the canonical morphism ψX/Y by:

ψX/Y := ψX ◦ Res∗X/Y : β ∈ Nk(X/Y )Q → ψX(αX/Y · β) ∈ Ne−k(X/Y )Q.

Remark 4.3.6. When k > e by convention the map ψX/Y is zero.

We give here a situation where this map is an isomorphism.

Proposition 4.3.7. Suppose q : X → Y is a flat morphism of relative dimension e and that every
fiber of q is smooth, then for any integer 0 6 k 6 e, the map ψX/Y : Nk(X/Y )Q → Ne−k(X/Y )Q is
an isomorphism.

Proof. Since the pairing Nk(X/Y )Q × Nk(X/Y )Q → Q is perfect by Proposition 4.1.3, we have
that the dual morphism ψ∗X/Y : Ne−k(X/Y )Q → Nk(X/Y )Q of ψX/Y is surjective whenever ψX/Y :

Nk(X/Y )Q → Ne−k(X/Y )Q is injective. We are thus reduced to prove the injectivity of ψX/Y :

Nk(X/Y )Q → Ne−k(X/Y )Q. Take a ∈ Nk(X/Y )Q such that ψX/Y (a) = 0, and choose a class
α ∈ Nk(X)Q representing a. We fix a subvariety V of dimension k in a fiber Xy of q where y is a
point in Y . We need to prove that (α x[V ]) = 0.

By Proposition 4.3.1, the condition ψX/Y (α) = 0 implies that:

α x[Xy] = 0 ∈ Ne−k(X)Q.

Since Xy is smooth, by Theorem 2.4.2, there exists a class β ∈ Ne−k(Xy)Q such that:

β x[Xy] = [V ].

In particular, we get:

(α x[V ]) = (α x(β x[Xy])) = (β x(α x[Xy])) = 0

as required. �

Example 4.3.8. If X = P(E) where E is a vector bundle on Y , then Proposition 4.1.9 implies that
ψX/Y : Nk(X/Y )Q → Ne−k(X/Y )Q is an isomorphism for any integer 0 6 k 6 e.

Example 4.3.9. If X is the blow-up of P1×P1 at a point and q is the projection from P1×P1 to the
first component Y = P1 composed with the blow-down from X to P1×P1. Then the morphism
ψX/Y : N0(X/Y )Q → N1(X/Y )Q is not surjective and ψX/Y : N1(X/Y )Q → N0(X/Y )Q is not
injective.
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5. Application to dynamics

In this section, we shall consider various normal projective varieties Xi and Yi respectively of
dimension n and l and we write e = n− l Recall from Section 4.2 that the notation Xi/qiYi means

that qi : Xi → Yi is a regular surjective morphism of relative dimension e and that X/qY
f
99K
g

X ′/q′Y
′ means that f : X 99K X ′ and g : Y 99K Y ′ are dominant rational maps such that

q′ ◦ f = g ◦ q. We shall also fix ωXi and ωYi big and nef Cartier divisors on Xi and Yi respectively.
In this section we prove Theorem 1 and Theorem 2. They will follow from Theorem 5.2.1 and

Theorem 5.3.2 respectively.

5.1. Degrees of rational maps.

Definition 5.1.1. Let us consider a rational map X1/q1Y1

f
99K
g
X2/q2Y2 and let Γf (resp. Γg) be

the normalization of the graph of f (resp. g) in X1 × X2 (resp. Y1 × Y2) such that we have the
following diagram.

Γf
π1

~~}}}}}}}} π2

  
AAAAAAAA

$





X1

q1
��

f
//_______ X2

q2
��

Y1

g
//________ Y2

Γg

π′1

``AAAAAAAA π′2

>>}}}}}}}}

The k-th relative degree of f is defined by the formula:

reldegk(f) := (π∗1(ωe−kX1
· (q∗1ωY1)l) · π∗2(ωX2)k).

When Y1 and Y2 are reduced to a point, we simply write degk(f) = reldegk(f).

Remark 5.1.2. If e = 0, then reldegk(f) = (q∗1ω
l
Y1

) if k = 0 and reldegk(f) = 0 for k > 0.

Note that the degrees always depend on the choice of the big nef divisors, but to simplify the
notations, we deliberately omit it.

We now explain how to associate to any rational map X1/q1Y1

f
99K
g
X2/q2Y2 a pullback operator

(f, g)•,k.

Definition 5.1.3. Let X1/q1Y1

f
99K
g
X2/q2Y2 be a rational map and let π1 and π2 be the projections

from the graph of f in X1 × X2 onto the first and the second factor respectively. We define the
linear morphisms (f, g)•,k and (f, g)•,k by the following formula:

(f, g)•,k : α ∈ Nk(X2/Y2)R −→ (π1∗ ◦ ψΓf/Γg ◦ π
∗
2)(α) ∈ Ne−k(X1/Y1)R.

(f, g)•,k : β ∈ Nk(X1/Y1)R −→ (π2∗ ◦ ψΓf/Γg ◦ π
∗
1)(β) ∈ Ne−k(X2/Y2)R.

Remark 5.1.4. When Y1 and Y2 are reduced to a point, then we simply write f •,k(α) := (f, Id{pt})
•,k(α)

and f•,k(β) := (f, Id{pt})•,k(β).

Remark 5.1.5. Since ψΓf/Γg : Nk(X/Y ) → Ne−k(X) = 0 when k > e, it implies that (f, g)•,k and
(f, g)•,k are identically zero for any k > e.
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5.2. Sub-multiplicativity.

Theorem 5.2.1. Let us consider the composition X1/q1Y1

f1
99K
g2

X2/q2Y2

f2
99K
g2

X3/q3Y3 of dominant

rational maps. Then for any integer 0 6 k 6 e, there exists a constant C > 0 which depends only
on the choice of ωX2, ωY2, k, l and e such that:

reldegk(f2 ◦ f1) 6 C reldegk(f1) reldegk(f2).

More precisely, C = (e− k + 1)k/(ωeX2
· q∗2ωlY2

).

Proof. We denote by Γf1 (resp. Γf2 , Γg1 ,Γg2) the normalization of the graph of f1 (resp. f2, g1, g2)
and π1, π2 (resp.π3, π4, π′1, π′2 and π′3, π′4) the projections onto the first and the second factor
respectively. We set Γ as the graph of the rational map π−1

3 ◦ f1 ◦ π1 : Γf1 99K Γf2 , u and v the
projections from Γ onto Γf1 and Γf2 and $i the restriction on Γfi of the projection from Xi×Xi+1

to Yi × Yi+1 for each i = 1, 2. We have thus the following diagram.

Γ
u

}}{{{{{{{{
v

!!CCCCCCCC

Γf1

$1





π1

}}|||||||| π2

!!BBBBBBBB
Γf2

π3

}}|||||||| π4

!!BBBBBBBB

$2





X1

q1
��

f1

//________ X2

q2
��

f2

//________ X3

q3
��

Y1

g1
//________ Y2

g2
//________ Y3

Γg1

π′1

aaBBBBBBBB π′2

==||||||||
Γg2

π′3

aaBBBBBBBB π′4

==||||||||

(19)

By Proposition 4.3.1 applied to q2 ◦ π2 ◦ u : Γ → Y2, the class ψΓ(u∗π∗2q
∗
2ω

l
Y2

) is represented by
the fundamental class [V ] where V is a subscheme of dimension e in Γ which is a general fiber
of q2 ◦ π2 ◦ u. We apply Theorem 3.3.4 by restriction to V to the class a = v∗π∗4ω

k
X3
x[V ] and

b = u∗π∗2ωX2 x[V ]. We obtain:

v∗π∗4ω
k
X3
x[V ] 6 (e− k + 1)k

(v∗π∗4ω
k
X3
· u∗π∗2ωe−kX2

x[V ])

(u∗π∗2ω
e
X2
x[V ])

u∗π∗2ω
k
X2
x[V ] ∈ Ne−k(Γ). (20)

Let us simplify the right hand side of inequality (20). Since π2 ◦u = π3 ◦ v, ψΓ(u∗π∗2q
∗
2ω

l
Y2

) = [V ] ∈
Ne(Γ) and since the morphism v is generically finite, one has that:

(v∗π∗4ω
k
X3
· u∗π∗2ωe−kX2

x[V ]) = (v∗(π∗4ω
k
X3
· π∗3ωe−kX2

· π∗3q∗2ωlY2
)) = d× reldegk(f2), (21)

where d is the topological degree of v. The same argument gives:

(u∗π∗2ω
e
X2
x[V ]) = d× (ωeX2

· q∗2ωlY2
). (22)

Using (21), (22), inequality (20) can be rewritten as:

u∗π∗2q
∗
2ω

l
Y2
· v∗π∗4ωkX3

6 C reldegk(f2) u∗π∗2ω
k
X2
· u∗π∗2q∗2ωlY2

∈ Nl+k(Γ),

where C = (e− k + 1)k/(ωeX2
· q∗2ωlY2

). Since the class u∗π∗1ω
e−k
X1
∈ Ne−k(Γ) is nef, we can intersect

this class in the previous inequality to obtain:

(u∗(π∗1ω
n−l−k
X1

· π∗2q∗2ωlY2
) · v∗π∗4ωkX3

) 6 C ′ reldegk(f2)(u∗π∗2ω
k
X2
· u∗π∗2q∗2ωlY2

· u∗π∗1ωn−l−kX1
). (23)
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Let us simplify the expressions in inequality (23). Because π∗2q∗2ωlY2
= $∗1π

′∗
2 ω

l
Y2

and degl(g1) =

(π′∗2 ω
l
Y2

), we deduce that:

π∗2q
∗
2ω

l
Y2

=
degl(g1)

(ωlY1
)
$∗1π

′
1
∗
ωlY1

=
degl(g1)

(ωlY1
)
π∗1q

∗
1ω

l
Y1
. (24)

Applying (24), the inequality (23) can be translated as:

degl(g1)

(ωlY1
)

(u∗π∗1(ωn−l−kX1
· q∗1ωlY1

) · v∗π∗4ωkX3
) 6 C

degl(g1)

(ωlY1
)

reldegk(f2)(u∗(π∗2ω
k
X2
· π∗1q∗1ωlY1

· π∗1ωn−l−kX1
)).

We obtain thus:
degl(g1)

(ωlY1
)

reldegk(f2 ◦ f1) 6 C
degl(g1)

(ωlY1
)

reldegk(f1) reldegk(f2).

This concludes the proof of the inequality after dividing by degl(g1)/(ωlY1
). �

5.3. Norms of operators associated to rational maps. The proof of Theorem 2 relies on an
easy but crucial lemma which is as follows.

Lemma 5.3.1. Let us consider (V, || · ||) a finite dimensional normed R-vector space and let C be
a closed convex cone with non-empty interior in V . Then there exists a constant C > 0 such that
any vector u ∈ V can be decomposed as v = v+ − v− where u+ and u− are in C such that:

||v+/−|| 6 C||v||.

Proof. Let us define the map f : V → R+ given by:

f(v) = inf{max(||v′||, ||v′ − v||) | v′ ∈ V , v′ − v ∈ C}.

Since C has a non-empty interior, the function f is well-defined (the intersection of the affine cones
C and v + C is always non-empty). Moreover, f is continuous, hence it is bounded by a constant
C > 0 on the sphere {v ∈ V | ||v|| = 1}. And we have proved the lemma since we can always
divide by ||v|| to reduce to the case where ||v|| = 1. �

Theorem 5.3.2. Let X/qY
f
99K
g
X/qY be a rational map. We fix an integer k 6 e, some norms

on Nk(X/Y )R, on Ne−k(X/Y )R. Then there is a constant C > 0 such that for any rational map

X/qY
f
99K
g
X/qY , we have:

1

C
6
||(f, g)•,k||
reldegk(f)

6 C.

In particular, the k-th relative dynamical degree of f satisfies the following equality:

λk(f,X/Y ) = lim
p→+∞

||(fp, gp)•,k||1/p.

Moreover, when Y is reduced to a point, we obtain:

λk(f) = lim
p→+∞

||(fp)•,k||1/p.

Remark 5.3.3. The proof of Theorem 2 follows directly from Theorem 5.3.2 since Nk(X/Y ) =
Nk(X) and Ne−k(X/Y ) = Ne−k(X) when Y is reduced to a point.
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Proof. We denote by π1 and π2 the projections from the graph Γf of f onto the first and the second
component respectively. Since we want to control the norm of f •,k by the k-th relative degree of
f , we first find an appropriate norm to relate the norm on Ne−k(X)R with an intersection product.
As Ne−k(X/Y )R is a subspace of Ne−k(X)R, we can extend the norm || · ||Ne−k(X/Y )R into a norm on
Ne−k(X)R. As Ne−k(X)R is a finite dimensional vector space and since ωe−kX is a class in the interior
of the strongly pliant cone Ce−k(X), we can suppose by equivalence of norms that the norm on
Ne−k(X)R given by

||z|| = inf
z=z+−z−

z+,z−∈Psefe−k(X)

{(ωe−kX x z+) + (ωe−kX x z−)}

as in Proposition 3.4.1.
Let us prove that the lower bound of ||(f, g)•,k||/ reldegk(f) is 1. We denote by ϕ : Nk(X) →

Nk(X/Y ) the canonical surjection. Since ωkX is strongly pliant, it implies that the class (f, g)•(ϕ(ωkX)) ∈
Ne−k(X/Y )R ⊂ Ne−k(X)R is pseudo-effective. In particular, this implies that its norm is exactly
reldegk(f). We have thus by definition:

||(f, g)•,k||
reldegk(f)

=

(
||(f, g)•,k||

||(f, g)•,kϕ(ωkX)||

)
> 1,

as required.

Let us find an upper bound for ||(f, g)•,k||/||(f, g)•,kϕ(ωkX)||. First we fix a morphism s :
Nk(X/Y )R → Nk(X)R such that ϕ ◦ s = Id. Take α ∈ Nk(X/Y )R of norm 1, then the class
u = s(α) ∈ Nk(X)R is a representant of α. By construction, the norm of u is bounded by
||u||Nk(X)R

6 C1||α||Nk(X/Y )R
= C1 where C1 is the norm of the operator s. Since by Proposition

4.3.4.(2), Res∗Γf/Γg ◦π
∗
2 = (1/ degl(g))× π∗2 ◦ Res∗X/Y , we have therefore:

(f, g)•,kα =
1

degl(g)
× π1∗ ◦ ψΓf ◦ π∗2 ◦ Res∗X/Y (α) = ResX/Y f

•,ku.

By Theorem 3.2.4, the pliant cone Ck(X) has a non-empty interior in Nk(X)R and we can apply
Lemma 5.3.1. There exists a constant C2 > 0 which depends only on Ck(X) and the choice of the
norm on Nk(X)R such that the class u can be decomposed as u = u1 − u2 where ui ∈ Ck(X) such
that ||ui||Nk(X)R

6 C2||u||Nk(X)R
for i = 1, 2. We set αi = ϕ(ui) for all i ∈ {1, 2}. By the triangular

inequality, we have:
||(f, g)•,kα||Ne−k(X/Y )

||(f, g)•,kϕ(ωkX)||
6
||(f, g)•,kα1||Ne−k(X)R

||(f, g)•,kϕ(ωkX)||
+
||(f, g)•,kα2||Ne−k(X)R

||(f, g)•,kϕ(ωkX)||
.

We have to find an upper bound of ||(f, g)•,kαi||Ne−k(X/Y )R for each i = 1, 2. Applying Corollary
3.3.6 to a = π∗2ui and b = π∗2ωX and then composing with ResX/Y ◦π1∗ ◦ ψΓf gives

ResX/Y (f •,k(ui)) 6 C3

||ui||Nk(X)R

(ωnX)
× ResX/Y (f •,k(ωkX)),

where C3 is a positive constant which depends only on the choice of big nef divisors. This implies
by intersecting with ωe−kX the inequality:

||((f, g)•,k(αi)||Ne−k(X/Y )R 6 C3

||ui||Nk(X)R

(ωnX)
||(f, g)•,k(ϕ(ωkX))||Ne−k(X/Y )R .

In particular we have shown that:

1 6
||(f, g)•,kα||Ne−k(X/Y )R

||(f, g)•,kϕ(ωkX)||Ne−k(X/Y )R

6
2C1C2C3

(ωnX)
,
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which concludes the proof.
�

6. Semi-conjugation by dominant rational maps

In this section, we consider a more general situation than in the previous section. We still
suppose that the varieties Xi and Yi are of dimension n and l respectively such that the relative
dimension is e = n − l, but we suppose the maps qi : Xi 99K Yi merely rational and dominant:
they may exhibit indeterminacy points. Recall also that ωXi and ωYi are again big and nef Cartier
divisors on Xi and Yi respectively.

Definition 6.0.4. Let f : X1 99K X2, g : Y1 99K Y2, q1 : X1 99K Y1 and q2 : X2 99K Y2 be four
dominant rational maps such that q2 ◦ f = g ◦ q1. We define the k-th relative dynamical degree
of f (still denoted reldegk(f)) as the relative degree reldegk(f̃) with respect to the rational map

Γq1/Y1

f̃
99K
g

Γq2/Y2 where Γqi are the normalization of the graphs of qi in Xi × Yi for each integer

i ∈ {1, 2} respectively and f̃ : Γq1 99K Γq2 is the rational map induced by f .

Theorem 6.0.5. (1) Consider now the following commutative diagram:

X1

f1
//___

q1
��
�
�
�

X2

f2
//___

q2
��
�
�
�

X3

q3
��
�
�
�

Y1

g1
//___ Y2

g2
//___ Y3

where fi : Xi 99K Xi+1, gi : Yi 99K Yi+1, q1 : X1 99K Y1, q2 : X2 99K Y2, q3 : X3 99K Y3

are dominant rational maps for any integer i ∈ {1, 2, 3} such that qi+1 ◦ fi = gi ◦ qi for
any integer i ∈ {1, 2}. Then there exists a constant C > 0 which depends only e, k and the
choice of big nef Cartier divisors such that:

reldegk(f2 ◦ f1) 6 C reldegk(f2) reldegk(f1).

(2) Consider now the following commutative diagram:

X ′1
ϕ1

xxq q q q q q q

f̃
//___________

��
�
�
�
�
�
�
�

X ′2
ϕ2

xxq q q q q q q

��
�
�
�
�
�
�
�

X1

f
//___________

q1

��
�
�
�
�
�
�
�

X2

q2

��
�
�
�
�
�
�
�

Y ′1
g̃

//___________

φ1

xxq q q q q q q Y ′2

φ2
xxq q q q q q q

Y1

g
//___________ Y2

,

where f : X1 99K X2, g : Y1 99K Y2, q1 : X1 99K Y1, q2 : X2 99K Y2 are four dominant
rational maps such that q2 ◦ f = g ◦ q1. We consider some birational maps ϕi : X ′i 99K Xi

and φi : Y ′i 99K Yi for i = 1, 2 such that f̃ = ϕ−1
2 ◦ f ◦ϕ1 and g̃ = φ−1

2 ◦ g ◦φ1. Then for any
integer 0 6 k 6 e, there exists a constant C > 0 which depends on e, k and on the choice
of big nef Cartier divisors such that:

1

C
reldegk(f) 6 reldegk(f̃) 6 C reldegk(f). (25)



DEGREES OF ITERATES OF RATIONAL MAPS 33

Proof. (1) Let f̃i : Γqi 99K Γqi+1
be the rational maps induced by fi on the graph Γqi of qi for

i ∈ {1, 2} respectively. Then (1) results directly from Theorem 5.2.1 applied to the composition

Γq1/Y1

f̃1
99K
g1

Γq2/Y2

f̃2
99K
g2

Γq3/Y3.

(2) Let us suppose first that the maps qi : Xi → Yi and q′i : X ′i → Y ′i are all regular for i = 1, 2.

Let us apply successively Theorem 5.2.1 to the composition X ′1/q′1Y
′

1

ϕ1
99K
φ1

X1/q1Y1

f
99K
g
X2/q2Y2

ϕ−1
2
99K
φ−1

2

X ′2/q′2Y
′

2 . We obtain :

reldegk(ϕ
−1
2 ◦f ◦ϕ1) 6 C2 reldegk(f ◦ϕ1) reldegk(ϕ

−1
2 ) 6 C1C2 reldegk(f) reldegk(ϕ1) reldegk(ϕ

−1
2 ),
(26)

where C1 = (e− k + 1)k/(ωeX1
· q∗1ωlY1

) and C2 = (e− k + 1)k/(ωeX2
· q∗2ωlY2

). This proves that:

reldegk(ϕ
−1
2 ◦ f ◦ ϕ1) 6 C reldegk(f),

where

C =
(e− k + 1)2k reldegk(ϕ1) reldegk(ϕ

−1
2 )

(ωeX1
· q∗1ωlY1

)(ωeX2
· q∗2ωlY2

)
.

The proof follows easily from the regular case since the maps Γq′1 99K Γq1 and Γq′2 99K Γq2 are
birational where Γq′i are the graphs of q′i in X ′i × Y ′i for i = 1, 2. �

Proof of Theorem 1: (1) We apply Theorem 5.2.1 to Y1 = Y2 = Y3 = Spec(κ), X1 = X2 = X3 =
X and ωX1 = ωX2 = ωX3 = ωX , we get thus the desired conclusion:

degk(g ◦ f) 6
(n− k + 1)k

(ωnX)
degk(f) degk(g).

(2) Applying Theorem 6.0.5.(2) to the varieties X ′1 = X ′2 = X1 = X2 = X, Y ′1 = Y ′2 = Y1 = Y2 =
Spec(κ), to the choice of big nef divisors ωX′1 = ωX′2 = ω′X , ωY ′1 = ωY ′2 = ω′Y , ωX1 = ωX2 = ωX
and to the rational maps ϕ1 = ϕ2 = IdX , φ1 = φ2 = g = IdSpec(κ), f : X 99K X yields the desired
result.

7. Mixed degree formula

Let us consider three dominant rational maps f : X 99K X, q : X 99K Y , g : Y 99K Y such that
q ◦ f = g ◦ q. Theorem 6.0.5.(1) implies that for any integer k 6 e the sequence reldegk(f

n) is
submultiplicative. Define k-th relative dynamical degree as follows.

λk(f,X/Y ) := lim
p→+∞

(reldegk(f
p))1/p.

When Y is reduced to a point, then we simply write λk(f) := λk(f,X/{pt}).

Remark 7.0.6. Since reldegk(f
p) ∈ N is an integer, one has that λk(f,X/Y ) > 1.

Remark 7.0.7. Theorem 6.0.5.(2) implies that λk(f,X/Y ) does not depend on the choice of big
nef Cartier divisors and on any choice of varieties X ′ and Y ′ which are birational to X and Y
respectively.

Our aim in this section is to prove Theorem 4. To that end, we follow the approach from
[DNT12]. The main ingredient (Corollary 7.1.5) is an inequality relating strongly pliant classes
which generalizes to arbitrary fields (see [DN11, Proposition 2.3] and [DNT12, Proposition 2.5]).
This inequality is a direct consequence of Theorem 7.1.1 which estimates the positivity of the
diagonal in a quite general setting. After this, we prove in Theorem 7.2.3 the submultiplicativity
formula for the mixed degrees. Once the submultiplicativity of these mixed degrees holds, the
proof follows from a linear algebra argument.
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7.1. Positivity estimate of the diagonal. In this section, we prove the following theorem.

Theorem 7.1.1. Let q : X → Y be a surjective morphism such that dimY = l and such that q
is of relative dimension e. There exists a constant C > 0 such that for any surjective generically
finite morphism π : X ′ → X and any class γ ∈ Cl+e(X ′ ×X ′):

(γ x[∆X′ ]) 6 C × (γ · (π × π)∗(Ωe
X · Ωl

Y )), (27)

where p1 and p2 are the projections from X ′ × X ′ to the first and the second factor respectively,
ΩX = p∗1ωX + p∗2ωX and ΩY = p∗1q

∗ωY + p∗2q
∗ωY , and where ∆X′ (resp. ∆X) is the diagonal of X ′

(resp. of X) in X ′ ×X ′ (resp. in X ×X).

Remark 7.1.2. The fact that the constant C > 0 does not depend on π but only on ΩX , ΩY is
crucial in the applications. Moreover, we believe that the following conjecture, which is a stronger
version of (27), should be true:

[∆X′ ] 6 CψX′×X′((π × π)∗(Ωe
X · Ωl

Y )) ∈ Nl+e(X
′ ×X ′)R. (28)

We shall use several times the following lemma.

Lemma 7.1.3. Let X1/q1Y1

f
99K
g
X2/q2Y2 be two dominant rational maps where dimY1 = dimY2 = l

and dimX1 = dimX2 = e + l. We denote by Γf and Γg the normalizations of the graph of f and
g in X1×X2 and Y1× Y2 respectively, π1, π2, π

′
1, π

′
2 are the projections from Γf and Γg on the first

and the second factor respectively. Then there exists a constant C > 0 such that for any surjective
generically finite morphism π : X ′ → Γf , any integer 0 6 j 6 l and any class β ∈ Ce+l−j(X ′), one
has:

(β · π∗π∗2q∗2ω
j
Y2

) 6 C
degj(g)

(ωlY1
)
× (β · π∗π∗1q∗1ω

j
Y1

),

where degj(g) is the j-th degree of the rational map g with respect to the divisors ωY1 and ωY2.

Proof of Theorem 7.1.1. By Siu’s inequality, we can suppose that both the classes ωX and ωY
are ample in X and Y respectively. We proceed in three steps. Fix π : X ′ → X.

Step 1: We suppose first that X = Pl×Pe, Y = Pl and q is the projection onto the first factor.
Since X×X is smooth, the pullback (π×π)∗ is well-defined in Nl+e(X×X)R because the morphism
ψX×X : Nl+e(X ×X)R → Nl+e(X ×X)R is an isomorphism. Our objective is to prove that there
exists a constant C1 > 0 such that

[∆X′ ] 6 C1 × ψX′×X′((π × π)∗(Ωe
X · Ωl

Y )) ∈ Nl+e(X
′ ×X ′)R.

As X ×X is homogeneous, we apply the following lemma analogous to [Tru16, Lemma 4.4] which
we prove at the end of the section.

Lemma 7.1.4. Let X be a homogeneous projective variety of dimension n and let π : X ′ → X be
a surjective generically finite morphism. Then one has that :

[∆X′ ] 6 (π × π)∗[∆X ] ∈ Nn(X ′ ×X ′)R.

We denote by p′1, p
′
2 (resp. p′′1, p

′′
2) the projections from Y × Y (resp. from X × X) onto the

first and the second factor respectively. Since the strongly pliant cone has a non-empty interior
by Theorem 3.2.4.(1) and since the class p′∗1 ωY + p′∗2 ωY is ample on Y × Y , there exists a constant
C2 > 0 such that the class −[∆Y ] + C2(p′∗1 ωY + p′∗2 ωY )l ∈ Nl(Y × Y )R is strongly pliant. Since
∆X = ∆Y ×∆Pe and by intersection and by pullback, we have that the class:

−[∆X ] + C2 × Ωl
Y · p∗[∆Pe ] ∈ Ne+l(X ×X)
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is strongly pliant where p denotes the projection from X ×X to Pe×Pe. By the same argument,
there exists a constant C3 > 0 such that the class −p∗[∆Pe ] + C3Ωe

X ∈ Ne(X × X)R is strongly
pliant. We have proved that the class:

−[∆X ] + C2C3Ωl
Y · Ωe

X ∈ Ne+l(X ×X)R

is strongly pliant. Since the strongly pliant cone is stable by pullback, we have thus:

[∆X′ ] 6 (π × π)∗[∆X ] 6 C1 × ψX′×X′((π × π)∗(Ωl
Y · Ωe

X)) ∈ Nl+e(X
′ ×X ′)R,

where C1 = C2 × C3 as required.

Step 2: We now suppose that X = Y × Pe. Since Y is projective, there exists a dominant
rational map φ : Y 99K Pl. Let Y ′ be the normalization of the graph of φ in X × Pe×Pl and we
denote by φ1 and ϕ1 the projections from Y ′ onto the first and the second factor respectively. Let
ϕ2 : Y ′×Pe → Pl×Pe (resp. φ2 : Y ′×Pe → X) the map induced by ϕ1 (resp. φ1). Let X ′′ be the
fibred product of X ′ with Y ′ × Pe so that φ3, π′ are the projections from X ′′ onto X ′ and Y ′ × Pe
respectively. We obtain the following commutative diagram:

X ′

π

��

X ′′
φ3

oo

π′

��

Y × Pe

q

��

Y ′ × Pe
φ2

oo

ϕ2

%%LLLLLLLLLL

pY ′

��

Pl×Pe

p
Pl

��

Y Y ′
φ1

oo

ϕ1

%%LLLLLLLLLLLL

Pl

where pY ′ and pPl are the projections from Y ′ × Pe and Pl×Pe onto Y ′ and Pl respectively and
where the horizontal arrows are birational maps. Let us prove that there exists a constant C4 > 0
which does not depend on the morphism π : X ′ → X such that for any strongly pliant class
γ′ ∈ Ce+l(X ′′ ×X ′′), one has:

(γ′ x[∆X′′ ]) 6 C4(γ′ · (φ3 × φ3)∗(π × π)∗(Ωe
X · Ωl

Y )).

Fix a class γ′ ∈ Ce+l(X ′′×X ′′). We apply the conclusion of the first step to the surjective generically
finite morphism π′′ := ϕ2 ◦ π′ : X ′′ → Pl×Pe. There exists a constant C1 > 0 such that

[∆X′′ ] 6 C1ψX′′×X′′((π
′′ × π′′)∗(Ωl

Pl
· Ωe

Pl×Pe)) ∈ Nl+e(X
′′ ×X ′′)R, (29)

where ΩPl×Pe is an ample Cartier divisor in (Pl×Pe)2 and ΩPl is the pullback by pPl × pPl of an
ample Cartier divisor in Pl×Pl. Let us apply Theorem 3.3.4 to the class (π′′× π′′)∗Ωe

Pl×Pe and to
the class (π′ × π′)∗(φ2 × φ2)∗ΩX , there exists a constant C5 > 0 such that:

(π′′ × π′′)∗Ωe
Pl×Pe 6 C5

((π′ × π′)∗((φ2 × φ2)∗Ω2l+e
X · (ϕ2 × ϕ2)∗Ωe

Pl×Pe))

((π′ × π′)∗(φ2 × φ2)∗Ω
2(l+e)
X )

× (π′ × π′)∗(φ2 × φ2)∗Ωe
X ∈ Ne(X ′′ ×X ′′)R.

Since ((π′ × π′)∗α) = deg(π′)(α) for any class α ∈ N2l+2e((Y ′ × Pe)2)R, we have thus:

(π′′ × π′′)Ωe
Pl×Pe 6 C6(π′ × π′)∗(φ2 × φ2)∗Ωe

X ∈ Ne(X ′′ ×X ′′)R, (30)
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where C6 = C5((φ2 × φ2)∗Ω2l+e
X · (ϕ2 × ϕ2)∗Ωe

Pl×Pe)/((φ2 × φ2)∗Ω2l+2e
X ) > 0 does not depend on

π : X ′ → X. Using (30) and (29), we obtain:

[∆X′′ ] 6 C7 × ψX′′×X′′((π′′ × π′′)∗Ωl
Pl
· (φ3 × φ3)∗(π × π)∗Ωe

X) ∈ Nl+e(X
′′ ×X ′′)R, (31)

where C7 = C6 × C1. Since the strongly pliant cone is contained in the nef cone by Theorem
3.2.4.(5), we have thus:

(γ′ x[∆X′′ ]) 6 C7(γ′ · (φ3 × φ3)∗(π × π)∗Ωe
X · (π′′ × π′′)∗Ωl

Pl
). (32)

Let us denote by X1 = (Y × Pe)2, X2 = (Pl×Pe)2, Y1 = Y × Y , Y2 = Pl×Pl and let f :=
(ϕ2 ◦ φ−1

2 × ϕ2 ◦ φ−1
2 ) : X1 99K X2 and g := (ϕ1 ◦ φ−1

1 × ϕ1 ◦ φ−1
1 ) : Y1 99K Y2 be the corresponding

dominant rational maps. Let us apply Lemma 7.1.3 to the class (π′×π′)∗(ϕ2×ϕ2)∗Ωl
Pl

and to the
class (π′× π′)∗(φ2× φ2)∗Ωl

Y , there exists a constant C8 > 0 which is independent of the morphism
π′ × π′ : X ′′ ×X ′′ → (Y ′ × Pe)2 such that for any class β ∈ C2e+l(X ′′ ×X ′′):

(β · (π′ × π′)∗(ϕ2 × ϕ2)∗Ωl
Pl

) 6 C8
degl(g)

(Ω2l
Y )

(β · (φ3 × φ3)∗(π × π)∗Ωl
Y ). (33)

Using (32) and (33) to the class β = γ′ · (φ3 × φ3)∗(π × π)∗Ωe
X ∈ Cl+2e(X ′′ ×X ′′), we obtain:

(γ′ x[∆X′′ ]) 6 C4(γ′ · (φ3 × φ3)∗(π × π)∗(Ωe
X · Ωl

Y )),

where C4 = C4 × C8(degl(g))/(Ω2l
Y ) > 0 does not depend on π. The conclusion of the theorem

follows from the projection formula and from the fact that φ3×φ3 is a birational map. Indeed, we
apply the previous inequality to γ′ = (φ3 × φ3)∗γ where γ ∈ Cl+e(X ′ ×X ′), we obtain

(γ x[∆X′ ]) = ((φ3 × φ3)∗γ x[∆X′′ ]) 6 C4(γ · (π × π)∗(Ωe
X · Ωl

Y ))

as required.

Step 3: We prove the theorem in the general case. Suppose q : X → Y is a surjective morphism
of relative dimension e and fix a class β ∈ Cl+e(X ′×X ′). Since X is projective over Y , there exists
a closed immersion i : X → Y × PN such that q = p′Y ◦ i where p′Y is the projection of Y × PN
onto Y . Let us choose a projection Y × PN 99K Y × Pe so that the composition with i gives a
dominant rational map f : X 99K Y × Pe. Let us denote by Γf the normalization of the graph of
f in X × Y × Pe and π1, π2 the projections of Γf onto the first and the second factor respectively.
We set X ′′ the fibred product of X ′ with Γf and we denote by π′ and φ the projection of X ′′ to
Γf and X ′ respectively. We get the following commutative diagram:

X ′

π

��

X ′′
φ

oo

π′

��

X

q

��

f

##G
G

G
G

G Γf

π2

��

π1
oo

Y Y × PepY
oo

where pY is the projection of Y ×Pe onto Y . We apply the result of Step 2 to the class (φ×φ)∗β ∈
Cl+e(X ′′ ×X ′′) and to the diagonal of X ′′. There exists a constant C4 > 0 which does not depend
on π such that:

((φ× φ)∗β x[∆X′′ ]) 6 C4((φ× φ)∗(β · (π × π)∗Ωl
Y ) · ((π2 ◦ π′)× (π2 ◦ π′))∗Ωe

Y×Pe). (34)
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Let us apply Theorem 3.3.4 to the class ((π2◦π′)×(π2◦π′))∗Ωe
Y×Pe and to the class (φ×φ)∗(π×π)ΩX .

There exists a constant C9 > 0 such that:

((π2 ◦ π′)× (π2 ◦ π′))∗Ωe
Y×Pe 6 C9

((π′ × π′)∗((π2 × π2)∗Ωe
Y×Pe · (π1 × π1)∗Ω2l+e

X ))

((π′ × π′)∗(π1 × π1)∗Ω2l+2e
X )

(φ× φ)∗(π × π)Ωe
X ∈ Ne(X ′′ ×X ′′)R.

Since ((π′ × π′)∗((π2 × π2)∗Ωe
Y×Pe · (π1 × π1)∗Ω2l+e

X ))/((π′ × π′)∗(π1 × π1)∗Ω2l+2e
X ) = dege(f ×

f)/(Ω2l+2e
X )and using (34), we obtain:

((φ× φ)∗β x[∆X′′ ]) 6 C((φ× φ)∗(β · (π × π)∗(Ωe
X · Ωl

Y ))),

where C = C4C9 dege(f × f)/(Ω2l+2e
X ). Since the morphism π1 : Γf → X is birational, the

map φ : X ′′ → X ′ is also birational and we conclude using the projection formula and since
(φ× φ)∗[∆X′′ ] = [∆X′ ]:

(β x[∆X′ ]) 6 C(β · (π × π)∗(Ωe
X · Ωl

Y )).

�

Corollary 7.1.5. Let q : X → Y be a surjective morphism of relative dimension e where dimY =
l. Then there exists a constant C > 0 such that for any surjective generically finite morphism
π : X ′ → X such that for any class α ∈ Ck(X ′) and any class β ∈ Cl+e−k(X ′), one has:

(β · α) 6 C
∑

max(0,k−l)6j6min(k,e)

Uj(π∗ψX′(α))× (β · π∗(q∗ωk−jY · ωjX)), (35)

where Uj(π∗ψX′(α)) = (ωe−jX · q∗ωl−k+j
Y x π∗ψX′(α)).

Remark 7.1.6. Note that when k 6 e, then the inequality is already a consequence of Siu’s in-
equality (Theorem 3.3.4). Indeed, the term on the right hand side of (35) with j = k corresponds
exactly to the term C(π∗ωn−kX · α)× π∗ωkX .

Remark 7.1.7. Equation (35) proves that the class

−ψX′(α) + C
∑

max(0,k−l)6j6min(k,e)

Uj(π∗ψX′(α))× ψX′(π∗(q∗ωk−jY · ωjX)) ∈ Nn−k(X
′)R

is in the dual of the strongly pliant cone Cn−k(X ′). Moreover, if (28) is satisfied, then this class is
pseudo-effective.

Proof. We apply Theorem 7.1.1 to the class γ = p∗1β · p∗2α ∈ Cn(X ′ ×X ′). There exists a constant
C1 > 0 such that for any surjective generically finite morphism π : X ′ → X and any class
γ ∈ Cn(X ′ ×X ′), one has:

(γ x[∆X′ ]) 6 C1(γ · (π × π)∗(Ωe
X · Ωl

Y )).

We denote by p1 and p2 the projections of X ′×X ′ onto the first and the second factors respectively.
Fix α ∈ Ck(X ′) and β ∈ Cn−k(X ′). Let us apply the previous inequality to γ = p∗1β · p∗2α ∈
Cn(X ′ ×X ′). We obtain:

(β · α) = (p∗1β · p∗2α x[∆X′ ]) 6 C1(p∗1β · p∗2α · (π × π)∗(Ωe
X · Ωl

Y )).

Since (p∗1π
∗(ωiX · q∗ω

j
Y ) · p∗2(π∗(q∗ωl−iY · ω

e−j
X ) · γ)) = 0 when i+ j 6= k, we obtain :

(β · α) 6 C
∑

max(0,k−l)6j6min(e,k)

(π∗(q∗ωl−k+j
Y · ωe−jX ) · α)(π∗(q∗ωk−jY · ωjX) · β).
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where C = C1

(
1 + max

((
e
j

)(
l
k − j

)))
. Hence by the projection formula, we have proved

the required inequality:

(β · α) 6 C
∑

max(0,k−l)6j6min(e,k)

Uj(π∗ψX′(α))× (β · π∗(q∗ωk−jY · ωjX))).

�

Proof of Lemma 7.1.4: (see [Tru16, Lemma 4.4]) Since X is homogeneous, it is smooth. Let G be
the automorphism group ofX×X, we denote by · the (transitive) action of G onX×X. By generic
flatness (see [FGI+05, Theorem 5.12]), there exists a non empty open subset V ⊂ X×X such that
the restriction of π×π to U := (π×π)−1(V ) is flat over V . Recall that two subvarieties V ⊂ X×X
and W ⊂ X ×X intersect properly in X ×X if dim(V ∩W ) = dimV + dimW − 2n. Since G acts
transitively on X ×X, there exists by [Ful98, Lemma B.9.2] a Zariski dense open subset O ⊂ G
such that for any point g ∈ O, the cycle g · [∆X ] intersects properly every component of X×X \V .
In particular, there exists a one parameter subgroup τ : Gm → G such that τ(1) = Id ∈ G and
such that τ maps the generic point of Gm to a point in O. Let S be the closure in X ′ ×X ′ × P1

of the set {(x′, t) ∈ U × Gm | (π × π)(x′) ∈ τ(t) · ∆X}. Let p : X ′ × X ′ × P1 → X ′ × X ′ be
the projection onto X ′ × X ′ and let f : S → P1 be the morphism induced by the projection of
X ′ ×X ′ × P1 onto P1. As in [Ful98, Section 1.6], we denote by St := p∗[f

−1(t)] ∈ Zn(X ′ ×X ′) for
any t ∈ Gm. By construction the cycle S1 ∈ Zn(X ′ ×X ′) is effective and its support contains the
diagonal ∆X′ in X ′ ×X ′, hence:

[∆X′ ] 6 S1 ∈ Nn(X ′ ×X ′)R.
Let t ∈ Gm such that τ(t) ∈ O. Since S1 = St ∈ An(X ′ ×X ′) for any t ∈ P1, we have thus:

[∆X′ ] 6 St ∈ Nn(X ′ ×X ′)R.
Since the cycle τ(t) · [∆X ] intersects properly every component of X ×X \ V , we apply the result
in [Ful98, Example 11.4.8.(b)] to the morphism π × π : X ′ ×X ′ → X ×X so that

St = [(π × π)−1
|U (τ(t) ·∆X)] = (π × π)∗[∆X ] ∈ An(X ′ ×X ′).

We have thus proved:
[∆X′ ] 6 (π × π)∗[∆X ] ∈ Nn(X ′ ×X ′)R.

�

Proof of Lemma 7.1.3. Observe that one has the following commutative diagram:

X ′

π
��

Γf
π1

~~}}}}}}}} π2

  AAAAAAAA

X1

f
//_______

q1
��

X2

q2
��

Y1

g
//________ Y2

Γg

π′1

``AAAAAAAA π′2

>>}}}}}}}}
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Fix a class β ∈ Ce+l−j(X ′). By linearity and by Proposition 2.1.8, we can suppose that the class β
is induced by a product of nef divisors D1 · . . . ·De1+e+l−j where Di are nef divisors on X ′1 where
p : X ′1 → X ′ is a flat morphism of relative dimension e1. The intersection (β · π∗π∗2q∗2ω

j
Y2

) is thus
given by the formula:

(β · π∗π∗2q∗2ω
j
Y2

) = (D1 · . . . ·De1+e+l−j · p∗π∗π∗2q∗2ω
j
Y2

).

Take A an ample Cartier divisor on X ′1 and set αε = (D1 + εA) · . . . (De1+e + εA) ∈ Ne1+e(X ′1)R
for any ε > 0. Since the class αε is a complete intersection, there exists a cycle Vε ∈ Zl(X ′1)R such
that ψX′1(αε) = {Vε} ∈ Nl(X

′
1)R and such that the restrictions of the morphisms π1 ◦ π ◦ p and

π2 ◦ π ◦ p to the support of Vε are surjective and generically finite onto Y1 and Y2 respectively. We
apply Theorem 3.3.4 to the class (p∗π∗π∗2q

∗
2ω

j
Y2

)|Vε and to (p∗π∗π∗1q
∗
1ωY1)|Vε , we get:

p∗π∗π∗2q
∗
2ω

j
Y2
· αε 6 C

(p∗π∗(π∗2q
∗
2ω

j
Y2
· π∗1ω

l−j
Y1

) x{Vε})
(p∗π∗π∗1q

∗
1ω

l
Y1
x{Vε})

× p∗π∗π∗1q∗1ω
j
Y1
· αε ∈ Nj+e1+e(X ′1)R.

By the projection formula applied to the morphism π◦p, we have that (p∗π∗(π∗2q
∗
2ω

j
Y2
·π∗1ω

l−j
Y1

) x{Vε})/(p∗π∗π∗1q∗1ωlY1
x{Vε}) =

degj(g)/(ωlY1
), hence:

p∗π∗π∗2q
∗
2ω

j
Y2
· αε 6 C

degj(g)

(ωlY1
)
p∗π∗π∗1q

∗
1ω

j
Y1
· αε ∈ Nj+e1+e(X ′1)R.

We intersect with the class (De1+e+1 · . . . ·De1+e+l−j) ∈ Nl−j(X ′1)R and take the limit as ε tends to
zero. We obtain:

(β · π∗π∗2q∗2ω
j
Y2

) = (D1 · . . . ·De1+e+l−j · p∗π∗π∗2q∗2ω
j
Y2

) 6 C
degj(g)

(ωlY1
)

(β · π∗π∗1q∗1ω
j
Y1

),

as required. �

7.2. Submultiplicativity of mixed degrees.

Definition 7.2.1. Let X1/q1Y1

f
99K
g

X2/q2Y2 be rational maps where e = dimXi − dimYi and

l = dimYi for i = 1, 2. We fix some ample divisors ωXi and ωYi on each variety respectively. We
define for any integer 0 6 k 6 n:

ak,j(f) :=

{
((ωl−jY1

· ωe+j−kX1
) x f •,k(ωkX2

)) if max(0, k − e) 6 j 6 l,
0 otherwise.

Remark 7.2.2. For j = 0, it is the k-th relative degree ak,0(f) = reldegk(f) and when j = l, it
corresponds to the k-th degree of f , ak,l(f) = degk(f).

Theorem 7.2.3. Let q1 : X1 → Y1, q2 : X2 → Y2, q3 : X3 → Y3 be three surjective morphisms
such that dimXi = e + l and dimYi = l for all i ∈ {1, 2, 3}. Then there exists a constant C > 0

such that for any rational maps X1/q1Y1

f1
99K
g1

X2/q2Y2, X2/q2Y2

f2
99K
g2

X3/q3Y3 and for all integers

0 6 j0 6 l:

ak,j0(f2 ◦ f1) 6 C
∑

max(0,k−l)6j6min(e,k)

degk−j(g1)ak,k−j(f2)aj,j+j0−k(f1).

Proof. Since we are in the same situation as Theorem 5.2.1, we can consider the diagram (19) and
we keep the same notations. We denote by n = e+ l the dimension of Xi.

Let us denote by d the topological degree of the map f2. We apply Corollary 7.1.5 to the pliant
class α := (1/d)v∗π∗4ω

k
X3
∈ Ck(Γ), to the class β := u∗π∗1(ωe−k+j0

X1
· q∗1ω

l−j0
Y1

) ∈ Cn−k(Γ) and to the
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morphism π = ϕ ◦ π3 ◦ v. There exists a constant C1 > 0 which depends only on the choice of
divisors ωY2×Pe and ωY2 such that:

ak,j0(f2 ◦ f1) 6 C1

∑
max(0,k−l)6j6min(e,k)

Uj(π∗ψΓ(α))(β · π∗(ωjX2
· q∗2ω

k−j
Y2

)),

where Uj(γ) = (ωe−jX2
· q∗2ω

l−k+j
Y2

x γ) for any class γ ∈ Nn−k(X2)R. We observe that Uj(π∗ψΓ(α)) =
ak,k−j(f2). We have thus:

ak,j0(f2 ◦ f1) 6 C1

∑
max(0,k−l)6j6min(e,k)

ak,k−j(f2)(u∗(π∗1(ωe−k+j0
X1

· q∗1ω
l−j0
Y1

) · π∗2(ωjX2
· q∗2ω

k−j
Y2

))). (36)

Applying Lemma 7.1.3 to the class u∗π∗2q∗2ω
k−j
Y2
∈ Ck−j(Γ) and to β′ = β · u∗π∗2ω

j
X2
∈ Cn−k+j(Γ),

there exists a constant C2 > 0 such that :

(β′ · u∗π∗2q∗2ω
k−j
Y2

) 6 C2 degk−j(g1)(u∗(π∗1(ωe−k+j0
X1

· q∗1ω
l−j0+k−j
Y1

) · π∗2ω
j
X2

)).

Since the map u : Γ→ Γf1 is birational, we have that:

(u∗(π∗1(ωe−k+j0
X1

· q∗1ω
l−j0
Y1

) · π∗2(ωjX2
· q∗2ω

k−j
Y2

))) 6 C2 degk−j(g1)aj,j0+j−k(f1). (37)

Finally, (36) and (37) imply:

ak,j0(f2 ◦ f1) 6 C
∑

max(0,k−l)6j6min(e,k)

ak,k−j(f2)aj,j0+j−k(f1) degk−j(g1),

where C = C2C1 > 0 is a constant which is independent of f1 and f2 as required.
�

7.3. Proof of Theorem 4. By definition of the relative degrees, we are reduced to prove the
theorem when q : X → Y is a proper surjective morphism. Recall that dimX = n and dimY = l
such that q : X → Y has relative dimension e = n− l. Let us consider the following commutative
diagram:

Γf
π2

  
@@@@@@@

π1

~~~~~~~~~

$





X
f

//_______

q

��

X

q

��

Y
g

//_______ Y

Γg
π′2

>>~~~~~~~~π′1

``@@@@@@@@

(38)

where f : X 99K X, g : Y 99K Y are dominant rational maps, Γf ,Γg are the normalization of the
graph of f and g respectively, π1, π2, π

′
1, π

′
2 are the projections from Γf and Γg onto the first and

second factor respectively and $ : Γf → Γg is the restriction of q × q to Γf . The following lemma
proves that maxj6k(λj(f,X/Y )λk−j(g)) 6 λk(f).

Lemma 7.3.1. For any integer max(0, k− l) 6 j 6 min(k, e), we have that λj(f,X/Y )λk−j(g) 6
λk(f).

Proof. We are reduced to show that for any max(0, k − l) 6 j 6 min(k, e), there exists a constant
C > 0 such that:

degk−j(g) reldegj(f) 6 C degk(f).
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For this, it suffices to consider the product (π∗1(ωe−jX ·q∗ω
l−k+j
Y )·π∗2(ωjX ·q∗ω

k−j
Y )). Since πi◦q = $◦π′i

for i ∈ {1, 2}, we obtain:

(π∗1(ωe−jX · q∗ωl−k+j
Y ) · π∗2(ωjX · q

∗ωk−jY )) = ($∗(π′1
∗
ωl−k+j
Y · π′∗2 ω

k−j
Y ) · π∗1ω

e−j
X · π∗2ω

j
X).

Moreover, one has that π′∗1 ω
l−k+j
Y · π′∗2 ω

k−j
Y = (π′∗1 ω

l−k+j
Y · π′∗2 ω

k−j
Y ) [p0] = degk−j(g) [p0] where p0 is

a general point in Γg. We can hence apply Proposition 4.3.1 to the morphism $ : Γf → Γg and
obtain:

(π∗1(ωe−jX · q∗ωl−k+j
Y ) · π∗2(ωjX · q

∗ωk−jY )) = degk−j(g)(π∗1ω
e−j
X · π∗2ω

j
X x[Γf p0

]).

Since π′1 is a birational morphism, a general fiber of $ is equal to a general fiber of π′1 ◦$. In other
words, we have that ResΓf/Γg = ResΓf/Y and since π∗1ω

e−j
X ·π∗2ω

j
X x[Γf p0

] = ResΓf/Γg(π
∗
1ω

e−j
X ·π∗2ω

j
X),

we obtain:
(π∗1(ωe−jX · q∗ωl−k+j

Y ) · π∗2(ωjX · q
∗ωk−jY )) = degk−j(g)× reldegj(f).

As ωX is ample, we apply Theorem 3.2.4 to the classes π∗2q∗ωY and π∗2ωX :

π∗2q
∗ωk−jY 6 (n− k + j + 1)k−j

(π∗2q
∗ωk−jY · π∗2ω

n−k+j
X )

(π∗2ω
n
X)

π∗2ω
k−j
X = C1π

∗
2ω

k−j
X ∈ Nk−j(X)R,

where C1 = (n − k + j + 1)k−j(q∗ωk−jY · ωn−k+j
X )/(ωnX) depends only on n, k and the choice of big

nef Cartier divisors. Intersecting with π∗1ω
n−k
X · π∗2ω

j
X , one obtains:

degk−j(g) · reldegj(f) 6 C1(π∗2ω
k
X · π∗1(ωe−jX · q∗ωl−k+j

Y )).

By the same argument, there exists a constant C2 > 0 which depends only on ωY , ωX and k such
that:

π∗1q
∗ωl−k+j

Y 6 C2π
∗
1ω

l−k+j
X .

Hence, we obtain:
degk−j(g) reldegj(f) 6 C degk(f),

where C = C1C2. �

Let us prove the converse inequality. We fix an integer 0 6 k 6 n. Let us apply Theorem 7.2.3
to f1 = f , f2 = fp, g1 = g and g2 = gp, we can rewrite the inequality as:

ak,j0(fp+1) 6 C
∑

max(0,k−e)6j6min(k,l)

degj(g)ak−j,j0−j(f)ak,j(f
p). (39)

Let us denote by Uk(f) the column vector given by:

Uk(f) = (ak,i(f))06i6l =

 ak,0(f)
. . .
ak,l(f)

 .

Let us also denote by Mk(f) the (l + 1)× (l + 1) lower-triangular matrix given by:

Mk(f) := (degj(g)ak−j,i−j(f)× 1[k−e,min(k,l)](j))06i6l,06j6l,

where 1A denotes the characteristic function of the set A. Therefore, (39) can be rewritten as:

Uk(f
p+1) 6 CMk(f) · Uk(fp),

where · denotes the linear action on Zl+1. A simple induction proves:

Uk(f
p) 6 Cp(Mk(f))p−1 · Uk(f)

Since the (l + 1)-th entry of the vector Uk(fp) corresponds to degk(f
p), we deduce that:

degk(f
p)1/p 6 C 〈el, (Mk(f))p · Uk(f)〉1/p , (40)
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where (e0, . . . , el) denotes the canonical basis of Zl+1. In particular, degk(f
p)1/p is controlled up to a

constant by the eigenvalues of the matrixMk(f) which are degj(g) reldegk−j(f) for max(0, k−e) 6
j 6 min(k, l) since Mk(f) is lower-triangular. Applying (40) to f r, we get:

degk(f
pr)1/(pr) 6 C1/r||Uk(f r)||1/pr max

max(0,k−e)6j6min(k,l)
(degj(g

r) reldegk−j(f
r))1/r.

We conclude by taking the lim sup as r → +∞, p→ +∞:

λk(f) 6 max
max(0,k−l)6j6min(k,e)

λk−j(g)λj(f,X/Y ).

Remark 7.3.2. Note that the previous theorem gives information only on the dynamical degrees of
f . Lemma 7.3.1 provides a lower bound on the degree of fp. However, one cannot find an upper
bound for degk(f

p) which would only depend on the relative degrees and the degree on the base.
If X = E × E is a product of two elliptic curves and if f : (z, w) ∈ E × E → (z, z + w) is an
automorphism of X, then the degree growth of fp is equivalent to p2 whereas the degree on the
base and on any fiber are trivial.

8. Kähler case

We prove the submultiplicativity of the k-th degrees in the case where (X,ω) is a complex
compact Kähler manifold. For any closed smooth (p, q)-form α on X, we denote by {α} its class
in the Dolbeault cohomology Hp,q(X)R.

Definition 8.0.3. Let (X,ω) be a compact Kähler manifold. A class α ∈ H1,1(X)R is nef if for
any ε > 0, the class α + ε{ω} is represented by a Kähler metric.

Definition 8.0.4. Let (X,ω) be a compact Kähler manifold of dimension n. A class α of degree
(k, k) is pseudo-effective if it can be represented by a closed positive current T . Moreover, one says
that α is big if there exists a constant δ > 0 such that T − δωk is a closed positive current and we
write T > δωk.

Theorem 8.0.5. (cf [Xia15, Remark 3.1])Let (X,ω) be a compact Kähler manifold of dimension
n. Let k be an integer and α, β be two nef classes in H1,1(X) such that αk ∈ Hk,k(X) is big and

such that
∫
X
αn −

(
n
k

)∫
X
αn−k ∧ βk > 0. Then the class αk − βk is big.

Recall that the degree of a meromorphic selfmap f : X 99K X when (X,ω) is given by:

degk(f) :=

∫
Γf

π∗1ω
n−k ∧ π∗2ωk,

where Γf is the desingularization of the graph of f and πi are the projections from Γf onto the
first and the second factor respectively.

Corollary 8.0.6. Let (X1, ωX1), (X2, ωX2) and (X3, ωX3) be some compact Kähler manifolds of
dimension n. Then there exists a constant C > 0 which depends only on the choice of the Kähler
classes ωXi such that for any dominant meromorphic maps f1 : X1 99K X2 and f2 : X2 99K X3,
one has:

degk(f2 ◦ f1) 6 C degk(f1) degk(f2).

Moreover, the constant C may be chosen to be equal to
(
n
k

)
/(
∫
X2
ωnX2

).



DEGREES OF ITERATES OF RATIONAL MAPS 43

Proof. The previous theorem gives that for any big nef class βk ∈ Hk,k(X), for any nef class
α ∈ H1,1(X), one has:

αk 6

(
n
k

) ∫
X
αk ∧ βn−k∫
X
βn

× βk. (41)

Then, the proof is formally the same as Theorem 5.2.1. Indeed, one only needs to consider
the diagram (19) where Y1 = Y2 = Y3 are reduced to a point and where Γf1 ,Γf2 ,Γ are the
desingularizations of the graph of f1, f2 and π−1

3 ◦f1◦π1 respectively. We apply (41) to α = v∗π∗4ωX3

and β = v∗π∗3ωX2 to obtain:

v∗π∗4ω
k
X3
6

(
n
k

)
degk(f2)∫
X2
ωnX2

× v∗π∗3ωkX2
.

By intersecting the previous inequality with the class u∗π∗1ω
n−k
X1

, we finally get:

degk(f2 ◦ f1) 6

(
n
k

)
degk(f2) degk(f1)∫

X2
ωnX2

.

�

Appendix A. Comparison with Fulton’s approach

In [Ful98, Chapter 19], a cycle z ∈ Zk(X) on a variety X is defined to be numerically trivial if
(c x z) for any product c = ci1(E1) · . . . · cip(Ep) ∈ Ak(X) of Chern classes cij(Ej) where Ej is a
vector bundle on X and i1 + . . . + ip = k. This appendix is devoted to the proof of the following
result:

Theorem A.1. Let X be a normal projective variety of dimension n. For any z ∈ Zk(X), the
following conditions are equivalent:

(i) For any product of Chern classes c = ci1(E1) · . . . · cip(Ep) ∈ Ak(X)R where Ej are vector
bundles on X and i1 + . . .+ ip = k, we have (c x z) = 0.

(ii) For any integer e, any flat morphism p1 : X1 → X of relative dimension e between nor-
mal projective varieties and any Cartier divisors D1, . . . , De+k on X1, we have (D1 · . . . ·
De+k x p∗1z) = 0.

The implication (ii) ⇒ (i) follows immediately from the definition of Chern classes. For the
converse implication (i)⇒ (ii), we rely on the following proposition.

Proposition A.2. Let q : X → Y be a flat morphism of relative dimension e between normal
projective varieties. For any Cartier divisors D1, . . . , De+k be some ample Cartier divisors on X,
there exist vector bundles Ej, and a homogeneous polynomial c = P (ci1(E1), . . . , cip(Ep)) of degree
k with respect to the weight (i1, . . . , ip), with rational coefficients such that for any cycle z ∈ Zk(X),
(c · z) = (D1 · . . . ·De+k · q∗z).

Proof. We take some ample Cartier divisors D1, . . . , De+k on X. We denote by Li the line bundle
OX(Di). By Grauert’s Theorem (cf [Har77, Corollary 12.9]), the sheaves Riq∗(Lm1

1 ⊗ . . .⊗L
me+k
e+k )

are locally free. By [Har77, Theorem 8.8], we have that Riq∗(Lm1
1 ⊗ . . .⊗L

me+k
e+k ) = 0 for i > 0 and

mi large enough since the line bundle Li are ample. So the sheaf q∗(Lm1
1 ⊗ . . .⊗ L

me+k
e+k ) is locally

free and we have in K0(Y ):

q∗[Lm1
1 ⊗ . . .⊗ L

me+k
e+k ] =

∑
(−1)i[Riq∗(Lm1

1 ⊗ . . .⊗ L
me+k
e+k )] = [q∗(Lm1

1 ⊗ . . .⊗ L
me+k
e+k )]. (42)

Lemma A.3. For any j 6 k:
(1) The function (m1, . . . ,me+k) → chj(q∗(Lm1

1 ⊗ . . . ⊗ L
me+k
e+k )) ∈ Nj(Y )R is a polynomial of

degree e+ j with coefficients in Nj(Y ).
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(2) For any cycle z ∈ Zj(Y ), the coefficient in m1 · . . . ·me+k in (chj(q∗(Lm1
1 ⊗ . . .⊗L

me+k
e+k )) x z)

is ((D1 · . . . ·De+k) x q∗z).

Proof. Let us set F = Lm1
1 ⊗ . . .⊗ L

me+k
e+k . We prove the result by induction on 0 6 j 6 k.

For j = 0, choosing a point y ∈ Y (κ), the number ch0(q∗(F)) is equal to h0(Xy,F|Xy). By
asymptotic Riemann-Roch, for m1, . . . ,me+k large enough, it is a polynomial of degree dimXy = e.
Moreover, Snapper’s theorem (see [Deb01, Definition 1.7]) states that the coefficient inm1·. . .·me+k

is the number (D1 · . . . ·De+k x[Xy]).
We suppose by induction that chi(q∗(F)) is a polynomial of degree e + i for any i 6 j where

j 6 k − 1. For any subvariety V of dimension j + 1 in Y , we denote by W its scheme-theoretic
preimage by q.

For any scheme V , let us denote by τV the morphisms:
τV : K0(V )⊗ Q→ A•(V )⊗ Q.

We refer to [Ful98, Theorem 18.3] for the construction of this morphism and its properties. We
apply Grothendieck-Riemann-Roch’s theorem for singular varieties (see [Ful98, Theorem 18.3.(1)])
and using (42), we get in A•(Y )Q:

ch(q∗(Lm1
1 ⊗ . . .⊗ L

me+k
e+k )) x τV (OV ) = q∗(ch(Lm1

1 ⊗ . . .⊗ L
me+k
e+k ) x τW (OW )). (43)

The term in A0(Y )Q in the left handside of the previous equation is equal to:

chj+1(q∗(F)) x[V ] +
∑
i6j

chi(q∗(F)) x τV,i(OV ),

where τV,i(OV ) is the term in Ai(Y ) of τV (OV ). By the induction hypothesis, every chi(q∗F) is
a polynomial of degree e + i, and the right hand side of equation (43) is a polynomial of degree
e + j + 1, so chj+1(q∗(Lm1

1 ⊗ . . . ⊗ Lme+ke+k )) is also a polynomial of degree e + j + 1. Now we
identify the coefficients in m1 · . . . ·me+k of the term in N0(Y ) in equation (43). It follows from
[Ful98, example 18.3.11] that τW (OW ) = [W ] +RW where RW is a linear combination of cycles of
dimension < e + k. Therefore, the coefficient in m1 · . . . ·me+k of the right hand side of equation
(43) in N0(Y ) is ((D1 · . . . ·De+k) x[W ]) if j + 1 = k or 0 otherwise.

We have proved that the coefficient of chj+1(q∗(Lm1
1 ⊗ . . .⊗L

me+k
e+k )) x[V ] is ((D1 · . . . ·De+k) x[W ])

if dimV = k or 0 otherwise. Extending it by linearity, one gets the desired result.
�

We have that chk(q∗(Lm1
1 ⊗ . . .⊗L

me+k
e+k )) is by definition a polynomial in Chern classes of vector

bundles on Y . Using the previous lemma, the coefficient U(D1, . . . , De+k) in m1 · . . . · me+k of
chk(q∗(Lm1

1 ⊗. . .⊗L
me+k
e+k )) is equal to P (ci1(E1), . . . , cip(Ep)) where P is a homogeneous polynomial

with rational coefficients of degree k with respect to the weight (i1, . . . , ip) and Ei are vector bundles
on Y . We have proven that for any cycle z ∈ Zk(Y ):

(P (ci1(E1), . . . , cip(Ep)) x z) = ((D1 · . . . ·De+k) x q
∗z).

As any Cartier divisor can be written as a difference of ample Cartier divisors. The proposition
provides a proof for the implication (i)⇒ (ii) of Theorem A.1.

�

Remark A.4. In codimension 1, the intersection product (D1 · . . . · De+1 x q∗z) is represented by
Deligne’s product IX(OX(D1), . . . , ,OX(De+1)) ∈ N1(X)R (see [Gar00] for a reference). Indeed,
one has by [Gar00, Section 6] that for any cycle z ∈ N1(X):

c1(IX(OX(D1), . . . , ,OX(De+1))) x z = D1 · . . . ·De+1 x q
∗z.

This gives an answer to the question of numerical pullback formulated in [FL14b, section 1.2].



DEGREES OF ITERATES OF RATIONAL MAPS 45

Corollary A.5. Let q : X → Y be a flat morphism of relative dimension e between normal
projective varieties. Then the morphism q∗ : A•(Y )Q → Ae+•(X)Q induces a morphism of abelian
groups q∗ : N•(Y )Q → Ne+•(X)Q.

References

[BC16] Jérémy Blanc and Serge Cantat, Dynamical degrees of birational transformations of projective surfaces,
J. Amer. Math. Soc. 29 (2016), no. 2, 415–471. MR 3454379

[BD15] Jérémy Blanc and Julie Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 14 (2015), no. 2, 507–533. MR 3410471

[BdFFU15] Sebastien Boucksom, Tomasso de Fernex, Charles Favre, and Stefano Urbinati, Valuation spaces and
multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc.
Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442

[BFJ08] Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Degree growth of meromorphic surface maps,
Duke Math. J. 141 (2008), no. 3, 519–538. MR 2387430

[BS92] Eric Bedford and John Smillie, Polynomial diffeomorphisms of C2. III. Ergodicity, exponents and
entropy of the equilibrium measure, Math. Ann. 294 (1992), no. 3, 395–420. MR 1188127

[Can11] Serge Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174
(2011), no. 1, 299–340. MR 2811600

[CC15] Dawei Chen and Izzet Coskun, Extremal higher codimension cycles on moduli spaces of curves, Proc.
Lond. Math. Soc. (3) 111 (2015), no. 1, 181–204. MR 3404780

[CLO16] Izzet Coskun, John Lesieutre, and John Christian Ottem, Effective cones of cycles on blow-ups of
projective space, arXiv preprint 1603.04808 (2016).

[Cut15] Steven Dale Cutkosky, Teissier’s problem on inequalities of nef divisors, J. Algebra Appl. 14 (2015),
no. 9, 1540002, 37. MR 3368254

[CZ12] Serge Cantat and Abdelghani Zeghib, Holomorphic actions, Kummer examples, and Zimmer program,
Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 447–489. MR 3014483

[Dan94] V. I. Danilov, Algebraic varieties and schemes, Algebraic geometry, I, Encyclopaedia Math. Sci., vol. 23,
Springer, Berlin, 1994, pp. 167–297. MR 1287420

[DDG11] Jeffrey Diller, Romain Dujardin, and Vincent Guedj, Dynamics of meromorphic mappings with small
topological degree II: Energy and invariant measure, Comment. Math. Helv. 86 (2011), no. 2, 277–316.
MR 2775130

[Deb01] Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001.
MR 1841091

[DELV11] Olivier Debarre, Lawrence Ein, Robert Lazarsfeld, and Claire Voisin, Pseudoeffective and nef classes
on abelian varieties, Compos. Math. 147 (2011), no. 6, 1793–1818. MR 2862063

[DF01] Jeffrey Diller and Charles Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123
(2001), no. 6, 1135–1169. MR 1867314

[DN11] Tien-Cuong Dinh and Viêt-Anh Nguyên, Comparison of dynamical degrees for semi-conjugate mero-
morphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817–840. MR 2851870

[DNT12] Tien-Cuong Dinh, Viêt-Anh Nguyên, and Tuyen Trung Truong, On the dynamical degrees of meromor-
phic maps preserving a fibration, Communications in Contemporary Mathematics 14 (2012), no. 06,
1250042.

[DNT16] Tien-Cuong Dinh, Viet-Anh Nguyen, and Tuyen Trung Truong, Growth of the number of periodic points
for meromorphic maps, arXiv preprint 1601.03910 (2016).

[DS04a] Tien-Cuong Dinh and Nessim Sibony, Groupes commutatifs d’automorphismes d’une variété kählérienne
compacte, Duke Math. J. 123 (2004), no. 2, 311–328. MR 2066940

[DS04b] , Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6,
959–971. MR 2119243

[DS05a] , Dynamics of regular birational maps in P
k, J. Funct. Anal. 222 (2005), no. 1, 202–216.

MR 2129771
[DS05b] , Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math.

(2) 161 (2005), no. 3, 1637–1644. MR 2180409
[DS10] , Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-

like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin,
2010, pp. 165–294. MR 2648690



46 NGUYEN-BAC DANG

[DTV10] Henry De Thélin and Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps,
Mém. Soc. Math. Fr. (N.S.) (2010), no. 122, vi+98. MR 2752759

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New
York, 1995, With a view toward algebraic geometry. MR 1322960

[FGI+05] B. Fantechi, L. Göttsche, L. Illusie, S. Kleiman, N. Nitsure, and A. Vistoli, Fundamental algebraic
geometry: Grothendieck’s fga explained, Mathematical Surveys and Monographs, 2005.

[FL14a] Mihai Fulger and Brian Lehmann, Kernels of numerical pushforwards, arXiv preprint 1407.6455 (2014).
[FL14b] , Positive cones of dual cycle classes, arXiv preprint 1408.5154 (2014).
[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton

University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037
[Ful98] , Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.

A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A
Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323

[Gar00] Elvira Muñóz García, Fibrés d’intersection, Compositio Math. 124 (2000), no. 3, 219–252. MR 1809336
[GGJ+16] José Ignacio Burgos Gil, Walter Gubler, Philipp Jell, Klaus Kuennemann, and Florent Martin, Differen-

tiability of non-archimedean volumes and non-archimedean monge-amp\ere equations (with an appendix
by robert lazarsfeld), arXiv preprint 1608.01919 (2016).

[Giz80] Marat Kharisovitch Gizatullin, Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1,
110–144, 239. MR 563788

[Gro87] Misha Gromov, Entropy, homology and semialgebraic geometry, Astérisque (1987), no. 145-146, 5,
225–240, Séminaire Bourbaki, Vol. 1985/86. MR 880035

[Gue05] Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2)
161 (2005), no. 3, 1589–1607. MR 2179389

[Har77] Robin Hartshorne, Algebraic geometry, vol. 52, Springer Science & Business Media, 1977.
[Jon96] Aise Johan De Jong, Smoothness, semi-stability and alterations, Publications Mathématiques de l’IHÉS

(1996).
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in

Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H.
Clemens and A. Corti, Translated from the 1998 Japanese original. MR 1658959

[Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebi-
ete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004, Classical
setting: line bundles and linear series. MR 2095471

[LX15] Brian Lehmann and Jian Xiao, Convexity and zariski decomposition structure.
[Mil13] James S. Milne, Lectures on etale cohomology (v2.21), 2013, Available at www.jmilne.org/math/.
[Pop16] Dan Popovici, Sufficient bigness criterion for differences of two nef classes, Math. Ann. 364 (2016),

no. 1-2, 649–655. MR 3451400
[RS97] Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings

and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341
[Sib99] Nessim Sibony, Dynamique des applications rationnelles de Pk, Dynamique et géométrie complexes

(Lyon, 1997), Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185.
MR 1760844

[Tru15] Tuyen Trung Truong, (relative) dynamical degrees of rational maps over an algebraic closed field, arXiv
preprint 1501.01523 (2015).

[Tru16] , Relative dynamical degrees of correspondance over a field of arbitrary characteristic, arXiv
(2016).

[Xia15] Jian Xiao, Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds, Ann.
Inst. Fourier (Grenoble) 65 (2015), no. 3, 1367–1379. MR 3449182

[Yom87] Yosef Yomdin, Volume growth and entropy, Israel Journal of Mathematics 57 (1987), no. 3, 285–300.
[Zha14] De-Qi Zhang, Compact Kähler manifolds with automorphism groups of maximal rank, Trans. Amer.

Math. Soc. 366 (2014), no. 7, 3675–3692. MR 3192612

(Nguyen-Bac Dang) CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau
Cedex, France

E-mail address: nguyen-bac.dang@polytechnique.edu


	Introduction
	Organization of the paper
	Acknowledgements

	1. Chow group
	1.1. General facts
	1.2. Intersection with Cartier divisors
	1.3. Characteristic classes

	2. Space of numerical cycles
	2.1. Definitions
	2.2. Algebra structure on the space of numerical cycles
	2.3. Pullback on dual numerical classes
	2.4. Canonical morphism
	2.5. Numerical spaces are finite dimensional

	3. Positivity
	3.1. Pseudo-effective and numerically effective cones
	3.2. Strongly pliant classes
	3.3. Siu's inequality in arbitrary codimension
	3.4. Norms on numerical classes

	4. Relative numerical classes
	4.1. Relative classes
	4.2. Pullback and pushforward
	4.3. Restriction to a general fiber and relative canonical morphism

	5. Application to dynamics
	5.1. Degrees of rational maps
	5.2. Sub-multiplicativity
	5.3. Norms of operators associated to rational maps

	6. Semi-conjugation by dominant rational maps
	7. Mixed degree formula
	7.1. Positivity estimate of the diagonal
	7.2. Submultiplicativity of mixed degrees
	7.3. Proof of Theorem 4

	8. Kähler case
	Appendix A. Comparison with Fulton's approach
	References

