Xavier Caruso Computations

Xavier Caruso

Delphine Boucher

Nicolas Brisebarre

Claude-Pierre Jeannerod

Computations with p-adic numbers

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

The field of p-adic numbers, Q p , was first introduced by Kurt Hensel at the end of the 19th century in a short paper written in German [START_REF] Hensel | Über eine neue Begründung der Theorie der algebraischen Zahlen[END_REF]. From that time, the popularity of p-adic numbers has grown without interruption throughout the 20th century. Their first success was materialized by the famous Hasse-Minkowski's Theorem [START_REF] Serre | Cours d'arithmétique[END_REF] that states that a Diophantine equation of the form P (x 1 , . . . , x n) = 0 where P is a polynomial of total degree at most 2 has a solution over Q if and only if it has a solution over R and a solution over Q p for all prime numbers p. This characterization is quite interesting because testing whether a polynomial equation has a p-adic solution can be carried out in a very efficient way using analytic methods just like over the reals. This kind of strategy is nowadays ubiquitous in many areas of Number Theory and Arithmetic Geometry. After Diophantine equations, other typical examples come from the study of number fields: we hope deriving interesting information about a number field K by studying carefully all its p-adic incarnations K ⊗ Q Q p . The ramification of K, its Galois properties, etc. can be -and are very often -studied in this manner [START_REF] Samuel | Algebraic theory of numbers[END_REF][START_REF] Neurkich | Algebraic Number Theory[END_REF]. The class field theory, which provides a precise description of all Abelian extensions2 of a given number field, is also formulated in this language [START_REF] Neurkich | Class Field Theory[END_REF]. The importance of p-adic numbers is so prominent today that there is still nowadays very active research on theories which are dedicated to purely p-adic objects: one can mention for instance the study of p-adic geometry and p-adic cohomologies [START_REF] Berthelot | Notes on Crystalline Cohomology[END_REF][START_REF] Le | Rigid cohomology[END_REF], the theory of p-adic differential equations [START_REF] Kedlaya | p-adic Differential Equations[END_REF], Coleman's theory of padic integration [START_REF] Colmez | Integration sur les variétés p-adiques[END_REF], the p-adic Hodge theory [START_REF] Brinon | CMI Summer School notes on p-adic Hodge theory[END_REF], the p-adic Langlands correspondence [START_REF] Berger | La correspondance de Langlands locale p-adique pour GL 2 (Q p)[END_REF], the study of p-adic modular forms [START_REF] Gouvêa | Arithmetic of p-adic modular forms[END_REF], p-adic ζ-functions [START_REF] Koblitz | p-adic Numbers, p-adic Analysis, and Zeta-Functions[END_REF] and L-functions [START_REF] Coates | On p-adic L-functions[END_REF], etc. The proof of Fermat's last Theorem by Wiles and Taylor [START_REF] Wiles | Modular elliptic curves and Fermat's Last Theorem[END_REF][START_REF] Taylor | Ring theoretic properties of certain Hecke algebras[END_REF] is stamped with many of these ideas and developments.

Over the last decades, p-adic methods have taken some importance in Symbolic Computation as well. For a long time, p-adic methods have been used for factoring polynomials over Q [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. More recently, there has been a wide diversification of the use of p-adic numbers for effective computations: Bostan et al. [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF] used Newton sums for polynomials over Z p to compute composed products for polynomials over F p ; Gaudry et al. [START_REF] Gaudry | The 2-adic CM method for genus 2 curves with application to cryptography[END_REF] used p-adic lifting methods to generate genus 2 CM hyperelliptic curves; Kedlaya [START_REF] Kedlaya | Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology[END_REF], Lauder [START_REF] Lauder | Deformation theory and the computation of zeta functions[END_REF] and many followers used p-adic cohomology to count points on hyperelliptic curves over finite fields; Lercier and Sirvent [START_REF] Lercier | On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a finite field[END_REF] computed isogenies between elliptic curves over finite fields using p-adic differential equations.

The need to build solid foundations to the algorithmics of p-adic numbers has then emerged. This is however not straightforward because a single p-adic number encompasses an infinite amount of information (the infinite sequence of its digits) and then necessarily needs to be truncated in order to fit in the memory of a computer. From this point of view, p-adic numbers behave very similarly to real numbers and the questions that emerge when we are trying to implement p-adic numbers are often the same as the questions arising when dealing with rounding errors in the real setting [START_REF] Muller | Arithmétique des ordinateurs[END_REF][START_REF] Daumas | Qualité des Calculs sur Ordinateur[END_REF][START_REF] Muller | Handbook of floating-point arithmetic[END_REF]. The algorithmic study of p-adic numbers is then located at the frontier between Symbolic Computation and Numerical Analysis and imports ideas and results coming from both of these domains.

Content and organization of this course. This course focuses on the low-level implementation of p-adic numbers (and then voluntarily omits high-level algorithms making use of p-adic numbers) and pursues two main objectives. The first one is to introduce and discuss the most standard strategies for implementing p-adic numbers on computers. We shall detail three of them, each of them having its own spirit: [START_REF] Abdeljaoued | Méthodes matricielles, introduction à la complexité algébrique[END_REF] the zealous arithmetic which is inspired by interval arithmetic in the real setting, (2) the lazy arithmetic with its relaxed improvement and (3) the p-adic floatingpoint arithmetic, the last two being inspired by the eponym approaches in the real setting.

The second aim of this course is to develop a general theory giving quite powerful tools to study the propagation of accuracy in the p-adic world. The basic underlying idea is to linearize the situation (and then model the propagation of accuracy using differentials); it is once again inspired from classical methods in the real case. However, it turns out that the non-archimedean nature of Q p (i.e. the fact that Z is bounded in Q p) is the source of many simplifications which will allow us to state much more accurate results and to go much further in the p-adic setting.

As an example, we shall see that the theory of p-adic precision yields a general strategy for increasing the numerical stability of any given algorithm (assuming that the problem it solves is well-conditioned). This course is organized as follows. §1 is devoted to the introduction of p-adic numbers: we define them, prove their main properties and discuss in more details their place in Num-

Introduction to p-adic numbers

In this first section, we define p-adic numbers, discuss their basic properties and try to explain, by selecting a few relevant examples, their place in Number Theory, Algebraic Geometry and Symbolic Computation. The presentation below is voluntarily very summarized; we refer the interested reader to [START_REF] Amice | Les nombres p-adiques[END_REF][START_REF] Gouvêa | p-adic Numbers: An Introduction[END_REF] for a more complete exposition of the theory of p-adic numbers.

Definition and first properties

p-adic numbers are very ambivalent objects which can be thought of under many different angles: computational, algebraic, analytic. It turns out that each point of view leads to its own definition of p-adic numbers: computer scientists often prefer viewing a p-adic number as a sequence of digits while algebraists prefer speaking of projective limits and analysts are more comfortable with Banach spaces and completions. Of course all these approaches have their own interest and understanding the intersections between them is often the key behind the most important advances.

In this subsection, we briefly survey all the standard definitions of p-adic numbers and provide several mental representations in order to try as much as possible to help the reader to develop a good p-adic intuition.

Down-to-earth definition

Recall that each positive integer n can be written in base p, that is as a finite sum:

n = a 0 + a 1 p + a 2 p 2 + • • • + a ℓ p ℓ
where the a i 's are integers between 0 and p-1, the so-called digits. This writing is moreover unique assuming that the most significant digit a ℓ does not vanish. A possible strategy to compute the expansion in base p goes as follows. We first compute a 0 by noting that it is necessarily the remainder in the Euclidean division of n by p: indeed it is congruent to n modulo p and lies in the range [0, p-1] by definition. Once a 0 is known, we compute n 1 = n-a 0 p , which is also the quotient in the Euclidean division of n by p. Clearly n 1 = a 1 + a 2 p + • • • + a ℓ p ℓ-1 and we can now compute a 1 repeating the same strategy. Figure 1.1 shows a simple execution of this algorithm.

By definition, a p-adic integer is an infinite formal sum of the shape:

x = a 0 + a 1 p + a 2 p 2 + • • • + a i p i + • • •
where the a i 's are integers between 0 and p-1. In other words, a p-adic integer is an integer written in base p with an infinite number of digits. We will sometimes alternatively write x as follows: x = . . . a i . . . a 3 a 2 a 1 a 0 p or simply x = . . . a i . . . a 3 a 2 a 1 a 0 when no confusion can arise. The set of p-adic integers is denoted by Z p . It is endowed with a natural structure of commutative ring. Indeed, we can add, subtract and multiply p-adic integers using the schoolbook method; note that handling carries is possible since they propagate on the left. The ring of natural integers N appears naturally as a subring of Z p : it consists of p-adic integers . . . a i . . . a 3 a 2 a 1 a 0 for which a i = 0 when i is large enough. Note in particular that the integer p writes . . . 0010 in Z p and more generally p n writes . . . 0010 . . . 0 with n ending zeros. As a consequence, a p-adic integer is a multiple of p n if and only if it ends with (at least) n zeros.

Remark that negative integers are p-adic integers as well: the opposite of n is, by definition, the result of the subtraction 0-n.

Similarly, we define a p-adic number as a formal infinite sum of the shape:

x = a -n p -n + a -n+1 p -n+1 + • • • + a i p i + • • •
where n is an integer which may depend on x. Alternatively, we will write:

x = . . . a i . . . a 2 a 1 a 0 . a -1 a -2 . . . a -n p and, when no confusion may arise, we will freely remove the bar and the trailing p. A p-adic number is then nothing but a "decimal" number written in base p with an infinite number of digits before the decimal mark and a finite amount of digits after the decimal mark. Addition and multiplication extend to p-adic numbers as well. The set of p-adic numbers is denoted by Q p . Clearly Q p = Z p [1 p]. We shall see later (cf Proposition 1.1, page 5) that Q p is actually the fraction field of Z p ; in particular it is a field and Q, which is the fraction field of Z, naturally embeds into Q p .

Second definition: projective limits

From the point of view of addition and multiplication, the last digit of a p-adic integer behaves like an integer modulo p, that is an element of the finite field F p = Z/pZ. In other words, the application π 1 : Z p → Z/pZ taking a p-adic integer x = a 0 + a 1 p + a 2 p 2 + • • • to the class of a 0 modulo p is a ring homomorphism. More generally, given a positive integer n, the map:

π n : Z p → Z/p n Z a 0 + a 1 p + a 2 p 2 + • • • → (a 0 + a 1 p + • • • + a n-1 p n-1
) mod p n is a ring homomorphism. These morphisms are compatible in the following sense: for all x ∈ Z p , we have π n+1 (x) ≡ π n (x) (mod p n) (and more generally π m (x) ≡ π n (x) (mod p n) provided that m n). Putting the π n 's all together, we end up with a ring homomorphism:

π : Z p → lim ← -n Z/p n Z x → (π 1 (x), π 2 (x), . . .)
where lim ← -n Z/p n Z is by definition the subring of ∞ n=1 Z/p n Z consisting of sequences (x 1 , x 2 , . . .) for which x n+1 ≡ x n (mod p n) for all n: it is called the projective limit of the Z/p n Z's.

Conversely, consider a sequence (x 1 , x 2 , . . .) ∈ lim ← -n Z/p n Z. In a slight abuse of notation, continue to write x n for the unique integer of the range 0, p n -1 which is congruent to x n modulo p n and write it in base p:

x n = a n,0 + a n,1 p + • • • + a n,n-1 p n-1 (the expansion stops at (n-1) since x n < p n by construction). The condition x n+1 ≡ x n (mod p n) implies that a n+1,i = a n,i for all i ∈ 0, n-1 . In other words, when i remains fixed, the sequence (a n,i) n>i is constant and thus converges to some a i . Set: ψ(x 1 , x 2 , . . .) = . . . a i . . . a 2 a 1 a 0 ∈ Z p .

We define this way an application ψ : lim ← -n Z/p n Z → Z p which is by construction a left and a right inverse of π. In other words, π and ψ are isomorphisms which are inverses of each other.

The above discussion allows us to give an alternative definition of Z p , which is:

Z p = lim ← - n Z/p n Z.
The map π n then corresponds to the projection onto the n-th factor. This definition is more abstract and it seems more difficult to handle as well. However it has the enormous advantage of making the ring structure appear clearly and, for this reason, it is often much more useful and powerful than the down-to-earth definition of §1.1.1. As a typical example, let us prove the following proposition.

Proposition 1.1. (a) An element x ∈ Z p is invertible in Z p if and only if π 1 (x) does not vanish.

(b) The ring Q p is the fraction field of Z p ; in particular, it is a field.

Proof. (a) Let x ∈ Z p . Viewing Z p as lim ← -n Z/p n Z, we find that x is invertible in Z p if and only if π n (x) is invertible in Z/p n Z for all n. The latest condition is equivalent to requiring that π n (x) and p n are coprime for all n. Noting that p is prime, this is further equivalent to the fact that π n (x) mod p = π 1 (x) does not vanish in Z/pZ.

(b) By definition

Q p = Z p [1 p].
It is then enough to prove that any nonzero p-adic integer x can be written as a product x = p n u where n is a nonnegative integer and u is a unit in Z p . Let n be the number of zeros at the end of the p-adic expansion of x (or, equivalently, the largest integer n such that π n (x) = 0). Then x can be written p n u where u is a p-adic integer whose last digit does not vanish. By the first part of the proposition, u is then invertible in Z p and we are done.

We note that the first statement of Proposition 1.1 shows that the subset of non-invertible elements of Z p is exactly the kernel of π 1 . We deduce from this that Z p is a local ring with maximal ideal ker π 1 .

Valuation and norm

We define the p-adic valuation of the nonzero p-adic number x = . . . a i . . . a 2 a 1 a 0 . a -1 a -2 . . . a -n as the smallest (possibly negative) integer v for which a v does not vanish. We denote it val p (x) or simply val(x) if no confusion may arise. Alternatively val(x) can be defined as the largest integer v such that x ∈ p v Z p . When x = 0, we put val(0) = +∞. We define this way a function val : Q p → Z ∪ {+∞}. Writing down the computations (and remembering that p is prime), we immediately check the following compatibility properties for all x, y ∈ Q p :

(1) val(x + y) min val(x), val(y) ,

(2) val(xy) = val(x) + val(y).

Note moreover that the equality val(x + y) = min val(x), val(y) does hold as soon as val(x) = val(y). As we shall see later, this property reflects the tree structure of Z p (see §1. 1.5).

The p-adic norm |•| p is defined by |x| p = p -val(x) for x ∈ Q p . In the sequel, when no confusion can arise, we shall often write | • | instead of | • | p . The properties (1) and (2) above immediately translate as follows: Remark that (1') implies that | • | satisfies the triangular inequality, that is |x + y| |x| + |y| for all x, y ∈ Q p . It is however much stronger: we say that the p-adic norm is ultrametric or non Archimedean. We will see later that ultrametricity has strong consequences on the topology of Q p (see for example Corollary 1.3 below) and strongly influences the calculus with p-adic (univariate and multivariate) functions as well (see §3. 1.4). This is far from being anecdotic; on the contrary, this will be the starting point of the theory of p-adic precision we will develop in §3.

The p-adic norm defines a natural distance d on Q p as follows: we agree that the distance between two p-adic numbers x and y is |x -y| p . Again this distance is ultrametric in the sense that:

d(x, z) max d(x, y), d(y, z) .

Moreover the equality holds as soon as d(x, y) = d(y, z): all triangles in Q p are isosceles! Observe also that d takes its values in a proper subset of R + (namely {0} ∪ {p n : n ∈ Z}) whose unique accumulation point is 0. This property has surprising consequences; for example, closed balls of positive radius are also open balls and vice et versa. In particular Z p is open (in Q p) and compact according to the topology defined by the distance. From now on, we endow Q p with this topology. Clearly, a p-adic number lies in Z p if and only if its p-adic valuation is nonnegative, that is if and only if its p-adic norm is at most 1. In other words, Z p appears as the closed unit ball in Q p . Viewed this way, it is remarkable that it is stable under addition (compare with R); it is however a direct consequence of the ultrametricity. Similarly, by Proposition 1.1, a p-adic integer is invertible in Z p if and only if it has norm 1, meaning that the group of units of Z p is then the unit sphere in Q p . As for the maximal ideal of Z p , it consists of elements of positive valuation and then appears as the open unit ball in Q p (which is also the closed ball of radius p -1).

Completeness

The following important proposition shows that Q p is nothing but the completion of Q according to the p-adic distance. In that sense, Q p arises in a very natural way... just as does R.

Proposition 1.2. The space Q p equipped with its natural distance is complete (in the sense that every Cauchy sequence converges). Moreover Q is dense in Q p .

Proof. We first prove that Q p is complete. Let (u n) n 0 be a Q p -valued Cauchy sequence. It is then bounded and rescaling the u n 's by a uniform scalar, we may assume that |u n | 1 (i.e. u n ∈ Z p) for all n. For each n, write :

u n = ∞ i=0
a n,i p i with a n,i ∈ {0, 1, . . . , p-1}. Fix an integer i 0 and set ε = p -i 0 . Since (u n) is a Cauchy sequence, there exists a rank N with the property that |u nu m | ε for all n, m N . Coming back to the definition of the p-adic norm, we find that u n -u m is divisible by p i 0 . Writing u n = u m +(u n -u m) and computing the sum, we get a n,i = a m,i for all i i 0 . In particular the sequence (a n,i 0) n 0 is ultimately constant. Let a i 0 ∈ {0, 1, . . . , p-1} denote its limit. Now define ℓ = ∞ i=0 a i p i ∈ Z p and consider again ε > 0. Let i 0 be an integer such that p -i 0 ε. By construction, there exists a rank N for which a n,i = a i whenever n N and i i 0 . For n N , the difference u nℓ is then divisible by p i 0 and hence has norm at most ε. Hence (u n) converges to ℓ.

We now prove that Q is dense in Q p . Since Q p = Z p [1 p], it is enough to prove that Z is dense in Z p . Pick a ∈ Z p and write a = i 0 a i p i . For a nonnegative integer n, set b n = n-1 i=0 a i p i . Clearly b n is an integer and the sequence (b n) n 0 converges to a. The density follows.

Corollary 1.3. Let (u n) n 0 be a sequence of p-adic numbers. The series n 0 u n converges in Q p if and only if its general term u n converges to 0. Proof. Set s n = n-1 i=0 u i . Clearly u n = s n+1s n for all n. If (s n) converges to a limit s ∈ Q p , then u n converges to ss = 0. We now assume that (u n) goes to 0. We claim that (s n) is a Cauchy sequence (and therefore converges). Indeed, let ε > 0 and pick an integer N for which |u i | ε for all i N . Given two integers m and n with m > n N , we have:

|s m -s n | = m-1 i=n u i max |u n |,

Tree representation

Geometrically, it is often convenient and meaningful to represent Z p as the infinite full p-ary tree.

In order to explain this representation, we need a definition.

Definition 1.4. For h ∈ N and a ∈ Z p , we set:

I h,a = x ∈ Z p s.t. x ≡ a (mod p h) .
An interval of Z p is a subset of Z p of the form I h,a for some h and a.

If a decomposes in base p as a = a 0 +a

1 p+a 2 p 2 +• • •+a h-1 p h-1 +• • • , the interval I h,
a consists exactly of the p-adic integers whose last digits are a h-1 . . . a 1 a 0 in this order. On the other hand, from the analytic point of view, the condition x ≡ a (mod p h) is equivalent to |x -a| p -h . Thus the interval I h,a is nothing but the closed ball of centre a and radius p -h . Even better, the intervals of Z p are exactly the closed balls of Z p .

Clearly I h,a = I h,a ′ if and only if a ≡ a ′ (mod p h). In particular, given an interval I of Z p , there is exactly one integer h such that I = I h,a . We will denote it by h(I) and call it the height of I. We note that there exist exactly p h intervals of Z p of height h since these intervals are indexed by the classes modulo p h (or equivalently by the sequences of h digits between 0 and p-1).

From the topological point of view, intervals behave like Z p : they are at the same time open and compact.

We now define the tree of Z p , denoted by T (Z p), as follows: its vertices are the intervals of Z p and we put an edge I → J whenever h(J) = h(I) + 1 and J ⊂ I. A picture of T (Z 2) is represented on Figure 1.3. The labels indicated on the vertices are the last h digits of a. Coming back to a general p, we observe that the height of an interval I corresponds to the usual height function in the tree T (Z p). Moreover, given two intervals I and J, the inclusion J ⊂ I holds if and only if there exists a path from I to J.

Elements of Z p bijectively correspond to infinite paths of T (Z p) starting from the root through the following correspondence: an element x ∈ Z p is encoded by the path

I 0,x → I 1,x → I 2,x → • • • → I h,x → • • • .
Under this encoding, an infinite path of T (Z p) starting from the root

I 0 → I 1 → I 2 → • • • → I h → • • •
corresponds to a uniquely determined p-adic integer, which is the unique element lying in the decreasing intersection h∈N I h . Concretely each new I h determines a new digit of x; the whole collection of the I h 's then defines x entirely. The distance on Z p can be visualized on T (Z p) as well: given x, y ∈ Z p , we have |x -y| = p -h where h is the height where the paths attached to x and y separate.

The above construction easily extends to Q p . Definition 1.5. For h ∈ Z and a ∈ Q p , we set:

I h,a = x ∈ Q p s.t. |x -a| p -h .
A bounded interval of Q p is a subset of Q p of the form I h,a for some h and a.

Similarly to the case of Z p , a bounded interval of Q p of height h is a subset of Q p consisting of p-adic numbers whose digits at the positions < h are fixed (they have to agree with the digits of a at the same positions).

The graph T (Q p) is defined as follows: its vertices are the intervals of Q p while there is an edge I → J if h(J) = h(I) + 1 and J ⊂ I. We draw the attention of the reader to the fact that T (Q p) is a tree but it is not rooted: there does not exist a largest bounded interval in Q p . To understand better the structure of T (Q p), let us define, for any integer v, the subgraph

T (p -v Z p) of T (Q p) consisting of intervals which are contained in p -v Z p . From the fact that Q p is the union of all p -v Z p , we derive that T (Q p) = v 0 T (p -v Z p). Moreover, for all v, T (p -v Z p) is a rooted tree (with root p -v Z p) which is isomorphic to T (Z p) except
that the height function is shifted by -v. The tree T (p -v-1 Z p) is thus obtained by juxtaposing p copies of T (p -v Z p) and linking the roots of them to a common parent p -v Z p (which then becomes the new root).

Newton iteration over the p-adic numbers

Newton iteration is a well-known tool in Numerical Analysis for approximating a zero of a "nice" function defined on a real interval. More precisely, given a differentiable function f : [a, b] → R, we define a recursive sequence (x i) i 0 by:

x 0 ∈ [a, b] ; x i+1 = x i - f (x i) f ′ (x i) , i = 0, 1, 2, . . . (1.1)
Under some assumptions, one can prove that the sequence (x i) converges to a zero of f , namely x ∞ . Moreover the convergence is very rapid since, assuming that f is twice differentiable, we usually have an inequality of the shape |x ∞x i | ρ 2 i for some ρ ∈ (0, 1). In other words, the number of correct digits roughly doubles at each iteration. The Newton recurrence (1.1) has a nice geometrical interpretation as well: the value x i+1 is the x-coordinate of the intersection point of the x-axis with the tangent to the curve y = f (x) at the point x i (see Figure 1.4).

Hensel's Lemma

It is quite remarkable that the above discussion extends almost verbatim when R is replaced by Q p . Actually, extending the notion of differentiability to p-adic functions is quite subtle and probably the most difficult part. This will be achieved in §3.1.3 (for functions of class C 1) and §3.2.3 (for functions of class C 2). For now, we prefer avoiding these technicalities and restricting ourselves to the simpler (but still interesting) case of polynomials. For this particular case, the

x 0 x 1 x 2 x 3 • x ∞ Figure 1
.4: Newton iteration over the reals Newton iteration is known as Hensel's Lemma and already appears in Hensel's seminal paper [START_REF] Hensel | Über eine neue Begründung der Theorie der algebraischen Zahlen[END_REF] in which p-adic numbers are introduced.

Let f (X) = a 0 + a 1 X + • • • + a n X n be a polynomial in the variable X with coefficients in Q p . Recall that the derivative of f can be defined in a purely algebraic way as

f ′ (X) = a 1 + 2a 2 X + • • • + na n X n-1 . Theorem 1.6 (Hensel's Lemma). Let f ∈ Z p [X]
be a polynomial with coefficients in Z p . We suppose that we are given some a ∈ Z p with the property that |f (a)| < |f ′ (a)| 2 . Then the sequence (x i) i 0 defined by the recurrence:

x 0 = a ; x i+1 = x i - f (x i) f ′ (x i)
is well defined and converges to x ∞ ∈ Z p with f (x ∞) = 0. The rate of convergence is given by:

|x ∞ -x i | |f ′ (a)| • |f (a)| |f ′ (a)| 2 2 i
. Moreover x ∞ is the unique root of f in the open ball of centre a and radius |f ′ (a)|.

The proof of the above theorem is based on the next lemma:

Lemma 1.7. Given f ∈ Z p [X] and x, h ∈ Z p , we have:

(i) |f (x + h) -f (x)| |h|. (ii) |f (x + h) -f (x) -hf ′ (x)| |h| 2 .
Proof. For any nonnegative integer i, define

f [i] = 1 i! f (i)
where f (i) stands for the i-th derivative of f . Taylor's formula then reads:

f (x + h) -f (x) = hf ′ (x) + h 2 f [2] (x) + • • • + h n f [n] (x). (1.2)
Moreover, a direct computation shows that the coefficients of f [i] are obtained from that of f by multiplying by binomial coefficients. Therefore f [i] has coefficients in Z p . Hence

f [i] (x) ∈ Z p , i.e.
|f [i] (x)| 1, for all i. We deduce that each summand of the right hand side of (1.2) has norm at most |h|. The first assertion follows while the second is proved similarly.

Proof of Theorem 1.6.

Define ρ = |f (a)| |f ′ (a)| 2 .
We first prove by induction on i the following conjunction:

(H i) : |f ′ (x i)| = |f ′ (a)| and |f (x i)| |f ′ (a)| 2 • ρ 2 i .
Clearly (H 0) holds. We assume now that (H i) holds for some i Coming back to the recurrence defining the x i 's, we get:

0. We put h = -f (x i) f ′ (x i) so that x i+1 = x i + h. We write f ′ (x i+1) = f ′ (x i+1) -f ′ (x i) + f ′ (x i). Observe that the first summand f ′ (x i+1) -f ′ (x i)
|x i+1 -x i | = |f (x i)| |f ′ (x i)| |f ′ (a)| • ρ 2 i . (1.3)
By Corollary 1.3, this implies the convergence of the sequence

(x i) i 0 . Its limit x ∞ is a solution to the equation x ∞ = x ∞ + f (x∞) f ′ (x∞) . Thus f (x ∞
) has to vanish. The announced rate of convergence follows from Eq. (1.3) thanks to ultrametricity.

It remains to prove uniqueness. For this, consider y ∈ Z p with f (y) = 0 and |y -

x 0 | < |f ′ (a)|. Since |x ∞ -x 0 | |f ′ (a)| • ρ < |f ′ (a)|, we deduce |x ∞ -y| < |f ′ (a)| as well. Applying Lemma 1.7 with x = x ∞ and h = y -x ∞ , we find |hf ′ (x ∞)| |h| 2 . Since |h| < |f ′ (a)| = |f ′ (x ∞)|, this implies |h| = 0, i.e. x = x ∞ . Uniqueness is proved.
Remark 1.8. All conclusions of Theorem 1.6 are still valid for any sequence (x i) satisfying the weaker assumption:

x i+1 -x i + f (x i) f ′ (x i) |f ′ (a)| • ρ 2 i+1
(the proof is entirely similar). Roughly speaking, this stronger version allows us to work with approximations at each iteration. It will play a quite important role for algorithmic purpose (notably in §2.1.3) since computers cannot handle exact p-adic numbers but always need to work with truncations.

Computation of the inverse

A classical application of Newton iteration is the computation of the inverse: for computing the inverse of a real number c, we introduce the function x → 1

xc and the associated Newton scheme. This leads to the recurrence x i+1 = 2x icx 2 i with initial value x 0 = a where a is sufficiently close to 1 c . In the p-adic setting, the same strategy applies (although it does not appear as a direct consequence of Hensel's Lemma since the mapping x → 1

xc is not polynomial). Anyway, let us pick an invertible element c ∈ Z p , i.e. |c| = 1, and define the sequence (x i) i 0 by:

x 0 = a ; x i+1 = 2x i -cx 2 i , i = 0, 1, 2, . . .
where a is any p-adic number whose last digit is the inverse modulo p of the last digit of c.

Computing such an element a reduces to computing a modular inverse and thus is efficiently feasible.

Proposition 1.9. The sequence (x i) i 0 defined above converges to 1 c ∈ Z p . More precisely, we have |cx i -1| p -2 i for all i.

Proof. We prove the last statement of the proposition by induction on i. By construction of a, it holds for i = 0. Now observe that cx i+1 -

1 = 2cx i -c 2 x 2 i -1 = -(cx i -1) 2 .
Taking norms on both sides, we get |cx i+1 -1| = |cx i -1| 2 and the induction goes this way.

Quite interestingly, this method extends readily to the non-commutative case. Let us illustrate this by showing how it can be used to compute inverses of matrices with coefficients in Z p . Assume then that we are starting with a matrix C ∈ M n (Z p) whose reduction modulo p is invertible, i.e. there exists a matrix A such that AC ≡ I n (mod p) where I n is the identity matrix of size n. Note that the computation of A reduces to the inversion of an n × n matrix over the finite field F p and so can be done efficiently. We now define the sequence (X i) i 0 by the recurrence:

X 0 = A ; X i+1 = 2X i -X i CX i
(be careful with the order in the last term). Mimicking the proof of Proposition 1.9, we write:

CX i+1 -I n = 2CX i -CX i CX i -I n = -(CX i -I n) 2
and obtain this way that each entry of CX i -1 has norm at most p 2 i . Therefore X i converges to a matrix X ∞ satisfying CX ∞ = I n , i.e. X ∞ = C -1 (which in particular implies that C is invertible). A similar argument works for p-adic skew polynomials and p-adic differential operators as well.

Square roots in Q p

Another important application of Newton iteration is the computation of square roots. Again, the classical scheme over R applies without (substantial) modification over Q p . Let c be a p-adic number. If the p-adic valuation of c is odd, then c is clearly not a square in Q p and it does not make sense to compute its square root. On the contrary, if the p-adic valuation of c is even, then we can write c = p 2v c ′ where v is an integer and c ′ is a unit in Z p . Computing a square root then reduces to computing a square root of c ′ ; in other words, we may assume that c is invertible in Z p , i.e. |c| = 1.

We now introduce the polynomial function f (x) = x 2c. In order to apply Hensel's Lemma (Theorem 1.6), we need a first rough approximation a of √ c. Precisely, we need to find some a ∈ Z p with the property that |f (a)| < |f ′ (a)| 2 = |2a| 2 . From |c| = 1, the above inequality implies |a| = 1 as well and therefore can be rewritten as a 2 ≡ c (mod q) where q = 8 if p = 2 and q = p otherwise. We then first need to compute a square root of c modulo q. If p = 2, this can be achieved simply by looking at the table of squares modulo 8: a 0 1 2 3 4 5 6 7 a 2 0 1 4 1 0 1 4 1

Observe moreover that c is necessarily odd (since it is assumed to be invertible in Z 2). If it is congruent to 1 modulo 8, a = 1; otherwise, there is no solution and c has no square root in Q 2 . When p > 2, we have to compute a square root in the finite field F p for which efficient algorithms are known [23, §1.5]. If c mod p is not a square in F p , then c does not admit a square root in Q p either.

Once we have computed the initial value a, we consider the recursive sequence (x i) i 0 defined by x 0 = a and

x i+1 = x i - f (x i) f ′ (x i) = 1 2 x i + c x i , i = 0, 1, 2, . . .

By Hensel'

s Lemma, it converges to a limit x ∞ which is a square root of c. Moreover the rate of convergence is given by:

|x ∞ -x i | p -2 i if p > 2 |x ∞ -x i | 2 -(2 i +1) if p = 2
meaning that the number of correct digits of x i is at least 2 i (resp.

2 i + 1) when p > 2 (resp. p = 2). char. 0 char. p Z ←→ F p [t] Q ←→ F p (t) Z p ←→ F p [[t]] Q p ←→ F p ((t))
Figure 1.5: Similarities between characteristic 0 and characteristic p

Similarities with formal and Laurent series

According to the very first definition of Z p we have given (see §1. 4 , we can even supplement the correspondence between the characteristic 0 and the characteristic p, ending up with the "dictionary" of Figure 1.5.

Algebraists have actually managed to capture the essence of there resemblances in the notion of discrete valuation rings/fields and completion of those [START_REF] Serre | Corps locaux[END_REF]. Recently, Scholze defined the notion of perfectoid which allows us (under several additional assumptions) to build an actual bridge between the characteristic 0 and the characteristic p. It is not the purpose of this lecture to go further in this direction; we nevertheless refer interested people to [START_REF] Scholze | Perfectoid spaces: A survey[END_REF][START_REF] Scholze | Perfectoid spaces and their Applications[END_REF][START_REF] Bhatt | What is... a Perfectoid Space? Notices of the Amer[END_REF] for the exposition of the theory.

The point of view of algebraic geometry

Algebraic Geometry has an original and interesting point of view on the various rings and fields introduced before, showing in particular how p-adic numbers can arise in many natural problems in arithmetics. The underlying ubiquitous idea in algebraic geometry is to associate to any ring A a geometrical space Spec A -its so-called spectrum -on which the functions are the elements of A. We will not detail here the general construction of Spec A but just try to explain informally what it looks like when A is one of the rings appearing in Figure 1.5.

Let us start with k[t]

where k is a field (of any characteristic). For the simplicity of the exposition, let us assume further that k is algebraically closed. One thinks of elements of k[t] as (polynomial) functions over k, meaning that this spectrum should be thought of as k itself. Spec k[t] is called the affine line over k and is usually drawn as a straight line. The spectrum of k(t) can be understood in similar terms: a rational fraction f ∈ k(t) defines a function on k as well, except that it can be undefined at some points. Therefore Spec k(t) might be thought as the affine line over k with a "moving" finite set of points removed. It is called the generic point of the affine line.

What about k[[t]]? If k has characteristic 0 (which we assume for the simplicity of the discussion), the datum of f ∈ k[[t]] is equivalent to the datum of the values of the f (n) (0)'s (for n varying in N); we sometimes say that f defines a function on a formal neighborhood of 0. This formal neighborhood is the spectrum of k[[t]]; it should then be thought as a kind of thickening of the point 0 ∈ Spec k[t] which does not include any other point (since a formal series f ∈ k[[t]] cannot be evaluated in general at any other point than 0). Finally Spec k((t)) is the punctured

t 2 1-t ∈ k(t) t 2 + t 3 + t 4 + • • • ∈ k[[t]] -4 -(t-2) 2 + (t-2) 3 -(t-2) 4 + • • • ∈ k[[t-2]] Spec k[t] -1 0 1 2 3 Spec k[[t]] Spec k[[t-2]] 909 5 ∈ Q . . . 102001100 ∈ Z 3 . . . 412541634 ∈ Z 7 Spec Z 2 3 5 7 11
Spec Z 3 Spec Z 7
[t] → k[[t]] (resp. k(t) → k((t)))
given by Taylor expansion at 0 corresponds to the restriction of a function f defined on the affine line (resp. the generic point of the affine line) to the formal neighborhood (resp. the punctured formal neighborhood) of 0.

Of course, one can define similarly formal neighborhoods and punctured formal neighborhoods around other points: for a ∈ k, the corresponding rings are respectively k[[h a]] and k((h a)) where h a is a formal variable which plays the role t-a. The algebraic incarnation of the restrictions to Spec k[[h a]] and k((h a)) are the Taylor expansions at a.

The above discussion is illustrated by the drawing at the top of Figure 1.6; it represents more precisely the rational fraction f (t) = t 2 1-t viewed as a function defined on Spec k(t) (with 1 as point of indeterminacy) together its Taylor expansion around 0 (in blue) and 2 (in purple) which are defined on formal neighborhoods.

We now move to the arithmetical rings (Z, Q, Z p and Q p) for which the picture is surprisingly very similar. In order to explain what is the spectrum of Z, we first need to reinterpret Spec k[t] in a more algebraic way. Given f ∈ k[t], its evaluation at a, namely f (a), can alternatively be defined as the remainder in the Euclidean division of a by t-a. The affine line over k then appears more intrinsically as the set of monic polynomials of degree 1 over k or, even better, as the set of irreducible monic polynomials (recall that we had assumed that k is algebraically closed).

Translating this to the arithmetical world, we are inclined to think at the spectrum of Z as the set of prime numbers. Moreover, the evaluation of an integer a ∈ Z at the prime p should be nothing but the remainder in the Euclidean division of a by p. The integer a defines this way a function over the spectrum of Z.

A rational number a b can be reduced modulo p for all prime p not dividing b. It then defines a function on the spectrum of Z except that there are points of indeterminacy. SpecQ then appears as the generic point of Spec Z exactly as Spec k(t) appeared as the generic point of Spec k[t].

Now sending an integer or a rational number to Q p is the exact algebraic analogue of writing the Taylor expansion of a polynomial or a rational fraction. That is the reason why Spec Z p should be thought of as a formal neighborhood of the point p ∈ Spec Z. Similarly Spec Q p is the punctured formal neighborhood around p.

The second drawing of Figure 1.6 (which really looks like the first one) displays the rational number 909 5 viewed as a function over Spec Z (with 5 as point of indeterminacy) together with its local p-adic/Taylor expansion at p = 3 and p = 7.

Local-global principle

When studying equations where the unknown is a function, it is often interesting to look at local properties of a potential solution. Typically, if we have to solve a differential equation:

a d (t)y (d) (t) + a d-1 (t)y (d-1) (t) + • • • + a 1 (t)y ′ (t) + a 0 y(t) = b(t)
a standard strategy consists in looking for analytic solutions of the shape y(t) = n c n (t-a) n for some a lying in the base field. The differential equation then rewrites as a recurrence on the coefficients c n which sometimes can be solved. This reasoning yields local solutions which have to be glued afterwards.

Keeping in mind the analogy between functions and integers/rationals, we would like to use a similar strategy for studying Diophantine equations over Q. Consider then a Diophantine equation of the shape:

P (x 1 , . . . , x n) = 0 (1.4)
where P is a polynomial with rational coefficients and the x i 's are the unknowns. If Eq. (1.4) has a global solution, i.e. a solution in Q n , then it must have local solutions everywhere, i.e. a solution in Q n p for each prime number p. Indeed Q embeds into each Q p . We are interested in the converse: assuming that Eq. (1.4) has local solutions everywhere, can we glue them in order to build a global solution? Unfortunately, the answer is negative in general. There is nevertheless one remarkable case for which this principle works well. Theorem 1.10 (Hasse-Minkowski). Let P (x 1 , . . . , x n) be a multivariate polynomial. We assume that P is quadratic, i.e. that the total degree of P is 2. Then, the equation (1.4) has a solution in Q n if and only if it has a solution in R n and in Q n p for all prime numbers p. We refer to [START_REF] Serre | Cours d'arithmétique[END_REF] for the proof of this theorem (which is not really the purpose of this course). Understanding the local-global principle beyond the case of quadratic polynomials has motivated a lot of research for more than 50 years. In 1970, at the International Congress of Mathematicians in Nice, Manin highlighted a new obstruction of cohomological nature to the possibility of glueing local solutions [START_REF] Manin | Le groupe de Brauer-Grothendieck en géométrie diophantienne[END_REF]. This obstruction is called nowadays the Brauer-Manin obstruction 5 . Exhibiting situations where it can explain, on its own, the non-existence of rational solutions is still an active domain of research today, in which very recent breakthrough progresses have been done [START_REF] Harpaz | On the fibration method for zero-cycles and rational points[END_REF][START_REF] Harari | Zéro-cycles et points rationnels sur les fibrations en variétés rationnellement connexes (d'après Harpaz et Wittenberg)[END_REF].

Why should we implement p-adic numbers?

We have seen that p-adic numbers are a wonderful mathematical object which might be quite useful for arithmeticians. However it is still not clear that it is worth implementing them in mathematical software. The aim of this subsection is to convince the reader that it is definitely worth it. Here are three strong arguments supporting this thesis: (A) p-adic numbers provide sometimes better numerical stability;

(B) p-adic numbers provide a solution for "allowing for division by p in F p ";

(C) p-adic numbers really appear in nature.

In the next paragraphs (§ §1.4.1-1.4.3), we detail several examples illustrating the above arguments and showing that p-adic numbers appear as an essential tool in many questions of algorithmic nature.

The Hilbert matrix

The first aforementioned argument, namely the possibility using p-adic numbers to have better numerical stability, is used in several contexts as factorization of polynomials over Q or computation of Galois groups of number fields. In order to avoid having to introduce too advanced concepts here, we have chosen to focus on a simpler example which was pointed out in Vaccon's PhD thesis [79, §1.3.4]: the computation of the inverse of the Hilbert matrix. Although this example is not directly related to the most concrete concerns of arithmeticians, it already very well highlights the potential of p-adic numbers when we are willing to apply numerical methods to a problem which is initially stated over the rationals.

We recall that the Hilbert matrix of size n is the square matrix H n whose (i, j) entry is 1 i+j-1

(1 i, j n). For example:

H 4 =     1 1/2 1/3 1/4 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7     .
Hilbert matrices are famous for many reasons. One of them is that they are very ill-conditioned, meaning that numerical computations involving Hilbert matrices may lead to important numerical errors. A typical example is the computation of the inverse of H n . Let us first mention that an exact formula giving the entries of H -1 n is known:

(H -1 n) i,j = (-1) i+j • (i + j -1) • n + i -1 n -j • n + j -1 n -i • i + j -2 i -1 2 .
(1.5) (see for example [START_REF] Choi | Tricks or treats with the Hilbert matrix[END_REF]). We observe in particular than H -1 n has integral coefficients. We now move to the numerical approach: we consider H n as a matrix with real coefficients and compute its inverse using standard Gaussian elimination (with choice of pivot) and IEEE floating-point arithmetics (with 53 bits of precision) [START_REF]IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic, IEEE Standard[END_REF]. Here is the result we get with SAGE-MATH [START_REF] Stein | Sage Mathematics Software[END_REF] for n = 4: The computation of H -1 n seems quite accurate over Q 2 whereas it was on the contrary highly inaccurate over R. As a consequence, if we want to use numerical methods to compute the exact inverse of H n over Q, it is much more interesting to go through the 2-adic numbers. Of course this approach does not make any sense if we want a real approximation of the entries of H -1 n ; in particular, if we are only interesting in the size of the entries of H -1 n (but not in their exact values) passing through the p-adics is absurd since two integers of different sizes might be very close in the p-adic world.

H -1 4 ≈   
The phenomena occurring here are actually easy to analyze. The accuracy of the inversion of a real matrix is governed by the condition number which is defined by:

cond R (H n) = H n R • H -1 n R
where • R is some norm on M n (R). According to Eq. (1.5), the entries of H n are large: as an example, the bottom right entry of H n is equal to (2n -1)

• 2n-2 n-1
2 and thus grows exponentially fast with respect to n. As a consequence the condition number cond R (H n) is quite large as well; this is the source of the loss of accuracy observed for the computation of H -1 n over R. Over Q p , one can argue similarly and consider the p-adic condition number:

cond Qp (H n) = H n Qp • H -1 n Qp
where • Qp is the infinite norm over M n (Q p) (other norms do not make sense over Q p because of the ultrametricity). Since H -1 n has integral coefficients, all its entries have their p-adic norm bounded by 1. Thus H -1 n Qp 1. As for the Hilbert matrix H n itself, its norm is equal to p v where v is the highest power of p appearing in a denominator of an entry of H n , i.e. v is the unique integer such that p v 2n -1 < p v+1 . Therefore H n Qp 2n and cond Qp (H n) = O(n). The growth of the p-adic condition number in then rather slow, explaining why the computation of H -1 n is accurate over Q p .

Lifting the positive characteristic

In this paragraph, we give more details about the mysterious sentence: p-adic numbers provide a solution for "allowing for divisions by p in F p ". Let us assume that we are working on a problem that makes sense over any field and always admits a unique solution (we will give examples later). To fix ideas, let us agree that our problem consists in designing a fast algorithm for computing the aforementioned unique solution. Assume further that such an algorithm is available when k has characteristic 0 but does not extend to the positive characteristic (because it involves a division by p at some point). In this situation, one can sometimes take advantage of p-adic numbers to attack the problem over the finite field F p , proceeding concretely in three steps as follows:

1. we lift our problem over Q p (meaning that we introduce a p-adic instance of our problem whose reduction modulo p is the problem we have started with), 2. we solve the problem over Q p (which has characteristic 0), 3. we finally reduce the solution modulo p.

The existence and uniqueness of the solution together ensure that the solution of the p-adic problem is defined over Z p and reduces modulo p to the correct answer. Concretely, here are two significant examples where the above strategy was used with success: the fast computation of composed products [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF] and the fast computation of isogenies in positive characteristic [START_REF] Lercier | On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a finite field[END_REF][START_REF] Lairez | On p-adic differential equations with separation of variables[END_REF].

In order to give more substance to our thesis, we briefly detail the example of composed products. Let k be a field. Given two monic polynomials P and Q with coefficients in k, we recall that the composed product of P and Q is defined by:

P ⊗ Q = α β (X -αβ)
where α (resp. β) runs over the roots of P (resp. of Q) in an algebraic closure of k, with the convention that a root is repeated a number of times equal to its multiplicity. Note that P ⊗ Q is always defined over k since all its coefficients are written as symmetric expressions in the α's and the β's. We address the question of the fast multiplication of composed products.

If k has characteristic 0, Dvornicich and Traverso [START_REF] Dvornicich | Newton symmetric functions and the arithmetic of algebraically closed fields[END_REF] proposed a solution based on Newton sums. Indeed, letting S P,n and S Q,n be the Newton sums of P and Q respectively:

S P,n = α α n and S Q,n = β β n .
It is obvious that the product S P,n • S Q,n is the n-th Newton sum of P ⊗ Q. Therefore, if we design fast algorithms for going back and forth between the coefficients of a polynomial and its Newton sums, the problem of fast computation of the composed product will be solved.

Schönhage [START_REF] Schönhage | The fundamental theorem of algebra in terms of computational complexity[END_REF] proposed a nice solution to the latter problem. It relies on a remarkable differential equation relating a polynomial and the generating function of the sequence of its Newton sums. Precisely, let A be a monic polynomial of degree d over k. We define the formal series:

S A (t) = ∞ n=0 S A,n+1 t n .
A straightforward computation then leads to the following remarkable relation:

(E) : A ′ rec (t) = -S A (t) • A rec (t)
where A rec is the reciprocal polynomial of A defined by

A rec (X) = X d • A(1 X). If the polynomial A is known, then one can compute S A (t) by performing a simple division in k[[t]].
Using fast multiplication and Newton iteration for computing the inverse (see §1.2.2), this method leads to an algorithm that computes S 1 , S 2 , . . . , S N for a cost of Õ(N) operations in k.

Going in the other direction reduces to solving the differential equation (E) where the unknown is now the polynomial A rec . When k has characteristic 0, Newton iteration can be used in this context (see for instance [START_REF] Bostan | Differential equations for algebraic functions[END_REF]). This leads to the following recurrence:

B 1 (t) = 1 ; B i+1 (t) = B i (t) -B i (t) B ′ i (t) B i (t) + S A (t) dt
where the integral sign stands for the linear operator acting on k[[t]] by t n → t n+1 n+1 . One proves that B i (t) ≡ A rec (t) (mod t 2 i) for all i. Since A rec (t) is a polynomial of degree d, it is then enough to compute it modulo t d+1 . Hence after log 2 (d+1) iterations of the Newton scheme, we have computed all the relevant coefficients. Moreover all the computations can be carried by omitting all terms of degree > d. This leads to an algorithm that computes A rec (and hence A) for a cost of Õ(d) operations in k.

In positive characteristic, this strategy no longer works because the integration involves divisions by integers. When k is the finite field with p elements 6 , one can tackle this issue by lifting the problem over Z p , following the general strategy discussed here. First, we choose two polynomials P and Q with coefficients in Z p with the property that P (resp. Q) reduces to P (resp. Q) modulo p. Second, applying the characteristic 0 method to P and Q, we compute P ⊗ Q. Third, we reduce the obtained polynomial modulo p, thus recovering P ⊗ Q. This strategy was concretized by the work of Bostan, Gonzalez-Vega, Perdry and Schost [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF]. The main difficulty in their work is to keep control on the p-adic precision we need in order to carry out the computation and be sure to get the correct result at the end; this analysis is quite subtle and was done by hand in [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF]. Very general and powerful tools are now available for dealing with such questions; they will be presented in §3.

p-adic numbers in nature

We have already seen in the introduction of this course that p-adic numbers are involved in many recent developments in Number Theory and Arithmetic Geometry (see also §1.3.2). Throughout the 20th century, many p-adic objects have been defined and studied as well: p-adic modular/automorphic forms, p-adic differential equations, p-adic cohomologies, p-adic Galois representations, etc. It turns out that mathematicians, more and more often, feel the need to make "numerical" experimentations on these objects for which having a nice implementation of p-adic numbers is of course a prerequisite.

Moreover p-adic theories sometimes have direct consequences in other areas of mathematics. A good example in this direction is the famous problem of counting points on algebraic curves defined over finite fields (i.e. roughly speaking counting the number of solutions in finite fields of equations of the shape P (X, Y) = 0 where P is bivariate polynomial). This question has received much attention during the last decade because of its applications to cryptography (it serves as a primitive in the selection of secure elliptic curves). Since the brilliant intuition of Weil [START_REF] Weil | Numbers of solutions of equations in finite fields[END_REF] followed by the revolution of Algebraic Geometry conducted by Grothendieck in the 20th century [START_REF] Grothendieck | Séminaire de géométrie algébrique du Bois-Marie[END_REF], the approach to counting problems is now often cohomological. Roughly speaking, if C is an algebraic variety (with some additional assumptions) defined over a finite field F q , then the number of points of C is related to the traces of the Frobenius map acting on the cohomology of C. Counting points on C then "reduces" to computing the Frobenius map on the cohomology. Now it turns out that traditional algebraic cohomology theory yields vector spaces over Q ℓ (for an auxiliary prime number ℓ which does not need to be equal to the characteristic of the finite field we are working with). This is the way ℓ-adic numbers enter naturally into the scene.

Several implementations of p-adic numbers

Now we are all convinced that it is worth implementing p-adic numbers, we need to discuss the details of the implementation. The main problem arising when we are trying to put p-adic numbers on computers is the precision. Indeed, remember that a p-adic number is defined as an infinite sequence of digits, so that it a priori cannot be stored entirely in the memory of a computer. From this point of view, p-adic numbers really behave like real numbers; the reader should therefore not be surprised if he/she often detects similarities between the solutions we are going to propose for the implementation of p-adic numbers and the usual implementation of reals.

In this section, we design and discuss three totally different paradigms: zealous arithmetic (§2.1), lazy arithmetic together with the relaxed improvement (§2.2) and p-adic floating-point arithmetic (§2.3). Each of these ways of thinking has of course its own advantages and disadvantages; we will try to compare them fairly in §2.4.

Zealous arithmetic

Zealous arithmetic is by far the most common implementation of p-adic numbers in usual mathematical software: MAGMA [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF], SAGEMATH [START_REF] Stein | Sage Mathematics Software[END_REF] and PARI [START_REF] Batut | User's guide to PARI-GP[END_REF] use it for instance. It appears as the exact analogue of the interval arithmetic of the real setting: we replace p-adic numbers by intervals. The benefit is of course that intervals can be represented without errors by finite objects and then can be stored and manipulated by computers.

Intervals and the big-O notation

Recall that we have defined in §1.1.5 (see Definitions 1.4 and 1.5) the notion of interval: a bounded interval of Q p is by definition a closed ball lying inside Q p , i.e. a subset of the form:

I N,a = x ∈ Q p s.t. |x -a| p -N .
The condition |x -a| p -N can be rephrased in a more algebraic way since it is equivalent to the condition x ≡ a (mod p N Z p), i.e. x ∈ a + p N Z p . In short I N,a = a + p N Z p . In symbolic computation, we generally prefer using the big-O notation and write:

I N,a = a + O(p N).
The following result is easy but fundamental for our propose. Proposition 2.1. Each bounded interval I of Q p may be written as:

I = p v s + O(p N)
where (N, v, s) is either of the form (N, N, 0) or a triple of relative integers with v < N , s ∈ [0, p N -v) and gcd(s, p) = 1. Moreover this writing is unique.

In particular, bounded intervals of Q p are representable by exact values on computers.

Proof. It is a direct consequence of the fact that I N,a depends only on the class of a modulo p N .

The interval a + O(p N) has a very suggestive interpretation if we are thinking at p-adic numbers in terms of infinite sequences of digits. Indeed, write

a = a v p v + a v+1 p v+1 + • • • + a N -1 p N -1 + • • •
with 0 a i < p and agree to define a i = 0 for i < v. A p-adic number x then lies in a + O(p N) if its i-th digit is a i for all i < N . Therefore one may think of the notation a + O(p N) as a p-adic number of the shape:

a v p v + a v+1 p v+1 + • • • + a N -1 p N -1 + ? p N + ? p N +1 + • • •
where the digits at all positions N are unspecified. This description enlightens Proposition 2.1 which should become absolutely obvious now.

We conclude this paragraph by introducing some additional vocabulary. We remark that the valuation of I is the integer v of Proposition 2.1. It is also always the smallest valuation of an element of I. Moreover, coming back to the interpretation of p-adic numbers as infinite sequences of digits, we observe that the relative precision of a + O(p N) is the number of known digits (with rightmost zeroes omitted) of the family of p-adic numbers it represents.

The arithmetics of intervals

Since intervals are defined as subsets of Q p , basic arithmetic operations on them are defined in a straightforward way. For example, the sum of the intervals I and J is the subset of Q p consisting of all the elements of the form a + b with a ∈ I and b ∈ J. As with real intervals, it is easy to write down explicit formulas giving the results of the basic operations performed on p-adic intervals.

Proposition 2.3. Let I = a + O(p N) and I ′ = a ′ + O(p N ′) be two bounded intervals of Q p . Set v = val(I) and v ′ = val(I ′).
We have:

I + I ′ = a + a ′ + O p min(N, N ′)
(2.1)

I -I ′ = a -a ′ + O p min(N, N ′) (2.
2)

I × I ′ = aa ′ + O p min(v+N ′ , N +v ′) (2.
3)

I ÷ I ′ = a a ′ + O p min(v+N ′ -2v ′ , N -v ′) (2.4)
where in the last equality, we have further assumed that 0 ∈ I ′ .

Remark 2.4. Focusing on the precision, we observe that the two first formulae stated in Proposition 2.3 immediately imply abs(I + I ′) = abs(I -I ′) = min(abs(I), abs(I ′)). Concerning multiplication and division, the results look ugly at first glance. They are however much more pretty if we translate them in terms of relative precision; indeed, they become simply rel(I × I ′) = rel(I ÷ I ′) = min(rel(I), rel(I ′)) which is parallel to the case of addition and subtraction and certainly easier to remember.

Proof of Proposition 2.3. The proofs of Eq. (2.1) and Eq. (2.2) are easy and left as an exercise to the reader. We then move directly to multiplication. Let x ∈ I × I ′ . By definition, there exist h ∈ p N Z p and h ′ ∈ p N ′ Z p such that:

x = (a + h)(a ′ + h ′) = aa ′ + ah ′ + a ′ h + hh ′ .
Moreover, coming back to the definition of the valuation of an interval, we find v val(a). The term ah ′ is then divisible by

p v+N ′ . Similarly a ′ h is divisible by p N +v ′ . Finally hh ′ is divisible by p v+v ′ ; it is then a fortiori also divisible by p v+N ′ because v N . Thus ah ′ + a ′ h + hh ′ is divisible by p min(v+N ′ , N +v ′)
and we have proved one inclusion:

I × I ′ ⊂ aa ′ + O p min(v+N ′ , N +v ′) .
Conversely, up to swapping I and I ′ , we may assume that min(v

+ N ′ , N + v ′) = v + N ′ .
Up to changing a, we may further suppose that val(a) = v. Pick now y ∈ aa ′ + O(p v+N ′), i.e. y = aa ′ + h for some h divisible by p v+N ′ . Thanks to our assumption on a, we have val

(h a) = val(h) -val(a) v + N ′ -v = N ′ , i.e. p N ′ divides h a . Writing y = a × (a ′ + h a)
then shows that y ∈ I × I ′ . The converse inclusion follows and Eq. (2.3) is established.

We now assume that 0 ∈ I ′ and start the proof of Eq. (2.4). We define 1 ÷ I ′ as the set of inverses of elements of I ′ . We claim that:

1 ÷ I ′ = 1 a ′ + O(p N ′ -2v ′). (2.5)
In other to prove the latter relation, we write

I ′ = a ′ × (1 + O(p N -v ′)). We then notice that the function x → x -1 induces a involution from 1 + O(p N -v ′) to itself; in particular 1 ÷ (1 + O(p N -v ′)) = 1 + O(p N -v ′).
Dividing both sides by a ′ , we get (2.5). We finally derive that

I ÷ I ′ = I × 1 a ′ + O(p N ′ -2v ′)
. Eq. (2.4) then follows from Eq. (2.3).

Using Proposition 2.3, it is more or less straightforward to implement addition, subtraction, multiplication and division on intervals when they are represented as triples (N, v, s) as in Proposition 2.1 (be careful however at the conditions on v and s). This yields the basis of the zealous arithmetic.

Newton iteration

A tricky point when dealing with zealous arithmetic concerns Newton iteration. To illustrate it, let us examine the example of the computation of a square root of c over

Q 2 for c = 1 + 2 3 + 2 4 + 2 5 + 2 10 + 2 13 + 2 16 + 2 17 + 2 18 + 2 19 + O(2 20).
We observe that c ≡ 1 (mod 8). By Hensel's Lemma, c has then a unique square root in Q 2 which is congruent to 1 modulo 4. Let us denote it by √ c. Following §1.2.3, we compute √ c

using Newton iteration: if (x i) i 0 is the recursive sequence defined by

x 0 = 1 ; x i+1 = 1 2 • x i + c x i , i = 0, 1, 2, . . .
we know that x i and √ c share the same (2 i + 1) final digits. Here is the result we get if we compute the first x i 's using zealous arithmetic:

x 1 = . . . 1111001001000011101 x 2 = . . . 001110100011110101 x 3 = . . . 10111010001010101 x 4 = . . .0111010001010101 x 5 = . . .111010001010101 x 6 = . . .11010001010101
Here the 2 i +1 rightmost digits of x i (which are the correct digits of √ c) are colored in purple and the dots represent the unknown digits, that is the digits which are absorbed by the O(-). We observe that the precision decreases by 1 digit at each iteration; this is of course due to the division by 2 in the recurrence defining the x i 's. The maximal number of correct digits is obtained for x 4 with 16 correct digits. After this step, the result stabilizes but the precision continues to decrease. Combining naively zealous arithmetic and Newton iteration, we have then managed to compute √ c at precision O(2 16).

It turns out that the losses of precision we have just highlighted has no intrinsic meaning but is just a consequence of zealous arithmetic. We will now explain that it is possible to slightly modify Newton iteration in order to completely eliminate this unpleasant phenomenon. The starting point of your argument is Remark 1.8 which tells us that Newton iteration still converges at the same rate to √ c as soon as the sequence (x i) satisfies the weaker condition:

x i+1 - 1 2 • x i + c x i 2 2 i+1 +1 .
In other words, we have a complete freedom on the choice of the "non-purple" digits of x i+1 . In particular, if some digit of x i+1 was not computed because the precision on x i was too poor, we can just assign freely our favorite value (e.g. 0) to this digit without having to fear unpleasant consequences. Even better, we can assign 0 to each "non-purple" digit of x i as well; this will not affect the final result and leads to computation with smaller integers. Proceeding this way, we obtain the following sequence:

x 1 : . . . 00000000000000000101 x 2 : . . . 00000000000000010101 x 3 : . . . 00000000000001010101 x 4 : . . . 00010111010001010101 x 5 : . . .1010111010001010101

and we obtain the final result with 19 correct digits instead of 16. Be very careful: we cannot assign arbitrarily the 20-th digit of x 5 because it is a "purple" digit and not a "non-purple" one.

More precisely if we do it, we have to write it in black (of course, we cannot decide randomly what are the correct digits of √ c) and a new iteration of the Newton scheme again loses this 20-th digit because of the division by 2. In that case, one may wonder why we did not try to assign a 21-st digit to x 4 in order to get one more correct digit in x 5 . This sounds like a good idea but does not work because the input c -on which we do not have any freedom -appears in the recurrence formula defining the x i 's and is given at precision O(2 20). For this reason, each x i cannot be computed with a better precision than O(2 19).

In fact, we can easily convince ourselves that O(2 19) is the optimal precision for √ c. Indeed c can be lifted at precision O(2 21) either to:

c 1 = 1 + 2 3 + 2 4 + 2 5 + 2 10 + 2 13 + 2 16 + 2 17 + 2 18 + 2 19 + O(2 21) or c 2 = 1 + 2 3 + 2 4 + 2 5 + 2 10 + 2 13 + 2 16 + 2 17 + 2 18 + 2 19 + 2 20 + O(2 21).
The square roots of these liftings are:

√ c 1 = 1 + 2 2 + 2 4 + 2 6 + 2 10 + 2 12 + 2 13 + 2 14 + 2 16 + 2 18 + O(2 20) √ c 2 = 1 + 2 2 + 2 4 + 2 6 + 2 10 + 2 12 + 2 13 + 2 14 + 2 16 + 2 18 + 2 19 + O(2 20)
and we now see clearly that the 19-th digit of √ c is affected by the 20-th digit of c.

Lazy and relaxed arithmetic

The very basic idea behind lazy arithmetic is the following: in every day life, we are not working with all p-adic numbers but only with computable p-adic numbers, i.e. p-adic numbers for which there exists a program that outputs the sequence of its digits. A very natural idea is then to use these programs to represent p-adic numbers. By operating on programs, one should then be able to perform additions, multiplications, etc. of p-adic numbers.

In this subsection, we examine further this idea. In §2.2.1, we adopt a very naive point of view, insisting on ideas and not taking care of doability/performances. We hope that this will help the reader to understand more quickly the mechanisms behind the notion of lazy p-adic numbers. We will then move to complexity questions and will focus on the problem of designing a framework allowing our algorithms to take advantage of fast multiplication algorithms for integers (as Karatsuba's algorithm, Schönhage-Strassen's algorithm [33, §8] or Fürer's algorithm and its improvements [START_REF] Fürer | Faster integer multiplication[END_REF][START_REF] Harvey | Even faster integer multiplication[END_REF]). This will lead us to report on the theory of relaxed algorithms introduced recently by Van der Hoeven and his followers [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF][START_REF] Van Der Hoeven | New algorithms for relaxed multiplication[END_REF][START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Berthomieu | Relaxed p-adic Hensel lifting for algebraic systems[END_REF][START_REF] Lebreton | Relaxed Hensel lifting of triangular sets[END_REF].

Lazy p-adic numbers have been implemented in the software MATHEMAGIX [START_REF] Van Der Hoeven | The Mathemagix Language[END_REF].

Lazy p-adic numbers

Definition 2.5. A lazy p-adic number is a program x that takes as input an integer N and outputs a rational number x(N) with the property that:

x(N + 1) -x(N) p p -N
for all N .

The above condition implies that the sequence x(N) is a Cauchy sequence in Q p and therefore converges. We call its limit the value of x and denote it by value(x). Thanks to ultrametricity, we obtain |value(x)x(N)| p -N for all N . In other words, x(N) is nothing but an approximation of value(x) at precision O(p N).

The p-adic numbers that arise as values of lazy p-adic numbers are called computable. We observe that there are only countably many lazy p-adic numbers; the values they take in Q p then form a countable set as well. Since Q p is uncountable (it is equipotent to the set of functions N → {0, 1, . . . , p-1}), it then exists many uncomputable p-adic numbers.

Our aim is to use lazy p-adic numbers to implement actual (computable) p-adic numbers. In order to do so, we need (at least) to answer the following two questions:

• Given (the source code of) two lazy p-adic numbers x and y, can we decide algorithmically whether value(x) = value(y) or not?

• Can we lift standard operations on p-adic numbers at the level of lazy p-adic numbers?

Unfortunately, the first question admits a negative answer; it is yet another consequence of Turing's halting problem. For our purpose, this means that it is impossible to implement equality at the level of lazy p-adic numbers. Inequalities however can always be detected. In order to explain this, we need a lemma.

Lemma 2.6. Let x be a lazy p-adic number and set x = value(x). For all integers N , we have:

val p (x) = val p (x(N)) if val p (x(N)) < N val p (x) N otherwise.
Proof Lemma 2.6 implies that value(x) = value(y) if and only if val p (x(N)y(N)) N for all integers N . Thus, assuming that we have access to a routine val p computing the p-adic valuation of a rational number, we can write down the function is equal as follows (Python style7): d e f i s _ e q u a l(x , y):

f o r N i n N: v = val p (x (N) -y (N)) i f v < N : r e t u

r n False r e t u r n True

We observe that this function stops if and only if it answers False, i.e. inequalities are detectable but equalities are not.

We now move to the second question and try to define standard operations at the level of lazy p-adic numbers. Let us start with addition. Given two computable p-adic numbers x and y represented by the programs x and y respectively, it is actually easy to build a third program x plus y representing the sum x + y. Here it is:

d e f x _ p l u s _ y(N): r e t u r n x (N) + y (N)
The case of multiplication is a bit more subtle because of precision. Indeed going back to Eq. (2.3), we see that, in order to compute the product xy at precision O(p N), we need to know x and y at precision O(p N -val(y)) and O(p N -val(x)) respectively. We thus need to compute first the valuation of x and y. Following Proposition 2.6, we write down the following procedure:

d e f val (x): f o r N i n N: v = val p (x (N)) i f v < N : r e t u r n v r e t u r n I n f i n i t y
However, we observe one more time that the function val can never stop; precisely it stops if and only if x does not vanish. For application to multiplication, it is nevertheless not an issue. Recall that we needed to know val(x) because we wanted to compute y at precision O(p N -val(x)). But obviously computing y at higher precision will do the job as well. Hence it is in fact enough to compute an integer v x with the guarantee that val(x) v x . By Lemma 2.6, an acceptable value of v x is min(0, val p (x(0))) (or more generally min(i, val p (x(i))) for any value of i). A lazy p-adic number whose value if xy is then given by the following program:

d e f x _ m u l _ y(N): vx = min(0 , val p (x (0)) vy = min(0 , val p (y (0)) r e t u r n x (N -vy) * y (N -vx)
The case of division is similar except that we cannot do the same trick for the denominator: looking at Eq. (2.4), we conclude that we do not need a lower bound on the valuation of the denominator but an upper bound. This is not that surprising since we easily imagine that the division becomes more and more "difficult" when the denominator gets closer and closer to 0. Taking the argument to its limit, we notice that a program which is supposed to perform a division should be able, as a byproduct, to detect whether the divisor is zero or not. But we have already seen that the latter is impossible. We are then reduced to code the division as follows: keeping in mind that the routine never stops when the denominator vanishes.

Relaxed arithmetic

The algorithms we have sketched in §2.2.1 are very naive and inefficient. In particular, they redo many times a lot of computations. For example, consider the procedure x plus y we have designed previously and observe that if we had already computed the sum x + y at precision O(p N) and we now ask for the same sum x + y at precision O(p N +1), the computation restarts from scratch without taking advantage of the fact that only one digit of the result remains unknown.

One option for fixing this issue consists basically in implementing a "sparse cache": we decide in advance to compute and cache the x(N)'s only for a few values of N 's (typically the powers of 2) and, on the input N , we output x(N ′) for a "good" N ′ N . Concretely (a weak form of) this idea is implemented by maintaining two global variables current precision[x] and current approximation[x] (attached to each lazy p-adic number x) which are always related by the equation:

current approximation[x] = x(current precision[x])
If we are asking for x(N) for some N which is not greater than current approximation[x], we output current precision[x] without launching a new computation. If, instead, N is greater than current approximation[x], we are obliged to redo the computation but we take the opportunity to double the current precision (at least). Here is the corresponding code: This solution is rather satisfying but it has nevertheless several serious disadvantages: it often outputs too large results 8 (because they are too accurate) and often does unnecessary computations.

Another option was developed more recently first by van der Hoeven in the context of formal power series [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF][START_REF] Van Der Hoeven | New algorithms for relaxed multiplication[END_REF] and then by Berthomieu, Lebreton, Lecerf and van der Hoeven for padic numbers [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Berthomieu | Relaxed p-adic Hensel lifting for algebraic systems[END_REF][START_REF] Lebreton | Relaxed Hensel lifting of triangular sets[END_REF]. It is the so-called relaxed arithmetic that we are going to expose now. For simplicity we shall only cover the case of p-adic integers, i.e. Z p . Extending the theory to Q p is more or less straightforward but needs an additional study of the precision which makes the exposition more technical without real benefit.

Data structure and addition

The framework in which relaxed arithmetic takes place is a bit different and more sophisticated than the framework we have used until now. First of all, relaxed arithmetic does not view a p-adic number as a sequence of more and more accurate approximations but as the sequence of its digits. Moreover it needs a richer data structure in order to provide enough facilities for designing its algorithms. For this reason, it is preferable to encode p-adic numbers by classes which may handle its own internal variables and its own methods.

We first introduce the class RelaxedPAdicInteger which is an abstract class for all relaxed p-adic integers (i.e. relaxed p-adic integers must be all instances of a derived class of RelaxedPAdicInteger). The class RelaxedPAdicInteger is defined as follows: c l a s s R e l a x e d P A d i c I n t e g e r :

Variable digits # list of (already computed) digits # Virtual method d e f ne xt (self) # compute the next digit and append it to the list We insist on the fact that the method next is an internal (private) method which is not supposed to be called outside the class. Of course, although it does not appear above, we assume that the class RelaxedPAdicInteger is endowed with several additional public methods making the interface user-friendly. For instance if x is a relaxed p-adic integer inheriting from RelaxedPAdicInteger, we shall often use the construction x[N] to access to the N -th digit of x. In pure Python, this functionality can be implemented by adding to the class a method getitem written as follows: In order to highlight the flexibility of the construction, let us explain as a warm-up how addition is implemented in this framework. One actually just follows the schoolbook algorithm: the n-th digit of a sum is obtained by adding the n-th digit of the summands plus possibly a carry. 8 Of course it is always possible to reduce the result modulo p N but this extra operation has a non-negligible cost.

We add an additional local variable to the class in order to store the current carry and end up with the following implementation: That's all. Although this does not appear in the pseudo-code above, the relaxed p-adic integers x and y (which are supposed to be instances of the class RelaxedPAdicInteger) should be passed as attributes to the constructor of the class.

The subtraction is performed similarly (exercise left to the reader).

Multiplication

A priori, multiplication can be treated in a similar fashion. Given x and y two p-adic integers with digits x i 's and y j 's, the n-th digit of a product xy is obtained by adding the contribution of all cross products x i y j for i + j = n plus a possible carry. This approach leads to the following straightforward implementation: Nevertheless this strategy has one important defect: it does not take advantage of the fast multiplication algorithms for integers, that is, it computes the first N digits of xy in O(N 2 log p) bit operations while we would have expected only Õ(N log p).

The relaxed multiplication algorithm from [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] fixes this drawback. The rough idea behind it is to gather digits in x and y as follows:

x = x 0 + (x 1 + x 2 p)p + (x 3 + x 4 p + x 5 p 2 + x 6 p 3)p 3 + • • • y = y 0 + (y 1 + y 2 p)p + (y 3 + y 4 p + y 5 p 2 + y 6 p 3)p 3 + • • •
and to implement a kind of block multiplication. More precisely, we materialize the situation by a grid drawn in the half plane (see Figure 2.1). The coordinate on the x-axis (resp. the y-axis) corresponds to the integers i's (resp. j's) that serve as indices for the positions of the digits of the p-adic integer x (resp. y). As for the cell (i, j), it represents the product x i y j . The computation of the n-th digit of xy needs to know all the digits appearing on the anti-diagonal i + j = n; we refer again to Figure 2.1 where this anti-diagonal is displayed for n = 10.

We now pave the grid using larger and larger squares as follows. We pave the first row 9 and the first column by squares of size 1. Once this has been done, we forget temporarily the cells that have been already paved (i.e. the cells lying on the first row or the first column), we group the two next lines and the two next columns together and we pave them with squares of size 2. We continue this process and double the size of the squares at each iteration. The obtained result is displayed on Figure 2.1. This construction exhibits the following remarkable property: Lemma 2.7. If (i, j) is a cell located on a square of size 2 ℓ of the paving, then 2 ℓ < i and 2 ℓ < j.

Proof. The squares of size 2 ℓ are all located by construction on the region where both coordinates i and j are greater than or equal to

1 + 2 + 2 2 + • • • + 2 ℓ-1 = 2 ℓ -1.
The Lemma follows from this observation.

As an example, look at the cell (7, 3) on Figure 2.1; it is the bottom left corner of a square of size 4. Let us denote by S i,j the square of the paving with bottom left corner located at position (i, j). For such any (i, j), we define:

C i,j (t) = x i + tx i+1 + • • • + t ℓ x i+2 ℓ -1 × y j + ty j+1 + • • • + t ℓ y j+2 ℓ -1 ∈ Z[t]
where 2 ℓ is the size of S i,j and t is a new formal variable. We are now ready to explain the concrete idea behind the relaxed multiplication algorithm. In the next procedure, when we encounter a pair (i, j = n-i) we distinguish between two cases:

• if (i, j) is the position of a cell located at the bottom left corner of square of the paving, we add the contribution of C i,j (p) (instead of adding the sole contribution of x i y j),

• otherwise, we do nothing (since the contribution of x i y j has already been taken into account previously).

Here are several several important remarks. First, by Lemma 2.7, the computation of the C i,j (p)'s in the first step only requires the digits of x and y up to the position n. Second, notice that listing all the pairs (i, j) fitting into the first case is easy. Indeed, notice that (i, j) is the bottom left corner of a paving square of size 2 ℓ if and only if i and j are both congruent to 2 ℓ -1 modulo 2 ℓ and one of them is actually equal to 2 ℓ -1. Hence, for a given nonnegative integer ℓ, there exist at most two such cells (i, j) for which i + j = n and they are moreover given by explicit formulas.

At that point, one may wonder why we have introduced the polynomials C i,j (t)'s instead of working only with the values C i,j (p)'s. The reason is technical: this modification is needed to # Case where the two squares are indeed not the same

s += y [2^ℓ -1 , ... , 2^(ℓ+1) -2] * x [(m -1)*2^ℓ -1 , ... , m *2^ℓ -2] i f m is odd: break m = m // 2 ℓ += 1 s += self . carry self . digits [n] = s (0) % p self . carry = (s (0) // p) + (s // t) Figure 2.
2: An implementation of the relaxed multiplication get a good control on the size of the carries 10 . We will elaborate on this later (see Remark 2.8 below). By introducing the construction x[i, . . . , j] for giving access to the polynomial

x i + x i+1 t + x i+2 t 2 + • • • + x j t j-i ∈ Z[t]
the above ideas translate into the concrete algorithm of Figure 2.2.

We now briefly sketch its complexity analysis. The first observation is that the while loop of the next method of Figure 2.2 is repeated until ℓ reaches the 2-adic valuation of n + 2. Writing v = val 2 (n + 2), the total complexity for the execution of the while loop therefore stays within:

v ℓ=0 Õ(2 ℓ log p) = Õ(2 v log p)
if we use fast algorithms for polynomial multiplication [33, §8]. Moreover at the end of the while loop, the degree of s remains bounded by 2 v and its coefficients have all at most O(log(np)) binary digits. The second step, which is more technical, consists in bounding the size of the carry. The key point is to notice that after the computation of the (n-1)-st digit, the carry takes the form:

c + (c 0 + c 1 t + c 2 t 2 + • • • + c n t n)
where the c k 's come from the contribution of the cells (i ′ , j ′) with i ′ + j ′ n that have been already discovered (i.e. belonging to a paving square S i,j for which C i,j (t) has already been computed) and c comes from the carries appearing while computing the t n-1 -term of the product

(x 0 + x 1 t + x 2 t 2 + • • • + x n t n) × (y 0 + y 1 t + y 2 t 2 + • • • + y n t n).
Once this has been noticed, we deduce that the c k 's are all bounded from above by n • (p-1) 2 while:

c 1 p n i ′ +j ′ n x i ′ y j ′ np • (p-1).
Hence the carry itself is a polynomial of degree at most n and each of its coefficients has at most O(log(pn)) binary digits.

Remark 2.8. While the growth of the coefficients of the carry remains under control, its value at p may -and does -grow exponentially fast with respect to n. That is the reason why we had to switch to polynomials.

Noticing finally that the division by t on polynomials is free (it is just a shift of the coefficients), we find that the last three lines of the next method displayed on Figure 2.2 have a cost of Õ(2 v log(np)) bit operations. The total complexity of the computation of the n-th digit then stays within Õ(2 v log(np)) bit operations as well.

Summing up all these contributions up to N , we find that the relaxed multiplication algorithm computes the first N digits of a product in Õ(N log p) bit operations. We refer to [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] for a more precise complexity analysis (of a slightly different version of the algorithm we have presented here).

Computation of fixed points

A quite interesting application of the relaxed approach is the possibility to define and compute very easily fixed points of contraction mappings defined over Z p (or more generally Z d p for some d). Before going into this, we need to define the notion of function over relaxed p-adic numbers. Recall that a relaxed p-adic integer is an instance of RelaxedPAdicInteger. A function over relaxed p-adic numbers can then be defined as a class deriving from RelaxedPAdicInteger endowed with a constructor accepting x as parameter and constructing F (x). Actually we have already seen such examples: the classes x plus y and x mul y we have designed before fit exactly in this framework. Below is yet another easy example modeling the function s : x → 1+ px. Definition 2.9. Let F be a function defined over relaxed p-adic integers. We say that F is a contraction if its next method computes the n-th digit by making only use of the first n-1 digits of x.

Concretely F is a contraction if its next method never calls x[i] for some i n when n denotes (as usual) the position of the digit the next method is currently computing. For example, the function S introduced above is a contraction.

Remark 2.10. If F is a contraction modeling a function f : Z p → Z p , the first n digits of f (x) depends only on the first n-1 digits of x. This implies that f is a 1 p -contraction in the usual sense:

|f (x) -f (y)| 1 p • |x -y|.
Note that the converse is not necessarily true: it may happen that f is indeed a contraction but is modeled by the function F which misses this property.

If F is a contraction modeling a function f : Z p → Z p , the Banach fixed point Theorem implies that f has a unique fixed point in Z p . Moreover this sequence is the limit of any sequence (x n) n 0 solution to the recurrence x n+1 = f (x n). This property translates immediately in the world of programs: it says that we can compute the fixed point of f just by replacing each occurrence of x by the current instance of the class (self) in the next function of F . As an example, applying this treatment to the function S, we get: which is11 a relaxed p-adic number representing the fixed point of s, namely 1 1-p .

Division

The above toy example has a real interest because it can be generalized to handle arbitrary divisions a ÷ b where b is invertible in Z p . We assume first that b is congruent to 1 modulo p, i.e b = 1 + pb ′ for some b ′ ∈ Z p . The assumption means that the 0-th digit of b is 1; as for the digits of b ′ , they are those of b shifted by one position. We introduce the affine function f : Z p → Z p defined by:

f (x) = a + (1 -b)x = a -pb ′ x.
It is a contraction which can be modeled (using relaxed multiplication and relaxed subtraction) by a contraction F defined over relaxed p-adic integers. Applying the recipe discussed above, we then build a new relaxed p-adic integer that models the unique fixed point of x, which is

a 1+pb ′ = a b .
We have therefore computed the division of a by b in the relaxed world. For a general b, one can proceed as follows. Let b 0 be the 0-th digit of b. We compute an integer c such that b 0 c ≡ 1 (mod p) and view c as a p-adic number. Since b ≡ b 0 (mod p), we get bc ≡ 1 (mod p) as well. Moreover the fraction a b rewrites a b = ac bc and we can now apply the method above. Using this techniques, a general relaxed division reduces to one inversion modulo p and two relaxed multiplication for the preparation plus one more relaxed multiplication and one relaxed subtraction for the computation of the fixed point.

Floating-point arithmetic

The most common representation of real numbers on computers is by far floating-point arithmetic which is normalized by the IEEE 754-2008 Standard [START_REF]IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic, IEEE Standard[END_REF][START_REF] Muller | Handbook of floating-point arithmetic[END_REF]. Let us recall very briefly that the rough idea behind the floating-point arithmetic is to select a finite fixed subset R of R (the so-called set of floating-point numbers) on which we define the operators ⊕ and ⊗ which are supposed to mimic the usual addition and multiplication of reals.

In the p-adic world, this approach has an analogue which was first proposed (as far as we know) in a unpublished note by Kedlaya and Roe in 2008 [START_REF] Kedlaya | Two specifications for p-adic floating-point arithmetic: a Sage enhancement proposal[END_REF]. Unfortunately it seems that it has never been implemented yet 12 . The aim of the subsection is to report on Kedlaya and Roe's proposal.

Definition of p-adic floating-point numbers

The construction of p-adic floating-point numbers depends on the initial choice of three positive integers N , e min , e max that we fix now until the end of §2.3. We assume e min < e max and N 1. The integer N is called the precision of the system while e min and e max are respectively the minimal and the maximal exponent of the system.

Definition 2.11. A p-adic floating-point number is either

• a p-adic number x ∈ Q p of the shape p e s with the conditions:

e min e e max ; -p N -1 2 < s p N -1 2 ; gcd(s, p) = 1

(2.6)

• the number 0 ∈ Q p ,
• the special symbol ∞,

• the special symbol NaN (not a number).

Note that the conditions (2.6) imply that a p-adic floating-point number x ∈ Q p of the shape p e s cannot be zero and moreover that e and s are uniquely determined by x. Indeed, since s is prime with p, it cannot vanish and e has to be equal to the p-adic valuation of x. It is thus determined by x and, consequently, so is s = p -e x.

Definition 2.12. Given a p-adic floating-point number x of the shape x = p e s,

• the integer e is called the exponent of x,

• the integer s is called the significand (or sometimes the mentissa) of x.

Representation of p-adic floating-point numbers.

We represent p-adic floating-point numbers on machine by pairs of integers as follows:

• the p-adic number p e s is represented by (e, s),

• the p-adic number 0 is represented by (e max , 0),

• the symbol ∞ is represented by (e min -1, 1),

• the symbol NaN is represented by (e min -1, 0).

Remark 2.13. The above definitions omit several components of the IEEE standard. First, they do not include subnormal numbers. These are meant to allow for gradual underflow to zero, which is reasonable to provide when working in base 2 with relatively small e. However, for e as large as the bit length of a modern machine word (i.e. no less than 32), this benefit is sufficiently minor that it does not outweigh the added complexity needed to handle subnormal numbers properly. Second, the above definitions do not include signed infinities, because p-adic numbers do not have a meaningful notion of sign. For similar reasons, the comparison operators <, , >, are not defined for p-adic numbers. Third, they do not provide for multiple types of NaN's. For instance, in the IEEE specification, a distinction is made between signaling NaN's (those which raise an exception upon any operation) and quiet NaN's.

For some computations, it may be useful to allow some p-adic floating-point numbers to be represented in more than one way. We thus define an operation called normalization on the set of pairs of integers (e, s) as follows:

• if e < e min and s = 0, return (e min -1, 0) (which represents NaN);

• if e < e min and s = 0, return (e min -1, 1) (which represents ∞);

• if e > e max , return (e max , 0) = 0 (which represents 0);

• if e min e e max and s = 0, return (e max , 0) = 0;

• if e min e e max and s = 0, let k ∈ {0, . . . , m -1} be the largest integer such that p k divides s and return the normalization of (e + k, s ′) where s ′ is the unique integer such that

-p N -1 2 < s ′ p N -1 2 and s ′ ≡ p -k m (mod p N).
For many operations, it is safe to leave an unnormalized pair (e, s) as long as s = 0 and e min e e maxval p (s) since p e s is then guaranteed to equal the value of the normalization of (e, s). However, one should normalize before testing for equality.

Operations on p-adic floats

Let Q FP p be the set of p-adic floating-point numbers. Define also

Q ′ p = Q p ⊔ {∞, NaN}. Clearly Q FP p ⊂ Q ′ p . Lemma 2.14. Given x ∈ Q p with e min val(x) e max , there exists a unique element y ∈ Q p ∩ Q FP p such that |x -y| |x| • p -N .
Proof. We write x = p v • x 0 where v = val(x) and x 0 is invertible in Z p . Set e = v and let s be the unique integer of the range -p N -1 2 , p N -1 2 which is congruent to x 0 modulo p N . Define y = p e s; it is a p-adic floating-point number by the assumptions of the Lemma. Moreover:

|x -y| = p -v • |x 0 -s| p -v-N = |x| • p -N .
The existence is proved.

As for uniqueness, remark first that y = 0 cannot do the job. Assume now that y ′ = p e ′ s ′ is a p-adic floating-point number written in normalized form which satisfies the required inequality. First notice that e ′ = v necessarily. Indeed, from e ′ > v, we would deduce |x-y

′ | = |x| > |x|•p -N .
Similarly from e i < v, we would get |x -

y ′ | = p -e 1 > |x|. Consequently |x -y ′ | = |x| • |x 0 -s ′ |
and our assumption on y ′ translates to the congruence x 0 ≡ s ′ (mod p N). Therefore we derive s ≡ s ′ (mod p N) and then s = s ′ since both s and s ′ have to lie in the interval -p N -1 2 , p N -1

2

. Hence y = y ′ and we are done.

Definition 2.15. The rounding function is the function

o : Q ′ p → Q FP p defined as follows: • if x ∈ {∞, NaN}, then o(x) = x; • if x ∈ Q p and val(x) < e min , then o(x) = ∞ (overflow); • if x ∈ Q p and val(x) > e max , then o(x) = 0 (underflow); • if x ∈ Q p and e min val(x) e max , then o(x) is the unique element of Q FP p such that |x -o(x)| |x| • p -N .
Remark 2.16. We emphasize that overflow (resp. underflow) occurs when e is small (resp. large) which is the exact opposite of the real case. This is not a typo; the reason behind that is just that, in the p-adic world, p N goes to 0 when N goes to +∞.

Remark 2.17. Note that the uniqueness in the last case means that there is no analogue of the notion of a rounding mode in real arithmetic.

Given any k-ary function

f : (Q ′ p) k → Q ′ p , we define its compliant approximation f FP : (Q FP p) k → Q FP p by: f FP (x 1 , . . . , x k) = o f (x 1 , . . . , x k) .
We are now in position to specify the four basic arithmetic operations (addition, subtraction, multiplication, division) on Q FP p . In order to do so, we need first to extend them on Q ′ p . Let us agree to set (here ÷ stands for the division operator):

∀x ∈ Q ′ p , x ± NaN = NaN ± x = NaN ∀x ∈ Q ′ p \{NaN}, x ± ∞ = ∞ ± x = ∞ ∀x ∈ Q ′ p , x × NaN = NaN × x = NaN ∀x ∈ Q ′ p \{0, NaN}, x × ∞ = ∞ × x = ∞ 0 × ∞ = ∞ × 0 = NaN ∀x ∈ Q ′ p , x ÷ NaN = NaN ÷ x = NaN ∀x ∈ Q ′ p \{0, NaN}, x ÷ 0 = ∞, 0 ÷ 0 = NaN ∀x ∈ Q ′ p \{∞, NaN}, x ÷ ∞ = 0, ∞ ÷ ∞ = NaN
Addition, subtraction, multiplication and division on floating-point p-adic numbers are, by definition, the operations + FP , -FP , × FP and ÷ FP respectively.

Let us examine concretely how the computation goes at the level of p-adic floating-point numbers. We start with multiplication with is the easiest operator to handle. The formula we derive immediately from the definition is:

(p e 1 s 1) × FP (p e 2 s 2) = p e 1 +e 2 • (s 1 s 2 mod p N) if e 1 + e 2 e max = 0
otherwise where a mod p N is the unique representation of a modulo p N lying in the interval -p N -1 2 , p N -1

2

. We emphasize moreover that if (e 1 , s 1) and (e 2 , s 2) are both written in normalized form then so is (e 1 + e 2 , s 1 s 2 mod p N) (under the assumption e 1 + e 2 e max). Indeed the product of two numbers which are coprime to p is coprime to p as well. The case of the division is similar:

(p e 1 s 1) ÷ FP (p e 2 s 2) = p e 1 -e 2 • (s 1 s -1 2 mod p N) if e 1 -e 2 e min = ∞
otherwise.

The cases of addition and subtraction are more subtle because they can introduce cancellations of the rightmost digits. When e 1 = e 2 , this cannot happen and the formula writes as follows:

(p e 1 s 1) + FP (p e 2 s 2) = p e 1 • (s

1 + p e 2 -e 1 s 2 mod p N) if e 1 < e 2 = p e 2 • (p e 1 -e 2 s 1 + s 2 mod p N) if e 2 < e 1 .
On the contrary, when e 1 = e 2 , the naive formula (p e s 1) + FP (p e s 2) = p e • (s 1 + s 2 mod p N) might fail because s 1 + s 2 can have a huge valuation. Instead we introduce v = val p (s 1 + s 2) and the correct formula writes:

(p e s 1) + FP (p e s 2) = p e+v • s 1 +s 2 p v mod p N if v e max -e = 0
otherwise.

As an alternative, we may prefer using non-normalized representations of p-adic floating-point numbers; it is indeed an option but it requires to be very careful with underflows.

Comparison between paradigms

We have just presented three quite different ways of thinking of p-adic numbers from the computational point of view. Of course, each of them has its own advantages and disadvantages regarding flexibility, rapidity, accuracy, etc. In this subsection we compare them, trying as much as possible to support our arguments with many examples.

Zealous arithmetic VS. lazy/relaxed arithmetic

The main difference between zealous and lazy/relaxed arithmetic is certainly that they are designed for different uses! In the zealous perspective, the inputs are given with a certain precision which is supposed to be fixed once for all: one can imagine for instance that the inputs come from measures 13 or that computing them requires a lot of effort and is then not an option. So the precision on the inputs is immutable and the goal of zealous arithmetic is to propagate the precision to the output (trying to be as sharp as possible).

On the other hand, the point of view of lazy/relaxed arithmetic is the exact opposite: instead of fixing the precision on the inputs, we fix a target precision and we propagate it back to the inputs. Indeed suppose, as an easy example, that we have to evaluate the product xy. In the lazy/relaxed world, this is done by creating and returning the program x mul y without running it. The execution (i.e. the actual computation of the product) is postponed until somebody asks for the value of xy at a certain precision O(p N) (through the call x mul y[N]). At that moment, the program runs and infers the needed precision on the inputs x and y.

Except maybe in very particular situations, the point of view of lazy/relaxed arithmetic is certainly much closer to the needs of the mathematician. Indeed, it is quite rare to have to work with p-adic numbers that do not come from a previous computation. Mathematicians are more relaxed than zealous! Apart from that, still regarding precision, the zealous and the lazy/relaxed approaches are both based on the arithmetic of intervals and, for this reason, they exhibit similar behaviors in the following sense. Assume that we are given a certain function f : Z p → Z p to be evaluated and define the two numbers ℓ 1 and ℓ 2 (depending a priori on extra parameters) as follows:

• when we ask for the value of f (a + O(p N)), the zealous approach answers b + O(p N -ℓ 1) (loss of ℓ 1 digits of precision),

• when we ask for the value of f (a) at precision O(p N), the lazy/relaxed technique requires the computation of a at precision O(p N +ℓ 2).

It turns out that ℓ 1 and ℓ 2 do not very much depend neither on a, nor on N . Moreover they are almost equal 14 . On the other hand, we underline that this value ℓ 1 ≈ ℓ 2 is very dependent on the function f and even on the algorithm we use for the evaluation. We will present and discuss this last remark in §2.4.3 below.

The lazy/relaxed arithmetic has nevertheless several more or less annoying disadvantages. First of all, it is certainly more difficult to implement efficiently (although the implementation in MATHEMAGIX [START_REF] Van Der Hoeven | The Mathemagix Language[END_REF] is very well polished and quite competitive; we refer to [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] for timings). It is also supposed to be a bit slower; for instance, the relaxed multiplication looses asymptotically a factor log N (for the precision O(p N)) compared to the zealous approach. Another more serious issue is memory. Indeed the relaxed arithmetic needs to keep stored all intermediate results by design. As an easy toy example, let us have a quick look at the following function d e f n t h _ t e r m(n) u = a f o r i i n 1, 2, . . . , n: u = f (u) r e t u r n u that computes the n-th term of a recursive sequence defined by its initial value u 0 = a and the recurrence u i+1 = f (u i). Here a and f are given data. In zealous arithmetic, the above implementation requires to store only one single value of the sequence (u i) i 0 at the same time (assuming that we can rely on a good garbage collector); indeed at the i-th iteration of the loop, the value of u i is computed and stored in the variable u while the previous value of u, i.e. the value of u i-1 , is destroyed. On the other hand, in relaxed arithmetic, the variable representing u i stores the definition of u i , including then the value of u i-1 . The relaxed p-adic number returns by the function nth term is then a huge structure in which all the relaxed p-adic numbers u 1 , u 2 , . . . , u n have to appear. When we will then ask for the computation of the first N digits of u n , the relaxed machinery will start to work and compute -and store -the values of all the u i 's at the desired precision. This is the price to pay in order to be able to compute one more digit of u n without having to redo many calculations.

Interval arithmetic VS. floating-point arithmetic

p-adic floating-point arithmetic has a very serious limitation for its use in mathematics: the results it outputs are not proved and even often wrong! Precisely, the most significand digits of the output are very likely to be correct while the least significand digits are very likely to be incorrect... and we have a priori no way to know which digits are correct and which ones are not. On the other hand, at least in the real setting, interval arithmetic is known for its tendency to yield pessimistic enclosures. What about the p-adic case? At first, one might have expected that ultrametricity may help. Indeed ultrametricity seems to tell that rounding errors do not accumulate as it does in the real world. Unfortunately this simple rationale is too naive: in practice, p-adic interval arithmetic does overestimate the losses of precision exactly as real interval arithmetic does.

The causes are multiple and complex but some of them can be isolated. The first source of loss of precision comes from the situation where we add two p-adic numbers known at different precision (e.g. two p-adic numbers of different sizes). As a toy example, consider the function f : Z 2 p → Z 2 p mapping (x, y) to (x + y, xy) (it is a similarity in the p-adic plane) and suppose that we want to evaluate f • f on the entry x = 1 + O(p 2), y = 1 + O(p 20). We then code the following function:)). On the other hand, observing that f • f is the mapping taking (x, y) to (2x, 2y). Using this, we end up with:

f • f (x, y) = 2 + O(p 2), 2 + O(p 20) if p > 2 = 2 + O(2 3), 2 + O(2 21) if p = 2
which is much more accurate. Interval arithmetic misses the simplification and consequently loses accuracy.

A second more subtle source of inaccuracy comes from the fact that interval arithmetic often misses gain of precision. A very basic example is the computation of px; written this way, the absolute precision increases by 1. However if, for some good reason 15 , the product px does not appear explicitly but instead is computed by adding x to itself p times, interval arithmetic will not see the gain of precision. It turns out that similar phenomena appear for the multiplicative analogue of this example, i.e. the computation of x p for x = a + O(p N). For simplicity assume that val(x) = 0 and N 1. Using again Proposition 2.3, we find that zealous arithmetic leads to the result x p = a p +O(p N). However, surprisingly, this result is not optimal (regarding precision) as shown by the next lemma.

b p = (a + p N c) p = p i=0 p i a p-i (p N c) i .
When i 2, the corresponding term is divisible by p 2N while when i = 1, it equals p N +1 a p-1 c and is therefore apparently divisible by p N +1 . As a consequence b p ≡ a p (mod p N +1) as claimed.

According to Lemma 2.18, the correct precision for x p is (at least) O(p N +1) which is not detected by arithmetic interval. SAGEMATH [START_REF] Stein | Sage Mathematics Software[END_REF] fixes this issue by an ad-hoc implementation of the power function which knows about Lemma 2.18. However similar behaviors happen in quite a lot of different other situations and they of course cannot be all fixed by ad-hoc patches.

Remark 2.19. Recall that we have seen in §2.1.3 that the computation of square roots in Q 2 looses one digit of precision. It is absolutely coherent with the result above which says that the computation of squares gains one digit of precision.

As a conclusion, a very common situation where p-adic floating-point arithmetic can be very helpful is that situation where the mathematician is experimenting, trying to understand how the new mathematical objects he has just introduced behave. At the moment, he does not really need proofs 16 ; he needs fast computations and plausible accuracy, exactly what p-adic floatingpoint arithmetic can offer.

Comparison by everyday life examples

We analyze many examples and compare for each of them the accuracy we get with p-adic floating-point arithmetic on the one hand and with interval arithmetic (restricting ourselves to the zealous approach for simplicity) on the other hand. Examples are picked as basic and very common primitives in linear algebra and commutative algebra.

Determinant

Our first example concerns the computation of the determinant of a square matrix with entries in Z p . In order to be as accurate as possible, we shall always use a division-free algorithm (see for instance [START_REF] Bird | A simple division-free algorithm for computing determinants[END_REF] or [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] and the references therein for faster solutions). When M is a generic matrix there is actually not so much to say: if the entries of the matrix are given with N significand digits, the same holds for the determinant and this precision is optimal. Nonetheless, quite interesting phenomena show up for matrices having a special form. In the sequel, we will examine the case of matrices M of the form M = P DQ where P, Q ∈ GL d (Z p) and D is a diagonal matrix with diagonal entries p a 1 , . . . , p a d . We assume that the three matrices P , D and Q are given at precision O(p N) for some N . Here is a concrete example (picked at random) with p = 2, d = 4 and N = 10: Here are the values for the determinant of M computed according to the two strategies we want to compare:

a 1 = 0 ; a 2 =
Interval (zealous) arithmetic: det M = O(2 10)

Floating-point arithmetic:

det M = 2 10 × . . . 0001001101

We observe the interval arithmetic does not manage to decide whether det M vanishes or not.

On the other hand, the floating-point approach outputs a result with 10 significand digits by design; the point is that we do not know a priori whether these digits are correct or not. In our particular case, we can however answer this question by computing det M as the product det P • det D • det Q = 2 10 det P • det Q using zealous arithmetic. We find this way:

det M = 2 10 × . . . 01101
which means that the result computed by floating-point arithmetic has (at least) 5 correct digits. This is actually optimal as we shall see later in §3.2.2.

Characteristic polynomial

We now move to the characteristic polynomial keeping first the same matrix M . Here are the results we get:

Interval (zealous) arithmetic: χ M (X) = X 4 + (. . . 0001000010) X 3 + (. . . 1000101100) X 2 + (. . . 0011100000) X + (. . . 0000000000) Floating-point arithmetic: χ M (X) = X 4 + (. . . 00001000010) X 3 + (. . . 111000101100) X 2 + (. . . 110100011100000) X + (2 10 × . . . 0001001101)
where, in the second case, the correct digits are written in purple 17 . We observe again that, although the computation is not proved mathematically, the floating-point arithmetic outputs more accurate results. As we shall see later (see §3.2.2) the accuracy it gives is even optimal for this particular example.

We consider now the matrix N = I 4 + M where I 4 is the identity matrix of size 4. The computation of χ N leads to the following results: Interval (zealous) arithmetic:

χ N (X) = X 4 + (. . . 0000111110) X 3 + (. . . 0101101100) X 2 + (. . . 0101001010) X + (. . . 0100001011)

Floating-point arithmetic:

χ N (X) = X 4 + (. . . 00000111110) X 3 + (. . . 000101101100) X 2 + (. . . 10101001010) X + (. . . 0100001011)
On that example, we remark that interval arithmetic is as accurate as floating-point arithmetic.

More interesting is the evaluation of χ N at 1, which is nothing but the determinant of M we have already computed before. The values we get are the following:

Interval (zealous) arithmetic: χ N (1) = O(2 10)
Floating-point arithmetic:

χ N (1) = 0
Although there is no surprise with interval arithmetic, we observe that floating-point arithmetic now fails to produce any correct digit.

LU factorization

LU factorization is a classical tool in linear algebra which serves as primitives for many problems. We refer to [1, §2] for an introduction to the topic. Recall briefly that a LU factorization of a matrix M is a decomposition of the form M = LU where L (resp. U) is a lower triangular (resp. upper triangular) matrix. In the sequel, we require moreover that the diagonal entries of L are all equal to 1. With the normalization, one can prove that any matrix M defined over a field admits a unique LU factorization as soon as all its principal minors18 do not vanish.

LU factorizations can be computed using standard Gaussian elimination: starting from M , we first multiply the first column by the appropriate scalar in order to make the top left entry equal to 1 and use it as pivot to cancel all coefficients on the first line by operating on columns. We then get a matrix of the shape:

     1 0 • • • 0 ⋆ ⋆ • • • ⋆ ⋆ ⋆ • • • ⋆     
and we continue this process with the submatrix obtained by deleting the first row and the first column. The matrix we get at the end is the L-part of the LU factorization of M . We propose to explore the numerical stability of LU factorization via Gaussian elimination in the p-adic case. Let us start with an example. Consider first the same matrix M as above and write its LU factorization M = LU (one can check that its principal minors do not vanish). Performing Gaussian elimination as described above within the framework of zealous arithmetic on the one hand and within the framework of floating-point arithmetic on the other hand, we end up with the following matrices: Interval (zealous) arithmetic: As before the correct digits are displayed in purple. We remark once again that the accuracy of p-adic floating-point arithmetic is better than that of interval arithmetic (it is actually even optimal on that particular example as we shall see in §3.2.2). More precisely, we note that the zealous precision is sharp on the first column but the gap increases when we are moving to the right.

L =    1 0 0 0 2 -4 × . . .
Remark 2.21. It is somehow classical [46, §1.4] that the entries of L and U can all be expressed as the quotient of two appropriate minors of M (Cramer-like formulas). Evaluating such expressions, it is possible to compute the LU factorization and stay sharp on precision within the zealous framework. The drawback is of course complexity since evaluating two determinants for each entry of L and U is clearly very time-consuming. A stable and efficient algorithm, combining the advantages of the two approaches, is designed in [START_REF] Caruso | Random matrices over a DVR and LU factorization[END_REF].

Bézout coefficients and Euclidean algorithm

We now move to polynomials and examine the computation of Bézout coefficients via the Euclidean algorithm. We pick at random two monic polynomials P and Q of degree 4 over Z 2 : P = X 4 + (. . . 1101111111) X 3 + (. . . 0011110011) X 2 + (. . . 1001001100) X + (. . . 0010111010)

Q = X 4 + (. . . 0101001011) X 3 + (. . . 0111001111) X 2 + (. . . 0100010000) X + (. . . 1101000111)
We can check that P and Q are coprime modulo p (observe that P + Q ≡ 1 (mod p)); they are therefore a fortiori coprime in Q p [X]. By Bézout Theorem, there exist two polynomials Floating-point arithmetic provides again better accuracy, though far for being optimal this time. Indeed the theory of subresultants [82, §4.1] shows that the coefficients of U and V can be all expressed as quotients of some minors of the Sylvester matrix of (P, Q) by the resultant of P and Q, denoted hereafter by Res(P, Q). From the fact that P and Q are coprime modulo p, we deduce that Res(P, Q) does not vanish modulo p. Thus val p (Res(P, Q)) = 0 and dividing by Res(P, Q) does not decrease the absolute precision according to Proposition 2.3. As a consequence, following this path and staying within the zealous framework, we can calculate the values of U and V at precision O(2 10). Here is the result we get: U = (. . . 0011101100) X 3 + (. . . 0100101100) X 2 + (. . . 1101110100) X + (. . . 0010001011) V = (. . . 1100010100) X 3 + (. . . 1011100100) X 2 + (. . . 0110111100) X + (. . . 0001100101).

U, V ∈ Z 2 [X] such that U P + V Q = 1.
We observe that the latter values (in addition to being proved) are even more accurate that the result which was computed "naively" using floating-point arithmetic. The drawback is complexity since evaluating many determinants requires a lot of time. The theory of p-adic precision we are going to introduce in the next section (see §3 and, more especially, §3.3.1) provides the tools for writing a stabilized version of Euclidean algorithm that computes provably U and V at (almost) optimal precision. We refer to [START_REF] Caruso | Numerical stability of Euclidean algorithm over ultrametric fields[END_REF] for more details (the material developed in §3 is necessary to read this reference).

Polynomial evaluation and interpolation

Polynomial evaluation and polynomial interpolation are very classical and useful primitives involved in many algorithms in symbolic computation. In this last paragraph, we examine how they behave from the point of view of precision. We focus on a very basic (but already very instructive) example. We consider the following two procedures:

• evaluation: it takes as input a polynomial P ∈ Q p [X] of degree at most d and outputs P (0), P (1), . . . , P (d);

• interpolation: it takes as input a list of values y 0 , . . . , y d ∈ Q p and returns the interpolation polynomial P ∈ Q p [X] of degree at most d such that P (i) = y i for i ∈ {0, 1, . . . , d}.

Algorithms (and notably fast algorithms) for these tasks abound in the literature (see for instance [33, §10]). For our propose, we choose naive algorithms: we implement evaluation by evaluating separately the P (i)'s (using Hörner scheme say) and we implement interpolation using the method of divided differences [41, §2]. Under our assumptions (interpolation at the first integers), it turns out that it takes a particularly simple form that we make explicit now.

Define the difference operator ∆ on Q p [X] by ∆A(X) = A(X + 1) -A(X). The values taken by A at the integers are related to the values ∆ n A(0) by a simple closed formula, as shown by the next lemma. Lemma 2.22. For all polynomials A ∈ Q p [X] of degree at most d, we have:

A(X) = d n=0 ∆ n A(0) • X n where X n = X(X -1) • • • (X -n + 1) n! .
Proof. We proceed by induction on d. When d = 0, the lemma is trivial. We assume now that it holds for all polynomials A of degree at most d and consider a polynomial

A ∈ Q p [X] with deg A = d+1. We define B(X) = d n=0 ∆ n A(0) • X n .
Remarking that ∆ X n = X n-1 for all positive integers n, we derive:

∆B(X) = d n=1 ∆ n A(0) • X n -1 = d-1 n=0 ∆ n+1 A(0) • X n .
From the induction hypothesis, we deduce ∆B = ∆A (since ∆A has degree at most d). Furthermore, going back to the definition of B, we find A(0) = B(0). All together, these two relations imply A = B and the induction goes.

Remark 2.23. Lemma 2.22 extends by continuity to all continuous functions f on Z p . In this generality, it states that any continuous function f : Z p → Z p can be uniquely written as a convergent series of the shape:

f (x) = ∞ n=0 a n • x n
where the a n 's lie in Z p and converge to 0 when i goes to infinity. The a n 's are moreover uniquely determined: we have a n = ∆ n f (0). They are called the Mahler coefficients of f . We refer to [START_REF] Mahler | An interpolation series for continuous functions of a p-adic variable[END_REF] for much more details on this topic.

From Lemma 2.22, we easily derive an algorithm for our interpolation problem. Given y 0 , . . . , y d , we define the "divided" differences y n,i for 0 i n d by (decreasing) induction on n by y d,i = y i and y n-1,i = y n,i+1y n,i . These quantities can be easily computed. Moreover, thanks to Lemma 2.22, the interpolation polynomial P we are looking for writes P (X) = d n=0 y n,0

x n . This provides an algorithm for computing the interpolation polynomial. Let us now try to apply successively evaluation and interpolation taking as input a random polynomial P of degree d = 8 with coefficients in Z p (for p = 2 as usual): The result computed by floating-point arithmetic is again a bit more accurate. However this observation is not valid anymore where the degree d gets larger. Figure 2.3 shows an example with a polynomial (picked at random) of degree d = 19. We see that almost all digits are incorrect, many coefficients have negative valuations, etc. For this problem, floating-point arithmetic is then not well suited.

P = (. . .
O(2 -6) X 19 + O(2 -6) X 18 + O(2 -6) X 17 + O(2 -5) X 16 + O(2 -6) X 15 + O(2 -6) X 14 + O(2 -6) X 13 + O(2 -5) X 12 + O(2 -6) X 11 + O(2 -6) X 10 + O(2 -6) X 9 + O(2 -5) X 8 + O(2 -4) X 7 + O(2 -3) X 6 + O(2 -2) X 5 + O(2 -
One may wonder whether another algorithm, specially designed for stability, would lead to better results. Unfortunately, the answer is negative: we shall see later (in §3.2.2) that the problem of polynomial evaluation and interpolation is very ill-conditioned in the p-adic setting, so that numerical methods are ineffective.

The art of tracking p-adic precision

In many examples presented in §2.4.3, we have often recognized similar behaviors: interval arithmetic often overestimates the losses of precision while floating-point arithmetic provides more accurate -but unproved -results. Understanding precisely the origin of these phenomena is a quite stimulating question (that has been widely studied in the real setting).

Recently Caruso, Roe and Vaccon [START_REF] Caruso | Tracking p-adic precision[END_REF] proposed a general theory for dealing with precision in the p-adic setting and this way provided powerful tools for attacking the aforementioned question. Their rough idea was to develop an analogue of interval arithmetic in higher dimensions. In other words, instead of attaching a precision O(p N) to each p-adic variable, they group variables and attach to the collection of all of them a unique global precision datum materialized by an "ellipsoid" in some normed p-adic vector space. The magic of ultrametricity then operates: ellipsoids are rather easy to deal with and behave very well with respect to tracking of precision.

In this section, we report on Caruso, Roe and Vaccon's work. §3.1 is dedicated to the foundations of their theory; it is mostly of mathematical nature and deals with p-adic analysis in several variables. It culminates with the statement (and the proof) of the precision Lemma (Theorem 3.16). Some first applications are discussed in §3.2 where the precision Lemma is used for finding the maximal precision one can expect in many concrete situations. Finally we propose in §3.3 general methods for reaching this optimal precision and apply them in concrete cases.

Foundations of the theory of p-adic precision

The aforementioned theory of p-adic precision is based on a single result of p-adic analysisthe so-called precision Lemma -controlling how ellipsoids transform under mappings of class C 1 . In fact the terminology "ellipsoid" is not quite appropriate to the p-adic setting (though very suggestive for the comparison with the real setting) because vector spaces over Q p are not equipped with some L 2 -norm. Mathematicians then prefer using the term "lattice" because, as we shall see below, the p-adic lattices behave like usual Z-lattices in R-vector spaces.

This subsection is organized as follows. We first introduce the notion of p-adic lattice (§ §3.1.1-3.1.2) together with the necessary material of p-adic analysis (§3.1.3). After this preparation, §3.1.4 is devoted to the precision Lemma: we state it and prove it. Applications to p-adic precision will be discussed in the next subsections (§3.2 and §3.3).

Lattices in finite-dimensional p-adic vector spaces

Let E be a finite-dimensional vector space over Q p . A (ultrametric) norm on E is a mapping

• E : E → R + satisfying the usual requirements:

(i) x E = 0 if and only if x = 0;

(ii) λx E = |λ| • x E ; (iii) x + y E max x E , y E .
Here x and y refer to elements of E while λ refers to a scalar in Q p . We notice that, without further assumption, one can prove that equality holds in (iii) as soon as x E = y E : all triangles are isosceles in all normed p-adic vector spaces! Indeed, by symmetry, we may assume x E < y E . Now we remark that from x + y E < y E , we would deduce:

y E max x + y E , -x E = max x + y E , x E < y E
which is a contradiction. Our assumption was then absurd, meaning that x + y E = y E . Given a real number r, we let B E (r) denote the closed ball in E of centre 0 and radius r, i.e.:

B E (r) = x ∈ E s.t. x E r .
It is worth remarking that B E (r) is a module over Z p . Indeed, on the one hand, multiplying by a scalar in Z p does not increase the norm (since elements of Z p have norm at most 1) and, on the other hand, the ultrametric triangular inequality implies that E is stable under addition. Balls in p-adic vector spaces have then two faces: one is analytic and one is algebraic. Being able to switch between these two points of view is often very powerful. The very basic (but still very important) example of a normed Q p -vector space is Q d p itself endowed with the infinite norm defined by

(x 1 , x 2 , . . . , x d) ∞ = max |x 1 |, |x 2 |, . . . , |x d | for x 1 , . . . , x d ∈ Q p . The unit ball of Q d p , • ∞ is Z d p and, more generally, B Q d p (r) = p n Z d p
where n is the unique relative integer defined by p -n r < p -(n-1) . We notice that they are indeed The general notion of lattice is modeled on balls: Definition 3.1. Let E be a finite-dimensional vector space over Q p . A lattice in E is a subset of E of the form B E (1) for some p-adic norm on E.

Remark that if H is a lattice in E and a is a non zero scalar in Q p , then aH is a lattice in E as well. Indeed if H is the closed unit ball for some norm • E , then aH is the closed unit ball for

1 |a| • E . More generally, if H ⊂ E is a lattice and f : E → E is a bijective linear transformation, then f (H)
is also a lattice. A consequence of Proposition 3.3 below is that all lattices take the form f (H 0) where H 0 is a fixed lattice and f vary in GL(E).

Lattices might be thought of as "ellipsoids" centered at 0. They form a class of special neighborhoods of 0 that we will use afterwards to model the precision (see §3.3). From this perspective, they will appear as the natural generalization to higher dimension of the notion of bounded interval (centered at 0) of Q p we have introduced in §1.1.5 and already widely used in §2.1 to model precision in zealous arithmetic.

Figure 3.1 shows a possible picture of a lattice drawn in the p-adic plane Q 2 p (endowed with the infinite norm). Nevertheless, we need of course to be very careful with such representations because the topology of Q p has nothing to do with the topology of the paper sheet (or the screen). In particular, it is quite difficult to reflect ultrametricity.

Here is another purely algebraic definition of lattices which justifies the wording (compare with the case of Z-lattice in R-vector spaces). Definition 3.2. Let E be a finite-dimensional vector space over

Q p . A lattice in E is a Z p -module generated by a basis of E over Q p .
The fact that a lattice in the sense of Definition 3.2 is a lattice in the sense of Definition 3.1 is rather easy: if (e 1 , . . . , e d) is a basis of E over Q p , the Z p -span of the e i 's is the closed unit ball for the norm • E defined by:

λ 1 e i + • • • + λ d e d E = max |λ 1 |, . . . , |λ d | .
As for the converse, it follows from the next proposition. Proposition 3.3. Let E be a d-dimensional normed vector space over Q p . There exists a basis (e 1 , . . . , e d) of E over Q p such that B E (1) is the Z p -module generated by the e i 's.

Proof. Set L = B E (1). We have already seen that L is a module over Z p ; thus the quotient L/pL makes sense and is a vector space over F p = Z/pZ. Consider (ē i) i∈I a basis of L/pL. (We shall see later that L/pL is finite dimensional of dimension d over F p but, for now, we do not know this and we do not assume anything on the set I indexing the basis.) For all i ∈ I, consider e i ∈ L which reduces to ēi modulo p.

We first claim that the family (e i) i∈I (where e i is considered as an element of E) is free over Q p . Indeed consider a relation of the form i∈I λ i e i = 0 with λ i ∈ Q p and λ i = 0 for almost all i. Assume by contradiction that this relation is non trivial. Then v = min i val p (λ i) is finite. Up to multiplying the λ i 's by p -v , we may assume that λ i ∈ Z p for all i ∈ I and that there exists at least one index i for which λ i does not reduce to 0 modulo p. Now reducing our dependency relation modulo p, we get i∈I λi ēi = 0 where λi ∈ F p is the class of λ i modulo p. Since the family (ē i) i∈I is free over F p by construction, we derive λi = 0 which contradicts our assumption.

It follows from the freedom of the e i 's that I is finite of cardinality at most d. Let us then write I = {1, 2, . . . , d ′ } with d ′ d. We now prove that (e 1 , . . . , e d ′) generates L over Z p . Let then x ∈ L. Using that the ēi 's generate L/pL, we find p-adic integers λ i,1 (0 i d ′) such that:

x ≡ λ 1,1 e 1 + λ 2,1 e 2 + • • • + λ d ′ ,1 e d ′ (mod pL) i.e. x = λ 1,1 e 1 + λ 2,1 e 2 + • • • + λ d ′ ,1 e d ′ + px 1 (3.1)
for some x 1 ∈ L. Applying the same reasoning to x 1 and re-injecting in Eq. (3.1), we end up with an equality of the form

x = λ 1,2 e 1 + λ 2,2 e 2 + • • • + λ d ′ ,2 e d ′ + px 2 with x 2 ∈ L and λ i,2 ≡ λ i,1
(mod p) for all i. Continuing this process we construct d ′ sequences (λ i,n) n 0 with the property that

x ≡ λ 1,n e 1 + λ 2,n e 2 + • • • + λ d ′ ,n e d ′ (mod p n L)
and λ i,n+1 ≡ λ i,n (mod p n) for all n and i. The latter congruence shows that, for all i, the sequence (λ i,n) n 0 is Cauchy and then converges to some λ i ∈ Z p . Passing to the limit, we find that these λ i 's furthermore satisfy

x = λ 1 e 1 + • • • + λ d ′ e d ′ .
It now remains to prove that the e i 's generate E over Q p . For this, remark that any vector x ∈ E can be written as x = p v y with y E 1, i.e. y ∈ B E [START_REF] Abdeljaoued | Méthodes matricielles, introduction à la complexité algébrique[END_REF]. By what we have done before, we know that y can be written as a linear combination of the e i 's. Hence the same holds for x.

Remark 3.4. Proposition 3.3 is a particular case of Nakayama's Lemma (which is a classical result of commutative algebra). We refer to [START_REF] Eisenbud | Commutative Algebra: with a view toward algebraic geometry[END_REF] for a general introduction to commutative algebra including an exposition of Nakayama's Lemma in a much more general context. (ii) All norms over a given finite dimension vector space over Q p are equivalent.

(iii) All linear applications between finite dimensional vector spaces over Q p are continuous.

Proof. Let E be a finite dimension normal vector space over Q p . Use Proposition 3.3 to pick a basis e 1 , . . . , e d of E whose Z p -span is B E (1). We claim that an element x ∈ E lies in the ball B E (p -n) if and only if all its coordinates on the basis (e 1 , . . . , e d) are divisible by p n . Indeed the latter assertion implies easily the former by factoring out p n . Conversely, let x ∈ B E (p -n). Then p -n x has norm at most 1 and thus can be written as p -n x = λ 1 e 1 + • • • + λ d e d with λ i ∈ Z p for all i. Multiplying by p n on both side and identifying coefficients, we get the claim.

Let (x n) n 0 be a Cauchy sequence with values in E. For all n, write x n = λ n,1 e 1 + • • • + λ n,d e d with λ n,i ∈ Q p . It follows from the result we have proved in the previous paragraph that the sequences (λ n,i) n 0 are Cauchy for all i. They thus converge and hence so does (x n) n 0 . This proves (i).

The two other assertions are easy (after Proposition 3.3) and left to the reader.

Computation with lattices

The algebraic side of lattices provides the tools for representing and manipulating p-adic lattices on computers (at least if the underlying vector space E is reasonable) in a quite similar fashion as usual integral lattices are represented and manipulated via integral matrices.

For simplicity, let us expose the theory in the case where E = Q d p (endowed with the infinite norm). We then represent a lattice H ⊂ E by the matrix whose row vectors form a basis of L (in the sense of Definition 3.2). Equivalently, we can take the matrix, in the canonical basis, of the linear transformation f mentioned just above Definition 3.1.

For example, if d = 4 and H is generated by the vectors: Remark 3.6. By convention, our vectors will always be row vectors.

e 1 =
The matrix M we obtain this way is rather nice but we can further simplify it using Hermite reduction [23, §2.4]. In the p-adic setting, Hermite reduction takes the following form.

Theorem 3.7 (p-adic Hermite normal form). Any matrix M ∈ GL d (Q p) can be uniquely written as a product M = U A where U ∈ GL d (Z p) and A has the shape:

A =          p n 1 a 1,2 • • • • • • a 1,d 0 p n 2 . p n d-1 a d-1,d 0 • • • • • • 0 p n d         
where the n i 's are relative integers and the a i,j 's are rational numbers of the form a i,j = b i,j p v i,j with 0 b i,j < p n j +v i,j .

The matrix A is called the Hermite normal form of M .

Remark 3.8. The left multiplication by the matrix U corresponds to operations on the rows of M , that are operations on the vectors e i . The invertibility of U over Z p ensures that the row vectors of A continue to generate the lattice H we have started with.

The proof of Theorem 3.7 is constructive and can be done by row-echelonizing the matrix M . Instead of writing it down for a general M , let us just show how it works on the example (3.2). We first select in the first column an entry with minimal valuation, we then move it to the top left corner by swapping rows and we normalize it so that it becomes a power of p by rescaling the first row by the appropriate invertible element of Z p . In our example, one can for instance choose the second entry of the first column. After swap and renormalization, we get:   

  

Remark that these row operations do not affect the Z p -span of the row vectors (i.e. they correspond to a transformation matrix U which lies in GL d (Z p)). We continue this process with the 3 × 3 matrix obtained by erasing the first row and the first column. Since we have forgotten the first row, the smallest valuation of an entry of the second column is now 3 and the corresponding entry is located on the third row. We then swap the second and the third rows, rescale the (new) second row in order to put 2 3 on the diagonal and use this value 2 3 as pivot to cancel the remaining entries on the second column. After these operations, we find:   

  

Interestingly, observe that the precision on the last two entries of the last column has decreased by one digit. This is due to the fact that the pivot 2 3 was not the element with the smallest valuation on its row. This loss of precision may cause troubles only when the initial matrix M is known at precision O(p N) with N max i n i ; in practice such a situation very rarely happen and will never appear in this course.

The next step of Hermite reduction is the normalization of the bottom right entry:   

  

It remains now to clean up the upper triangular part of the matrix. For this, we proceed again column by column by using the pivots on the diagonal. Of course there is nothing to do for the first column. We now reduce the (1, 2) entry modulo 2 3 which is the pivot located on the same column. In order to do so, we add to the first row the appropriate multiple of the second row. We obtain this way the new matrix:

   1

  

We emphasize that the (1, 2) entry of the matrix is now exact! Repeating this procedure several times we end up finally with   

1 7 2 5 0 2 3 0 12 0 0 2 3 12 0 0 0 2 4   
which is the expected Hermite normal form.

Remark 3.9. The algorithmic problem of computing the Hermite normal form has been widely studied over the integers and we now know much more efficient algorithms (taking advantage of fast matrix multiplication) to solve it [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]; these algorithms extend without trouble to the case of Z p (with the same complexity). Other algorithms specially designed for the p-adic setting are also available [START_REF] Caruso | Random matrices over a DVR and LU factorization[END_REF].

Here is a remarkable corollary of Theorem 3.7 (compare with Proposition 2.1):

Corollary 3.10. Lattices in Q d p are representable on computers by exact data.

Operations on lattices can be performed on Hermite forms without difficulty. The sum of two lattices, for example, is computed by concatenating the two corresponding Hermite matrices and re-echelonizing. In a similar fashion, one can compute the image of a lattice under a surjective 19 linear mapping f : we apply f to each generator and echelonize the (possibly rectangular) matrix obtained this way.

A small excursion into p-adic analysis

Another important ingredient we will need is the notion of differentiable functions in the p-adic world. All the material presented in this section is classical. We refer to [70, §I.4] and [START_REF] Colmez | Fonctions d'une variable p-adique[END_REF] for a much more detailed and systematic exposition.

The case of univariate functions

The notion of differentiability at a given point comes with no surprise: given an open subset U ⊂ Q p , x ∈ U and a function f : U → Q p , we say that f is differentiable at x if f (x)-f (y)

x-y has a limit when y tends to x. When f is differentiable at x, we define:

f ′ (x) = lim y→x f (x) -f (y)
xy .

Alternatively one can define the derivative using Taylor expansion: one says that f is differentiable at x is there exists f ′ (x) ∈ Q p for which:

f (y) -f (x) -(y-x)f ′ (x) = o |y-x| for y → x. (3.3)
Usual formulas for differentiating sums, products, composed functions, etc. extend verbatim to the p-adic case. The fact that Q p is (highly) disconnected has however unpleasant consequences. For instance, the vanishing of f ′ on an interval does not imply the constancy of f . Indeed, consider as an example the indicator function of Z p : it is a locally constant function defined on Q p . It is then differentiable with zero derivative but it is not constant on Q p . One can cook up even worse examples. Look for instance at the function f : Z p → Z p defined by: 19 Surjectivity ensures that the image remains a lattice in the codomain.

a 0 + a 1 p + • • • + a n p n + • • • → a 0 + a 1 p 2 + • • • + a n p 2n + • • •
where the a i 's are the digits, i.e. they lie in the range [0, p-1]. A straightforward computation shows that |f (x)-f (y)| = |x-y| 2 , i.e. f is 2-Hölder. In particular, f is differentiable everywhere and f ′ vanishes on Z p . Yet f is apparently injective and a fortiori not constant on any interval.

The notion of p-adic function of class C 1 is more subtle. Indeed the notion of differentiable function with continuous derivative is of course well defined but not that interesting in the padic setting. Precisely, this definition is too weak and encompasses many "irregular" functions. A more flexible definition is the following. Definition 3.11. Let U be an open subset of Q p and f : U → Q p be a function. We say that f is of class C 1 on U if there exists a function f ′ : U → Q p satisfying the following property: for all a ∈ U and all ε > 0, there exists a neighborhood U a,ε ⊂ U of a on which:

f (y) -f (x) -(y-x)f ′ (a) ε • |y-x|. (3.4)
Given a function f : U → Q p of class C 1 on U , it is clear that f is differentiable on U and that the function f ′ appearing in Definition 3.11 has to be the derivative of f . Moreover f ′ is necessarily continuous on U . Indeed consider a ∈ U and ε > 0. Let b ∈ U a,ε . The intersection U = U a,ε ∩ U b,ε is open and not empty. It then contains at least two different points, say x and y. It follows from the definition that:

f (y) -f (x) -(y-x)f ′ (a) ε • |y -x| and f (y) -f (x) -(y-x)f ′ (b) ε • |y -x|.
Combining these inequalities, we derive f ′ (b)f ′ (a) ε which proves the continuity of f ′ at x. In the real setting, the continuity of f ′ implies conversely the inequality (3.4) 20 but this implication fails in the p-adic world. A counter-example is given by the function f : Z p → Q p defined by:

x = a v p v + a v+1 p v+1 + • • • + a 2v p 2v + a 2v+1 p 2v+1 + • • • → f (x) = a v p 2v + a 2v p 2v + a 2v+1 p 2v+2 + a 2v+2 p 2v+4 + • • •
where the a i 's are integers between 0 and p-1 with a v = 0. One checks that |f (x)| |x| 2 and |f

(x) -f (y)| = |x-y| 2 |x| 2 if |x -y| |x| 2 < 1.
These inequalities ensure that f is differentiable on Z p and that its derivative vanishes everywhere (and thus is continuous). On the other hand when |x -y| = |x| 2 < 1, we have |f (x)f (y)| = |x -y|, showing that f cannot be of class C 1 . Remark 3.12. Alternatively, following [START_REF] Colmez | Fonctions d'une variable p-adique[END_REF], one may define the notion of class C 1 for a function f : U → F by requiring the existence of a covering (U i) i∈I of U and of continuous real-valued functions ε i : R + → R + with ε i (0) = 0 such that:

∀i ∈ I, ∀x, y ∈ U i , f (y) -f (x) -(y-x)f ′ (x) |y-x| • ε i |y-x| (3.5)
(compare with (3.4)). In brief, a function f is of class C 1 when the estimation (3.3) is locally uniform on x. When the domain U is compact (e.g. U = Z p), one can remove the word "locally", i.e. one can forget about the covering and just take I = {⋆} and U ⋆ = U .

Proof of the equivalence between the two definitions. Assume first that f satisfies the definition of Remark 3.12. Let a ∈ U and ε > 0. We have a ∈ U i for some i. Let δ be a positive real number such that ε i < ε on the interval [0, δ). Define U a,ε as the intersection of U i with the open ball of centre a and radius δ. On U a,ε , the estimation:

f (y) -f (x) -(y-x)f ′ (x) ε • |y-x| (3.6)
holds. It remains then to relate f ′ (x) to f ′ (a). In order to do so, we write:

f (x) -f (a) -(x-a)f ′ (a) ε • |x-a| f (a) -f (x) -(a-x)f ′ (x) ε • |a-x|.
Combining these inequalities, we obtain |f ′ (x)f ′ (a)| ε. Re-injecting this new input in (3.6), we finally get (3.4) as desired.

Conversely, assume that f is of class C 1 in the sense of Definition 3.11. Since the problem is local on the domain, we may assume that U is an open ball. Up to translating and rescaling f , one may further suppose without loss of generality that U = Z p . In particular, note that U is compact. We define the function ε on (0, ∞) by:

ε(δ) = sup x,y∈Zp 0<|y-x| δ |f (y) -f (x) -f ′ (x)(y-x)| |y-x| .
Compacity ensures that the supremum is finite, so that ε is well defined. We have to show that ε goes to 0 when δ goes to 0. Let ε ′ > 0. By assumption, for all a ∈ Z p , there exists an open

neighborhood U a,ε ′ of a on which |f (y)-f (x)-f ′ (x)(y-x)| |y-x| ε ′ .
Up to shrinking U a,ε ′ , one may assume that U a,ε ′ = a + p na Z p for some positive integer n a . Now observe that the family of all U a,ε ′ when a varies is a covering of Z p ; by compacity, one can extract from it a finite subcovering (U a i ,ε ′) 1 i m that continues to cover Z p . If n denotes the supremum of the n a i 's (1 i m), we thus derive ε(δ) ε ′ for δ p -n and we are done.

The case of multivariate functions

Let E and F be two finite dimensional normed vector spaces over Q p . We denote by L(E, F) the space of Q p -linear mappings from E to F . The definition of differentiability and "of class C 1 " is mimicked from the univariate case.

Definition 3.13. Let U be an open subset of E.

A function f : U → F is differentiable at the point x ∈ U if there exists a linear mapping df x ∈ L(E, F) such that:

f (y) -f (x) -df x (y-x) F = o y-x E when y → x.
A function f : U → F is of class C 1 on U if there exists a function df : U → L(E, F), x → df x satisfying the following property: for all v ∈ U and all ε > 0, there exists a neighborhood U a,ε ⊂ U of a on which:

f (y) -f (x) -df a (y-x) F ε • y-x E . (3.7) Of course, if f is of class C 1 on U , it is differentiable at every point x ∈ U . When E = Q n p and F = Q m
p (or more generally when E and F are equipped with distinguished bases) the matrix of the linear mapping df x is the Jacobian matrix J(f) x defined by:

J(f) x = ∂f j ∂x i (x) 1 i n, 1 j m
where x 1 , . . . , x n are the coordinates of E and f 1 , . . . , f m are the components of f . Remark 3.14. Similarly to the univariate case (see Remark 3.12), a function f : U → F is of class C 1 if and only if there exist a covering (U i) i∈I of U and some continuous real-valued functions ε i : R + → R + with ε i (0) = 0 such that:

∀i ∈ I, ∀x, y ∈ U i , f (y) -f (x) -(y-x)f ′ (x) F y-x E • ε i y-x E . (3.8)
and one can just take I = {⋆} and U ⋆ = U when U is compact.

The precision Lemma

The precision Lemma is a result of p-adic analysis controlling how lattices transform under sufficiently regular mappings. Before stating it, we need a definition.

Definition 3.15. Let E be a normed vector space over Q p . Given ρ ∈ (0, 1] and r > 0, we say that a lattice

H ⊂ E is ρ-rounded, r-small if B E (ρr) ⊂ H ⊂ B E (r).
When E = Q d p (endowed with the infinite norm), one can determine ρ and r satisfying the conditions of Definition 3.15 by looking at any matrix M representing the lattice H (see §3.1.2). Indeed, if n is an integer for which the matrix p n M has all its entries in Z p , the lattice

p n H is included in Z n p = B E (1), meaning that H ⊂ B E (p n). Similarly B E (p -m) ⊂ H whenever m is an integer such that p m M -1 ∈ M d (Z p)
. Therefore if n is the smallest valuation of an entry of M and m is the smallest valuation of an entry of M -1 , the corresponding lattice H is (p n+m)-bounded, p n -small. Theorem 3.16 (Precision Lemma). Let E and F be two finite-dimensional p-adic normed vector spaces and let f : U → F be a function of class C 1 defined on an open subset U of E.

Let v ∈ U be such that df v is surjective. Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for any r ∈ (0, δ), any lattice ρ-bounded r-small lattice H satisfies:

f (v + H) = f (v) + df v (H). (3.9)
Unfortunately the precision Lemma is a bit technical; understanding its precise content is then probably not easy at first glance. In order to help the reader, let us say that the most important part of the precision Lemma is the conclusion, namely Eq. (3.9). This equation explains how f transforms a "shifted" lattice (i.e. a lattice translated by some vectors) and teaches us that f transforms a shifted lattice into another shifted lattice! From people coming from the real world, this result should appear as really amazing: in the real case, the image of an ellipsoid under a function f is in general definitely not another ellipsoid (unless f is affine). In the p-adic case, this happens for any function f of class C 1 with surjective differential (this assumption is important) and almost any lattice H (the assumptions on H are actually rather weak though technical). This is the magic of ultrametricity.

Below, we give the proof of the precision Lemma and discuss several extensions. We advise the reader who is more interested by applications (than by computations with ε) to skip the end of the subsection and go directly to §3.2, page 53.

Proof of Theorem 3.16. Without loss of generality, we may assume v = 0 and f (0) = 0. From the surjectivity of df 0 , we derive that there exists a positive constant C such that B F (1) ⊂ df 0 (B E (C)). Pick ε < ρ C , and choose a positive real number δ for which

f (b) -f (a) -df 0 (b-a) F ε • b-a E (3.10) on the ball B E (δ). Let r ∈ (0, δ). We suppose that H is a lattice with B E (ρr) ⊂ H ⊂ B E (r).
We seek to show that f maps H surjectively onto df 0 (H). We first prove that f (H) ⊂ df 0 (H). Suppose x ∈ H. Applying Eq. (3.10) with a = 0 and b = x, we get f (x)df 0 (x) F ε x E . Setting y = f (x)df 0 (x), we have y F εr. The definition of C implies that B F (εr) ⊂ df 0 (B E (ρr)). Thus there exists

x ′ ∈ B E (ρr) such that df 0 (x ′) = y. Then f (x) = df 0 (x -x ′) ∈ df 0 (H).
We now prove surjectivity. Let y ∈ df 0 (H). Let x 0 ∈ H be such that y = df 0 (x 0). We inductively define two sequences (x n) and (z n) by the following cross requirements:

• z n is an element of E satisfying df 0 (z n) = y -f (x n) and z n E C • y -f (x n) F ,
and

• x n+1 = x n + z n .
For convenience, let us also define x -1 = 0 and z -1 = x 0 . We claim that the sequences (x n) and (z n) are well defined and take their values in H. We do so by induction, assuming that x n-1 and x n belong to H and showing that z n and x n+1 do as well. Noticing that

y -f (x n) = f (x n-1) + df 0 (z n-1) -f (x n) = f (x n-1) -f (x n) -df 0 (x n-1 -x n) (3.11)
we deduce using differentiability that yf

(x n) F ε • x n -x n-1 E .
Since we are assuming that x n-1 and x n lie in H ⊂ B E (r), we find yf (x n) εr. Thus z n C • εr < ρr and then z n ∈ H. From the relation x n+1 = x n + z n , we finally deduce x n+1 ∈ H.

Using (3.11) and differentiability at 0 once more, we get

y -f (x n) ε • z n-1 εC • y -f (x n-1) , for all n > 0. Therefore, y -f (x n) = O(a n) and z n = O(a n) for a = εC < ρ 1.
These conditions show that (x n) n 0 is a Cauchy sequence, which converges since E is complete (see Corollary 3.5). Write x for the limit of the x n ; we have x ∈ H because H is closed (see again Corollary 3.5). Moreover, f is continuous on H ⊆ U ε since it is differentiable, and thus y = f (x).

For the applications we have in mind, Theorem 3.16 is actually a bit too weak because it is not effective: the value of δ is not explicit whereas we will often need it in concrete applications. In the most general case, it seems difficult to say much more about δ. Nevertheless, there are many cases of interest where the dependence on δ can be made explicit. The simplest such case is that of multivariate polynomials and is covered by the next proposition. Proposition 3.17. Let f : Q n p → Q m p be a function whose coordinates are all multivariate polynomials with coefficients in Z p . Let v ∈ Z n p such that df v is surjective. Then Eq. (3.9) holds as soon as H ⊂ B E (r) and B F (pr 2) ⊂ df v (H) for some positive real number r.

Remark 3.18. The case where f is a multivariate polynomial with coefficients in Q p reduces to the above proposition by multiplying f by an appropriate constant. Similarly, if the point v does not lie in Z n p but in Q n p , we can shift and rescale the polynomial f in order to place ourselves within the scope of application of Proposition 3.17.

The proof of Proposition 3.17 is based on the following Lemma. Lemma 3.19. Let g : Q n p → Q m p be a function whose coordinates are all multivariate polynomials with coefficients in Z p . Then

g(b) -g(a) -dg 0 (b-a) max a , b • b-a for all a, b ∈ Z n p .
Proof. We may assume m = 1. By linearity, we may further assume that g(x 1 , . . . ,

x n) = x α 1 1 • • • x αn n .
If the sum of the α i 's is at most 1, the quantity g(b)g(a)dg 0 (b-a) vanishes and the lemma is clear. Otherwise the differential dg 0 vanishes and we write:

g(b 1 , . . . , b n) -g(a 1 , . . . , a n) = (b α 1 1 -a α 1 1)b α 2 2 • • • b αn n + a α 1 1 (b α 2 2 -a α 2 2)b α 3 3 • • • b αn n + • • • + a α 1 1 • • • a α n-1 n-1 (a αn n -b αn n). Noting that b α i i -a α i i = (b i -a i) α i -1 k=0 b k i a α i -1-k i and remembering that α 1 + • • • + α n 2,
we get the announced result by applying the ultrametric triangular inequality.

Proof of Proposition 3.17. Let H be a lattice satisfying the assumptions of the proposition. Let n be the largest relative integer for which p n r.

Then B E (r) = B E (p n) and B F (p 2n+1) ⊂ B F (pr 2), so that H ⊂ B E (p n) and B F (p 2n+1) ⊂ df v (H). Set H ′ = p n H; clearly H ′ is a lattice contained in B E (1). Let ϕ : Q n p → Q n p be a linear mapping taking bijectively B E (1) to H ′ . Consider the composite g = f • (v + ϕ). From H ′ ⊂ B E (1)
, we deduce that the entries of the matrix of ϕ (in the canonical basis) lie in Z p . Since moreover v ∈ Z n p , we deduce that all the coordinates of g are given by multivariate polynomials with coefficients in Z p . Furthermore, we have:

f (v + H) = f (v + p -n H ′) = f (v + ϕ(B E (p n)) = g(B E (p n)) and f (v) + df v (H) = f (v) + df v • ϕ(B E (p n)) = g(0) + dg 0 (B E (p n)).
We then have to prove that g(B E (p n)) = g(0) + dg 0 (B E (p n)) knowing that g is a multivariate polynomial function with coefficients in Z p and B F (p n+1) ⊂ dg 0 (B E (1)). This can be done by following the lines of the proof of Theorem 3.16 and refining Eq. (3.10) by the estimation of Lemma 3.19.

Other results concerning more general f and building on the machinery of Newton polygons are available in the literature. We refer the reader to [START_REF] Caruso | Tracking p-adic precision[END_REF] for the case of locally analytic functions and to [START_REF] Caruso | p-adic stability in linear algebra[END_REF] for the case of solutions of partial differential equations of order 1.

Optimal precision and stability of algorithms

The precision Lemma (Theorem 3.16) provides the mathematical tools for finding the intrinsic optimal loss/gain of precision of a given problem and then for studying the stability of numerical p-adic algorithms.

The precision Lemma at work

Consider an "abstract p-adic problem" encoded by a mathematical function ϕ : U → F where U is an open subset in a finite dimensional p-adic vector space E and F is another finite dimensional p-adic vector space. The modelling is straightforward: the domain U is the space of inputs, the codomain F is the space of outputs and ϕ is the mapping sending an input to the expected output. Many concrete problems fit into this framework: for instance ϕ can be the function mapping a pair of p-adic numbers to their sum or their product, but it can also be the function mapping a polynomial (of a given degree) to its derivative, a matrix (of given dimensions) to its inverse, a family of multivariate polynomials (of given size and degrees) to its reduced Gröbner basis, etc.

In order to apply the precision Lemma, we shall assume that ϕ is of class C 1 . This hypothesis is not restrictive at all in practice since in many common cases, the function ϕ has much more regularity than that: it is often obtained by composing sums, products, divisions and ifstatements so that it is locally given by multivariate rational fractions. We suppose furthermore that E and F are endowed with distinguished bases (e 1 , . . . , e n) and (f 1 , . . . , f m) respectively. This choice models the way the elements of E and F are represented on the computer. For instance if E = Q p [X] <n (the vector space of polynomials of degree less than n) and polynomials are represented internally by the list of their coefficients, we will just choose the canonical basis. On the contrary, if polynomials are represented as linear combinations of the shape:

λ 0 + λ 1 X + λ 2 X(X-1) + • • • + λ n-1 X(X-1) • • • (X-n+2)
then the distinguished basis we will choose is (1, X, X(X-1), . . . , X(X-1)

• • • (X-n+2)).
precision Lemma applied with ϕ itself (assuming that the hypotheses of the precision Lemma are fulfilled of course) yields the equality:

ϕ(v + H) = ϕ(v) + dϕ v (H).
The number of diffused digits of precision resulting from the computation of ϕ(v) is then the number of diffused digits of the lattice dϕ v (H). If we are working in the basis (f 1 , . . . , f n), this number can be large, meaning that writing down the precision in this basis can be weak. However, if we are allowing a change of basis on the codomain, we can always reduce the number of diffused digits to 0; in such a basis, the precision can be made optimal!

Context of lazy/relaxed arithmetic

As we have explained in §2.4.1, the point of view of lazy/relaxed arithmetic differs from the zealous one on the following point: instead of fixing the precision on the input and propagating it to the outputs, it fixes a target precision and infers from it the precision needed on the inputs. Of course, in order to save time and memory, we would like to avoid the computation of unnecessary digits. Regarding precision, the question then becomes: what is the minimal number of digits we have to compute on the inputs in order to ensure a correct output at the requested precision?

This question translates into our precision language as follows: we fix some relative integers M 1 , . . . , M m and look for relative integers N 1 , . . . , N n for which:

ϕ(v + H) ⊂ ϕ(v) + H ′ (3.15)
with H = Span Zp p N 1 f 1 , . . . , p Nn e n (the unknown) and H ′ = Span Zp p M 1 f 1 , . . . , p Mm f m . Assuming that the precision Lemma applies for ϕ and H, Eq. (3.15) is equivalent to

dϕ v (H) ⊂ H ′ , i.e. H ⊂ dϕ -1 v (H ′).
The problem then reduces to find the largest diagonal lattice sitting in dϕ -1 v (H ′).

The comparison with the zealous situation is instructive: in the zealous case, one had the lattice dϕ v (H Zeal) and we were looking for the smallest diagonal lattice containing it. The problem is now "reversed" and can actually be related to the zealous problem using duality. Before going further, we need to recall basic facts about duality and lattices.

Given V a finite dimensional Q p -vector space, we define its dual V ⋆ as the space of Q p -linear forms on V . We recall that there is a canonical isomorphism between V and its bidual V ⋆⋆ ; it maps an element x ∈ V to the linear form taking ℓ ∈ V ⋆ to ℓ(x). We recall also that each basis

(v 1 , . . . , v d) of V has a dual basis (v ⋆ 1 , . . . , v ⋆ d) defined by v ⋆ j (v i) = 1 if i = j and v ⋆ j (v i) = 0 otherwise. If L ⊂ V is any Z p -module, its dual L ⋆ is defined by as the subset of V ⋆ consisting of linear forms ℓ : V → Q p for which ℓ(L) ⊂ Z p . Clearly L ⋆ is a sub-Z p -module of V ⋆ . One can check that the construction L → L ⋆ is involutive (i.e. L ⋆⋆ = L), order-reversing (i.e. if L 1 ⊂ L 2 then L ⋆ 2 ⊂ L ⋆ 1
) and preserves diagonal lattices (i.e. if L is a diagonal lattice with respect to some basis then L ⋆ is a diagonal lattice with respect to the dual basis). Remark 3.21. If L is a lattice, so is L ⋆ . More precisely, if (v 1 , . . . , v d) is a basis of V and M is a square matrix whose rows span L (with respect to the above basis), it is easily checked that L ⋆ is spanned by the rows of t M -1 (with respect to the dual basis). On the contrary if L does not generate V as a Q p -vector space, the dual space

L ⋆ contains a Q p -line; conversely if L contains a Q p -line then L ⋆ does not generate V ⋆ over Q p .
Applying the above formalism to our situation, we find that the condition H ⊂ dϕ -1 v (H ′) we want to ensure is equivalent to dϕ -1 v (H ′) ⋆ ⊂ H ⋆ . Our problem then reduces to finding the smallest diagonal lattice containing dϕ -1 v (H ′) ⋆ . By the analysis we have done in the zealous context, the integer N i we are looking for then appears as the smallest valuation of an entry of indeed the optimal precision as soon as N ′ > val(det M), i.e. as soon as it is possible to ensure that det M does not vanish. The general result above applies in particular to the matrix M considered as a running example in §2. [START_REF] Batut | User's guide to PARI-GP[END_REF]

   ∈ M 4 (Z 2). (3.18)
Recall that all the entries of M were given at the same precision O(2 10). A simple computation (using zealous arithmetic) shows that the comatrix of M (i.e. the matrix whose (i, j) entry is (-1) i+j det M i,j) is:

Comatrix(M) =    . . .

  

We observe that the minimal valuation of its entries is 5 (it is reached on the second column), meaning that the optimal precision on det M is O(2 15). Coming back to §2.4.3, we see that the interval floating-point arithmetic reached this accuracy whereas zealous interval arithmetic missed many digits (without further help).

Computation of determinants with optimal precision. It is worth remarking that one can design a simple algorithm that computes the determinant of a p-adic matrix at the optimal precision within the framework of zealous arithmetic when the coefficients of the input matrix are all given at the same precision O(p N). This algorithm is based on a variation of the Smith normal form that we state now.

Proposition 3.22. Any matrix M ∈ M d (Q p) admits a factorization of the following form:

M = P •    a 1 . . . a d    • Q (3.19)
where P and Q are have determinant ±1, the matrix in the middle is diagonal and its diagonal entries satisfy val(a 1)

• • • val(a d).
The factorization (3.19) is quite interesting for us for two reasons. First of all, it reveals the smallest valuation of an entry of the comatrix of

M : it is v = val(a 1) + val(a 2) + • • • + val(a d-1). (3.20)
Indeed, taking exterior powers, one proves the entries of Comatrix(M) and Comatrix(P -1 M Q -1) span the same Z p -submodule of Q p . Moreover, since P -1 M Q -1 is diagonal, its comatrix is easily computed; we find:

Comatrix(P -1 M Q -1) =    b 1 . . . b d    with b i = a 1 • • • a i-1 a i+1 • • • a d (recall that Comatrix(A) = det A•A -1 if A is invertible)
and we are done. The direct consequence of this calculation is the following: if the entries of M are all given at precision O(p N), the optimal precision on det M is O(p N +v) (assuming v < N).

The second decisive advantage of the factorization (3.19) is that it can be computed without any loss of precision. The underlying algorithm basically follows the lines of the Hermite reduction we have presented in §3.1.2, except on the three following points:

• instead of choosing the pivot as an entry of smallest valuation on the working column, we choose as an entry of smallest valuation on the whole matrix,

• we do not only clear the entries behind the pivot but also the entries located on the right of the pivot,

• in order to keep the transformation matrices of determinant ±1, we do not rescale rows.

For example, starting with our favorite matrix M (see Eq. For a general M , the same precision analysis works. Indeed, when the entries of M are all given at precision O(p N), the reduction algorithm we have sketched above outputs a diagonal matrix whose determinant is the same as the one of M and whose diagonal entries a 1 , . . . , a d are all known at precision O(p N). By Proposition 2.3 (see also Remark 2.4), zealous arithmetic can compute the product

a 1 a 2 • • • a d at precision O(p N +w) with w = val(a 1) + • • • + val(a d) -max i val(a i).
We then recover the optimal precision given by Eq. (3.20).

Characteristic polynomial

The case of characteristic polynomials has many similarities with that of determinants. We introduce the function ϕ : M d (Q p) → Q p [X] <d that maps a matrix M to ϕ(M) = det(XI d -M) -X d where I d is the identity matrix of size d. The renormalization (consisting in subtracting X d) is harmless but needed in order to ensure that ϕ takes its values in a vector space (and not an affine space) and has a surjective differential almost everywhere. The partial derivatives of ϕ are:)) has exactly 9 diffused digits (apply Eq. (3.14)). The precision (3.21) is then globally not optimal although it is on each entry separately. For example, if ℓ i,j denotes the (i, j) entry of L, the linear combination ℓ 3,2 -11 • ℓ 3,1 can be known at precision O(2 6) although ℓ 3,2 and ℓ 3,1 cannot be known at higher precision than O(22). It is remarkable that floating-point arithmetic actually "saw" these diffused digits; indeed, taking the values computed in floating-point arithmetic for ℓ 3,2 and ℓ 3,1 , we compute:) on average while the second is O(log p d) on average [START_REF] Caruso | Random matrices over a DVR and LU factorization[END_REF].

∂ϕ ∂x i,j (M) = (-1) i+j • det(XI d -M) i,j (i, j) (i, j) (2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3) (1, 1)    . . .

Hermite

-→          2 -8 2 -8 × 11 0 2 -8 × 5 0 0          0 2 -4 0 0 0 0 0 0 2 -1 0 0 2 -3 0 0 0 2 -4 0 2 -3 0 0 0 0 1 2 -3 0 0 0 0 0 2 -2

Bézout coefficients

We now move to commutative algebra. We address the question of the computation of the Bézout coefficients of two monic polynomials of degree d which are supposed to be coprime. Let U be the subset of Q p [X] <d × Q p [X] <d consisting of pairs (P , Q) for which P = X d + P and Q = X d + Q are coprime. Observe that U is defined by the non-vanishing of some resultant and so is open. We introduce the function:

ϕ : U -→ Q p [X] <d × Q p [X] <d (P , Q) → (U, V) s.t. U P + V Q = 1
for P = X d + P and Q = X d + Q. (Note that U and V are uniquely determined thanks to the conditions on the degree.) Once again, the differential of ϕ can be easily computed by differentiating the defining relation U P + V Q = 1; indeed doing so, we immediately get:

dU • P + dV • Q = dR (3.22) dU dV (dP, dQ) X 3 X 2 X 1 X 3 X 2 X 1 (X 3 , 0)              . . .
dϕ (P , Q) : Q p [X] <d × Q p [X] <d -→ Q p [X] <d × Q p [X] <d (dP, dQ) → (dU, dV) = U •dR mod Q, V •dR mod P where dR = -U • dP -V • dQ.
It is important to note that dϕ (P , Q) is never injective because it maps (-V, U) to 0. Consequently, it is never surjective either and one cannot apply the precision Lemma to it. The easiest way to fix this issue is to decompose ϕ as ϕ = (ϕ U , ϕ V) and to apply the precision Lemma to each component separately (though this option leads to less accurate results).

For the particular example we have studied in §2.4.3, namely:

P = X 4 + (. . . 1101111111) X 3 + (. . . 0011110011) X 2 + (. . . 1001001100) X + (. . . 0010111010) Q = X 4 + (. . . 0101001011) X 3 + (. . . 0111001111) X 2 + (. . . 0100010000) X + (. . . 1101000111)
the Jacobian matrix we find is shown on Figure 3.5. Each column of this matrix contains an entry of valuation zero, meaning that the optimal precision on each coefficient of U and V is O(2 10).

Observe that it was not reached by interval arithmetic or floating-point arithmetic! Continuing our analysis, we further observe that the lattice generated by the dU -part (resp. the dV -part) of J(ϕ) (P , Q) has no diffused digit. The precision

O(2 10)X 3 + O(2 10)X 2 + O(2 10)X + O(2 10)
on both U and V is then optimal (but the joint precision induced on the pair (U, V) is not). Another option for fixing the default of surjectivity of dϕ (P,Q) is to observe that ϕ in fact takes its value in the hyperplane H of Q p [X] <d × Q p [X] <d consisting of pairs of polynomials (P, Q) whose coefficients in degree d-1 agree. Restricting the codomain of ϕ to H, we then obtain a well-defined mapping whose differential is almost everywhere surjective. Applying the precision Lemma, we find that the pair (U, V) has 16 diffused digits! Remark 3.25. A careful study of the precision in Euclidean algorithm is presented in [START_REF] Caruso | Numerical stability of Euclidean algorithm over ultrametric fields[END_REF]: we prove in this reference that if P and Q are two monic polynomials of degree d, Euclidean algorithm executed within the framework of zealous arithmetic (resp. floating-point arithmetic) looses Ω(v 0 + • • • + v d-1) (resp. O(max(v 0 , . . . , v d-1))) digits on each coefficient where v j is the valuation of the j-th scalar subresultant of P and Q. Moreover, for random polynomials, we have by [START_REF] Caruso | Numerical stability of Euclidean algorithm over ultrametric fields[END_REF]Corollary 3.6]:

E v 0 + • • • + v d-1 d p-1 E max(v 0 , . . . , v d-1) log p d + O log p d .
Compare this result with the case of LU factorization (see Remark 3.24).

Polynomial evaluation and interpolation

Recall that the last example considered in §2.4.3 was about evaluation and interpolation of polynomials: precisely, starting with a polynomial P ∈ Z p [X] of degree d, we first evaluated it at the points 0, 1, . . . , d and then reconstructed it by interpolation from the values P (0), P (1), . . . , P (d). We have observed that this problem seemed to be numerically highly unstable: for example, for d = 19 and an initial polynomial P given at precision O(2 10), we were only able to reconstruct a few number of digits and even found not integral coefficients in many places (see Figure 2.3). We propose here to give a theoretical explanation of this phenomenon.

Consider the function ϕ : Q p [X] d → Q d+1 p , P → (P (0), P (1), . . . , P (d)). Note that it is linear, so that dϕ P = ϕ for all P . The numerical stability of our evaluation problem is governed by the lattice

H = ϕ(p N Z p [X] d) = p N • ϕ(Z p [X] d)
where O(p N) is the initial precision we have on each coefficient of P (assuming for simplicity that it is the same for all coefficients). Applying ϕ to the standard basis of Z p [X] d , we find that H is generated by the row vectors of the Vandermonde matrix:

M =        1 1 1 • • • 1 0 1 2 • • • d 0 1 2 2 • • • d 2 0 1 2 d • • • d d       
.

According to Eq. (3.14), the number of diffused digits of H is then equal to the p-adic valuation of the determinant of M whose value is:

det M = 0 i<j d (j -i) = 1! × 2! × • • • × d!.
In order to estimate its p-adic valuation, we recall the following result.

Proposition 3.26 (Legendre's formula). For all positive integer n, we have:

val p (n!) = n p + n p 2 + • • • + n p k + • • •
where ⌊•⌋ is the usual floor function.

Proof. Exercise.

It follows in particular from Legendre's formula that val p (i!) When d is large compared to p, the number of diffused digits is much larger than the number of padic numbers on which these diffused digits "diffuse" (which are the d+1 values P (0), . . . , P (d)). They will then need to have an influence at high precision 23 . This is why it is so difficult to get a sharp precision on the tuple (P (0), . . . , P (d)). Concretely the n-th digits of the coefficients of P may influence the (n + d 2p)-th digit of some linear combination of the P (i)'s and conversely the n-th digits of the P (i)'s may influence the (n -d 2p)-th digits of the coefficients of P . In other words, in order to be able to recover all the coefficients of P at the initial precision O(p N), one should have used at least N + d 2p digits of precision (in the model of floating-point arithmetic).

Evaluation at general points. Until now, we have only considered evaluation at the first integers. We may wonder whether to what extend the instability we have observed above is related to this particular points. It turns out that it is totally independant and that similar behaviors show up with any set of evaluation points. Indeed, let a 0 , . . . , a d be pairwise distinct elements of Z p and consider the function ϕ : Q p [X] d → Q d+1 p , P → (P (a 0), P (a 1), . . . , P (a d)). It is linear and its Jacobian at any point is the following Vandermonde matrix:

       1 1 1 • • • 1 a 0 a 1 a 2 • • • a d a 2 0 a 2 1 a 2 2 • • • a 2 d a d 0 a d 1 a d 2 • • • a d d       
whose determinant is V (a 0 , . . . , a d) = 0 i<j d (a ia j). Thanks to Eq. (3.14), the number of diffused digits of the lattice ϕ(p N Z p [X] d) is the valuation of V (a 0 , . . . , a d). The next lemma ensures that this number is always as large as it was in the particular case we have considered at first (i.e. a i = i for all i).

Lemma 3.27. For all a 0 , . . . , a d ∈ Z p , we have:

val V (a 0 , . . . , a d) val 1! × 2! × • • • × d! .
Proof. Given a finite subset A ⊂ Z p , we denote by ν(A) the valuation of V (x 1 , . . . , x n) where the x i 's are the elements of A. We note that V (x 1 , . . . , x n) depends up to a sign to the way the elements of A are enumerated but ν(A) depends only on A. We are going to prove by induction on the cardinality

n of A that ν(A) val 1! × 2! × • • • × (n-1)! .
If A has cardinality 2, the result is obvious. Let us now consider a finite subset A of Z p of cardinality n. For i ∈ {1, . . . , p}, let A i be the subset of A consisting of elements which are congruent to i modulo p and write n i = Card A i . Define in addition B i as the set of x-r p for x varying in A i . Clearly B i is a subset of Z p of cardinality n i . Moreover, we easily check that:

ν(A) = p i=1 ν(A i) = p i=1 n i (n i -1) 2 + ν(B i) . (3.23) Define the function v : N → N, n → n(n-1) 2 + val(1!) + • • • + val((n-1)!). It follows from the induction hypothesis that ν(A) v(n 1) + • • • + v(n p). Observe that f (n+1) -f (n) = n + val(n!)
and deduce from this that f (n) + f (m) f (n+1) + f (m-1) as soon as m n + 2. Applying again and again this inequality and noting in addition that n 1 + • • • + n p = n, we end up with:

v(n 1) + • • • + v(n p) r • v(q+1) + (p-r) • v(q) (3.24)
where q and r are the quotient and the remainder of the Euclidean division of n by p respectively. It is enough to prove that the right hand side of Eq. (3.24) is equal to val(1!) + • • • + val((n-1)!). This follows from Eq. (3.23) applied with the particular set A = {0, 1, . . . , n-1}.

Remark 3.28. The above proof shows in a similar fashion that if a 0 , . . . , a d are integers, then

V (a 0 , . . . , a d) is divisible by 1! × 2! × • • • × d!.
The conclusion of the above analysis is that the evaluation-interpolation strategy -which is used for instance in FFT -cannot be used in the p-adic setting without further care. Precisely, from this point of view, one should really think of Z p as if it were a ring of characteristic p and reuse all the techniques developed in the case of finite fields for avoiding divisions by p.

Newton iteration

We have already seen that Hensel's Lemma is a powerful tool in the p-adic context. However, as highlighted in §2.1.3, it may have a strange behavior regarding precision. Below we use the precision Lemma in order to study carefully this phenomenon. We also take the opportunity to extend the Newton scheme (on which Hensel's Lemma is based) to the framework of multivariate functions of class C 2 .

Functions of class C 2 in the p-adic setting Recall that, given two Q p -vector spaces E and F , we denote by L(E, F) the space of linear mappings from E to F . Similarly, Given three Q p -vector spaces E 1 , E 2 and F , we denote by B(E 1 ×E 2 , F) the space of bilinear functions E 1 ×E 2 → F . We recall that there exist canonical isomorphisms -the so-called curryfication isomorphisms -between

B(E 1 ×E 2 , F), L(E 1 , L(E 2 , F)) and L(E 2 , L(E 1 , F)). When E 1 = E 2 = E,
we define further B s (E×E) as the subspace of B(E×E, F) consisting of symmetric bilinear functions.

We recall also that when E and F are endowed with norms, the space L(E, F) inherits the norm operator defined by

f L(E,F) = sup x∈B E (1) f (x) F . Similarly, we endow B(E 1 ×E 2 , F) with the norm • B(E 1 ×E 2 ,F) defined by b B(E 1 ×E 2 ,F) = sup x 1 ∈B E 1 (1),x 2 ∈B E 2 (1) b(x 1 , x 2) F .
The curryfication isomorphisms do preserve the norm.

The definition of "being of class C 2 " is inspired from the alternative definition of "being of class C 1 " provided by Remark 3.14 (see also Remark 3.12). Definition 3.29. Let E and F be two normed finite dimensional vector spaces and let U be an open subset of E. A function f : U → F is of class C 2 if there exist:

• a function df : U → L(E, F), x → df x • a function d 2 f : U → B s (E×E, F), x → d 2 f x • a covering (U i) i∈I of U , and
• for all i ∈ I, a continuous real-valued function ε i : R + → R + vanishing at 0 such that, for all i ∈ I and all x, y ∈ U i : Proof. We consider the data df , d 2 f , U i , ε i given by Definition 3.29. Without loss of generality, we may assume that the U i 's are all balls and that the ε i 's are all non-decreasing functions. By this additional assumption, U i is compact; the function x → d 2 f x B(E×E,F) is then bounded on U i by a constant C i . Therefore Eq. (3.25) implies:

f (y) -f (x) -df x (y-x) -1 2 d 2 f x (y-x, y-x) F y-x 2 E • ε i y-x E (3
f (y) -f (x) -df x (y-x) F y-x 2 E • max C i , ε i y-x E
for all x, y ∈ U i . The first assertion of the Proposition follows.

We now prove the second assertion. We fix i ∈ I. Let x, y ∈ U i . We set δ = y-x E ,

ℓ = df x -df y -d 2 f x (y -x) ∈ L(E, F) and b = 1 2 d 2 f x -d 2 f y ∈ B s (E×E, F).
Observe that, thanks to our assumption on U i (and ultrametricity), the ball B E (y, δ) of centre y and radius δ is included in U i . For z ∈ B E (y, δ), we define:

δ z,x = f (z) -f (x) -df x (z-x) -1 2 d 2 f x (z-x, z-x) δ z,y = f (z) -f (y) -df y (z-y) -1 2 d 2 f y (z-y, z-y) δ y,x = f (y) -f (x) -df x (y-x) -1 2 d 2 f x (y-x, y-x).
By our assumptions, these three vectors have norm at most δ 2 • ε i (δ). A simple computation using linearity and bilinearity yields δ z,xδ z,yδ y,x = ℓ(z-y)b(z-y, z-y). Consequently, we get the estimation:

ℓ(h) -b(h, h) F δ 2 • ε i (δ)
for all h ∈ E with h E δ. Applying it with (p+1)h in place of h, we find:

ℓ(h) -(p+1) • b(h, h) F δ 2 • ε i (δ)
and combining now the two above inequalities, we end up with b(h, h) F pδ 2 • ε i (δ) and so ℓ(h) F pδ 2 • ε i (δ) as well. This inequality being true for all h ∈ B E (α), we derive ℓ L(E,F) p 2 δ • ε i (δ). This proves the differentiability of df together with the fact that its differential is d 2 f .

Hensel's Lemma for functions of class C 2

We want to develop an analogue of Hensel's Lemma (see Theorem 1.6) for a function f : U → F of class C 2 whose domain U is an open subset of a finite dimensional p-adic vector space E and whose codomain F is another p-adic vector space of the same dimension. For simplicity, we assume further that U = B E (1) (the general case is deduced from this one by introducing coverings). Under this additional assumption, the function d 2 f is bounded, i.e. there exists a constant C such that d 2 f x B(E×E,F) C for all x ∈ B E [START_REF] Abdeljaoued | Méthodes matricielles, introduction à la complexité algébrique[END_REF]. Plugging this into Eq. (3.25) and possibly enlarging a bit C, we derive the two estimations:

∀x, y ∈ B E (1), f (y) -f (x) -df x (y-x) F C • y-x 2 E (3.26) df y -df x L(E,F) C • y-x E (3.27)
which are the key points for making Newton iteration work. We consider a point v ∈ B E (1) for which: x

df v is invertible and f (v) F • df -1 v 2 L(F,E) < C -1 df -1 v L(F,E) . (3.28) We set r = C • df -1 v L(F,E)
L(F,E) = df -1 v L(F,E) for all x ∈ V . Moreover, the Newton iteration mapping N : V → E, x → x -df -1
x (f (x)) takes its values in V and satisfies:

f (N (x)) F C • df -1 v 2 L(F,E) • f (x) 2 F . (3.29) Proof. Let x ∈ V . Set g = df v -df x .
By the inequality (3.27), we have:

g L(E,F) = df v -df x L(E,F) C • v-x E < Cr = df -1 v L(F,E) -1 . Write df x = df v -g = df v • (id E -df -1 v • g). The above estimation shows that the norm of df -1 v • g is strictly less than 1. Therefore the series ∞ n=0 (df -1 v • g) •n converges to an inverse of (id E -df -1 v • g). In particular (id E -df -1 v • g) is invertible and so is df x . Remark in addition that the norm of ∞ n=0 (df -1 v • g) •n is at most 1 and so df -1 x L(F,E) df -1 v L(F,E) .
Reverting the roles of v and x, we find even better that equality does hold. Applying now (3.26), we get:

f (v) -f (x) -df x (v-x) F C • v-x 2 E < Cr 2 = r df -1 v 2 L(F,E) . Applying df -1 x , we deduce df -1 x (f (v)) -df -1 x (f (x)) -(v-x) F < r. Notice furthermore that v-x E < r by assumption and df -1 x (f (v)) F df -1 v L(F,E) • f (v) F < r. Consequently we find df -1 x (f (x)) F <
x 0 = v ; x i+1 = N (x i) = x i -df -1 x i (f (x i))
is well defined and converges to x ∞ ∈ V such that f (x ∞) = 0. The rate of convergence is given by:

x i -x ∞ E r • C • f (v) F • df -1 v 2 L(F,E) 2 i = C • f (v) F • df -1 v 2 L(F,E) 2 i C • df -1 v L(F,E)
.

Moreover x ∞ is the unique solution in V to the equation f (x) = 0. Proof. We define ρ = C • f (v) F • df -1 v 2
L(F,E) By Lemma (3.31), all the x i 's lie in V and:

f (x i+1) F C • df -1 v 2 L(F,E) • f (x i) 2 F (3.30)
for all i. By induction, we derive f

(x i) F C • df -1 v 2 L(F,E) -1 • ρ 2 i . Therefore: x i+1 -x i E = df -1 x i (f (x i)) E df -1 v L(F,E) • f (x i) F r • ρ 2 i . (3.31)
The sequence (x i) i 0 is a Cauchy sequence and therefore converges to some x ∞ for which f (x ∞) = 0. Eq. (3.31) implies moreover the announced rate of convergence together with the fact that x ∞ belongs to V . It then only remains to prove the uniqueness of the solution to the equation f (x) = 0 in V . For this, assume that y ∈ V satisfies f (y) = 0. Instantiating Eq. (3.26) with x = x ∞ , we obtain

df x∞ (y-x ∞) F C • y-x ∞ 2 E . Hence: y-x ∞ E = df -1 x∞ df x∞ (y-x ∞) E C • df -1 v L(F,E) • y-x ∞ 2 E = r -1 • y-x ∞ 2 E .
Since moreover yx ∞ E has to be strictly less than r by our assumptions, we derive y = x ∞ and uniqueness follows.

Remark 3.33. Hensel's Lemma is stable in the sense that its conclusion remains correct for a sequence (x i) i 0 satisfying the weaker recurrence:

x i+1 = x i -df -1 x i (f (x i)) + (some small perturbation)
as soon as the perturbation is small enough to continue to ensure that the estimation (3.30) holds.

Precision

In practice, the function f of which we want to find a root is often not exact but given with some uncertainty; think typically of the case where f is a polynomial (of given degree) with coefficients in Q p given at some finite precision. In order to model this, we introduce C 2 (B E (1), F), the set of functions f : B E (1) → F of class C 2 . We endow it with the C 2 -norm defined by

f C 2 = max f ∞ , df ∞ , d 2 f ∞
where the infinite norm of a function is defined as usual as the supremum of the norms of its values. We consider in addition a finite dimensional subspace F of C 2 (B E (1), F). The uncertainty on f will be modeled by some lattice in F.

We fix v ∈ B E (1) together with two positive real numbers C and r. We assume r 1.

Z : U -→ V f → x s.t. x ∈ V and f (x) = 0
is then well defined. In the idea of applying the precision Lemma, we study its differentiability.

Lemma 3.34. The function Z is differentiable on U . Moreover, its differential at f ∈ U is the linear mapping dZ

f : ϕ → -df -1 Z(f) (ϕ(Z(f))).
Proof. The lemma can be seen as an application of the p-adic implicit functions Theorem (see [START_REF] Schneider | p-Adic Lie groups[END_REF]Proposition 4.3]). Below, we give a direct proof avoiding it. Let f, g ∈ U . We set x = Z(f), ϕ = g-f and y = xdf -1 x (ϕ(x)). Since f (x) vanishes, Eq. (3.26) reads:

g(y) -(id E -dg x • df -1 x)(ϕ(x)) F C • y-x 2 E C • df -1 x 2 L(F,E) • ϕ 2 ∞ . (3.32)
From the identity id Edg

x • df -1 x = (df x -dg x) • df -1 x , we deduce moreover that id E -dg x • df -1 x L(E,E) df -1 x L(F,E) • df x -dg x L(E,F) df -1 x L(F,E) • dϕ ∞ . (3.33)
Combining (3.32) and (3.33), we derive g(y

) F df -1 x L(F,E) • ϕ 2 C 2 . Corollary 3.32 then implies y -Z(g) E df -1 x 2 L(F,E) • ϕ 2 C 2 = df -1 v 2 L(F,E) • ϕ 2 C 2
, which proves the lemma.

Applying the precision Lemma, we end up with the next corollary.

Corollary 3.35. If the uncertainty on f is given by a (sufficiently rounded and small) lattice H ⊂ U , then the optimal precision on x = Z(f) is df -1 x • ev x (H) where ev x : H → F is the evaluation morphism at x.

It is quite instructive to compare this result with the optimal precision we get after a single iteration of the Newton scheme. In order to do so, we introduce the map:

N : U × V -→ V (f, x) → f (x) -df -1 x (f (x))
which is well defined thanks to Lemma 3.31. It is moreover clear that N is differentiable since it appears as a composite of differentiable functions. A straightforward (but tedious) calculation shows that its differential at (f, x) is given by:

dN (f,x) : (ϕ, ξ) → -df -1 x ϕ(x) + df -1 x d 2 f x (ξ, f (x)) + df -1 x dϕ x (f (x)) .
In particular, we observe that if f (x) = 0, the last two terms vanish as well, so that the linear mapping dN (f,x) does not depend on the second variable ξ and agrees with dZ f . In the language of precision, this means that the optimal precision on Z(f) is governed by the last iteration of the Newton scheme. In practice, this result suggests the following strategy: in order to compute Z(f), we start with some v satisfying the requirements of Hensel's Lemma (Corollary 3.32), we iterate the Newton scheme without taking care (so much) of precision until the obtained approximation looks correct and we finally perform a last iteration reintroducing the machinery for tracking precision. By Remark 3.33, the omission of precision tracking is harmless while the equality dZ f = dN (f,Z(f)) shows (under mild assumptions on the lattice H) that the precision we will get at the end (using the above strategy) will be very good because the loss of precision will just come from the last iteration and so will be limited.

This behavior is very well illustrated by the example of the computation of square roots detailed in §2.1.3. (We then encourage the reader to read it and study it again in light of the discussion of this paragraph.) More recently Lairez and Vaccon applied this strategy for the computation of the solutions of p-adic differential equations with separation of variables [START_REF] Lairez | On p-adic differential equations with separation of variables[END_REF]; they managed to improve this way a former algorithm by Lercier and Sirvent for computing isogenies between elliptic curves in positive characteristic [START_REF] Lercier | On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a finite field[END_REF].

Lattice-based methods for tracking precision

Until now, we have explained how the precision Lemma can be used for finding the optimal precision and analyzing this way the stability of algorithms. It turns out that the precision Lemma is also useful for stabilizing algorithms, i.e. for producing a stable procedure by altering slightly another given procedure which might be highly unstable.

The method of adaptive precision

We place ourselves in the following general setting. Let Phi be a routine that computes a mathematical function ϕ : U → V whose domain U is an open subset of a finite dimensional Q p -vector space E (i.e. Phi takes as input a tuple of p-adic numbers but may possibly fails for particular instances lying a closed subset) and whose codomain V is an open subset of another finite dimensional Q p -vector space (i.e. Phi outputs a tuple of p-adic numbers as well). We assume that f is of class C 1 on U . We moreover fix an input x ∈ U for which the differential df x is surjective. Remark 3.36. While the C 1 -assumption is usually harmless, the surjectivity assumption is often more serious. For instance, observe that it implies that the dimension of F (i.e. the size of the output) is not greater than the dimension of E (i.e. the size of the input). Clearly there exist many interesting algorithms that do not satisfy this requirement and therefore do not fit into our framework. One can always however workaround this issue as follows. We write the space of outputs F as a direct sum F = F 1 ⊕ • • • ⊕ F m and decompose the procedure Phi accordingly, i.e. for each i, we introduce the algorithm Phi i that outputs only the i-th part of Phi. Clearly Phi i is modeled by the mathematical function ϕ i = pr i • ϕ where pr i : F → F i is the canonical projection. As a consequence dϕ i,x = pr i • dϕ x ; if the F i 's are small enough, it will then be unlikely that one of them is not surjective. For instance, in the special case where the F i 's are all lines, the writing F = F 1 ⊕ • • • ⊕ F m corresponds to the choice of a basis of F and the surjectivity of the dϕ i,x 's is equivalent to the fact that each column of the Jacobian matrix has a nonzero entry (which is clearly much weaker than requiring its surjectivity).

Our aim is to compute ϕ(x) using the procedure Phi; we would like moreover to be sharp in terms of precision and get proved results. We have seen that neither zealous arithmetic, nor floating-point arithmetic can ensure these two requirements at the same time: zealous arithmetic is usually not sharp (see §2.4.3, §3.2.2 for many examples) while floating-point arithmetic is not proved. The case of lazy/relaxed arithmetic is a bit aside but it is not quite satisfactory either. Indeed recall that in the lazy approach, we are fixing a target precision; the output of Phi will then be sharp by design. The issue is elsewhere and comes from the fact that the lazy/relaxed machinery will generally compute the input x at a higher precision than needed, consuming then more resources than necessary (see §3.2.1 for a theoretical discussion about this and/or §3.3.2 below for a concrete example).

Context of zealous arithmetic: precision on inputs

We assume that the input x is given at some precision which is represented by a lattice H in E: if the i-th coordinate of x is given at precision O(p N i), the lattice H is the diagonal lattice

H = p N 1 Z p ⊕ p N 2 Z p ⊕ • • • ⊕ p N d Z p (with d = dim E)
(see also §3.2.1). We underline nevertheless that non diagonal lattices H (corresponding to precision data with diffused digits, see Definition 3.20) are also permitted. We assume that H is nice enough so that the precision Lemma applies, giving:

ϕ(x + H) = ϕ(x) + dϕ x (H).
(3.34)

Separation of approximation and precision. The formula above strongly suggests to split the computation of ϕ(x+H) into two independent parts corresponding to the two summands. Concerning precision, we have to compute the lattice dϕ x (H). One option for this is to rely on automatic differentiation techniques [START_REF] Bartholomew-Biggs | Automatic differentiation of algorithms[END_REF][START_REF] Neidinger | Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming[END_REF]; this approach however often leads to costly computations and really affects the complexity of our algorithm. For this reason, alternative strategies are often preferable (when available). The simplest one is probably to precompute dϕ x by hand (we have seen in §3.2.2 that it is tractable in many situations) and plug the obtained result into our algorithm. On the other hand, we observe that dϕ x (H) is a lattice in F and is therefore encoded by a dim F × dim F matrix, which might be quite a large object (compare with dim F which is the size of the output). Therefore, if we do not need to be extremely careful on precision, we could prefer replacing dϕ x (H) by a slightly larger lattice H max which is more easily representable, e.g. H max could be a diagonal lattice.

For now on, we assume that we have at our disposal a lattice H max containing dϕ x (H) and we focus on the computation of the first term of Eq. (3.34), that is the approximation. Since dϕ x (H) is stable under addition, Eq. (3.34) yields ϕ(x + H) = y + dϕ x (H) ⊂ y + H max for any y lying in ϕ(x+H). Using now that H max is stable under addition as well, we end up with ϕ(x + H) ⊂ y + H max as soon as y ∈ ϕ(x+H) + H max . To conclude, it is then enough to compute the value of any element of ϕ(x+H) at precision H max . For doing so, we can rely on zealous arithmetic: we increase sufficiently the precision on x (picking arbitrary values for digits) so that ϕ(x) can be computed at precision at least H max and we output ϕ(x) at precision H max . In more conceptual terms, what we do is to choose an element x ′ ∈ x+H together with a diagonal lattice H ′ ⊂ H having the property that zealous arithmetic computes y and

H ′ Zeal such that f (x ′ + H ′) ⊂ y + H ′
Zeal and H ′ Zeal ⊂ H max . We thus have:

y ∈ ϕ(x ′ + H ′) + H ′ Zeal ⊂ ϕ(x + H) + H max
as wanted (see also Figure 3.6). These ideas lead to the following implementation: Viewing Phi as a sequence of steps. Roughly speaking, the problem with the above approach comes from the fact that the precision is tracked using interval arithmetic all along the execution of Phi. In order to avoid this, the idea consists in decomposing Phi into several steps; we then let interval arithmetic do the job of tracking precision within each individual step but we readjust the precision (using informations coming from the precision Lemma) each time we switch from one step to the next one. Concretely the readjustment is made by applying the method of the previous paragraph to each individual step.

Let us now go further into the details. As said above, we view the routine Phi as a finite sequence of steps Step 1 , . . . , Step n . Let σ i : U i-1 → U i be the mathematical function modeling the i-th step; its codomain U i is the space of outputs of the i-th step, that is the space of "active" variables after the execution of i-th step. Mathematically, it is an open subset in a finite dimensional Q p -vector space E i . For i ∈ {0, . . . , n}, we set ϕ i = σ i • • • • • σ 1 and x i = ϕ i (x); they are respectively the function modeling the execution of the first i steps of Phi and the state of the memory after the execution of the i-th step of Phi on the input x. In what follows, we always assume that dϕ i,x is surjective 24 and, even more, that the precision Lemma applies with ϕ i , x and H, meaning that, for all i: ϕ i (x + H) = x i + dϕ i,x (H).

(3.35)

We define H i = dϕ i,x (H) and we assume that we are given a "simple" lattice H i,max containing H i . However, for the application we have in mind, this datum will not be sufficient; indeed, we shall need to be extremely careful with precision at intermediate levels. In order to do so without having to manipulate the "complicated" lattice H i , we assume that we are given in addition another "simple" lattice H i,min which is contained in H i . With these notations, the stabilized version of Phi takes the following schematic form: d e f P h i _ s t a b i l i z e d _ v 2 (x): y 0 = x f o r i i n 1, 2, . . . , n: l i f t y i-1 at enough precision y i = Step i (y i-1) # here we want y i to be computed at precision at least H i,min r e t u r n y n at precision H n,max

The locution "enough precision" in the above code means that we want to ensure that zealous arithmetics is able to compute y i at precision H i,min . Let H ′ i-1 be a lattice encoding such an

Context of lazy/relaxed arithmetic: target precision

We recall that the question addressed in the context of lazy/relaxed arithmetic is formulated as follows: we fix a target precision on the output and we want to avoid as much as possible the computation with unnecessary digits of the input, that are the digits that do not influence the output at the requested precision. For simplicity, it is convenient to assume that the output of Phi consists of a single p-adic number 25 , that is F = Q p . The target precision is then given by a single integer N .

We recall from §3.2.1 that, if H ′ is a lattice in E, then the condition:

ϕ(x + H ′) ⊂ ϕ(x) + p N Z p (3.37)
ensures that the knowledge of x at precision H ′ is enough to compute ϕ(x) at precision O(p N). Moreover, assuming that H ′ is nice enough so that the precision Lemma applies, the inclusion (3.37) is equivalent to H ′ ⊂ dϕ -1

x (p N Z p). We draw the attention of the reader to the fact that dϕ -1

x (p N Z p) itself is usually not a lattice because dϕ -1

x often has a nontrivial kernel. Anyway, the above analysis gives a theoretical answer to the question we are interested in: the unnecessary digits on the inputs are those lying in some nice enough lattice contained in dϕ -1

x (p N Z p). Mimicking what we have done before in the zealous context, we can use the above result to write down a first stabilized version of Phi. Set H = dϕ -1

x (Z p) and choose a lattice H min contained in H. Clearly p N H min is a lattice contained in dϕ -1

x (p N Z p). Moreover, examining closely the statement of the precision Lemma, we find that there exists an integer N 0 such that:

ϕ(x + p N H) = ϕ(x) + p N dϕ x (H) ⊂ ϕ(x) + p N Z p (3.38)
for all N N 0 . The first stabilized version of Phi then can be described as follows. Remark 3.39. In the code above, the variable x is a tuple of lazy p-adic numbers (as described in §2.2), not a tuple of relaxed p-adic numbers. Making the method of adaptive precision work within the framework of relaxed arithmetic is possible but tedious; for simplicity, we shall omit these technicalities and restrict ourselves to lazy p-adic numbers in this course.

The attentive reader has certainly noticed that the value N 0 has appeared explicitly in the function Phi stabilized v1 above. This implies that we need to precompute it. This has to be done by hand a priori by explicating the constants in the precision Lemma in the special case we are considering; we do not hide that this may require some effort (through general techniques for that are available [START_REF] Caruso | Tracking p-adic precision[END_REF][START_REF] Caruso | p-adic stability in linear algebra[END_REF]).

Eq. (3.38) shows that the nested function Phi of x returns the correct answer. The main benefit of Phi stabilized v1 is that it asks for the computation of the input at sharp precision. Nevertheless, it carries all the computations with exact rational numbers and so still consumes a lot of resources.

In order to get rid of this disadvantage, we can follow the strategy already used with success in the zealous context: we decompose Phi into n steps Step 1 , . . . , Step n . Again we call σ i : U i-1 → U i the mathematical function modeling Step i . We set ϕ i = σ i • • • • • σ 1 , x i = ϕ i (x) and introduce moreover the function ψ i = σ n • • • • • σ i+1 . Clearly ϕ = ψ i • ϕ i for all i. Interestingly, observe that the relation dϕ x = dψ i,x i •dϕ i,x implies that all the differentials dψ i,x i 's are surjective without any further assumption. For each i ∈ {0, . . . , n}, we define H i = dψ -1 i,x i (Z p) (which is generally not a lattice) and choose a lattice H i,min contained in H i . The optimized form of the stabilized version of Phi then writes as follows. y i = Step i (y i-1) % p N H i,min r e t u r n y n % p N r e t u r n P h i _ o f _ x Roughly speaking, the above optimization allows us to "do the modulo" after each step, avoiding then the explosion of the size of the intermediate values.

Proposition 3.40.

There exists an integer N 0 (which can be made explicit with some effort) such that the nested function Phi of x outputs a correct answer on the inputs N N 0 . Remark 3.41. We underline that Proposition 3.40 does not assume the surjectivity of the differentials dϕ i,x ; recall that this assumption was unavoidable in the case of zealous arithmetic and appeared as a serious limitation of the method. We have to mention however that the analysis of the algorithm Phi stabilized v2 is easier under this additional hypothesis (see §3.3.2 below for a concrete example).

Sketch of the proof of Proposition 3.40. Given an integer N , we let (y N,i) 0 i n be a sequence such that y N,0 = x and y N,i = σ i (y N,i-1) + p N H i,min . The value y N,i corresponds to the value of the variable y i computed by the function Phi of x called on the input N . Moreover, for all fixed i, the sequence (y N,i) N 0 converges to x i when N goes to infinity. Since ψ i is a function of class C 1 , this implies that dψ i,y N,i converges to dψ i,x i when N goes to infinity. From this, we derive that dψ i,y N,i (H i,min) = dψ i,x i (H i,min) for N large enough. On the other hand, analyzing closely the proof of the precision Lemma, we find that there exists an integer N 0 such that: ψ i y N,i + p N H i,min = ψ i (y N,i) + dψ i,y N,i p N H i,min = ψ i (y N,i) + p N dψ i,x i H i,min (3.39) for all i and all N N 0 . We claim that Phi of x outputs a correct answer (i.e. that y N,n ≡ ϕ(x) (mod p N)) whenever N N 0 . More precisely, we are going to prove by induction on i that ψ i (y i,N) ≡ ϕ(x) (mod p N) for i ∈ {0, 1, . . . , n} and N N 0 . This is obvious when i = 0 given that ψ 0 = ϕ and y 0,N = x. Let us now assume ψ i-1 (y i-1,N) ≡ ϕ(x) (mod p N). Noting than ψ i • σ i = ψ i-1 , we derive from σ i (y N,i-1) ∈ y N,i + p N H i,min that: ψ i-1 (y N,i-1) ∈ ψ i y N,i + p N H i,min = ψ i (y N,i) + p N dψ i,x i H i,min ⊂ ψ i (y N,i) + p N Z p using Eq. (3.39). Consequently ψ i (y N,i) ≡ ψ i-1 (y N,i-1) (mod p N) and we are done thanks to the induction hypothesis.

Example: The Somos 4 sequence

The method of adaptive precision (presented in §3.3.1) has been used with success in several concrete contexts: the computation of the solutions of some p-adic differential equations [START_REF] Lairez | On p-adic differential equations with separation of variables[END_REF] and the computation of GCD's and Bézout coefficients via the usual extended Euclidean algorithm [START_REF] Caruso | Numerical stability of Euclidean algorithm over ultrametric fields[END_REF]. Below, we detail another example, initially pointed out by Buhler and Kedlaya [START_REF] Buhler | Condensation of determinants and the Robbins phenomenon[END_REF], which is simpler (it actually looks like a toy example) but already shows up all the interesting phenomena: it is the evaluation of the p-adic Somos 4 sequences. We observe a quite surprising property: the denominators of the first u i 's are all monomials. We insist on the fact that this behavior is a priori not expected at all. For instance the definition of u 9 involves a division by u 5 but a miraculous simplification occurs. This phenomenon is in fact general. Fomin and Zelevinsky proved in [START_REF] Fomin | The Laurent phenomenon[END_REF] (as an application of their theory of cluster algebras) that the Somos 4 sequence exhibits the Laurent phenomenon: for all n, the term u n of the generic Somos The second option has of course a terrible complexity because the size of the terms of the generic Somos 4 sequence grows very rapidly (see Figure 3.8). However, if we are mostly interested in numerical stability, this option is rather attractive; indeed, we deduce from the Laurent phenomenon that if the initial values a, b, c and d (which are supposed to be invertible in Z p) are given at precision O(p N) then all the next terms will be computed at precision O(p N) as well. On the contrary, the first option may lead to quite important losses of precision.

The table of Figure 3.9 shows the results obtained for the particular Somos 4 sequence initialized with a = b = c = d = 1 ∈ Z 2 using various methods. The first column corresponds to the second option discussed above; as expected, no losses of precision have to be reported. On the second column (resp. the third column), we have displayed the results obtained by unrolling the recurrence using the algorithm somos option1 within the framework of zealous arithmetic (resp. p-adic floating-point arithmetic). We observe that the precision decreases rapidly in the second column. For example, one digit of precision is lost when computing u 9 because of the division by u 5 which has valuation 1. These losses of precision continue then regularly and, at some point, we find a value which becomes indistinguishable from 0. Dividing by it then produces an error and the computations cannot continue. The third column exhibits much better results though certain digits are still wrong (compare with the first column). Finally, the last column concerned lazy/relaxed arithmetic; it shows the number of digits of u 1 that have been asked for in order to compute the term u n at precision O(2 10). We observe that this number increases regularly in parallel with the losses of precision observed in the zealous context. For instance, the relaxed technology needs one more digit of precision on u 1 to compute u 9 while the zealous approach loses one digit of precision on u 9 . There phenomena have of course a common explanation: they are both due to the division by u 5 which has valuation 1.

The Somos 4 sequence starting with (a, b, c, d) = (1, 1, 1, 3) is even more unstable (see Figure 3.10); indeed its 15-th term is divisible by 2 10 and so vanishes at the precision O(2 10) we are considering. Zealous arithmetic and floating-point arithmetic are both puzzled after this underflow and crash on the computation of u 19 (which requires a division by u 15).

Stabilization

We now apply the theory of adaptive precision, trying to stabilize this way the algorithm somos version1. The decomposition of the routine somos version1 into steps in straightforward: each step corresponds to an interaction of the for loop. They are all modeled by the same mathematical function:

σ : Q 4 p -→ Q 4 p (x, y, z, t) → y, z, t, yt+z 2

x .

Remark 3.42. Of course σ is not defined at the points of the form (0, y, z, t). In the sequel, it will be nevertheless more convenient to regard σ as a partially defined function over Q 4 p (than as a well-defined function over Q ⋆ p × Q 3 p).

Differential computations. For i 0, we set ϕ i = σ • • • • • σ (i times). Clearly σ and the ϕ i 's are all functions of class C 1 on their domain of definition. The Jacobian matrix of σ at the point (x, y, z, t) is easily seen to be:

J(σ) (x,y,z,t) =       0 0 0 -yt+z 2 x 2 1 0 0 t x 0 1 0 2z x 0 0 1 y x      
.

The computation of the Jacobian matrix of ϕ i is more complicated. It is however remarkable that we can easily have access to its determinant. Indeed, observe that the determinant of J(σ) (x,y,z,t)

is equal to t ′ x where t ′ = yt+z 2

x is the last coordinate of σ(x, y, z, t). By the chain rule, we then deduce that:

det J(ϕ i) (a,b,c,d) = u 5 u 1 • u 6 u 2 • • • u i+4 u i = u i+1 • u i+2 • u i+3 • u i+4 u 1 • u 2 • u 3 • u 4 = u i+1 • u i+2 • u i+3 • u i+4 abcd (3.40)
where the u i 's are the terms of the Somos 4 sequence initialized by (u 1 , u 2 , u 3 , u 4) = (a, b, c, d).

Apart from that, the matrix J(ϕ i) (a,b,c,d) has another remarkable property: if a, b, c, d are invertible in Z p , all the entries of J(ϕ i) (a,b,c,d) lie in Z p ; indeed they can be obtained alternatively as Explicit precision Lemma. Another task we have to do in order to use the theory of adaptive precision is to make explicit the constants in the precision Lemma for the particular problem we are studying. In the case of the Somos 4 sequence, the result we need takes the following form.

Proposition 3.44. We keep the above notations and assumptions 26 . For all N > v(i), we have: Proof. The proof is a slight generalization (to the case of multivariate Laurent polynomials) of Proposition 3.17. In fact, the only missing input is the generalization of Lemma 3.19 to our setting. Concretely, we then just have to establish that:

ϕ i (
ϕ i (v 2) -ϕ i (v 1) -dϕ i,v (v 2 -v 1) max v 1 -v , v 2 -v • v 2 -v 1 (3.42)
for all integers i and all vectors v, v 1 , v 2 ∈ Z 4 p whose all coordinates are invertible. (Here • denotes as usual the infinite norm.) For doing so, we write ϕ i as the compositum ϕ i = φi • ι where ι is the (partially defined) embedding:

ι : Q 4 p → Q 4
p , (x, y, z, t) → (x, y, z, t, x -1 , y -1 , z -1 , t -1)

and φi : Q 8 p → Q 4 p is a function whose each coordinate is given by a multivariate polynomial with coefficients in Z p . We set w = ι(v), w 1 = ι(v 1), w 2 = ι(v 2) and compute:

ϕ i (v 2) -ϕ i (v 1) -dϕ i,v (v 2 -v 1) = φi (w 2) -φi (w 1) -d φi,w • dι v (v 2 -v 1)
= φi (w 2)φi (w 1)d φi,w (w 2 -w 1) + d φi,w (w 2w 1dι v (v 2 -v 1) .

From the shape of φi , we deduce that the norm of its differential d φi,w is at most 1. Therefore:

ϕ i (v 2) -ϕ i (v 1) -dϕ i,v (v 2 -v 1)
max φi (w 2)φi (w 1)d φi,w (w 2 -w 1) , w 2w 1dι v (v 2 -v 1) max w 1 -w • w 2 -w 1 , w 2 -w • w 2 -w 1 , w 2 -w 1dι v (v 2 -v 1) .

(3.43)

the last inequality coming from Lemma 3.19 applied to a shift of the function φi . Given three invertible elements x, x 1 , x 2 in Z p , we have:

1 x 1 - 1 x 2 - -1 x 2 • (x 1 -x 2) = (x 1 -x 2) • (x 1 x 2 -x 2) x 2 x 1 x 2 = |x 1 -x 2 | • |x 1 x 2 -x 2 |.
Writing x 1 x 2x 2 = x(x 1x) + x 1 (x 2x) shows that |x 1 x 2x 2 | max |x 1 -x|, |x 2 -x| . Thus:

w 2 -w 1 -dι v (v 2 -v 1) v 2 -v 1 • max v 1 -v , v 2 -v .
Finally, a straightforward computation shows that w 1 -w = v 1 -v , w 2 -w = v 2 -v and w 2 -w 1 = v 2 -v 1 . Inserting these inputs into Eq. (3.43), we get Eq. (3.42) as desired.

Context of zealous arithmetic. We fix a positive integer N . We assume that the initial values a, b, c and d are given at precision O(p N). The corresponding lattice is H = p n Z 4 p . By Proposition 3.44, the precision Lemma applies with ϕ i , x and H as soon as N > v(i).

We now follow step by step the method of adaptive precision (see §3.3.1). We first set H i = dϕ i,(a,b,c,d) (H) = p N dϕ i,(a,b,c,d) (Z 4 p). We then have to exhibit two "simple" lattices H i,min and H i,max that approximates H i from below and from above respectively. The answer is given by the inclusions (3.41): we take H i,min = p N +v(i) Z 4 p and H i,max = p N Z 4 p . Concerning the lattice

a 0 : 2 : 35 = 5 × 7 + 0 a 3 : 5 = 0 × 7 + 5 =⇒ 1742 = 5036 7 Figure 1 . 1 : 7 .Figure 1 . 2 :

 023557355711712 Figure 1.1: Expansion of 1742 in base 7 . . . 2 3 0 6 2 4 4 + . . . 1 6 5 2 3 3 2 . . . 4 2 6 1 6 0 6

(1 '

 1) |x + y| max |x|, |y| and equality holds if |x| = |y|, (2') |xy| = |x| • |y|.

2 Figure 1 . 3 :

 213 Figure 1.3: Tree representation of Z 2

Figure 1 . 6 :

 16 Figure 1.6: The point of view of algebraic geometry

Definition 2 . 2 .

 22 Let I = a + O(p N) be an interval. We define: • the absolute precision of I: abs(I) = N ; • the valuation of I: val(I) = val(a) if 0 ∈ I, val(I) = N otherwise; • the relative precision of I: rel(I) = abs(I)val(I).

.

 Recall that the norm is related to the valuation through the formula |a| = p -valp(a) for all a ∈ Q p . Moreover by definition, we know that |xx(N)| p -N . If val p (x(N)) N , we derive |x(N)| p -N and thus |x| p -N by the ultrametric inequality. On the contrary if val p (x(N)) < N , write x = (x-x(N))+x(N) and observe that the two summands have different norms. Hence |x| = min |xx(N)|, |x(N)|) = x(N) and we are done.

 d e f x _ d i v _ y(N): vx = min(0 , val p (x (0)) vy = val (y) # This step might never stop r e t u r n x (N + vy) / y (N + 2* vy -vx)

 d e f x _ w i t h _ s p a r s e _ c a c h e (N): i f c u r r e n t _ p r e c i s i o n [x] < N : c u r r e n t _ p r e c i s i o n [x] = max(N , 2* c u r r e n t _ p r e c i s i o n [x]) c u r r e n t _ a p p r o x i m a t i o n [x] = x (c u r r e n t _ p r e c i s i o n [x]) r e t u r n c u r r e n t _ a p p r o x i m a t i o n [x]

 d e f _ _ g e t i t e m _ _ (self , N): n = l e n (self . digits) # Index of the first uncomputed digit w h i l e n < N +1: # We compute the digits until the position N self . ne xt () n += 1 r e t u r n self . digits [N] # We return the N-th digit

 c l a s s x _ p l u s _ y(R e l a x e d P A d i c I n t e g e r): # Additional variable carry # variable for storing the current carry d e f ne xt (self): # compute the next digit and append it to the list n = l e n (self . digits) # index of the first uncomputed digit s = x [n] + y [n] + self . carry # perform the addition self . digits [n] = s % p # compute and store the new digit self . carry = s // p # update the carry

 c l a s s x _ m u l _ y(R e l a x e d P A d i c I n t e g e r): # Additional variable carry # variable for storing the current carry d e f ne xt (self): # compute the next digit and append it to the list n = l e n (self . digits) s = self . carry f o r i i n 0 ,1 ,... ,n : s += x [i] * y [n -i] self . digits [n] = s % p self . carry = s // p

Figure 2 . 1 :

 21 Figure 2.1: Relaxed multiplication scheme

 c l a s s x _ m u l _ y(R e l a x e d P A d i c I n t e g e r): # Additional variable carry # variable in Z[t] for storing the current carry d e f ne xt (self): # compute the next digit and append it to the list n = l e n (self . digits) m = n + 2; ℓ = 0; s = 0 w h i l e m > 1: # The contribution of the first square of size 2 ℓ s += x [2^ℓ -1 , ... , 2^(ℓ+1) -2] * y [(m -1)*2^ℓ -1 , ... , m *2^ℓ -2] # The contribution of the second square i f m > 2:

 c l a s s S (R e l a x e d P A d i c I n t e g e r): d e f ne xt (self): n = l e n (self . digits) i f n == 0: self . digits [0] = 1 e l s e : self . digits [n] = x [n -1]

 c l a s s SFixed (R e l a x e d P A d i c I n t e g e r): d e f ne xt (self): n = l e n (self . digits) i f n == 0: self . digits [0] = 1 e l s e : self . digits [n] = self [n -1]

 d e f F (x , y): r e t u r n x +y , x -y and call F(F(x, y)). Let us have a look at precision. According to Proposition 2.3, the first call F(x, y) returns the pair (2 + O(p 2), O(p 2)) and the final result is then (2 + O(p 2), 2 + O(p 2

Lemma 2 . 18 .

 218 If a ≡ b (mod p N), then a p ≡ b p (mod p N +1).Proof. Write b = a + p N c with c ∈ Z p and compute:

Remark 2 . 20 .

 220 2 ; a 3 = 3 ; a 4 = 5 P =    . . . 1111100100 . . . 0110110101 . . . 0101011000 . . . 1101010001 . . . 1010001101 . . . 0110011001 . . . 1101111000 . . . 1010100100 . . . 1011101111 . . . 0100100111 . . . 0000111101 . . . 0010010001 . . . 1011111001 . . . 1000100011 . . . 1100100110 . . . 0111100011 1010110001 . . . 0010011111 . . . 1010010010 . . . 1010001001 . . . 1111101111 . . . 0111100101 . . . 0110101000 . . . 0111100000 . . . 0111110100 . . . 0010010101 . . . 0000101111 . . . 1001100010 . . . 0101111111 . . . 0101110111 . . . 1110000011 . . . 1110000110 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100 . . . 1101011001 . . . 1101000111 . . . 0111001010 . . . 0101110101 . . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111 . . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001 Each entry of M is known at precision O(210) as well. Indeed any permutation of M by an element H ∈ 2 10 M 4 (Z 2) can be induced by a perturbation of D by the element P -1 HQ -1 which lies in 2 10 M 4 (Z 2) as well because P and Q have their inverses in M 4 (Z 2).

4 ×

 4 . . . 001011 . . . 010101 . . .

Figure 3 . 1 :

 31 Figure 3.1: Picture of a lattice in the ultrametric world

Proposition 3 .Corollary 3 . 5 .

 335 3 has other important consequences. It shows for instance that the inclusion of a lattice H in the ambient space E is homeomorphic to the inclusion of Z d p in Q d p (where d is the dimension of E). In particular lattices are all open and compact at the same time.Three other consequences are enumerated in the next corollary. (i) All finite dimension normed vector spaces over Q p are complete.

 (3.18) above), we first select the (2, 1) entry (which has valuation 0), we put it on the top left corner and use it as pivot to clear the entries on the first row and the first column. Doing so, we obtain the intermediate form: . 0001010000 . . . 0101101000 . . . 0100010100 0 . . . 0111101000 . . . 0101011000 . . . 1100100000 0 . . . 1010010000 . . . 0011100000 . . . 0110011000  and we retain that we have swapped two rows, implying that the determinant of the above matrix is the opposite to the determinant of M . We now select the (2, 4) entry (which as valuation 2) and continue the reduction:We observe that we have not lost any precision in this step (all the entries of the matrix above are known at precision O(2 10)), and this even if our pivot had positive valuation. It is actually a general phenomenon due to the fact that we always choose the pivot of smallest valuation. Continuing this process, we end up with the matrix:Now multiplying the diagonal entries, we find det M = 2 10 × ...01101 with precision O(215)!

Figure 3 . 4 :

 34 Figure 3.4: The Jacobian of the L-part of the LU factorization at M

ℓ 3 , 2 -Remark 3 . 24 .

 32324 11 • ℓ 3,1 = . . . 0000010111. It turns out that the last six digits of the latter value are correct! For a general input d × d matrix M whose principal minors have valuation v 1 , . . . , v d , we expect that zealous arithmetic looses about Ω(v 1 + • • • + v d) significant digits (for the computation of the LU factorization of M using standard Gaussian elimination) while floating-point arithmetics looses only O(max(v 1 , . . . , v d)) significant digits. If M is picked at random in the space M d (Z p) (equipped with its natural Haar measure), the former is O(d p-1

Figure 3 . 5 :

 35 Figure 3.5: The Jacobian of the "Bézout function" at (P, Q)

i p - 1 ,

 1 from what we derive:val p (det M)

. 25) 3 . 30 .

 25330 Proposition Let E and F be two normed finite dimensional vector spaces and let U be an open subset of E. Let f : U → F be a function of class C 2 . Then:(i)The function f is of class C 1 on U and its differential is the function df of Definition 3.29; (ii) the function df is of class C 1 on U as well and its differential is the function d 2 f (viewed as a element of L(E, L(E, F))) of Definition 3.29.

- 1 Lemma 3 . 31 .

 1331 and denote by V the open ball of centre v and radius r. Observe that r 1, so that V ⊂ B E (1). Under the assumptions (3.26), (3.27) and (3.28), the linear function df x is invertible and df -1

 r as well, for what we derive N (x) ∈ V . Eq. (3.29) finally follows by applying again Eq. (3.26) with x and N (x).

Corollary 3 . 32 (

 332 Hensel's Lemma for function of class C 2). Under the assumptions (3.26), (3.27) and (3.28), the sequence (x i) i 0 defined by the recurrence

 Let V be the open ball in E of centre v and radius r; clearly V ⊂ B E (1). Let U be the open subset of F consisting of function f for which Eqs. (3.26), (3.27) and (3.28) hold and df -1 v L(F,E) = r C . By Hensel's Lemma (Corollary 3.32), any f ∈ U has a unique zero in V . The function:

d e f

 f P h i _ s t a b i l i z e d _ v 1 (x): d e f P h i _ o f _ x(N): xapp = x (p max(N,N0) H) # Evaluation of x at precision p min(N,N0) H r e t u r n Phi (xapp) % p N r e t u r n P h i _ o f _ x

 d e f P h i _ s t a b i l i z e d _ v 2 (x):d e f P h i _ o f _ x(N): y 0 = x (p N H 0,min) # Evaluation of x at precision p N H 0,min f o r i i n 1, 2, . . . , n:

u 5 = 1 a c 2 + bd u 6 = 1 ab c 3 + bcd + ad 2 u 7 = 1 a 2 3 u 8 = 1 a 3 b 2 cd b 2 c 6 + 9 = 1 a 3 b 2 c 2 d b 2 c 8 + 4 + 3ab 4 6 u 10 = 1 a 5 2 + 10b 7 c 4 d 3 + 26ab 5 c 5 d 3 + 28a 2 b 3 c 6 d 3 + 15a 3 bc 7 d 3 + 5b 8 c 2 d 4 + 14ab 6 c 3 d 4 + 27a 2 b 4 c 4 d 4 + 24a 3 b 2 c 5 d 4 + 6a 4 c 6 d 4 + b 9 d 5 + 3ab 7 cd 5 + 14a 2 b 5 c 2 d 5 + 19a 3 b 3 c 3 d 5 + 12a 4 bc 4 d 5 + 3a 2 b 6 d 6 + 6a 3 b 4 cd 6 + 9a 4 b 2 c 2 d 6 + 4a 5 c 3 d 6 + 3a 4 b 3 d 7 + 3a 5 bcd 7 + a 6 d 8

 126132723869844610152333344444555556666778 bc bc 4 + 2b 2 c 2 d + ac 3 d + b 3 d 2 + abcd 2 + a 2 d ac 7 + 3b 3 c 4 d + 3abc 5 d + 3b 4 c 2 d 2 + 3ab 2 c 3 d 2 + 2a 2 c 4 d 2 + b 5 d 3 + ab 3 cd 3 + 3a 2 bc 2 d 3 + a 2 b 2 d 4 + a 3 cd 4 u ac 9 + 4b 3 c 6 d + 3abc 7 d + 6b 4 c 4 d 2 + 6ab 2 c 5 d 2 + 3a 2 c 6 d 2 + 4b 5 c 2 d 3 + 7ab 3 c 3 d 3 + 6a 2 bc 4 d 3 + b 6 d cd 4 + 5a 2 b 2 c 2 d 4 + 3a 3 c 3 d 4 + 2a 2 b 3 d 5 + 3a 3 bcd 5 + a4 d b 3 c 3 d 2 b 4 c 10 + 2ab 2 c 11 + a 2 c 12 + 5b 5 c 8 d + 11ab 3 c 9 d + 6a 2 bc 10 d + 10b 6 c 6 d 2 + 24ab 4 c 7 d 2 + 17a 2 b 2 c 8 d 2 + 4a 3 c 9 d

Figure 3 . 8 :

 38 Figure 3.8: The first terms of the generic SOMOS 4 sequence

 4 sequence is a Laurent polynomial in a, b, c, d, that is a polynomial in a, b, c, d and their inverses. We address the question of the computation of the n-th term (for n large) of a Somos 4 sequence whose initial values a, b, c and d are invertible elements of Z p . At least two options are available: (1) we unroll the recurrence starting from the given initial values and (2) we precompute the n-th term of the generic Somos 4 sequence and, in a second time, we plug the values of a, b, c and d. Concretely, they correspond to the following codes respectively: d e f s o m o s _ o p t i o n 1 (a ,b ,c ,d , n): # We assume n 5 x ,y ,z , t = a ,b ,c , d f o r i i n 1, 2, . . . , n-4: x ,y ,z , t = y , z , t , (y * t + z * z)/ x r e t u r n t d e f s o m o s _ o p t i o n 2 (a ,b ,c ,d , n): # We assume n 5 X ,Y ,Z , T = A ,B ,C , D # A, B, C, D are formal variables f o r i i n 1, 2, . . . , n-4: X ,Y ,Z , T = Y , Z , T , (Y * T + Z * Z)/ X r e t u r n T (A =a , B =b , C =c , D = d)

 a, b, c, d) + p N Z 4 p = (u i+1 , u i+2 , u i+3 , u i+4) + p N dϕ i,(a,b,c,d) Z 4 p .

 has norm at most |h| by the first assertion of Lemma 1.7, while |f ′ (x i)| |h| • ρ -2 i > |h| by the induction hypothesis. The norm of f ′ (x i+1) is then the maximum of the norms of the two summands, which is |f ′ (x i)| = |f ′ (a)|. Now, applying again Lemma 1.7, we get |f (x i+1)| |h| 2 |f ′ (a)| 2 • ρ 2 i and the induction goes.

 1.1), p-adic integers have formal similitudes with formal series over F p : they are both described as infinite series with coefficients between 0 and p-1, the main difference being that additions and multiplications involve carries in the p-adic case while they do not for formal series. From a more abstract point of view, the parallel between Z p and F p [[t]] is also apparent. For example F p[[t]] is also endowed with a valuation; this valuation defines a distance on F p [[t]] for which F

p [[t]] is complete and Hensel's Lemma (together with Newton iteration) extends verbatim to formal series. In the same fashion, the analogue of Q p is the field of Laurent series F p ((t)). Noticing further that F p [t] is dense in F p [[t]] and similarly that F p (t) is dense in F p ((t))

 We see that the losses of accuracy are enormous.On the other hand, let us examine now the computation goes when H -1 n is viewed as a matrix over Q 2 . Making experimentations in SAGEMATH using again Gaussian elimination and the straightforward analogue of floating-point arithmetic (see §2.3) with 53 bits of precision, we observe the following behavior:

	size of the matrix	5	6	7	8	9 10 11 12 13 50 100
	number of correct digits 52 52 51 51 51 51 51 51 51 49 48
	15.9999999999998 -119.999999999997 -119.999999999997 1199.99999999996 -2699.99999999989 239.999999999992 -139.999999999995  1679.99999999993 239.999999999992 -2699.99999999989 -139.999999999995 1679.99999999993 -4199.99999999981 2799.99999999987 6479.99999999972 -4199.99999999981   .
	We observe that the accuracy of the computed result is acceptable but not so high: the number
	of correct binary digits is about 45 (on average on each entry of the matrix), meaning then that
	the number of incorrect digits is about 8. Let us now increase the size of the matrix and observe
	how the accuracy behaves:					
	size of the matrix	5	6	7	8	9 10 11 12 13
	number of correct digits 40 34 28 25 19 14 9	4	0

 Moreover these polynomials are uniquely determined if we require deg U, deg V 3. Computing them with the extended Euclidean algorithm (without any kind of algorithmic optimization), we get:

	Interval (zealous) arithmetic:	
	U =	(. . . 101100) X 3 +	(. . . 101100) X 2
	+	(. . . 100) X +	(. . . 1011)
	V =	(. . . 010100) X 3 +	(. . . 100100) X 2

+ (. . . 100) X + (. . . 101) Floating-point arithmetic: U = (. . . 101011101100) X 3 + (. . . 111100101100) X 2 + (. . . 100000110100) X + (. . . 0110001011) V = (. . . 010100010100) X 3 + (. . . 001011100100) X 2 + (. . . 000100111100) X + (. . . 1111100101)

 × . . . 1110011011) X 19 + (2 -5 × . . . 0000000011) X 18 + (2 -3 × . . . 0001011111) X 17 + (2 -5 × . . . 1100111101) X 16 + (. . . 11111100110) X 15 + (2 -4 × . . . 0110100011) X 14 + (2 -2 × . . . 0000010011) X 13 + (2 -4 × . . . 1010001101) X 12 + (2 -3 × . . . 0010000011) X 11 + (2 -5 × . . . 0100101111) X 10 + (2 -3 × . . . 0000110011) X 9 + (2 -5 × . . . 1010101001) X 8 + (2 -2 × . . . 0010000101) X 7 + (2 -2 × . . . 1101100111) X 6 + (. . . 1101101111) X 5 + (2 -1 × . . . 0011100111) X 4

					1) X 4
	+	(. . . 1) X 3 +	(. . . 010) X 2 +	(. . . 100000) X +	(. . . 0001111110)
	Floating-point arithmetic:			
	(2 -3 +	(. . . 0101110101) X 3 +	(. . . 11011101010) X 2 + (. . . 000000001100000) X +	(. . . 00001111110)

Figure 2.3: Evaluation and re-interpolation of a polynomial of degree 19 over Z 2

The results we get are: Interval (zealous) arithmetic: (. . . 110) X 8 + (. . . 001) X 7 + (. . . 100) X 6 + (. . . 101) X 5 + (. . . 100) X 4 + (. . . 1101) X 3 + (. . . 10111) X 2 + (. . . 1011010) X + (. . . 0001011110) Floating-point arithmetic: (. . . 00001001110) X 8 + (. . . 1011010001) X 7 + (. . . 001010001100) X 6 + (. . . 0010001101) X 5 + (. . . 000011000100) X 4 + (. . . 01011011101) X 3 + (. . . 0010010111) X 2 + (. . . 11011011010) X + (. . . 00001011110)

 1 . . . 1110011111 . . . 0011011010 . . . 1101111101 . . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100 . . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111 . . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001 We now use the top left entry as pivot to clear the other entries of the first column, obtaining this way the new matrix: . . . 1110011111 . . . 0011011010 . . . 1101111101 0 . . . 0001010000 . . . 0101101000 . . . 0100010100 0 . . . 0111101000 . . . 0101011000 . . . 1100100000 0 . . . 1010010000 . . . 0011100000 . . . 0011011000

	
	
	
	
	
	

1

 .3 (see Eq. (2.7)): . . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100 . . . 1101011001 . . . 1101000111 . . . 0111001010 . . . 0101110101 . . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111 . . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001

		
	M =	 

 1111000000 . . . 0001100000 . . . 1101000000 . . . 1001100000 . . . 0111000000 . . . 0011100000 . . . 1001000000 . . . 1011100000 . . . 0111000000 . . . 0001100000 . . . 0111000000 . . . 0011100000 . . . 1010000000 . . . 0111000000 . . . 1110000000 . . . 0011000000

(French) National Computer Algebra Days

An abelian extension is a Galois extension whose Galois group is abelian.

(French) National Computer Algebra Days

The natural embedding Fp(t) → Fp((t)) takes a rational function to its Taylor expansion at 0.

The naming comes from the fact this obstruction is written in the language of Brauer groups... the latter being defined by Grothendieck in the context we are interested in.

The same strategy actually extends to all finite fields.

We emphasize that all the procedures we are going to write are written in pseudo-code in Python style but certainly not in pure Python: they definitely do not "compile" in Python.

It is of course the row corresponding to j = 1 which is drawn on the bottom in Figure2.1.

Another option, used in[START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF], would be to build an algorithm for performing operations on integers written in base p. This can be achieved for instance using Kronecker substitution[START_REF] Von | Modern Computer Algebra[END_REF] Corollary 8.27].

Or more precisely: "whose any instance is"

Although an implementation was very recently proposed by Roe for integration in SAGEMATH; see https://trac.sagemath.org/ticket/20348.

Through I have to confess that I have never seen a relevant physical p-adic measure yet.

We refer to §3.2.1 for a clarification of this statement based on a theoretical study (which is itself based on the theory of p-adic precision we shall develop in §3.1).

For example, imagine that all the values x, 2x, 3x, . . . , px are needed.

Well, it is of course often better to have proofs... but it is maybe too early.

We decided which digits are correct simply by computing at higher precision (with zealous arithmetic in order to get a guaranteed result).

Recall the i-th principal minor of M is the determinant of the submatrix of M obtained by selecting the first i rows and first i columns.

Indeed, by the mean value theorem we can write f (y)f (x) = (yx)f ′ (g(x, y)) for some g(x, y) ∈ [x, y]. Thus |f (y)f (x) -(yx)f ′ (a)| = |y -x| • |f ′ (g(x, y))f ′ (a)| and the conclusion follows from Heine-Cantor Theorem.

At least when the precision Lemma applies...

Roughly speaking, if we want to dispatch n (diffused) digits between m places, we have to increase the precision by at least ⌈ n m ⌉ digits; this is the pigeonhole principle.

This assumption is rather restrictive but really simplifies the discussion.

This assumption is harmless since one can always reduce to this case by projection on each coordinate.

In particular, we continue to assume that the initial values a, b, c and d are invertible in Zp.

Context of zealous arithmetic

Recall that, in the zealous point of view, p-adic numbers are modeled by intervals of the form a + O(p N). As a consequence the input of the problem we are studying will not be an actual element of U but a quantity of the form:

which can be rewritten as the shifted lattice v + H with:

Similarly the output takes the form:

where the b j 's are the coordinates of ϕ(v) and then do not depend (fortunately) on the algorithm we are using to evaluate ϕ. On the other hand, the M j 's may -and do -depend on it. The question we address here can be formulated as follows: what is the maximal value one can expect for the M j 's? In other words: what is the optimal precision one can expect on the output (in terms of the initial precision we had on the inputs)?

The precision Lemma provides a satisfying answer to this question. Indeed, for j ∈ {1, . . . , m}, let pr F,j : F → Q p be the linear mapping taking a vector to its j-th coordinate (in the distinguished basis (f 1 , . . . , f m) we have fixed once for all). From the precision Lemma applied to the composite ϕ j = pr F,j • ϕ, we get:

as soon as dϕ j,v is surjective (and H satisfies some additional mild assumptions that we will ignore for now). Under these assumptions, Eq. (3.12) holds and the equality signs in it show that the optimal precision O(p M j) we were looking for is nothing but dϕ j,v (H); note that the latter is a lattice in Q p and then necessarily takes the form p M j Z p = O(p M j) for some relative integer M j . Note moreover that the surjectivity of dϕ j,v is equivalent to its non-vanishing (since dϕ j,v takes its value in a one-dimensional vector space). Furthermore, by the chain rule, we have dϕ j,v = pr F,j • dϕ v because pr F,j is linear and then agrees with its differential at any point. Finding the optimal precision O(p M j) can then be done along the following lines: we first compute the Jacobian matrix J(ϕ) v of ϕ at the point v and form the product:

whose rows generate dϕ j,v (H). The integer M j appears then as the smallest valuation of an entry of the j-th column of A (unless this column vanishes in which case the precision Lemma cannot be applied). Of course, the computation of the Jacobian matrix can be boring and/or timeconsuming; we shall see however in §3.2.2 below that, in many situations, simple mathematical arguments provide closed formulas for J(ϕ) v , avoiding this way their direct computation.

The notion of diffused digits of precision. One important remark is that the lattice:

(for the M j 's we have constructed) does satisfy

In other words, although we cannot expect more correct digits on each component of the output separately, the precision on the output is globally not optimal. Below is a very simple example illustrating this point.

Example. Assume that we want to evaluate an affine polynomial at the two points 0 and p. The function ϕ modeling this problem is:

It is a linear function so its Jacobian is easy to compute. We find J(ϕ) = 0 p 1 1

. We assume furthermore that the inputs a and b are both given at precision O(p N). We then find that the optimal precision on P (0) and P (p) is O(p N) as well. Nevertheless the determinant of J(ϕ) is apparently p; hence J(ϕ) is not invertible in M 2 (Z p) and its row vectors generate a lattice which is strictly smaller than Z 2 p . What does happen concretely? The main observation is that the difference P (p)-P (0) = ap can be computed at precision O(p N +1) because of the multiplication by p. There is thus one more digit that we know but this digit is "diffused" between P (0) and P (p) and only appears when we look at the difference.

The phenomenon enlighten in the above example is quite general: we cannot in general reach the optimal precision by just giving individual precision on each coordinate of the output (we say that some digits of precision are diffused over several coordinates)... but this becomes always 21 possible after a suitable base change (which recombines the diffused digits of precision into actual digits). In order to make this sentence more precise, we first formulate a rigorous definition concerning the diffusion of the digits of precision. Definition 3.20. Let F be a finite dimensional vector space over Q p with basis (f 1 , . . . , f m).

We say that a lattice H is diagonal with respect to (f 1 , . . . , f m) if it has the shape H = Span Zp p ν 1 f 1 , . . . , p νm f m for some relative integers ν 1 , . . . , ν m .

The number of diffused digits (with respect to (f 1 , . . . , f m)) of a given lattice H is the logarithm in base p of the index of H in the smallest diagonal lattice containing H.

Roughly speaking, the number of diffused digits of a lattice H with respect to the basis (f 1 , . . . , f m) quantifies the quality of the basis for expressing the precision encoded by H: if H has no diffused digit, it is represented by a diagonal matrix and the precision splits properly into each coordinate. On the contrary, if H has diffused digits, writing the precision in the system of coordinates associated with (f 1 , . . . , f m) leads to non optimal results. We remark furthermore that there always exists a basis in which the number of diffused digits of a given lattice H is zero: it suffices to take a basis whose Z p -span is H (such a basis always exists by Proposition 3.3).

Before going further, let us emphasize that, given a set of generators of H, it is not difficult to compute effectively its number of diffused digits of precision. Indeed, let M be a matrix whose row vectors span H. Pick in addition a diagonal lattice H ′ = Span Zp p ν 1 f 1 , . . . , p νm f m with H ⊂ H ′ . By projecting on the j-th coordinate we see that ν j is at least the smallest valuation v j of an entry of the j-th column of M . Conversely, one easily checks that the diagonal lattice Span Zp p v 1 f 1 , . . . , p vm f m contains H. Thus the smallest diagonal matrix containing H is Span Zp p v 1 f 1 , . . . , p vm f m . It follows that the number of diffused digits of precision of H with respect to the basis (f 1 , . . . , f m) is given by: We now go back to our initial question: we want to analyze the optimal precision for the computation of ϕ(v) for v is given at precision H = Span Zp p N 1 e 1 , p N 2 e 2 , • • • , p Nn e n . The i-th column of a matrix whose rows span the space dϕ -1 v (H ′) ⋆ (with respect to the dual basis (e ⋆ 1 , . . . , e ⋆ n)). Computing dϕ -1 v (H ′) ⋆ using Remark 3.21 (and taking care of the possible kernel of dϕ v), we finally find that N i is the opposite of the smallest valuation of an entry of the i-th row of the matrix:

where J(ϕ) v is the Jacobian matrix of ϕ at v (compare with (3.13)).

Everyday life examples revisited

We revisit the examples of §2.4.3 in light of the theory of p-adic precision.

The p-power map

As a training example, let us first examine the computation of the p-power map (though technically it was not treated in §2.4.3 but at the end of §2.4.2). Recall that we have seen that raising an invertible p-adic integer x at the power p gains one digit of precision: if x is given at precision O(p N), one can compute x p at precision O(p N +1).

We introduce the function ϕ : Q p → Q p taking x to x p . It is apparently of class C 1 and its differential at x is the multiplication by ϕ ′ (x) = px p-1 . The Jacobian matrix of ϕ at x is then the 1 × 1 matrix whose unique entry is px p-1 . By the results of §3.2.1 (see particularly Eq. (3.12)), the optimal precision on x p is the valuation of

We recover this way the exponent N +1 thanks to the factor p which appears in the Jacobian. Unlike Lemma 2.18, the method we have just applied here teaches us in addition that the exponent N +1 cannot be improved.

Determinant

We take here ϕ = det : M d (Q p) → Q p . We endow M d (Q p) with its canonical basis and let x i,j denote the corresponding coordinate functions: for A ∈ M d (Z p), x i,j (A) is the (i, j) entry of A. Fix temporarily a pair (i, j). Expanding the determinant according to the i-th row, we find that ϕ is an affine function of x i,j whose linear term is (-1) i+j x i,j • det G i,j where G i,j is the matrix obtained from the "generic" matrix G = (x i,j) 1 i,j d by erasing the i-th row and the j-th column. Therefore ∂ϕ ∂x i,j = (-1) i+j det G i,j . Evaluating this identity at some matrix M ∈ M d (Q p), we get the well-known formula:

where M i,j is the matrix obtained from M by erasing the i-th row and the j-th column. The Jacobian matrix of ϕ at M is then the column matrix (whose rows are indexed by the pairs (i, j) for 1 i, j d) with entries (-1) i+j det M i,j . According to the results of §3.2.1 (see especially Eq. (3.12)), the optimal precision for det M , when the (i, j) entry of M is given at precision

Remember of course that this conclusion is only valid when the assumptions of the precision Lemma are all fulfilled. Nonetheless, relying on Proposition 3.17 (after having noticed that the determinant is a multivariate polynomial function), we can further write down explicit sufficient conditions for this to hold. These conditions take a particularly simple form when all the entries of M are given at the same precision O(p N): in this case, we find that the precision (3.17) is

The Jacobian of the characteristic polynomial at M where (XI d -M) i,j is the matrix obtained from XI d -M by deleting the i-th row and the j-th column (compare with Eq. (3.16)). The Jacobian matrix J(ϕ) M of ϕ at M is then a matrix with d 2 rows, indexed by pairs (i, j) with 1 i, j d, and d columns whose row with index (i, j) contains the coefficients of the polynomial (-1) i+j • det(XI d -M) i,j . Using again the results of §3.2.1, the optimal precision on each coefficient of the characteristic polynomial of M can be read off from J(ϕ) M .

Let us explore further our running example: the matrix M given by Eq. (3.18) whose entries are all known at precision O(2 10). A direct computation leads to the Jacobian matrix displayed on the left of Figure 3.2. We observe that the minimal valuation of an entry of the column of X j is 0, 0, 2 and 5 when j is 3, 2, 1 and 0 respectively. Consequently the optimal precision on the coefficients of X 3 , X 2 , X and on the constant coefficient are O(2 10), O(2 10), O(2 12) and O(2 15) respectively. Coming back to §2.4.3, we notice that floating-point arithmetic found all the correct digits. We observe moreover that the Hermite normal form of the Jacobian matrix (shown on the right on Figure 3.2) is diagonal. There is therefore no diffused digit of precision for this example; in other words the precision written as O(p 10)X 3 + O(p 10)X 2 + O(p 12)X + O(p 15) is sharp.

Remark 3.23. Making more extensive tests, we conclude that p-adic floating point arithemtic was pretty lucky with the above example: in general, it indeed sometimes finds all (or almost all) relevant digits but it may also sometimes not be more accurate than zealous arithmetic. We refer to [START_REF] Caruso | Characteristic polynomials of p-adic matrices[END_REF] for precise statistics thereupon.

Let us now have a look at the matrix N = I 4 + M . Playing the same game as before, we obtain the Jacobian matrix displayed on the left of Figure 3.3. Each column of this matrix contains an entry of valuation zero. The optimal precision on each individual coefficient of the characteristic polynomial of N is then no more than O(p 10). However the Hermite reduced form of the Jacobian is now no longer diagonal, meaning that diffused digits of precision do appear. One can moreover count them using Eq. (3.14) (applied to the Hermite normal form of the Jacobian): we find 7. This means that the precision

is not sharp; more precisely, after a suitable base change on Q p [X] <d , it should be possible to visualize seven more digits. Given that χ N (X) = χ M (X-1), this base change is of course the one which is induced by the change of variable X → X-1.

2

. Let U be the open subset of M d (Z p) defined by the non-vanishing of all principal minors. We define two mappings:

where M = LU is the (unique) LU factorization of M . In order to compute the differentials of ϕ and ψ 22 , we simply differentiate the defining relation M = LU . We get this way the relation dM = dL • U + L • dU . We rewrite it as:

and observe that the first summand of the right hand side is strictly lower triangular whereas the second summand of upper triangular. We therefore derive dL = L

• U where Lo (resp. Up) is the projection on the first factor (resp. on the second factor) of the decomposition M d (Z p) = L d (Z p) ⊕ U d (Z p). The differentials of ϕ and ψ at M ∈ U are then given by the linear mappings:

where L and U are the "L-part" and the "U-part" of the LU factorization of M respectively.

As an example, take again the matrix M given by Eq. (3.18). The Jacobian matrix of ϕ at this point is the matrix displayed on Figure 3.4. Looking at the minimal valuation of the entries of J(ϕ) M column by column, we find the optimal precision for each entry of the matrix L (defined as the L-part L of the LU factorization of M): 22 These two functions are indeed differentiable. One can prove this by noticing for instance that the entries of L and U are given by explicit multivariate rational fractions [46, §1.4].

The method of adaptive precision: second attempt acceptable precision. Rigorously, it can be defined as follows. We set y 0 = x and for i ∈ {1, . . . , n}, we define inductively H ′ i-1 , y i and H ′ i,Zeal by requiring that the routine Step i called on the input y i-1 given at precision H ′ i-1 computes y i at precision H ′ i,Zeal with H ′ i,Zeal ⊂ H i,min (see Figure 3.7). Of course the value y i we have just defined corresponds exactly to the variable y i of the procedure Phi stabilized. The following lemma is the key for proving the correctness of the algorithm Phi stabilized v2. Lemma 3.37. For all i ∈ {1, . . . , n}, we have

Proof. We argue by induction on i. The initialization is obvious given that y 0 = x = x 0 . We now assume that y i-1 ∈ x i-1 + H i-1 . Applying σ i , we derive

thanks to Eq. (3.35) applied twice. Moreover, by construction, we know that σ i (y i-1) ∈ y i + H ′ i,Zeal ⊂ y i + H i,min ⊂ y i + H i . As a consequence the difference σ i (y i-1)y i lies in the lattice H i ; this can be rewritten again as y i ∈ σ i (y i-1) + H i . Combining with Eq. (3.36), we get y i ∈ x i + H i as desired.

We derive from Lemma 3.37 that x n + H n = y n + H n . Combining this equality with Eq. (3.35), we obtain ϕ(x + H) = x n + H n = y n + H n ⊂ y n + H max,n . This inclusion exactly means that Phi stabilized called on the input x given at precision H outputs an approximation of ϕ(x) at precision H max,n ; in other words, the algorithm Phi stabilized is correct.

The main advantage of the algorithm Phi stabilized v2 (compared to Phi stabilized v1) is that the precision encoded by the lattices H ′ i-1 are usually acceptable (compared to the precision encoded by H ′). Actual computations are then carried out at a reasonable precision and then consume moderated resources. Remark 3.38. Interestingly, observe that the spirit of algorithm Phi stabilized v2 is close to the behavior of p-adic floating-point arithmetic; precisely, in p-adic floating-point arithmetic, we are decomposing Phi as a sequence of elementary steps (each of them consists of a single arithmetic operation) and the lattices H i,min are chosen in such a way that the number of significand digits of each p-adic variable is kept constant. For this reason, the method of adaptive precision can be also used to derive proofs on the results obtained via p-adic floating-point arithmetic.

which is the key for making the method of adaptive precision work.

Lemma 3.43. For all i, there is at most one non invertible element among four consecutive terms of the Somos 4 sequence. In particular:

Proof. It is enough to prove that if val(u i-3) = val(u i-2) = val(u i-1) = 0 and val(u i) > 0, then val(u i+1) = val(u i+2) = val(u i+3) = 0. This can be derived easily from the defining formula of the Somos 4 sequence.

Example. As an instructive example, we take the values (a, b, c, d) = (1, 1, 1, 3) (given at precision O(2 10)) and i = 14 corresponding to the annoying situation reported on Figure 3.10 where a term of the Somos sequence vanishes at the working precision. An explicit computation yields: According to the results of §3.2.1, the j-th column of this matrix (for 1 j 4) encodes the loss/gain of precision on the computation of u j+14 . Precisely, we observe that each column of J(ϕ 14) (1,1,1,3) contains an element of valuation zero, meaning that the optimal precision on u 15 , u 16 , u 17 and u 18 separately is O(2 10). In particular, we cannot decide whether u 15 actually vanishes or does not. This sounds quite weird because we were able in any case to compute u 19 using algorithm somos option1. The point is that the formula given the value of u 19 has the shape u 19 = numerator u 15

where the numerator is divisible by u 15 . The approach based on the Laurent phenomenon views this simplification and is therefore able to compute u 19 even when u 15 vanishes! The analysis of the optional precision on the quadruple (u 15 , u 16 , u 17 , u 18) is interesting as well. However, according to Eq. (3.40), the determinant of J(ϕ 14) (1,1,1,3) vanishes at the working precision; we cannot then certify its surjectivity and it seems that we are in a deadlock. In order to go further, we increase a bit the precision on the initial values: for now on, we assume that a, b, c and d (whose values are 1, 1, 1 and 3 respectively) are given at precision O(2 N) with N > 10.

The computation then shows that the determinant of J(ϕ 14) (1,1,1,3) has valuation 10. Thanks to Eq. (3.14) that the quadruple (u 15 , u 16 , u 17 , u 18) has 10 diffused digits of precision. We can even be more precise by computing the Hermite normal form of J(ϕ 14) (1,1,1,3) , which is:

meaning that the particular linear combination 179u 15 +369u 16 +818u 17 -u 18 could in principle be determined at precision O(2 N +10). Using this, it becomes possible to determine u 19 at precision O(2 N) (while a naive computation will lead to precision O(2 N -10) because of the division by u 15).

H ′

i-1 , it can be any lattice for which the following requirement holds: if the quadruple (x, y, z, t) is known at precision H ′ i-1 , then zealous arithmetic is able to compute σ(x, y, z, t) at precision H ′ i,min = p N +v(i) Z 4 p . Since the division by x induces a loss of precision of at most val(x) digits, we can safely take H ′ i-1 = p N +v(i)+val(u i) Z 4 p . Instantiating the routine Phi stabilized v2 (page 72) to our setting, we end up with the following stabilized version of the procedure somos option1. This algorithm always returns a correct answer at precision O(p N). It might fail -and then it raises an error -if the precision on the entries is not sufficient; by Lemma 3.43, this occurs exactly when one term of the Somos 4 sequence we are computing is indistinguishable from 0. One possible solution in that case is to increase arbitrarily the precision on a, b, c and d, rerun the algorithm and finally truncate the obtained result back to precision O(p N).

Context of lazy/relaxed arithmetic. The literal translation to the lazy world of the stabilized algorithm we have designed just above is: x ,y ,z , t = y % p N+v , z % p N+v , t % p N+v , u % p N+v r e t u r n t % p N r e t u r n n t h _ t e r m Remark 3.45. Instead of raising an error if N is too small, it is more clever to rerun the computation at higher precision. We can implement this idea simply by replacing the statement "raise PrecisionError" by "return ntn term(2*N)" in the code above.

The correctness of this algorithm is proved similarly to the case of zealous arithmetic by applying the precision Lemma to the function ϕ i (see Proposition 3.44). We notice, in particular, that we do not need here Proposition 3.40; this is nice because making explicit the constant N 0 of Proposition 3.40 is tedious. This simplification is due to the fact that the differential dϕ i,(a,b,c,d) is surjective (actually even bijective).