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Abstract. We give a polynomial time approximation scheme (PTAS)
for dense instances of the Nearest Codeword problem.

1 Introduction

We follow [15] in defining the Nearest Codeword problem as the minimum
constraint satisfaction problem for linear equations mod 2 with exactly 3 vari-
ables per equation. It is shown in [15] that the restriction imposed on the number
of variables per equation (fixing it to be exactly 3) does not reduce approxima-
tion hardness of the problem. The problem is, for a given set of linear equations
mod 2 to construct an assignment which minimizes the number of unsatisfied
equations. We shall use in this paper clearly an equivalent formulation of the
problem of minimizing the number of satisfied equations. Adopting the notation
of [11] we denote it also as the Min-E3-Lin2 problem. Min-Ek-Lin2 will stand
for the k-ary version of the Nearest Codeword problem.

The Nearest Codeword problem arises in a number of coding theoretic,
and algorithmic contexts, see, e.g., [1], [15], [8], [7]. It is known to be exceed-
ingly hard to approximate; it is known to be NP-hard to approximate to within
a factor nΩ(1)/ log log n. Only recently the first sublinear approximation ratio al-
gorithm has beeing designed for that problem [5]. In this paper we prove that,
somewhat surprisingly, the Nearest Codeword problem on dense instances
does have a PTAS. We call an instance of Nearest Codeword problem (Min-
E2-Lin2) problem dense, if the number of occurrences of each variable in the
equations is Θ(n2) for n the number of variables. We call an instance of Near-
est Codeword (Min-E2-Lin2) dense in average if the number of equations
is Θ(n3). Analogously, we define density, and average density, for Min-Ek-Lin2
problems.

It is easy to be seen that the results of [2] and [9] on existence of PTASs
for average dense maximum constraint satisfaction problems cannot be applied
to their average dense minimum analogs (for a survey paper on approximabil-
ity of some other dense optimization problems see also [13]). This observation



can be also strenghten for the dense instances of minimum constraint satisfac-
tion by noting that dense instances of Vertex Cover can be expressed as dense
instances of minimum constraint satisfaction problem for 2DNF clauses, i.e. con-
junctions of 2 literals, and then applying the result of [6], [14] to the effect that
there are no PTAS for the dense Vertex Cover. In [10] it was also proven that
the dense and average dense instances of Min Tsp(1,2) and Longest Path
problems do not have polynomial time approximation schemes.

In [2] there were however two dense minimization problems identified as
having PTASs, namely dense Bisection, and Min-k Cut. This has lead us
to investigate the approximation complexity of dense Nearest Codeword
problem. Also recently, PTASs have been designed for dense Min Equivalence
and dense Min-kSat problems (cf. [3], [4]). The main result of this paper is a
proof of an existence of a PTAS for the dense Nearest Codeword problem.

The approximation schemes developed in this paper for the dense Nearest
Codeword problem use some novel density sampler techniques for graphs, and
k-uniform hypergraphs, and extend available up to now approximation tech-
niques for attacking dense instances of minimum constraint satisfaction prob-
lems.

The Nearest Codeword problem in its bounded arity (=3) form was
proven to be approximation hard for its unbounded arity version in [15] (Lemma
37). This results in nΩ(1)/ log log n approximation lower bound for the Nearest
Codeword problem by [8], [7], where n is the number of variables. It is also
easy to show that Nearest Codeword is hard to approximate to within a
factor nΩ(1)/ log log n on average dense instances.

The paper is organized as follows. In Section 2 we give the necessary defi-
nitions and prove the NP-hardness of dense instances of Min-E3-Lin2 in exact
setting, and in Section 3 we give a polynomial time approximation scheme for
the dense instances of Min-E3-Lin2.

2 Preliminaries

We begin with basic definitions.

Approximability. A minimization problem has a polynomial time approxima-
tion scheme (a PTAS, in short) if there exists a polynomial time approximation
algorithm that gives for each instance x of the problem a solution y of value
m(x, y) such that m(x, y) ≤ (1 + ε)opt(x) for every constant ε > 0 where opt(x)
is the value of an optimum solution.

Nearest Codeword Problem (Min-E3-Lin2)

Input: A set of m equations in boolean variables x1, . . . , xn where each equation
has the form xi1 ⊕ xi2 ⊕ xi3 = 0 or xi1 ⊕ xi2 ⊕ xi3 = 1.
Output: An assignment to the variables that minimizes the number of equations
satisfied.



Density. A set of instances of Min-E3-Lin2 is δ-dense if for each variable x,
the total number of occurrences of x is at least δn2 in each instance. A class of
instances of Min-E3-Lin2 is dense, if there is a constant δ such that the class
is δ-dense.

Let us show now that dense Min-E3-Lin2 is NP-hard in exact setting.
The reduction is from Min-E3-Lin2, which is approximation hard for a ra-
tio nΩ(1)/ log log n [8], [7], where n is the number of variables. Given an instance
I of Min-E3-Lin2 on a set of n variables X = {x1, . . . , xn} with m equations
xt1 ⊕ xt2 ⊕ xt3 = b, where b ∈ {0, 1}, we construct an instance I ′ of dense
Min-E3-Lin2 as follows: we extend the set of variables X by two disjoint sets
Y = {y1, . . . , yn} and Z = {z1, . . . , zn}. I ′ contains aside from the equations
of I, the equations of the form xi ⊕ yj ⊕ zh = 0 and xi ⊕ yj ⊕ zh = 1 for all
1 ≤ i, j, h ≤ n. Note that the system I ′ is dense. We note also that exactly n3

of the added equations are satisfied independently of the values of the variables
in X, Y and Z. Thus opt(I ′) = opt(I) + n3, proving the claimed reduction.

3 Dense Min-E3-Lin2 has a PTAS

Let the system S = {E1, ..., Em} be a δ-dense instance of Min-E3-Lin2, on a
set X of n variables {x1, . . . , xn}.

We will run two distinct algorithms, algorithm A and algorithm B, and select
the solution with the minimum value. Algorithm A gives a good approximate
solution for the instances whose minimum value is at least αn3. Algorithm B
gives a good approximate solution for the instances whose minimum value is less
than αn3, where α is a constant depending both on δ and the required accuracy
ε.

3.1 Algorithm A

Algorithm A depends on formulating the problem as a Smooth Integer Program
[2] as follows.

A smooth degree-3 polynomial (with smoothness e) has the form
∑

aijhxixjxh +
∑

bijxixj +
∑

cixi + d

where each |aijh| ≤ e, |bij | ≤ en, |ci| ≤ en2, |d| ≤ en3 (cf. [2]).
For each equation xi⊕yi⊕ zi = bi in S, we construct the smooth polynomial

Pi ≡ (1− xi)(1− yi)(1− zi) + xiyi(1− zi) + yizi(1− xi) + zixi(1− yi)

if bi = 0, and

Pi ≡ xi(1− yi)(1− zi) + yi(1− xi)(1− zi) + zi(1− xi)(1− yi) + xiyizi

if bi = 1. We have then the Smooth Integer Program IP:
{

min
∑m

j=1 Pi

s. t. xi, yi, zi ∈ {0, 1} ∀i, 1 ≤ i ≤ n.



A result of [2] can be used now to approximate in polynomial time the min-
imum value of IP with additive error εn3 for every ε > 0. This provides an
approximation ratio 1 + ε whenever the optimum value is Ω(n3).

3.2 Algorithm B

The algorithm B is guaranteed to give, as we will show, approximation ratio 1+ε
for each fixed ε, whenever the optimum is at most αn3 for a fixed α, depending
on ε and on the density.

Algorithm B

Input: A dense system S of linear equations in GF[2] over a set X of n
variables with exactly 3 variables per equation.

1. Pick two disjoint random samples S1, S2 ⊆ X of size m = Θ
(

log n
ε2

)

;

2. For each possible assignment a ∈ {0, 1}|S1∪S2| for the variables y in S1∪S2

(ya will stand for the boolean value of y for the assignement a) do the following:

2.1 For each variable x /∈ S1 ∪ S2 do the following:

Let Ha
x,0 and Ha

x,1 be the bipartite graphs with common vertex set V (Ha
x,0) =

V (Ha
x,1) = S1 ∪ S2 and edge sets

E(Ha
x,0) = {{y, z} : χS1(y)⊕ χS1(z) = 1 ∧ x⊕ y ⊕ z = b ∈ S ∧ ya ⊕ za = b}

and

E(Ha
x,1) = {{y, z} : χS1(y)⊕ χS1(z) = 1 ∧ x⊕ y ⊕ z = b ∈ S ∧ 1⊕ ya ⊕ za = b}

Let ma
0 = |E(Ha

x,0)|, ma
1 = |E(Ha

x,1)|.
If ma

0 ≥ 2
3 (ma

0 + ma
1), then set x to 1.

If ma
1 ≥ 2

3 (ma
0 + ma

1), then set x to 0.

Otherwise, set x to be undefined.

2.2 In this stage, we assign values to the variables which are undefined after
the completion of stage 2.1. Let Da be the set of variables assigned in stage 2.1,
and let Ua = S1 ∪ S2 ∪Da. V a = X \Ua denotes the set of undefined variables.
For each undefined variable y, let Sy denote the set of equations which contain
y and two variables in Ua. Let ka

0 (resp. ka
1 ) denote the number of equations in

Sy satisfied by a and by setting y to 0 (resp. to 1).

If ka
0 ≤ ka

1 , then set y to 0. Else, set y to 1.

Let Xa denote the overall assignment produced by the end of this stage.

3. Among all the assignments Xa pick one which satisfies the minimum num-
ber of equations of S.

Output that assignment.



4 Proof of the correctness of algorithm B when the value
of the instance is ”small”

We will use the following graph density sampling lemma. Recall that the density
d of a graph G = (V, E) is defined by

d =
|E|

(|V |
2

) .

Lemma 1. Let d and ε be fixed and let the graph G = (V, E) have |V | = n
vertices and density d. Let m = Θ(1/d ε−2 log n). Let X = {x1, ..., xm} and
Y = {y1, ..., ym} be two random disjoint subsets of V (G) with |X| = |Y | = m
and let e(X, Y ) be the number of edges of G between X to Y . Then, for each
sufficiently large n, we have

Pr[|e(X, Y )−m2d| ≤ εm2d] = 1− o(1/n).

Proof. We will use the following inequality due to Hoeffding [12]. Let X1, ..., Xm

be independent and identically distributed. Let µ = E(X1) and assume that X1

satisfies 0 ≤ X1 ≤ ∆. Let Sm =
∑m

i=1 Xi. Then:

Pr(|Sm − µm| ≥ ε∆m) ≤ 2 exp(−2ε2m). (1)

Clearly
E(e(X, Y )) = m2d.

For each z ∈ V \X, write
Tz = |Γ (z) ∩X|.

Let T =
∑

z∈V \X Tz. Then, T = T ′ + ∆ where ∆ ≤ m(m− 1)/2, and T ′ is the
sum of m randomly chosen valencies from the set of valencies of G. Thus using
(1),

Pr[|T ′ −mnd| ≤ εmn + m(m− 1)2/2] ≥ 1− 2 exp(−O(ε2m)).

Clearly,

e(X, Y ) =
∑

z∈Y

Tz

=
∑

1≤i≤m

δi

say. Assume now, with negligible error, that the vertices of Y are produced by
independent trials. Then, the δi are independent random variables with the same
distribution as δ1, defined by

Pr[δ1 = k] =
1

n−m
|{z ∈ V (G)|Tz = k}|, 0 ≤ k ≤ m.

Conditionally on θ where θ ∈ mnd(1± ε) and E(δ1) = θ, and using again (1),

Pr[|e(X, Y )− mθ
n
| ≤ εm2] ≥ 1− 2 exp(−2ε2m)



or

Pr[|e(X, Y )− mθ
n
| ≤ εm2d] ≥ 1− 2 exp(−2ε2d2m).

The conditioning event has probability at least 1 − 2 exp(−2ε2m2d). We have
thus, without any conditioning,

Pr[|e(X,Y )− mθ
n
| ≤ εm2d] ≥ 1− 2 exp(−2ε2d2m)− 2 exp(−2ε2m2d)

≥ 1− 3 exp(−2ε2d2m).

This completes the proof.

We now return to our proof of correctness. We assume, as we can, that a is
the restriction to S1 ∪ S2 of an optimal assignment a∗. For each y ∈ X, we let
ya∗ denote the value of y in a∗. Let x ∈ X \ (S1 ∪ S2).

Let Gx,0 and Gx,1 be the graphs with common vertex set V (Gx,0) = V (Gx,1) =
X and edge sets

E(Gx,0) = {{y, z} : x⊕ y ⊕ z = b ∈ S ∧ ya∗ ⊕ za∗ = b}

and
E(Gx,1) = {{y, z} : x⊕ y ⊕ z = b ∈ S ∧ 1⊕ ya∗ ⊕ za∗ = b}

Let na∗
0 = |E(Gx,0)|, na∗

1 = |E(Gx,1)|, na∗ = na∗
0 + na∗

1 . Also, let ma =
ma

0 + ma
1 .

Lemma 2. (i) Assume that x is such that we have

na∗
0 ≥ 3(na∗

0 + na∗
1 )

4
.

Then, with probability 1 − o(1/n), x is assigned (correctly) to 1 in step 2.1 of
algorithm B.

(ii) Assume that x is such that we have

na∗
1 ≥ 3(na∗

0 + na∗
1 )

4
.

Then, with probability 1 − o(1/n), x is assigned (correctly) to 0 in step 2.1 of
algorithm B.

(iii) With probability 1− o(1), each variable y ∈ Da is assigned to its correct
value ya∗ by the algorithm B.

Proof. We first prove (iii). Suppose that y is assigned to 1 in stage 2.1. The
case where y is assigned to 0 is similar. We have to prove that na∗

0 ≥ na∗
1 with

probability 1 − o(1/n) since if in an optimum solution xi = 1 then na∗
0 ≥ na∗

1 .



Thus, Lemma 1 applied to the graph Gx,0 with d = 2na∗
0

n(n−1) and the samples S1

and S2 gives

Pr
(

ma
0 ≤

8 · 2na∗
0 m2

7n(n− 1)

)

= 1− o(1/n),

and so,

Pr
(

na∗
0 ≥ 7ma

0n(n− 1)
2 · 8m2

)

= 1− o(1/n).

Also, Lemma 1 applied to the union of the graphs Gx,0 and Gx,1 with d = 2na∗

n(n−1)
and the samples S1 and S2 gives

Pr
(

ma ≥ 8 · 2na∗m2

9n(n− 1)

)

= 1− o(1/n),

and so,

Pr
(

na∗ ≤ 9man(n− 1)
2 · 8m2

)

= 1− o(1/n).

Since y takes value 1 in stage 2.1 and ma
0 ≥ 2/3ma,

Pr
(

na∗
0

na∗ ≥
7 · 2
9 · 3

)

= 1− o(1/n),

and so ,

Pr
(

na∗
0

na∗ ≥
1
2

)

= 1− o(1/n).

Assertion (iii) follows.

Now we prove (i). The proof of (ii) is completely similar to that of (i). Lemma

1 applied to the graph Gx,0 with d = 2na∗
0

n(n−1) and the samples S1 and S2 gives

Pr
(

ma
0 ≥ (1− ε)

2m2

n(n− 1)
na∗

0

)

= 1− o(1/n).

Let ma = ma
0 + ma

1 . We apply now Lemma 1 to the union of the graphs Gx,0

and Gx,1. This gives

Pr
(

ma ≤ (1 + ε)
2m2

n(n− 1)
na∗

)

= 1− o(1/n).

Substraction gives

Pr
(

ma
0 −

2ma

3
≥ 2m2

n(n− 1)

(

(1− ε)na∗
o − (1 + ε)

2(na∗
0 + na∗

1 )
3

))

= 1− o(1/n).



Using the inequality na∗
0 + na∗

1 ≤ 4na∗
0
3 , we obtain

Pr
(

ma
0 −

2ma

3
≥ 2m2

n(n− 1)
1− 20ε

9
na∗

o

)

= 1− o(1/n),

and fixing ε = 1/20,

Pr
(

ma
0 −

2ma

3
≥ 0

)

= 1− o(1/n),

concluding the proof.

Lemma 3. With probability 1 − o(1), the number of variables undefined after
the completion of stage 2.1 satisfies

|V a| ≤ 4 opt
δn2 .

Proof. Assume that x is undefined. We have thus simultaneously na∗
0 < 3

4 (na∗
0 +

na∗
1 ) and na∗

1 < 3
4 (na∗

0 +na∗
1 ) and so na∗

1 > 1
4 (na∗

0 +na∗
1 ) and na∗

0 > 1
4 (na∗

0 +na∗
1 ).

Since x appears in at least δn2 equations, na∗
0 + na∗

1 ≥ δn2. Thus,

opt ≥ min{na∗
0 , na∗

1 } · |V a| ≥ δn2

4
|V a|.

The assertion of the lemma follows.

We can now complete the correctness proof. Let val denote the value of the
solution given by our algorithm and let opt be the value of an optimum solution.

Theorem 1. Let ε be fixed. If opt ≤ αn3 where α is sufficiently small, then we
have that val ≤ (1 + ε)opt.

Proof. Let us write
val = val1 + val2 + val3 + val4

where:
- val1 is the number of satisfied equations with all variables in Ua

- val2 is the number of satisfied equations with all variables in V a

- val3 is the number of satisfied equations with two variables in Ua and one
in V a

- val4 is the number of satisfied equations with one variable in Ua and two
in V a.

With an obvious intended meaning, we write also

opt = opt1 + opt2 + opt3 + opt4



We have clearly val1 = opt1 and val3 ≤ opt3. Thus,

val ≤ opt + val2 − opt2 + val4 − opt4
≤ opt + val2 + val4

≤ opt +
|V a|3

6
+ n

|V a|2

2
,

and, using Lemma 3,

val ≤ opt +
43opt3

6δ3n6 + n
42opt2

2δ2n4

≤ opt
(

1 +
32opt2

3δ3n6 +
8opt
δ2n3

)

.

Since opt≤ αn3 then,

val ≤ opt
(

1 +
32α2

3δ3 +
8α
δ2

)

≤ opt(1 + ε)

for α ≤ δ2ε
9 and sufficiently small ε.

5 Extensions to dense Min-Ek-Lin2

We are able to extend our result to arbitrary k-ary versions of the problem, i.e.
to dense Min-Ek-Lin2 for arbitrary k. This requires a bit more subtle construc-
tion, and the design of a density sampler for (k − 1)-uniform hypergraphs. This
extension appear in the final version of the paper [4].
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