
HAL Id: hal-01444185
https://hal.science/hal-01444185

Submitted on 27 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axial-field eddy-current coupling : a 3D test problem for
numerical experiments

Julien Fontchastagner, Thierry Lubin, Denis Netter

To cite this version:
Julien Fontchastagner, Thierry Lubin, Denis Netter. Axial-field eddy-current coupling : a 3D test
problem for numerical experiments. International Journal of Numerical Modelling: Electronic Net-
works, Devices and Fields, 2018, 31 (2), pp.e2217. �10.1002/jnm.2217�. �hal-01444185�

https://hal.science/hal-01444185
https://hal.archives-ouvertes.fr


INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS
Int. J. Numer. Model. 201X; 00:1–11

Axial-Field Eddy-Current Coupling: a 3D Test Problem for
Numerical Experiments

J. Fontchastagner∗, T. Lubin and D. Netter
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SUMMARY

This paper deals with a device which is particularly relevant to test 3D quasi-static magnetic
numerical computations: axial eddy-current coupling. The authors have performed several numerical FEM
computations for this particular device. The eddy currents problem is solved thanks to two classical
formulations based on magnetic vector and scalar potentials. Results are compared with experimental
measurements made on a magnetic transmission already designed and built.
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1. INTRODUCTION

The purpose of this paper is to highlight a particular kind of magnetic coupling and its modelling

interests. This kind of device permits to transmit an electromagnetic torque without mechanical

contacts thanks to eddy currents produced by a rotating movement. Our goal is to choose the better

magnetic formulation in steady-state case for several future purposes: design problems or transient

simulations, for instance. First, a quick presentation of eddy-current magnetic coupling is done.

In a second time, two weak formulations adapted to take into account the rotation movement are

presented. Because they are widespread and well-known, the authors focus on the two classical

magnetic forms, based respectively on the magnetic vector potential a and the magnetic scalar

potential Φ. The terms permitting to take into account the eddy current density due to the movement

will then be detailed for both formulations in the particular case of steady-state condition. And

finally, results provided by an efficient numerical implementation are given and compared to

experimental measurements.

2. THE ASYNCHRONOUS MAGNETIC COUPLING

2.1. A simple but representative 3D non-linear with motion test problem

Heavy computations are involved for a 3D formulation taking into account non-linearities and

motion. To evaluate the resolution accuracy, it is convenient to refer a test problem. To take the

motion into account, specific techniques (moving mesh, sliding surface,. . . ) are usually used to

avoid the remeshing of the whole domain. Nevertheless, we must use a time stepping resolution to

obtain the steady state magnetic distribution. We propose a problem for which the time does not
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Magnets (alternatively north and south)

Iron yokes Copper

Figure 1. Schematic view of the two rotors and photography of our prototype (mounted on its test bench).

explicitely appear in the weak formulation, so that the steady state is directly calculated. Moreover,

as the chosen geometry is invariant versus time, a single meshing is required.

Our model has the following characteristics:

(i) Ferromagnetic materials are non linear.

(ii) It is a real 3D problem, for which the side effects can not be neglected.

(iii) The moving part is in rotation.

2.2. Magnetic coupling

Magnetic couplings transmit a torque between two rotating devices without mechanical contact.

Thereby, a motion can be transmitted between a mechanical source and an isolated load through an

insulating wall. Another advantage is to avoid mechanical losses between the two parts. Moreover,

the contactless feature does not transmit any vibrations.

This device is made of a driving part on which the engine torque is applied and a driven part on

which the mechanical load is connected. The most common structure comprises permanent magnets

on both moving parts. Each rotor is made of alternating north and south poles with permanent

magnets glued on an iron yoke. Both radial [1, 2, 3] or axial flux topologies [4, 5, 6] exist. In this

case, the driven and the driving parts have the same velocity. It is similar to a synchronous machine

and the torque is calculated by solving a magnetostatic problem.

A less common structure is similar to an induction machine. The driving rotor remains unchanged

but the driven one is replaced by a conducting plate or cylinder [7, 8, 9] glued on an iron yoke.

Radial or axial structures are also possible. Moving magnets create Eddy currents in the conducting

material. The torque is then due to the interaction between the field produced by the magnets and

the eddy currents in the conductor. In this case, the driven and the driving parts do not turn as the

same speed. Otherwise, there would be no Eddy Currents and the torque would be nil.

This device is particularly interesting in terms of numerical modelling:

(i) The geometry is purely 3D but also simple. Then, it can be meshed with structured grids.

Moreover, it includes anti-periodic symmetries, allowing to reduce the computational domain

to only one pole of the whole structure. An example of mesh is shown on Figure 2. It is created

by the free 3D finite element grid generator Gmsh [10] (GPL licence).

(ii) The eddy currents due to movement can be computed without remeshing. If we call N1 and N2

the rotating speeds of respectively the driving and the driven rotors, the eddy current density

is due to the slip speed N = N2 −N1. The problem can be treated in considering that only

the driven rotor rotates at speed N (see next section 3 for details). Because of its cylindrical

shape, it is useless to modify its geometry and mesh.

(iii) There are two kinds of field sources: magnets and eddy-currents. It is then more interesting to

integrate them in the formulation to solve.
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AXIAL-FIELD EDDY-CURRENT COUPLING 3

Figure 2. Example of structured mesh and domain (whole geometry).

Table I. Material properties in the different domains

domain material name relative permeability µr conductivity σ remanence Br

Ωym, Ωyc M1010 steel linear : 8000, else : b(h) curve 7 MS·m−1 -
Ωm NdFeB 1 - 1.25 T

Ωc copper 1 57 MS·m−1 -

(iv) Its simplicity permits to easily build prototypes at an affordable price. Our prototype is shown

in Figure 1 and we have used it to connect two DC machines: a motor and its load. We can

cheaply obtain experimental measurements to validate our computations.

3. STEADY-STATE MAGNETIC MODELLING

3.1. Problem definition

In steady-state, the driving rotor rotates at speed N1 and the driven one at speed N2. If the reference

frame (O,ux,uy,uz) link to the first rotor is chosen, we can consider that only the second rotor

(with the conductor part) rotates at speed N = N2 −N1. All the other parts are motionless. N is the

slip speed of the coupling, the z axis is considered to be the rotation axis, then the rotation vector is

N = N uz.

We define all the domains and boundaries which constitute the geometry. All of them are

displayed on Figure 3 (a), for one pole:

• Ωm: magnets,

• Ωym: yoke of the magnets side,

• Ωc: copper ring,

• Ωyc: yoke of the copper side,

• Ωa: air around the two rotors,

• Γd: domain boundaries (top, bottom, inner and outer surfaces),

• Γa: left and right surfaces with anti-periodic condition.

The corresponding material parameters are given in Table I. In the case of a non-linear magnetic

relationship, the b(h) curve used for M1010 steel is given by Figure 3 (b). Magnets remanence is

defined by: br = ±Br uz.
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Figure 3. (a): Definition of domains and boundaries (1 pole); and (b): b(h) curve used for M1010 steel.

Under the previous hypotheses, if the position vector is called p (i.e. p = (x, y, z)) , the speed at

p is given by:

v = N× p (1)

The partial time derivative of the flux density is given by:

∂t b = − curl (v × b) (2)

And the Maxwell-Faraday equation becomes:

curl (e+ v × b) = curl (e+ (N× p)× b) = 0 (3)

The two classical formulations of magnetostatics, including terms due to movement, can then be

applied to the problem.

3.2. Quasi-static magnetic formulations

3.2.1. Magnetic vector potential (a, v) formulation Equation (3) means that we can use the

modified Ohm’s law in our particular case. Introducing the magnetic vector potential a and scalar

electric potential v, and using (1), the eddy current density in conductors is given by:

je = σ (−grad v + (N× p)× curl a) (4)

The weak form of the governing equation can be established. The total domain Ω, the whole

conducting domain Ωcc and its boundaries Γc are defined by:

Ω = Ωm ∪Ωym ∪Ωc ∪Ωyc ∪ Ωa

Ωcc = Ωc ∪ Ωyc

Γc = ∂ Ωcc

(5)

The complete variational (a, v) formulation is then given by:






























(

µ−1 curl a, curl a′
)

Ω
−
(

µ−1 br, curl a
′
)

Ωm

+
(

σ grad v, a′
)

Ωcc

−
(

σ (N× p)× curl a, a′
)

Ωcc

= 0
(

grad v, grad v′
)

Ωcc

−
(

σ (N× p)× curl a, grad v′
)

Ωcc

= 0

∀a′ ∈ H 0(curl; Ω), ∀ v
′ ∈ H

1

0(Ωcc)

(6)

Int. J. Numer. Model. (201X)
Prepared using jnmauth.cls DOI: 10.1002/jnm



AXIAL-FIELD EDDY-CURRENT COUPLING 5

3.2.2. Magnetic scalar potential (he, φ) formulation Thanks to div j = 0, a source field he

producing eddy currents in conductors can be defined by:

je = curl he (7)

Then, introducing the magnetic scalar potential φ, the magnetic field h becomes:

h = he − gradφ (8)

Using (3) and Maxwell-Thomson equation, the complete variational (he, φ) formulation can be

expressed by:































(

µhe, gradφ′
)

Ωcc

−
(

µgradφ, gradφ′
)

Ω
+
(

br, grad φ′
)

Ωm

= 0
(

σ−1 curl he, curl he

′
)

Ωcc

−
(

µ (N× p)× he, curl he

′
)

Ωcc

+
(

µ (N× p)× gradφ, curl he

′
)

Ωcc

= 0

∀φ′ ∈ H
1
0 (Ω), ∀he

′ ∈ H 0(curl; Ωcc)

(9)

3.3. Post-processing quantities computations

3.3.1. Joule losses Knowing a and v, or he, the eddy current density in Ωcc can be computed by

(4) or (7). Then, the total Joule losses can be evaluated by:

PJ =



















∫

Ωcc

σ ||grad v − (N× p)× curl a||2 dΩ if (a, v) form.

∫

Ωcc

σ−1 ||curl he||
2 dΩ if (he, φ) form.

(10)

3.3.2. Electromagnetic torque There are three ways to compute the EM torque transmitted by the

coupling. Our opinion is that one of the following method is not better than an other. But the fact to

have several means to compute the same quantity is really interesting. Indeed, if the obtained results

are similar, it permits to validate our problem statement and more especially the used mesh. The

three proposed methods are :

(i) By the Joule Losses

In steady-state, a power balance between the driving part (P1) and the driven one (P2) gives:

P1 = T ·N1 = P2 + PJ = T ·N2 + PJ (11)

where T is the electromagnetic torque which is equal, in our particular case, to the useful

transmitted mechanical torque (since there is no mechanical losses in such a magnetic torque

transmission). Then we can deduced the expression TJL of the torque based on the Joule

losses and the slip speed N by:

TJL = −
PJ

N
(12)

(ii) By the Laplace forces

The Laplace forces in the Ωcc conducting domain can be computed from a and v, or he and

φ. And then, the EM torque can be directly evaluated by:

TLF =



















∫

Ωcc

[

p×
(

σ
[

− grad v + (N× p)× curl a
]

× curl a
)]

· uz dΩ

∫

Ωcc

[p× (curl he × [µ (he − gradφ)])] · uz dΩ

(13)
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6 J. FONTCHASTAGNER ET AL.

(iii) By the Maxwell stress tensor

Knowing the magnetic field h and flux density b in the airgap, we can applied the Maxwell

stress tensor on a cylindrical closed surface containing the driven rotor. If the radius of this

cylinder is extended until to the domain boundaries, the bounds of the surface integral given

the torque can be limited to a plain disc in the airgap. A method to reduce numerical noise is

to perform an average of this surface integral by introducing a volume integral of the tensor in

the whole cylindrical air domain between the two rotors called Ωg. This technique had been

successfully applied in [6]. Then, in this case, the EM torque is provided by:

TMT =



















1

µ0 g

∫

Ωg

[y (curl a · ux)− x (curl a · uy)] (curl a · uz) dΩ

µ0

g

∫

Ωg

[y (gradφ · ux)− x (grad φ · uy)] (gradφ · uz) dΩ

(14)

where g is the airgap thickness.

4. NUMERICAL EXPERIMENTS

4.1. Implementation

The both previous formulations had been implemented using the free and open source finite element

solver GetDP [11]:

(i) a and v are respectively approximated in an edge element space over Ω and a nodal element

space over Ωcc. The uniqueness of a is insured thanks to a spanning tree gauge [12]. Dirichlet

condition upon a is applied on Γd.

(ii) The (he, φ) formulation is the dual case: we use respectively an edge element space over Ωcc

and a nodal element space over Ω. Cause of the simple shape of Ωcc, no gauge or cut is needed

for he [13]. Dirichlet condition upon he is applied on Γc (boundary defined by (5)).

For complementary theoretical aspects around the two formulations and their implementation, see

[14, 15, 16]. For better performances, the GetDP solver and its third parties (PETSc [17] and

MUMPS [18]) had been locally recompiled on the workstation used for tests. This one is a simple

laptop (with Intel Core i7-5500U @2.4 GHz) running a Debian GNU/Linux system. The created

binary is a sequential version with multithreading support: 2× 2 threads are used in tests below.

4.2. Linear case

First, we solve a simpler linear problem with µr = 8000 that corresponds to the linear part of the

b(h) constitutive law (Figure 3 (b)). The purpose of this test case is to validate the accounting of the

anti-periodic conditions when the geometry is reduced to one pole.

Problems corresponding to both geometries with both formulations are solved and the results are

given in Table II. The used geometric parameters are those of our prototype, the slip speed is fixed

to N = − 2π
60

· 140 rad·s−1. The given CPU times correspond to the total time needed to solve the

problem (geometry, meshing, resolution and post-processing). The current density in the copper part

for the whole geometry is also shown in Figure 4, for both formulations.

All our results are in good agreement with each others. The values computed by the (a, v)
formulation are just a bit greater than those issued from (he, φ). Anti-periodic conditions have a

slightly influence on the first form, and absolutely none on the (he, φ) one. It can be explained

by the fact that it is not exactly the same domain for the whole system and for the one pole case.

Indeed, because of geometric facilities, in the anti-periodic case, the small cylindrical air volume at

the centre of the geometry (and containing the z axis) had been replace by a surface included in Γd.

Then the mesh and the gauge condition are not exactly the same for both models. It implies some

differences on the values of a, which produce the small gaps on global quantities. This phenomenon

Int. J. Numer. Model. (201X)
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AXIAL-FIELD EDDY-CURRENT COUPLING 7

Table II. Comparison of results (linear case: µr = 8000, −140 rpm)

Formulation (a, v) (he, φ)

Geometry complete 1 pole complete 1 pole
Dofs 208,96 24,820 162,120 19,940

PJ (W) 126.4 128.8 121.5 121.5

TJL (N·m) 8.62 8.79 8.29 8.29
TLF (N·m) 8.73 8.90 8.29 8.29
TMT (N·m) 8.63 8.75 8.30 8.30

CPU time (sec) 143.7 9.53 138.3 6.05
RAM (MB) 2,161 200 2,032 198

je = σ (−grad v + (N× p)× curl a) je = curl he

Figure 4. Eddy current density computed by the two formulations (linear case).

do not occur for the (he, φ) formulation because the copper domain remains the same in the two

cases (complete or one pole geometries). Nevertheless, we can considered that the problem reduced

to one pole is solved correctly. Moreover, we can verify that the computed torques are positive, it is

normal since its sign is obviously the opposite of the one of the slip speed, according to the Lenz’s

law. In front of the CPU time savings (more than ratio 10), only the one pole case will be considered

in the following.

As shown in Figure 5, the flux density is greater than 1.6 T (saturated value of the b(h) curve).

As a result, we must solve a non-linear problem.

4.3. Non-linear case

Now, the non-linear b(h) curve given in Figure 3 (b) is used for the Ωym and Ωyc domains. Several

non-linear solvers had been tested and, for our problems, the best performances were obtained with:

(i) the PETSc SNES solver with its default options for the (a, v) formulation;

(ii) our own fixed point method (implemented using the GetDP scripting facilities) for the (he, φ)
formulation. This problem is a bit hard to converge because of Ωyc domain which is both a

conducting and magnetic material. The permeability µ in this domain depends on the both

unknowns he and φ, whereas in the (a, v) case, it depends only on a.

The same stopping criterion is used for both resolutions: iterations are stopped when the residual

norm is less than 10−3. To accelerate even more the convergence time, the first iteration of the non-

linear problem is initialised with the solution of a linear case. This classical method permits to avoid

2 or 3 iterations during the non-linear resolution.

Int. J. Numer. Model. (201X)
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8 J. FONTCHASTAGNER ET AL.

Figure 5. Flux density norm at the copper/yoke interface (linear case).

Figure 6 shows flux density maps for the linear and the non-linear cases. As expected, flux density

maximum value reaches around 1.6 Tesla for the non-linear case, proving that the yoke is locally

strongly saturated.

Table III compares torques (computed by the three methods detailed in the previous section) and

Joule losses for linear and non-linear cases. Results highlights the fact that torque values given by

the three methods are really close. CPU times are very small. They include all the resolution process,

from geometry to post-processing, and are then truly satisfactory.

Linear case (same as in Figure 5) Non-linear case

Figure 6. Norm of flux density at the copper/yoke interface (N = −140 rpm,
g = 3 mm, (a, v) formulation, and same scale).

Torque values are really close to those computed for the linear case and magnetic saturation does

not seem to affect these global quantities. This can be explained by Figure 7, which displays the

flux density map in the middle of the airgap for both linear and non-linear cases. It appears that the

flux density is exactly the same in these two cases. Then, the magnetic saturation is only located at

the copper/iron interface and it does not impact the flux density in the airgap and copper regions.

So, the eddy currents are almost the same. Saturation should affect the torque value if the yoke was

entirely saturated.

Int. J. Numer. Model. (201X)
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AXIAL-FIELD EDDY-CURRENT COUPLING 9

Table III. Comparison of results (linear vs non-linear case) for N = −140 rpm

Formulation (a, v) (he, φ)

Case linear non-linear linear non-linear

PJ (W) 128.8 128.0 121.5 123.0

TJL (N·m) 8.79 8.73 8.29 8.39
TLF (N·m) 8.90 8.77 8.29 8.40
TMT (N·m) 8.75 8.65 8.30 8.40

# Iterations 1 7 1 4
CPU time (sec) 9.53 42.3 6.05 22.0

RAM (MB) 200 426 198 392

linear case non-linear case

Figure 7. Flux density map at the centre of the airgap, in both linear and non-linear cases (one pole).

In order to validate our results on a wide range of points, a comparison between experimental

values and our models is performed for several airgap thicknesses (g = 3, 5 and 7 mm), and for

several slip speed values. The chosen bounds correspond to the limitations of the developed test

bench as shown on Figure 1. The obtained results are given on Figure 8, where the absolute values

of slip speed are used for clarifing the plots. For the both formulation, the results point out a good

agreement between measurements and computations.

Thus, at the question: “Which magnetic formulation to choose?”, the answer should be: “It

depends”. Both have real advantages. If we want to emphasise accuracy, the (a, v) seems to be more

convenient. Indeed, the results obtained with it are a bit more close to experiments. In a near future,

it will be privileged for performing a complete transient simulation of the device with kinematic

and thermal couplings. But, if we want to deal with a design process based only on the steady-

state behaviour, the (he, φ) formulation should be the best choice. Since it is the faster one, and

computed values are slightly underestimate the real torque values (good for an inequality constraint

satisfaction), it will be really suitable for implementation with a metaheuristic optimisation method

such as any population algorithm.

5. CONCLUSION

In this paper, the authors present a simple but interesting magnetic device: an axial field eddy-

current coupling. A study on the steady-state behaviour of this particular application is performed.

It is based on the two classical weak forms suited to account eddy-current density due to movement.

An efficient implementation of both formulations (a, v) and (he, φ) provides good results in terms

of rapidity and accuracy compared to experimental values. Finally, a choice criterion between the

two methods is given. In a future work, both formulations will be used. First, the authors want

Int. J. Numer. Model. (201X)
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Figure 8. Torque vs. slip speed characteristics (left: (a, v), right: (he, φ)).

to perform a complete multi-physics simulation of an axial field eddy-current coupling, including

kinematics and thermal effects. Then, they will used the (a, v) formulation because it seems more

close to experimental values. In a second time, they also want to solve the design problem of such

devices by optimisation techniques. In that case, they will used the (he, φ) because it provides a

good torque under-evaluation in a really short time.
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