Cristina Bazgan
email: bazgan@lamsade.dauphine.fr

W Fernandez De La Vega

Marek Karpinski

Polynomial Time Approximation Schemes for Dense Instances of Minimum Constraint Satisfaction

Keywords: Approximation Algorithms, Approximation Ratios, Polynomial Time Approximation Schemes, Minimum Constraint Satisfaction, Nearest Codeword Problem, Dense Instances, Hypergraph Sampling

It is known that large fragments of the class of dense Minimum Constraint Satisfaction (MIN-CSP) problems do not have polynomial time approximation schemes (PTASs) contrary to their Maximum Constraint Satisfaction analogs. In this paper we prove, somewhat surprisingly, that the minimum satisfaction of dense instances of kSAT-formulas, and linear equations mod 2, Ek-LIN2, do have PTASs for any k. The MIN-Ek-LIN2 problems are equivalent to the k-ary versions of the Nearest Codeword problem, the problem which is known to be exceedingly hard to approximate on general instances. The method of solution of the above problems depends on the developement of a new density sampling technique for k-uniform hypergraphs which could be of independent interest.

Introduction

In this paper we study approximability hardness of dense instances of Minimum Constraint Satisfaction Problems (MIN-CSP) connected to the minimum satisfiability of dense instances of kSat-formulas, and linear equations mod 2 with exactly k variables per equation, Ek-LIN2. Somewhat surprisingly we prove the existence of polynomial time approximation schemes (PTASs) for these two classes of problems. This should be contrasted with approximation hardness of a dual MIN-CSP problem of minimum satisfiability of dense 1 2DNF-formulas, the problem which is easily seen to be at least as hard to approximate as the dense Vertex Cover problem, the problem proven to be MAX-SNP-hard in [START_REF] Clementi | Improved non-approximability results for vertex cover with density constraints[END_REF], [START_REF] Karpinski | Approximating Dense Cases of Covering Problems[END_REF]. It was also noticed by Luca Trevisan (personal communication) that one can easily densify arbitrary 2DNF-formulas by adding disjoint copies of original variables, and then adding all clauses having exactly one original and one copied variable, without changing the value of the optimum. In this context it is an interesting artifact that the dense and everywhere dense Maximum Constraint Satisfaction (MAX-CSP) analogs of the above problems are known to have PTASs (cf. [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF]). It is also not difficult to see that average-dense instances of MIN-CSP are approximation hard for the general instances.

The MIN-kSat problems are known to be MAX-SNP-hard for all k ≥ 2 [START_REF] Kohli | The Minimum Satisfiability Problem[END_REF], and approximable within 2(1 -1/2k) [START_REF] Bertsimas | On dependent randomized rounding algorithms[END_REF]. Unlike the MIN-kSAT problems, MIN-Ek-LIN2 problems are exceedingly hard to approximate for all k ≥ 3, they are known to be NP-hard to within a factor n Ω(1)/ log log n [ABSS93], [START_REF] Khanna | Constraint Satisfaction: the Approximability of Minimization Problems[END_REF], [START_REF] Dinur | Approximating CVP to Within Almost Polynomial Factors is NP-Hard[END_REF], [START_REF] Dinur | An Improved Lower Bound for Approximating CVP[END_REF]. They are also easy to be seen equivalent to the k-ary versions of the Nearest Codeword problem (cf. [START_REF] Khanna | Constraint Satisfaction: the Approximability of Minimization Problems[END_REF], [START_REF] Bazgan | Approximability of Dense Instances of Nearest Codeword Problem[END_REF]).

The special case of MIN-E2-LIN2 problem with all underlying equations being equal to 0, is equivalent to the MIN-Uncut problem (cf. [START_REF] Khanna | Constraint Satisfaction: the Approximability of Minimization Problems[END_REF]) and known to be MAX-SNP-hard. The general MIN-E2-LIN2 is approximable to within a factor O(log n), cf. [START_REF] Garg | Max-Flow Min-(Multi)Cut Theorems and Their Applications[END_REF]. It is also easily seen to be approximation (and density) preserving reducible to MIN-E3-LIN2, whereas obviously an opposite approximate reduction does not exist unless NP=P.

As mentioned before it is not difficult to see that the results of [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF], [F96], [START_REF] Frieze | The Regularity Lemma and Approximation Schemes for Dense Problems[END_REF], [START_REF] De | Polynomial Time Approximation of Dense Weighted Instances of MAX-CUT[END_REF], and [START_REF] Goldreich | Property Testing and its Connection to Learning and Approximation[END_REF] on existence of PTASs for dense and average dense MAX-CSP problems cannot be applied for a large class of dense MIN-CSP problems. There were however some dense minimization problems, namely, dense BISECTION and MIN-k-Cut, identified in [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF] as having PTASs. Recently, the first boolean dense MIN-CSP problem, namely the problem of MIN Equivalence, was identified to have a PTAS [START_REF] Bazgan | A Polynomial Time Approximation Scheme for Dense Min 2Sat[END_REF]. This problem is also known as the MIN Equivalence Deletion problem, and was proven in [START_REF] Garg | Max-Flow Min-(Multi)Cut Theorems and Their Applications[END_REF] to be MAX-SNP-hard, and approximable within a factor O(log n) on general instances. This problem is also clearly equivalent to the MIN-E2-LIN2 problem mentioned before. It has turned however out that the proof of the main result of [START_REF] Bazgan | A Polynomial Time Approximation Scheme for Dense Min 2Sat[END_REF] to the effect that the dense MIN-2Sat has a PTAS, based on the existence of a PTAS for dense MIN-E2-LIN2, contained an error. This was one of the starting points of this paper and the aim was to shed some light on approximation hardness of dense MIN-kSAT and dense MIN-Ek-LIN2 problems for arbitrary k.

In this paper (following [START_REF] Bazgan | Approximability of Dense Instances of Nearest Codeword Problem[END_REF]) we design, somewhat surprisingly, the PTASs for both classes of Minimum Constraint Satisfaction, dense MIN-kSat, and dense MIN-Ek-LIN2 problems for all k ′ s.

The problems MIN-Ek-LIN2 are known to be hard to approximate for all k ≥ 3 within a factor n Ω(1)/ log log n (cf. [START_REF] Khanna | Constraint Satisfaction: the Approximability of Minimization Problems[END_REF], [START_REF] Dinur | Approximating CVP to Within Almost Polynomial Factors is NP-Hard[END_REF], [START_REF] Dinur | An Improved Lower Bound for Approximating CVP[END_REF]), and this hardness ratio is in fact also valid for average dense instances. Only recently a polynomial time algorithm with the first sublinear approximation ratio O(n/logn) was designed for the general problem in [START_REF] Berman | Approximating Minimum Satisfiability of Linear Equations[END_REF]. Thus, the improvement in approximation ratio for the dense instances given by this paper seems to be the largest known for any NP-hard constraint satisfaction problem. This paper extends the density sampler technique for graphs developed in [START_REF] Bazgan | Approximability of Dense Instances of Nearest Codeword Problem[END_REF] to k-uniform hypergraphs for k ≥ 3, as the main tool to attack the dense MIN-Ek-LIN2 problems, or equivalently, k-ary versions of the Nearest Codeword problems, and the dense MIN-EkSat problems. The paper is organized as follows. In Section 2 we give the preliminaries and prove NP-hardness in exact setting of all the dense minimum satisfaction problems considered in this paper. Section 3 contains our main result on sampling k-uniform hypergraphs crucial for the rest of the paper. In Section 4, we design a PTAS for dense MIN-Ek-LIN2 and in Section 5 a PTAS for dense MIN-EkSAT for any k.

Preliminaries

We start with defining the minimum constraint satisfaction problems MIN-kSat and MIN-Ek-LIN2 and give some other basic definitions.

MIN-kSat

Input: A set of m clauses C 1 , . . . , C m in boolean variables x 1 , . . . , x n with each C j depending on at most k variables.

Output: An assignment that minimizes the number of clauses satisfied.

MIN-EkSat is the version of MIN-kSat when each clause contains exactly k literals.

MIN-Ek-LIN2

Input: A set of m equations in n variables x 1 , x 2 , ..., x n over GF [2] where each equation has exactly k variables.

Output: An assignment to the variables that minimizes the number of satisfied equations.

Approximability.

A minimization problem has a polynomial time approximation scheme (PTAS) if for every ǫ > 0 there exists a polynomial time approximation algorithm computing for every instance x a solution y of value m(x, y) such that m(x, y) ≤ (1 + ǫ)opt(x) for opt(x) the value of an optimum solution.

Density. A family of instances of MIN-kSat is δ-dense if for each variable, the total number of occurrences of the variable and its negation is at least δn k-1 in each instance. A family of instances of MIN-kSat is dense, if there is a constant δ > 0 such that this family is δ-dense.

An instance of MIN-kSat is average δ-dense if the number of clauses is at least δn k . An instance of MIN-kSat is average-dense if there is a constant δ > 0 such that the instance is average δ-dense.

A family of instances of MIN-Ek-LIN2 is δ-dense if for each variable x, the total number of occurrences of x is at least δn k-1 in each instance. A family of instances of MIN-Ek-LIN2 is dense, if there is a constant δ > 0 such that the family is δ-dense. DL-reductions. We call an L-reduction (cf. [START_REF] Papadimitriou | Optimization, Approximation and Complexity Classes[END_REF]) between problems P and Q density preserving (DL-) if it maps each dense instance of P into a dense instance of Q.

MIN-EkSat for any k ≥ 2 does not have PTAS on general instances [START_REF] Kohli | The Minimum Satisfiability Problem[END_REF] under usual complexity theoretic assumptions but can be approximated in polynomial time within some constant factor [START_REF] Bertsimas | On dependent randomized rounding algorithms[END_REF].

The following reduction from MIN-E2Sat can be used to prove that Dense MIN-E2Sat is NP-hard in exact setting. Given an instance F of MIN 2Sat with n variables x 1 , . . . , x n and m clauses C 1 , . . . , C m , we define an instance F ′ of Dense MIN-2Sat as follows. We add n new variables y 1 , . . . , y n . F ′ will contain the clauses of F and the clauses x i ∨ y j , xi ∨ y j , 1 ≤ j ≤ n, 1 ≤ i ≤ n. The total number of occurrences of x i is at least 2n and the total number of occurrences of y j is also at least 2n. So, F ′ is a dense instance. Also, it is easy to see that opt(F ′) = opt(F) + n 2 . A similar reduction shows that dense MIN-kSat problems are NP-hard in exact setting for every k ≥ 2.

We prove now NP-hardness (in exact setting) of Dense MIN-E2-LIN2, and in consequence also Dense MIN-Ek-LIN2 for every k. The reduction is from the general MIN-E2-LIN2 problem which is known to be MAX-SNP-hard [START_REF] Garg | Max-Flow Min-(Multi)Cut Theorems and Their Applications[END_REF]. Given an instance I of MIN-E2-LIN2 on a set of variables X = {x 1 , ..., x n } with m equations x i ⊕ x i = b with b ∈ {0, 1}, we construct an instance I ′ of Dense MIN-E2-LIN2 as follows. We extend the set of variables by a disjoint set Y = {y 1 , ..., y n }. I ′ contains all equations of I, and all equations of the form x i ⊕ y j = 0 and x i ⊕ y j = 1 for all 1 ≤ i, j ≤ n. Note that the instance I ′ is dense. Note also that exactly n 2 of the new added equations are satisfied independently of the values of the variables in X and Y. Thus, we have opt(I ′) = opt(I) + n 2 . The similar construction can be used to prove that Dense MIN-Ek-LIN2 problems are NP-hard in exact setting for any k.

It is also not difficult to see that for the special case

k = 2, MIN-E2-LIN2 (MIN Equivalence) is DL-reducible to MIN-E3-LIN2 (Nearest Codeword). For suppose that an instance I of dense MIN-E2-LIN2 on a set of n variables X = {x 1 , ..., x n } with m equations x i ⊕ x j = b is given. We construct an instance I ′ of Dense MIN-E2-LIN2
by extending the set of variables X by a disjoint set Y = {y 1 , ..., y n }, and extending the original set of m equations x i ⊕ x j = b by mn + n 3 new equations of the form

x i ⊕ x j ⊕ y k = b, y l 1 ⊕ y l 2 ⊕ y l 3 = 1.
An optimum assignment for I ′ does have all y ′ s set to zero and defines an optimum assignment (for x ′ s) for I. We have opt(I) = opt(I ′).

Interestingly, it is also easy to show that both average-dense MIN-EkSat and averagedense MIN-Ek-LIN2 problems are approximation hard for general instances. To see that it is enough to extend the set of variables by a new disjoint set Y = {y 1 , ..., y n }, and then add the set of all clauses y i 1 ∨ y i 2 ∨ ... ∨ y i k , (respectively, equations

y i 1 ⊕ y i 2 ⊕ ... ⊕ y i k = 1.)
The resulting instances are clearly average dense, and the optima are preserved in both cases (for all variables y i assigned to 0).

Sampling k-uniform hypergraphs with bounded weights

As mentioned in Introduction, there are no approximation preserving reductions from MIN-Ek-LIN2 to MIN-E2-LIN2 for all k ≥ 3, under usual complexity theoretic assumptions. Also, there are no known approximation and density preserving reductions from MIN-EkSat problems to MIN-E2Sat. Therefore we prove our results by a generic method for arbitrary constant k. The straightforward generalization of our method for MIN-E3-LIN2 ([BFK00]) to higher k's does not work without leaving the structures of graphs. We need therefore a new sampling technique for k-uniform hypergraphs. This is due to the following observation. Let us consider MIN-EkSat and let us denote by L S the set of literals corresponding to the set of variables S. For the instances of MIN-EkSat with "small" value of the optimum, a basic step in our method consists, for each assignment of truth values to the variables in a random sample S, in trying to set the truth value of each of the other variables so as to minimize the number of satisfied clauses within the clauses which contain this variable and k -1 literals from L S .

For this scheme to be efficient, we need roughly the size of S to be O(log n) and also the number of clauses in the instance containing only literals from L S and any fixed literal to be Ω(log n/ǫ 2 δ) for an accuracy requirement ǫ. This is achieved by the sampling procedures described below. Note that if we had only to sample a (k -1)-uniform hypergraph H = (X, E), we could use a much simpler procedure: namely pick uniformly at random elements from X k-1 and ask for each picked element whether or not it belongs to E.

We need first the following inequality due to Hoeffding [H64].

Lemma 1 Let X 1 , ..., X m be independent random variables and each distributed as X 1 . Let µ = E(X 1) and assume that X

1 satisfies 0 ≤ X 1 ≤ ∆. Let S m = m i=1 X i . Then, for every fixed γ > 0, Pr(|S m -µm| ≥ γ∆m) ≤ 2 exp(-2γ 2 m). (1)
2

Let k ≥ 2 be fixed. H k will denote a k-uniform hypergraph with vertex set V , |V | = n, obtained from the complete hypergraph on V by assigning to each hyperedge E = {x 1 , .., x k } a non-negative weight w(x 1 , ...x k). Suppose that S 0 , S 1 , .., S k-1 are disjoint random samples picked from V all with the same size m = Ω(log n/ǫ 2). Let S = S 0 × S 1 ... × S k-1 . We denote by H(S) the sub-hypergraph of H k which contains the edges of H k with precisely one vertex in each of S 0 , S 1 , ...S k-1 . We denote by w(H), (resp. w(H(S))), the sum of the weights of the edges of H, (resp. of H(S)). Our PTAS for the instances of MIN-Ek-LIN2 with "small" value is based on the following sampling theorem.

Theorem 1. Let m = Ω(log n/ǫ 2) and let H k have 0,1 weights. For any fixed ǫ > 0, we have

Pr w(H k (S)) - m k w(H k) n k ≤ ǫm k ≥ 1 -o(1/n).
Proof of Theorem 1. We need the following lemma.

Lemma 2. Let a (k + 1)-uniform hypergraph H k+1 have weights bounded above by h and suppose that S 0 is a random sample of size m picked from V = V (H k+1) and define

Σ o = y∈So A∈(V \So k) w(A ∪ {y}).
Then, for each fixed ǫ > 0, sufficiently large n and m = o(n 1/2), we have that

Pr Σ o - m(k + 1) n w(H k+1) ≤ ǫh n k ≥ 1 -3e -2mǫ 2 .
Proof. Clearly,

Σ o = y∈So A∈(V \{y} k) w(A ∪ {y}) - y∈So A∈(V \{y} k):A∩So =∅ w(A ∪ {y}) = y∈So W y -O m 2 n k -1 where, W y = A∈(V \{y} k) w(A ∪ {y}).

Let us write Σ

′ o = y∈So W y . Thus Σ o = Σ ′ o -O(m 2 hn k-1). We have that max y∈V W y ≤ h n -1 k and E(Σ ′ o) = m(k + 1) n w(H k+1).

Now Σ ′

o is the sum of m terms randomly chosen within the W y , y ∈ V . Lemma 3 gives

Pr Σ ′ o - m(k + 1) n w(H k+1) ≤ ǫh n -1 k ≥ 1 -2e -2mǫ 2 .
For simplicity, we put now T k = w(H k (S)). The hypergraph H k will be defined in the context.

Lemma 3. Let ℓ and h denote natural integers. Let m = Ω(log n/ǫ 2). Assume that

Pr T ℓ n ℓ m ℓ -w(H ℓ) ≤ ǫ n ℓ m h ≥ 1 -o(1/n),
for any ℓ-uniform hypergraph H ℓ on n vertices with maximum weight at most m h . We have then,

Pr T ℓ+1 n ℓ+1 m ℓ+1 -w(H ℓ + 1) ≤ ǫ ′ n ℓ m h-1 ≥ 1 -o(1/n),
for any (ℓ + 1)-uniform hypergraph H ℓ+1 on n vertices with maximum weight at most m h-1 and where ǫ ′ is any constant greater than ǫ.

Proof. We have

E(T ℓ+1) = m ℓ+1 (n ℓ+1)
w(H ℓ+1) by simple counting. Thus we have to bound only from above the fluctuations of T ℓ+1 . Clearly

T ℓ+1 = x 1 ∈S 1 ,...x ℓ ∈S ℓ W (x 1 , ...x ℓ)
where

W (x 1 , ...x ℓ) = y∈So w(y, x 1 , ...x ℓ).
Thus, we can estimate T ℓ+1 by sampling the ℓ-uniform hypergraph K with vertex set V (H ℓ+1)\S o , and where the edge {x 1 , x 2 , ...x ℓ } has weight W (x 1 , x 2 , ...x ℓ). Note that K has maximum weight at most m h since H ℓ+1 has maximum weight at most m h-1 . Thus the assumption of Lemma 3 reads

Pr T ℓ+1 n ℓ m ℓ -w(K) ≤ ǫ n ℓ m h ≥ 1 -o(1/n).
Using Lemma 1, we have that w(K) = m(ℓ+1) n w(H ℓ+1)±ǫm h-1 n k with probability 1-o(1/n) and thus, after multiplication by

n m(ℓ+1) , Pr T ℓ+1 n ℓ+1 m ℓ+1 -w(H ℓ+1) ≤ ǫ(m h + m h-1) n ℓ + 1 ≥ 1 -o(1/n), implying Pr T ℓ+1 n ℓ+1 m ℓ+1 -w(H ℓ+1) ≤ ǫ ′ m h n ℓ + 1 ≥ 1 -o(1/n),
which is the assertion of the lemma in which we can take in fact ǫ ′ = (1 + o(1))ǫ.

2

In order to prove Theorem 1 for any fixed value of k, we just have to apply k -1 times Lemma 3, the starting assumption ℓ = 1, h = k -1 being obtained by applying Lemma 2 to the sum of a sample of size m picked from a list of n terms each bounded above by m k . We apply Lemma 3 first for ℓ = 1, h = k -1, then for ℓ = 2, h = k -2, an so on until ℓ = k -1, h = 1. This gives after scaling the assertion of Theorem 1.

4 A PTAS for MIN-Ek-LIN2

Our techniques for designing PTASs for MIN-Ek-LIN2 and for MIN-EkSat can be viewed as the new extensions of the technique of [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF]. In both cases, for each δ-dense instance of size n we run in parallel two distinct algorithms (Algorithm A and Algorithm B for MIN-Ek-LIN2, Algorithm 1 and Algorithm 2 for MIN-EkSat), and we select the solution with the smallest value. Algorithm 1 and Algorithm A provide good approximations for the instances whose minimum value is "large" (the precise meaning of large will be specified later). These algorithms use the Smooth Integer Programming method of [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF]. Algorithms 2 and B provide good approximations for the instances whose optimum value is "small".

We assume now that the system of equations S = {E 1 , ..., E m } is a δ-dense instance of MIN-Ek-LIN2, on a set X of n variables {x 1 , . . . , x n }.

Algorithm A

Algorithm A formulates the problem as a Smooth Integer Program to degree k and uses a method of [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF]. This gives a PTAS for the instances whose optimum value is Ω(n k). We refer to [START_REF] Bazgan | Approximability of Dense Instances of Nearest Codeword Problem[END_REF] for an explicit construction of a smooth program for the case of MIN-E3-LIN2 [k = 3].

Algorithm B

The algorithm B is guaranteed to give in polynomial time, as we will prove, approximation ratio 1+ǫ for each fixed ǫ, whenever the optimum is at most αn k for some fixed α, depending on ǫ and on δ.

Algorithm B Input: Dense system S of linear equations in GF[2] over a set X of n variables with exactly k variables per equation.

1. Pick k -1 disjoint random samples S 1 , ..., S k-1 ⊆ X each of size m = Θ log n/ǫ 2 δ . Let S = ∪ 1≤i≤k-1 S i .
2. For each possible assignment a, y → y a of {0, 1} values to the variables in S do the following: 2.1. For each variable x / ∈ S do the following:

Let H a x,0 and H a x,1 be the (k-1)-uniform hypergraphs with common vertex set V (H a x,0) = V (H a x,1) = S and edge sets

E(H a x,0) = {{x 1 , ..., x k-1 } : x i ∈ S i , 1 ≤ i ≤ k -1, x ⊕ (⊕ 1≤i≤k-1 x i) = b ∈ S ∧ ⊕ 1≤i≤k-1 x a i = b} and E(H a x,1) = {{x 1 , ..., x k-1 } : x i ∈ S i , 1 ≤ i ≤ k -1, x ⊕ (⊕ 1≤i≤k-1 x i) = b ∈ S ∧ ⊕ 1≤i≤k-1 x a i = b}. Let m a 0 = |E(H a x,0)|, m a 1 = |E(H a x,1)|. If m a 0 ≥ 2 3 (m a 0 + m a 1), then set x to 1. If m a 1 ≥ 2 3 (m a 0 + m a 1
), then set x to 0. Otherwise, set x to be undefined.

2.2.

In this stage, we assign values to the variables which are undefined after the completion of stage 2.1. Let D a be the set of variables assigned in stage 2.1, U a = S ∪ D a and let V a = X \ U a denote the set of undefined variables. For each undefined variable y, let S y denote the set of equations which contain y and whose -1 other variables belong to U a . Let k a 0 (resp. k a 1) denote the number of equations in S y satisfied by a and by setting y to 0 (resp. to 1).

If k a

0 ≤ k a 1 , then set y to 0. Else, set y to 1.

Let X a denote the overall assignment produced at the end of this stage.

Among all the assignments X a one which satisfies the minimum number of equations of S.

Output this solution a o .

Proof of correctness of algorithm B when the value of the instance

is "small" assume, as we can, that a is the restriction to S of an optimal assignment a * ∈ {0, 1} n . For each y ∈ X, we let y a * denote the value of y in a * . Let x ∈ X \ S.

Let H x,0 and H x,1 be the hypergraphs with common vertex set V (G x,0) = V (G x,1) = X and edge sets

E(H x,0) = { {x 1 , ..., x k-1 } : x i ∈ S i , 1 ≤ i ≤ k -1, x ⊕ (⊕ 1≤i≤k-1 x i) = b ∈ S ∧ ⊕ 1≤i≤k-1 x a * i = b} and E(H x,1) = { {x 1 , ..., x k-1 } : x i ∈ S i , 1 ≤ i ≤ k -1, x ⊕ (⊕ 1≤i≤k-1 x i) = b ∈ S ∧ ⊕ 1≤i≤k-1 x a * i = b}. Let n a * 0 = |E(G x,0)|, n a * 1 = |E(G x,1)|, n a * = n a * 0 + n a * 1 . Also, let m a = m a 0 + m a 1 .
Lemma 4.1. Assume that x is such that we have

n a * 0 ≥ 3(n a * 0 + n a * 1) 4 .
Then, with probability 1 -o(1/n), x is assigned (correctly) to 1 in step 2.1 of Algorithm B.

Lemma 4.2. Assume that x is such that we have

n a * 1 ≥ 3(n a * 0 + n a * 1) 4 .
Then, with probability 1 -o(1/n), x is assigned (correctly) to 0 in step 2.1 of algorithm B.

Lemma 4.3. With probability 1 -o(1/n), each fixed variable y ∈ D a is assigned to its correct value y a * by the Algorithm B.

REMARK:

The property in Lemma 4.1 holds simultaneously for all variables with probability 1 -o(1). The same is true for Lemmas 4.2 and for 4.3.

Proof of Lemmas 4.1 and 4.2. Let us first observe that m a * o (resp. m a * 1) is the number of equations in S containing x and which are satisfied by setting x to 0 (resp. to 1) and all other variables according to a * . Thus if m a * o < m a * 1 , then we can assert that x is set to 0 in a * . Similarly, if m a * o > m a * 1 , then we can assert that x is set to 1 in a * .

We prove Lemma 4.1. The proof of Lemma 4.2. is similar to that of Lemma 4.2. Theorem 2 applied to the hypergraph G x,0 with d =

≥ (1 -ǫ) m k-1 n k-1 n a * 0 = 1 -o(1/n).
Let m a = m a 0 + m a 1 . We apply now Theorem 2 to the union of the graphs G x,0 and G x,1 . This gives

Pr m a ≤ (1 + ǫ) m k-1 n k-1 n a * = 1 -o(1/n).

Substraction gives

Pr m a 0 -

2m a 3 ≥ m k-1 n k-1 ((1 -ǫ)n a * o -(1 + ǫ) 2(n a * 0 + n a * 1) 3) = 1 -o(1/n).
Using the inequality

n a * 0 + n a * 1 ≤ 4n a * 0 3 we obtain Pr m a 0 - 2m a 3 ≥ 2m 2 n(n -1) 1 -20ǫ 9 n a * o = 1 -o(1/n), which implies Pr m a 0 - 2m a 3 ≥ 0 = 1 -o(1/n),
if ǫ ≤ 1/20. This concludes the proof.

2

Proof of Lemma 4.3. Suppose that y is assigned to 1 in stage 2.1. The case where y is assigned to 0 is similar. We have to prove that n a * 0 ≥ n a * 1 with probability 1 -o(1/n) since if in an optimum solution x i = 1 then n a * 0 ≥ n a * 1 . Thus, Theorem 1 applied to the hypergraph H x,0 and the samples S 1 , ..., S k-1 gives, with ǫ = 1/7,

Pr m a 0 ≤ 8n a * 0 m k-1 7 n k-1 = 1 -o(1/n),
and so,

Pr n a * 0 ≥ 7m a 0 n k-1 8m k-1 = 1 -o(1/n). (2)
Theorem 1 applied to the union of the hypergraphs H x,0 and H x,1 with the samples S 1 , ..., S k-1 and ǫ = 1/9, gives

Pr a ≥ 8n a * m k-1 9 n k-1 = 1 -o(1/n),
and so,

Pr n a * ≤ 9m a n k-1 4m 2 = 1 -o(1/n). (3)
Since y is assigned to 1 in stage 2.1, we have that m a 0 ≥ 2/3m a implying with 2 and 3,

Pr n a * 0 n a * ≥ 14 27 = 1 -o(1/n).
Lemmas 4.3 follows.

2

The following lemma is crucial.

Lemma 5. With probability 1-o(1), the number of variables undefined after the completion of stage 2.1 satisfies

|V a | ≤ 4 opt δn k-1 .
Proof. Assume that x is undefined. We have thus simultaneously n a * 0 < 3 4 (n a * 0 + n a * 1) and n a * 1 < 3 4 (n a * 0 + n a * 1) and so n a * 1 > 1 4 (n a * 0 + n a * 1) and n a * 0 > 1 4 (n a * 0 + n a * 1). Since x appears in at least δn k-1 equations, n a * 0 + n a * 1 ≥ δn k-1 . Thus,

opt ≥ min{n a * 0 , n a * 1 } • |V a | ≥ δn 2 4 |V a |.
The assertion of the lemma follows. 2

We can now complete the correctness proof. Let val denote the value of the solution given by our algorithm and let opt be the value of an optimum solution.

Theorem 2. Let ǫ be fixed. If opt ≤ αn k where α is sufficiently small, then we have that val ≤ (1 + ǫ)opt.

Proof. Let us write val = 0≤i≤k val i where val i is the number of satisfied equations with exactly i variables in V a .

With an obvious intended meaning, we write also opt = 0≤i≤k opt i .

We have clearly val 0 = opt 0 and val 1 ≤ opt 1 . Thus,

val ≤ opt + 2≤i≤k (val i -opt i) ≤ opt + 2≤i≤k val i opt + 2≤i≤k |V a | i n k -i ≤ opt + 2≤i≤k |V a | i n k-i ≤ opt + (k -1)|V a | 2 n k-2 ≤ opt + 16(k -1)opt 2 δ 2 n k
where we have used Lemma 5 for the last line. Thus,

val ≤ opt 1 + 16(k -1)opt δ 2 n k ≤ opt(1 + ǫ) if opt ≤ ǫδ 2 n k 16(k-1) .
2 It is known that the Algorithm A runs in polynomial time for any ǫ > 0 [AKK95], and the same is now easy to check for the Algorithm B on "small" instances. Thus we have, for any fixed k, a PTAS for MIN-Ek-LIN2.

Dense MIN-kSat has a PTAS

In this section, we apply the technique of sampling hypergraphs of Section 3 to obtain a PTAS for Dense MIN-EkSat for each fixed k. As a side effect we give also PTAS for the general Dense MIN-kSat. Lemma 6. For any k ≥ 2, Dense MIN-kSat is DL-reducible to Dense MIN-EkSat.

Proof. Let F be a δ-dense instance of MIN-kSat with n variables x 1 , . . . , x n and m clauses C 1 , . . . , C m . We construct an instance F ′ of Dense MIN-EkSat as follows: F ′ is built over the variables of F and a set Y of n new variables y 1 , . . . , y n . For each clause of F ℓ 1 ∨ . . . ∨ ℓ t , of length t < k, we put in F clause 1 ∨ . . . ∨ ℓ t ∨ y 1 ∨ . . . ∨ y k-t . We also put in F ′ all the clauses of F of length k and all the clauses of length k with all variables in Y .

Let us justify that this is a DL-reduction.

is easy to see that opt(F ′) = opt(F). Now, given an optimal solution v of F ′ , we can assume that each variable y the value zero in v, since otherwise we obtain a solution with a smaller value by assigning false to y. The assignment v satisfies in F m(F, v) ≤ m(F ′ , v) clauses. Thus we have an L-reduction.

Since F is δ-dense the number of occurrences of the variable x i and its negation for each i = 1, . . . , n is δn k-1 . Each variable y appears Θ(n k-1) times in F ′ . Thus F ′ is dense.

A PTAS for MIN-EkSat

1. Algorithm 1. (Algorithm for the case of "large" instances)

For each fixed k ≥ 2, we can formulate MIN-EkSat as a degree k smooth integer program. We can then use again the approximation method of [START_REF] Arora | Polynomial time approximation schemes for dense instances of N P -hard problems[END_REF]. Let us display such a smooth program for = 2. For each clause C i we construct a smooth polynomial P i where

P i ≡ 1 -(1 -x)(1 -y) if C i = x ∨ y P i ≡ 1 -(1 -x)y if C i = x ∨ ȳ P i ≡ 1 -x(1 -y) if C i = x ∨ y P i ≡ 1 -xy if C i = x ∨ ȳ
optimum solution of MIN-E2Sat now given by an optimum solution of the following degree 2 smooth integer program:

min m j=1 P j x i ∈ {0, 1} 1 ≤ i ≤ n.
2. Algorithm 2. (Algorithm for the case of instances with a "small" value)

We need first some notation. Let F be a δ-dense instance of MIN-EkSat, with m clauses over a set X = {x 1 , . . . , x n } of n variables. Let = {S 1 , ..., S k-1 } be a family of k -1 disjoint subsets of X. (Actually these sets will be random as defined in the algorithm below.) Let S ∪ k-1 i=1 S i and denote by L i the set of literals corresponding to S i , 1 ≤ i ≤ k -1. We denote by C S the set of clauses of length k -1 obtained by picking a set the literals) in the sense of Theorems 1 and 2. We can thus apply Theorem 2 to these quantities. (Actually, for k = 2 we are sampling points rather than edges, but then we can use Hoeffding's inequality.) This gives for any fixed γ > 0,

Pr(|u a 1 - u a * 1 n ℓ| ≤ γℓ) ≥ 1 -n -Ω(1) . (6)
Similarly we have,

Pr(|u a o - u a * 0 n ℓ| γℓ) ≥ 1 -n -Ω(1) , (7)
Pr(|v a 1 -

v a * 1 n ℓ| ≤ γℓ) ≥ 1 -n -Ω(1) (8)
and

Pr(|v a o - v a * o n ℓ| ≤ γℓ) ≥ 1 -n -Ω(1) . (9)
These inequalities imply clearly

u a 1 + u a o + v a 1 + v a o ≥ ℓ n (u a * 1 + u a * 0 + v a * 1 + v a * o) -4γℓ
with probability 1 -n -Ω(1) , and also

u a 1 + u a o + v a 1 ≤ ℓ n (u a * 1 + u a * 0 + v a * 1) + 3γℓ.
So, again with probability 1 -n -Ω(1) , In other words, if we want to achieve an approximation ratio (1 + ǫ), then we can use Algorithm 2 on any instance F with opt(F) ≤ δ 2 ǫ 64 .

u a 1 + u a o + v a 1 - 1 8 (u a 1 + u a o + v a 1 + v a o) ≤ - 7ℓ 8n (u a * 1 + u a * 0 + v a * 1 + v a * o) + 7γℓ 2 ≤ - 7δℓ
Proof. The proof of Theorem 3 from Lemma 8 is similar to the proof of Theorem 2 Lemma 5. Therefore it is omitted.

2 In order to assert now that the Algorithms 1 and 2 give a PTAS for MIN-kSat, it only remains to observe that both algorithms run in polynomial time for each fixed ǫ.

 samples S 1 , ..., S k-1 , gives Pr m a 0

 Proof of Lemma 7.3. Let us assume that x is assigned to 0 in a * (the other case is Thus we assume that the inequaliy u a * 0 ≥ v a * o holds and we have to prove that the inequalityu a * 1 + u a * 0 + v a * 1 ≤ (u a * 1 + u a * 0 + v a * 1 + v a *By substraction, we get, again with probability 1 -n -Ω(1) , Since u a * 0 ≥ v a * o and u a * 1 + u a * 0 + v a * 1 + v a * 0 ≥we have Thus, with high probability if γ < 3 28 δ, u a * 1 + u a * o + v a * 1 -v a * Lemma 8. With probability 1 -o(1), the number of undefined variables satisfies Proof. If the variable x is undefined after stage 2.1 of the Algorithm 2, then from Lemma 4.2 we have that,with high probability u a 1 }|V a | ≥ |V a |δn/8. Theorem 3. If opt(F) < αn k then with high probability B(F) ≤ (1 + ε)opt(F) where ε = 64α δ 2 .

	u a 1 + u a o + v a 1 -	v a o 8	≥		ℓ n	(u a * 1 + u a * 0 + v a * 1 -	v a * o 8) -4γℓ.
	u a * 1 + v a * 1 + u a * 0 -	1 8	v a * o > u a * 1 + v a * 1 +	6 8	u a * 0 ≥	3 8	δn.
	So, the difference	ℓ n	(u a * 1 + u a * 0 + v a * 1 -	v a * 0 8) -4γℓ
	is positive if γ < 3 28 δ. o 8 > 0
	which is what we want.						
								2
					|V a | ≤	8opt(F) δn	.
								8	+	7γℓ 2
	is negative for γ ≤ δ 4 .						
								2
								o)/8
	implies						
	u a 1 + u a 0 + v a 1 > (u a 1 + u a 0 + v a o + v a 1)/8.
	Using the inequalities (6)-(8), we have that, with probability 1 -n -Ω(1) , for a fixed γ,
	u a 1 + u a o + v a 1 ≥	ℓ n	(u a * 1 + u a * 0 + v a * 1) -3γℓ
	and using the inequality (9),				v a o 8	≤	ℓ 8n	v a * o +	γℓ 8	.

* 1 + u a * 0 + v a * 1 ≥ (u a * 1 + u a * 0 + v a * 1 + v a * o)/8, and v a * 1 + v a * o + u a * 1 ≥ (u a * 1 + u a * 0 + v a * 1 + v a * o)/8. Since u a * 1 + u a * 0 + v a * 1 + v a * o ≥ δn, the optimum value opt(F) satisfies opt(F) ≥ min{u a * 1 + u a * 0 + v a * 1 , v a * 1 + v a * o + u a *

Acknowledgements 17

The authors thank Alan Frieze, Madhu Sudan, Mario Szegedy, and Luca Trevisan for stimulating remarks and discussions.

Research partially supported by the IST grant 14036 (RAND-APX), and by the PROCOPE project. Research partially supported by DFG grant, DIMACS, PROCOPE project, IST grant 14036 (RAND-APX), and Max-Planck Research Prize. Research partially done wihle visiting Dept.

literal from each of the sets L i . We write also, for a fixed assignment a of truth values to the variables in S, C S,0 = {C ∈ C S : C false under a} and C S,1 = {C ∈ C S : C true under a} Finally, we denote by C 1 (resp. C 0) the set of clauses of length k -1 which are true (resp. false) under a fixed optimal assignment a * .

For each variable x / ∈ S, we denote F S the set clauses in F of the form C ∨ x or C ∨ x for some clause C ∈ C S and define the numbers

Algorithm 2. (Algorithm for the case of "small" instances)

Input. A dense instance F of MIN-EkSat over a set of variables X.

2. For each possible assignment a : S → {0, 1} of the variables of S do the following:

2.1. For each variable x ∈ X\S do the following with u a 1 , u a 0 , ... as defined above:

Otherwise, set x to be undefined.

2.2.

In this stage, we assign values to the variables which are undefined after the completion of stage 2.1. Let D a be the set of variables assigned in stage 2.1, U a = S ∪ D a and let V a = X \ U a denote the set of undefined variables. For each undefined variable y, let S y denote the set of clauses which contain y or ȳ and whose -1 other literals belong to U a . Let k a 0 (resp. k a 1) denote the number of clauses in S y satisfied by a and by setting y to 0 (resp. to 1).

If k a

0 ≤ k a 1 , then set y to 0 and bias(y) = k a 1 -k a 0 . Else, set y to 1 and bias(y) = k a 0 -k a 1 .

Let a x denote the overall assignment produced at the end of this stage.

Among all the assignments a x pick one which satisfies the minimum number of clauses in F .

Output this solution a.

We denote by B(F) the value of the solution given by the Algorithm 2, i.e., the number of clauses in F satisfied by the assignment a.

5.2 Proof of correctness of Algorithm 2 when the value of the instance is "small" Lemma 7.1. With probability 1 -o(1/n), each variable x with the property that in optimum assignment a * of X which coincides with a on S we have that

is assigned to 1 (as in a *) in stage 2.1 of algorithm 2.

Lemma 7.2. With probability 1 -o(1/n), each variable x with the property that in an optimum assignment a * of X which coincides with a on S we have that

is assigned to 0 (as in a *) in stage 2.1 of algorithm 2.

Lemma 7.3. With probability 1 -o(1/n), each fixed variable x which either 4 or 5 holds is assigned in a as in a * .

Note that the property in Lemma 7.1 holds simultaneously for all variables with probability 1 -o(1). The same is true for Lemmas 7.2 and 7.3. Before turning to the proof of these lemmas, let us note that m o = u a * 1 + u a * 0 + v a * 1 is the number of clauses in F containing the variable x and which are satisfied by setting x to 0 (and the other variables according to a *). Note also that m 1 = u a * 1 + v a * 1 + v a * o is the number of clauses containing x and which are satisfied by setting x 1. Thus, if m 0 < m 1 , (that is if u a * o < v a * o ,) then we can assert that x is set to 0 in a * . Similarly, if m 1 < m 0 , then we can assert that x is set to 1 in a * . Finally, note that n o = u a 1 + u a 0 + v a 1 is the number of clauses in F S containing the variable x and which are satisfied by setting x to 0 (and the other variables according to a *) and n 1 = u a 1 + v a 1 + v a o is the number of clauses in F S containing x and which are satisfied by setting x to 1.

Proofs. We prove 7.1 and 7.3. The proof of 7.2 is similar to that of 7.1. and is omitted.

Proof of Lemma 7.1. Let x be a variable with the property that in the optimum solution u a * 1 + u a * 0 + v a * 1 ≤ (u a * 1 + u a * 0 + v a * 1 + ūa * 0)/10. Plainly, u a 1 , (resp. u a 0 , v a 1 , v a o), are obtained by sampling the hypergraphs with edge sets U a * 1 , (resp. U a * 0 , V a * 1 , V a * o), where U a * i = {C ∈ C i : C ∨ x ∈ F }, i = 0, 1, and V a * i = {C ∈ C i : C ∨ x ∈ F }, i = 0, 1, (and vertex