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Multiscale finite element modelling of ductile
damage behaviour of the human femur under

dynamic loading

H Naceur1, J Rahmoun1, J Halgrin2 and P Chabrand2

Abstract

In this paper, we propose a new multiscale finite element methodology based on a recently developed

micromechanical damage model for the modelling of the human bone behaviour under dynamic loading.

The damage is carried out by the framework of the limit analysis based on the MCK (Monchiet, Charkaluk

and Kondo) criterion. We first present the methodology allowing the estimation of elastic anisotropic

properties of porous media by means of Mori–Tanaka homogenisation scheme. Then, we develop the

formulation of the integrated yield criterion derived by considering trial velocity field inspired from the

Eshelby inhomogeneous inclusion solution. The obtained micromechanical model is implemented via a
User Material routine within the explicit dynamic code LS-DYNA�. The proposed micromechanical

model has been applied successfully for the estimation of the mechanical properties of a human proximal

femur under dynamic loading. From the obtained numerical results, it has been shown that the present

model has improved the strength prediction of osteoporotic femurs by representing the failure risk in a

more realistic approach.
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Introduction

Osteoporotic hip fractures represent a burden of mortality on the growing population of old

patients. To estimate hip fracture and plan the preventive intervention, the strength of the proximal

femur must be precisely quantified. However, a method that would evaluate complete bone strength

is not yet established. The amount of bone tissue obtained by measuring bone mineral density by
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dual X-ray absorptiometry, has long been considered as a surrogate marker of bone strength

(Cummings and Melton, 2002; Marshall et al., 1996; Siri et al., 2004). Consequently, this technique

remains unable to estimate bone quality, which is intrinsically a mechanical property depending on

properties such as porosity and microstructural anisotropy.

The structural capacity of the femur may also be affected by other factors independent of the

density; we can find in the literature numerous references dealing with the influential factors on

the bone strength of the proximal femur. For instance, let us cite the work of Lotz and Hayes

(1990) who determined the loads and energies needed to cause a proximal femur fracture and

proved the correlations between the fracture load and bone density measured by quantitative

computed tomography (CT). Courtney et al. (1995) compared the loads at fracture of the prox-

imal femur from the cadavers of older and younger individuals and found a 20% increase in

failure load due to the high strain rate (Courtney et al., 1994). Cristofolini et al. (2009) studied

the strain distribution of 12 pairs of human femurs, using six loading configurations to cover the

range of directions spanned by the hip joint force. The influence of loading direction on the

fracture load of the elderly proximal femur was investigated by Pinilla et al. (1996). In particular,

Ford et al. (1996) reported a study on the structural capacity of the proximal femur in four

loading configurations that represent a range of possible falls on the greater trochanter.

Following these studies, it was concluded that, there exist a direction of loading in which a

fracture easily occurs, and the loading direction influences the generation of a proximal femur

fracture. However, there was a lack in the previous studies regarding the use of subjects for whom

the presence of osteoporosis was not evaluated. Among recent works, Lenaerts and van Lenthe

(2009) carried out a multilevel modelling of the proximal human femur in order to quantify the

effect of osteoporosis. They concluded that geometry-based as well as voxel-based Finite Element

(FE) models can provide good predictions of femoral bone strength, especially when the models

are tuned to specific loading scenarios. They stated at the end of their investigation that the

precise failure mechanisms and associated material properties are still not well understood. In

their very interesting investigation, Christen et al. (2010) presented a survey of the current state of

the art for multiscale modelling and assessed its potential to better predict an individual’s risk of

fracture in a clinical setting. They concluded that multiscale approach to modelling the mechanics

of bone allows a more accurate characterisation of bone fracture behaviour and such models

could also include the effects of ageing, osteoporosis and drug treatment. Therefore, it is necessary

to develop a noninvasive method for accurate quantitative structural analysis that combines infor-

mation on both morphology and bone density in a three-dimensional (3D) distribution.

CT-based FE analysis which incorporates information on both 3D architecture and bone density

distribution, could possibly achieve precise assessment of the strength of the proximal femur (Cody

et al., 1999). Former studies on CT-based FE analysis of bone strength have shown to produce an

estimate of the failure load of the proximal femur with reasonable accuracy for given boundary

conditions (Bessho et al., 2007; Keyak, 2001; Koivumäki et al., 2012). Unfortunately, the resulting

voxel-based FE models require high volumes of data and the computational costs become quickly

very high, which makes them useless in the practice.

Due to the multiscale nature of the bone, there have been several theoretical developments to

obtain reasonable estimates of the micro- and macroscopic mechanical behaviours within the con-

text of mechanics of heterogeneous media (Cristofolini et al., 2008). Homogenisation techniques

have been then developed, to model the elastoplastic and the fracture behaviours of the femoral

bone (Aoubiza et al., 1996; Arnoux et al., 2002; Cristofolini et al., 2008). Furthermore, microme-

chanical approaches coupled with CT-based FE models were revealed to be more appropriate when

the robustness of computation and accuracy of results are of interest (Cristofolini et al., 2008).
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The predictive potential of the so-called micromechanical formulations has been established using

physically and statistically independent sets of experiments.

It is well established in the FE analysis, that 8-node hexahedral elements are preferred since their

convergence rate is sensibly higher than the 4-node tetrahedral elements. This may allow the use of

8-node hexahedral element volume mesh with a moderate mesh density to model the complexity of

anatomical geometry. Nowadays, despite the fact that generating a 3D hex mesh, still requiring

extensive manual meshing operations, the resulting FE model offers significant benefits compared to

a classical tetrahedral mesh (solution accuracy and regularity, angle distribution, better contact

treatment and also a globally better convergence rate). When comparing linear hexahedral and

tetrahedral elements, it has been proven that hex-elements give better quality results in many struc-

tural applications (Cifuentes and Kalbag, 1992), including nonlinear elastoplastic analysis (Benzley

et al., 1995). Schonning et al. (2009) have developed a standard hexahedral FE model of the

human femur accounting for the material characteristics of cortical bone, cancellous bone and

bone marrow.

In damage mechanics, there exist principally two modelling approaches which have been exten-

sively used in the last two decades to study the ductile damage and its influence on the material

behaviour. The first approach was pioneered by Gurson (1977), it is based on the void nucleation,

growth and coalescence. It uses the void volume fraction (porosity) as a ‘scalar’ damage variable in

the plastic potential in order to model the damage effects (Nedoushan et al., 2013; Li et al., 2013).

The second approach treats the damage effect on the overall elastoplastic behaviour of the material.

The Continuum Damage Mechanics (Saanouni and César de Sa, 2011; Chaboche, 2013) uses a

scalar damage variable to represent the ductile defect on the other thermomechanical fields. This

kind of Continuum Damage Mechanics-based phenomenological approach has been extensively

applied to numerous metal forming processes (Saanouni and César de Sa, 2011; Niazi et al., 2012).

In this paper, we propose a micromechanical ductile damage model of the human femur bone

behaviour in view of an integration of bone damage for the simulation of necking and rupture

initiation. The determination of elastic properties has been made by using the Mori–Tanaka scheme

(Mori and Tanaka, 1973) and experimental measurements of anisotropy by microtomography tech-

niques (Christen et al., 2010; Cristofolini et al., 2008; Lenaerts and van Lenthe, 2009). The nonlinear

behaviour is taken into account by a coupling between plasticity and damage on a microscopic scale.

The damage has been carried out by using a limit analysis approach based on the MCK criterion

(Monchiet et al., 2011). The derived yield function is deduced by the consideration of new trial

velocity fields inspired from the Eshelby (Liu, 2010) exterior point solution to inclusions problem in

which the eigen-strains are unknown. The obtained ductile damage behaviour law is implemented

via a user material routine UMAT within the explicit dynamic commercial code LS�DYNA�

(Livermore Software Technology Corporation, 2007) for the prediction of the global response of

the femur.

At the macro-level, we propose an original hex-shell FE element model to capture the mechanical

response of the femur. The hex-shell elements (called also Solid-Shell elements) are a variety of FE

models midway between 3D solid elements and thin shells (Harnau and Schweizerhof, 2002; Naceur

et al., 2013). They offer many advantages compared to classical solid elements, because of their

kinematics simplicity, their ability in modelling complex biological structures generally composed of

bulk and thin-walled regions. In the proposed FE model, different locking phenomena have been

resolved using the Assumed Natural Strain (ANS) method and the Enhanced Assumed Thickness

Strain where a seventh enrichment variable is suppressed by static condensation. Finally, we present

some applications in biological tissues to estimate the local mechanical properties of the femoral

head and the global response of the human femur under compression test.

3



Formulation of the micromechanics-based ductile damage

model of the femur bone

Homogenisation scheme for the elastic anisotropic bone behaviour

In this section, we briefly recall the common backgrounds of homogenisation methods for random

heterogeneous materials, which will be used for the formulation of micromechanical model for the

human femur bone.

Description of the representative elementary volume. Micromechanical analysis provides links

between macroscopic properties of the material and its microstructure. In common homogenisation

methods (Chaboche, 2013), the material is understood as a macro-homogeneous, but microheter-

ogeneous body filling a representative elementary volume (REV). The main task is to find the

homogeneous material properties at macroscopic scale based on the available information at the

microscopic scale. In general, the microstructure within one REV is so complicated that it cannot be

described in complete detail. Therefore, quasi-homogeneous subdomains with known physical quan-

tities (such as volume fraction or elastic properties) are generally privileged; they are called material

phases.

The homogenised mechanical behaviour of the overall material, i.e. the relation between homo-

geneous deformations acting on the boundary of the REV and the resulting (averaged) stresses

can then be estimated from the mechanical behaviour of the aforementioned homogeneous

phases (representing the inhomogeneities), their dosages, their geometrical shapes and interactions.

In the present study, the femoral bone can be considered as a multiscale heterogeneous material

with a matrix phase weakened by micropores and which exhibits transversely isotropic symmetry.

The REV of both cortical and trabecular bone is composed of an isotropic linear elastic solid matrix

with the stiffness tensor C
ðmÞ and of a random distribution of ellipsoidal shaped voids made of

phases r (r ¼ 1, . . . ,N) with the elasticity tensor C
ðrÞ. Under the isotropic assumption of the solid

matrix, the stiffness tensor; CðmÞ, reads C
ðmÞ ¼ 3�ðmÞJþ 2�ðmÞK, where �ðmÞ and �ðmÞ represent the

bulk and shear moduli of the matrix, respectively. J and K are the isotropic fourth order tensor

projectors having minor and major symmetries. The inclusions of the phase r are taken to be

identical in shape and orientation with normal n, radius a and the average half-opening c.

Determination of effective elastic properties. Let E be the uniform macroscopic strain field pre-

scribed on the boundary of the REV (see Figure 1). The corresponding displacement uðxÞ boundary
condition reads

uðxÞ ¼ E � x 8x�@� ð1Þ

Figure 1. Description of the representative elementary volume.
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This implies the following average rule between the strains at microscopic and macroscopic scales

in �

5 e4 � ¼ E ð2Þ

5 :4 � denotes the volumetric average on �. Assuming now a linear elastic behaviour for each

phase within the REV, the constitutive relation is given in the form rðxÞ ¼ CðxÞ : eðxÞ, 8x 2 �.

Accordingly, a fourth-order concentration tensor AðxÞ, relating the microscopic strain eðxÞ to the

macroscopic strain E, is introduced in the classical form

eðxÞ ¼ AðxÞ : E ð3Þ

The strain average rule in equation (2) implies 5AðxÞ4 � ¼ I where I is the fourth-order sym-

metric identity tensor. Taking the average of the microscopic stress rðxÞ and using equation (3), the

macroscopic elastic behaviour of material can be expressed in the form D ¼ C
hom

: E, with

C
hom ¼ 5CðxÞ : AðxÞ4 � ð4Þ

Based on matrix-inclusion problems (Liu, 2010) and the Mori–Tanaka scheme (Mori and

Tanaka, 1973) which commonly deals with inclusions interaction in composite materials, we

assume a constant localisation tensor by phase. Therefore, by using the identity 5A4 � ¼ I in

equation (4), an estimate for the homogenised elastic stiffness tensor of the bone material can be

obtained as (Rahmoun et al., 2009)

C
hom ¼ C

ðmÞ þ
X

N

r¼1

f ðrÞðCðrÞ �C
ðmÞÞ : AðrÞ

w : ð fðmÞ
Iþ

X

N

s¼1

f ðsÞAðsÞ
w Þ�1 ð5Þ

where f ðmÞ and f ðrÞ are the volume fraction of matrix and inclusions, respectively and where the two

sums are taken over all phases of the heterogeneous material in the REV. AðrÞ
w denotes the strain

concentration tensor associated with the r-th phase family of inclusions of aspect ratio w, which

writes

A
ðrÞ
w ¼ ½Iþ P

ðrÞ
w : C

ðrÞ � C
ðmÞ

� �

��1 ð6Þ

P
ðrÞ
w is the fourth-order Hill polarisation tensor (Chaboche, 2013) which depends on the shape and

the orientation of the r-th family of inclusions C
ðrÞ (considered here as spheroid) and the elastic

stiffness of the reference medium C
ðmÞ. The necessary detail can be found in Rahmoun et al., 2009,

and only a summary of the main results of the model will be presented here.

Application to the trabecular bone effective properties

We aim now to investigate the effect of structural anisotropy of the femoral bone. One approach for

the modelling of bone microstructural architecture can be derived thanks to the fabric tensor. Thus,

as in a previous work by the authors (Rahmoun et al., 2009), the formalism of the stiffness tensor
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given by equation (5) can be coupled with experimental measurements of the architectural anisot-

ropy obtained from X-ray microtomography and the Mean Intercept Length (MIL) method

(Christen et al., 2010; Cristofolini et al., 2008; Lenaerts and van Lenthe, 2009), which will be

adopted to estimate the volume fractions of pores.

Following a methodology used by Voyiadjis et al. (2007) for orthotropic materials, the 3D

anisotropy can be determined by measuring the MIL in three mutually perpendicular planes (see

Figure 2) and recognising the result as a second rank tensor H defining an ellipsoid.

Then, in the direction n ¼ ð�,�Þ (with ��½0,�� and ��½0, 2��), the mean length of pores can be

obtained by

�l ðnÞ ¼ 2c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� n : H
p ð7Þ

It is convenient to express the volume of the ellipsoidal inclusion r in the direction n as

VðrÞ ¼ 4

3
�a2

�l ðnÞ
2

ð8Þ

Thus, by using equation (7), the average volume of voids can be obtained analytically

Vp ¼
1

4�

Z 2�

0

Z �

0

4�

3

�l ð�,�Þ
2

�l2ð� þ �=2,�Þ
4

sin �

!

d�d� ¼ �

6

arccosð�3=�1Þ
�21 � �23
� �1=2

�
�1=2
3 ð9Þ

where �i are the eigen values of the fabric tensor H and V the volume of the composite. Finally, the

volume fraction of pores can be expressed as

fp ¼ NpVp ð10Þ

with Np denotes the pores density (number of pores per unit volume). Let us notice that this

expression of volume fraction of voids takes into account the orientation of pores distribution.

Therefore, the effective stiffness equation (5) of the porous biological material takes the final form

C
hom ¼ C

ðmÞ þ fp C
ð pÞ �C

ðmÞ
� �

: Ap : ð fðmÞ
Iþ fpApÞ�1 ð11Þ

Figure 2. Fabric representation in 2D using Mean Intercept Length (MIL).
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Micromechanical modelling of the nonlinear behaviour of bone

Constitutive plastic-damage model based on the MCK criterion. In this section, we present an

extension of the micromechanical linear model for the case of nonlinear behaviour. The new model

is based on a coupling between plasticity and damage on a microscopic scale. The damage has been

carried out by using the framework of limit analysis of Gurson (1977) and its evolutions through the

recent work of Monchiet et al. (2011), and Shen et al. (2011) called the MCK criterion.

In this approach, the studied domain is supposed to be composed of a spherical cavity of radius a

subjected to a uniform eigen-strain rate d� and embedded in a spherical cell with the radius b

(Figure 3). The spherical frame (coordinates r,’, �) is considered to describe the studied cell.

The trial velocity field v in the matrix, required for the limit analysis of the hollow sphere, as

stated by Gurson (1977), takes classically the following general form:

v ¼ A � xþ vE ð12Þ

in which A:x is associated to a uniform strain rate A and vE is a heterogeneous field which corres-

ponds to the expansion of the cavity. The assumption of incompressible matrix induces trðAÞ ¼ 0

and divðvEÞ ¼ 0.

From the exterior point Eshelby solution (Liu, 2010), a more refined velocity field vE, in the

particular case of a spherical inclusion, can be given by Shen et al. (2011)

vE ¼
X

r¼6

r¼1

vrd�r ð13Þ

where d�r is related to the eigen-strain in the inhomogeneity d�. The microscopic plastic strain rate d

derived from the velocity field equation (12) is defined by

d ¼ Aþ dE ð14Þ

Figure 3. Micromechanical plastic-damage model assumptions: (a) Representative volume element of a porous

medium. The spherical voids are distributed randomly. The solid spheres denote the voids, and the dashed spheres,

their distribution and (b) Representation of a spherical unit cell of radius b, including a spherical void of radius a.
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with dE ¼ rsv
E, the symmetric part of the velocity gradient associated to vE Monchiet et al., 2011.

The microscopic dissipation �ðdÞ ¼ d0deq where deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
d0 : d0

q

is the equivalent plastic strain rate

defined by (see Monchiet et al., 2011)

d2eq ¼ A2
eq þ 2

X

r¼6

r¼1

d�r A : drð Þ þ
X

r¼6

r¼1

X

s¼6

s¼1

d�rd
�
s dr : dsð Þ ð15Þ

and d0 is the deviatoric part of strain tensor d. Then, following the Hill–Mandel lemma, the macro-

scopic strain rate D is related to the local strain rate d, by the average rule

D ¼ 1

j�j

Z

�

ddV ð16Þ

where j�j is the volume of the studied cell (matrixþ void).

The macroscopic plastic dissipation can be obtained through a minimisation procedure on the

remaining unknown parameters d 0 �

�ðDÞ ¼ min
d 0�

~� D, d 0�� �

with ~� D, d0
�� �

¼ 	y

j�j

Z

��!

deqdV ð17Þ

with ! denotes the volume of the void and 	y the yield stress. The flow surface, related the macro-

scopic dissipation, is then assumed to be given by

D ¼ @�

@D
ð18Þ

Finally, following the limit analysis method of Gurson (1977), the approximate expression of the

macroscopic yield function is obtained as (Monchiet et al., 2011)

�ðD, f Þ ¼
�2

eq

	2
y

þ 2f cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9

4

�2
h

	2
y

þ 2

3

�2
eq

	2
y

s
!

� 1� f 2 ¼ 0 ð19Þ

where �h denotes the hydrostatic stress, �eq the macroscopic von-Mises equivalent stress and f the

actual material porosity.

Numerical integration of the plastic-damage model. As stated before in our objectives, we aim to

formulate and implement the MCK criterion (Monchiet et al., 2011), in order to study the femoral

bone behaviour under dynamic loading. The implementation has been carried out within the explicit

dynamic code LS�DYNA� via the user-routine UMAT (Livermore Software Technology

Corporation, 2007).

At first an additional nonlinear hardening variable �	 is introduced in the MCK criterion (equa-

tion (19)) representing the updated yield stress of the matrix

�ðD, f, �	Þ ¼
�2

eq

�	2
þ 2f cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9

4

�2
h

�	2
þ 2

3

�2
eq

�	2

s0

@

1

A� 1� f 2 � 0 ð20Þ
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We introduce the macroscopic plastic flow rule obtained by upscaling, according to the normality

rule

Dp ¼ _Ep ¼ _�
@�

@D
ð21Þ

in which Dp is the macroscopic plastic strain rate and _� is a plastic multiplier. Taking into account

the incompressibility of the matrix, the porosity evolution law which characterises the damage

growth, reads

_f ¼ _fn þ _fg ð22Þ

in which _fn and _fg represent the rates of volume fraction increase of the microcavities due to nucle-

ation and growth, respectively.

The rate of volume fraction increase due to nucleation _fn may be controlled using the equivalent

plastic strain. In the case of a random distribution of inclusions, the increase rate of nucleation

follows a Gaussian probability

_fn ¼
fN

sN
ffiffiffiffiffiffi

2�
p exp � 1

2

�"p � "N

sN

� �2
( )

_�"p ð23Þ

where �"p is the actual equivalent plastic strain, "N is the mean normal distribution of the nucleation

strain, sN the standard deviation of the Gaussian normal distribution and fN the volume fraction of

nucleated voids.

The rate of volume fraction increase due to the growth of microcavities _fg, derives from the plastic

incompressibility of the matrix which is defined by

_fg ¼ 3ð1� f ÞtrðDpÞ ð24Þ

Following Gurson (1977), the equivalent plastic strain rate of the matrix is derived using the

assumption of incompressibility of the matrix. It is expressed by the equivalence between the plastic

work dissipated by the material and the one dissipated by the matrix; it is expressed as

_�"p ¼ 1

ð1� f Þ �	 D : Dp ð25Þ

Finally, coalescence phase of the microcavities is introduced using the Tvergaard and Needleman

model (Oral et al., 2012) in order to consider the effect of void coalescence fc in the numerical

implementation

f � ¼ f if f � fc
fc þ 
ð f� fcÞ if f4 fc

	

ð26Þ

where fc represents the porosity at the onset of coalescence and 
 ¼ fU � fcð Þ= fF � fcð Þ is a factor

describing the acceleration of the material degradation during coalescence, as shown in Figure 4.

fF and fU represent the porosity and the value of f � at failure, respectively.
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The stress increment calculation between time steps tn and tnþ1 is carried out using the radial

return mapping algorithm, including two stages.

At the beginning, a trial stress D
trial ¼ Dn þ�D

trial is estimated based on an elastic prediction

using the strain increment �E between the two time steps tn and tnþ1

�D ¼ C
hom

: �Ee ¼ C
hom

: �E��Epð Þ ¼ �D
trial �C

hom
: �Ep ð27Þ

where C
hom was determined by equation (11) and �D

trial is the elastic trial stress increment.

The second stage consists in a plastic correction of the stress increment. First a projection dir-

ection @�=@Dtrial is evaluated using equation (20) together with and equation (21), which gives the

following expressions for the deviatoric plastic strain increment �Ep0 and the hydrostatic plastic

strain increment �E
p
h

�Ep0 ¼ ��
3

�	2
þ 2f

�	2

sin hR
R

� �

D
trial0

�E
p
h ¼ ��

3f

2 �	2

sin hR
R

� �

�trial
h

8

>

>

>

>

<

>

>

>

>

:

ð28Þ

with R2 ¼ 9
4

�trial
h

�	

� �2

þ 2
3

�trial
eq

�	

� �2

Now using equation (28) and with the definition of the macroscopic equivalent plastic strain

increment �Ep
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3�Ep0 : �Ep0
p

, the following expression of the plastic multiplier increment ��

is obtained

�� ¼ �	2

�trial
eq

3R
6Rþ 4f sin hR

� �

�Ep
eq ð29Þ

with �trial
eq ¼ 2=3Dtrial0 : Dtrial 0� �1=2

Figure 4. Evolution of porosity model Oral et al. (2012).
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By considering the plastic consistency condition, _� ¼ 0, with the use of equation (20) and equa-

tion (29), one can obtain the final expression of the plastic multiplier ��

�� ¼ �	2

��trial
eq

3R
6Rþ 4f sin hR

� �

g : C
hom

: �E ð30Þ

with g ¼ @�=@Dtrial the stress projection direction, � ¼ g : C
hom

: g� 2cð1� f Þðcos
hR� f Þ � ET@�=@ �	, ET ¼ @ �	=@"p the hardening tangent elastoplastic modulus and

c ¼ @�=@�11 þ @�=@�22 þ @�=@�33.

Finally, the plastic strain increment is obtained using the integrated normality law given by

equation (21). The last step is the computation of the consistent tangent elastoplastic tensor Ccons

(defined by �D ¼ C
cons

: �E) which is required to ensure the global convergence. The last can be

achieved starting from equation (27) together with the expression of the plastic strain correction�Ep

we have

�D ¼ C
hom

: �E���
@�

@D

� �

¼ C
cons

: �E ð31Þ

with

C
cons ¼ C

hom
: I� �	2

��trial
eq

3R
6Rþ 4f sin hR

� �

g� g : C
hom

" #

ð32Þ

Multiscale finite element formulation using an 8-node hex-shell element

Explicit time integration

For global numerical resolution, the central difference time integration method is used as proposed

in Livermore Software Technology Corporation (2007). In the following, the governing equations

are recalled briefly. For the current time step tn, the accelerations are evaluated as

€un ¼ M�1 Pn � Fn þHn

� �

ð33Þ

where M is the diagonal mass matrix, Pn accounts for external and body force loads, Fn is the

internal force vector and Hn is the hourglass stabilisation vector. Updating solution from time tn to

tnþ1, using the central difference time integration leads to

_unþ1=2 ¼ _un�1=2 þ�tn €un ð34Þ

which gives the following displacement field

unþ1 ¼ un þ�tnþ1=2 _unþ1=2 ð35Þ

where �tnþ1=2 ¼ �tnþ�tnþ1

2
. The deformed geometry is updated by adding the displacement increments

to the initial geometry

xnþ1 ¼ Xþ unþ1 ð36Þ
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During the updating procedure, a new time step size is calculated by taking the minimum

value over all elements. The time step size is limited by the Courant-criterion by

�t � 
 �tcrit ¼ 

2

!max

ð37Þ

where !max is the largest eigen-frequency. The COURANT-criterion is based on linear problems, so

in order to consider nonlinearities, the factor 
 � 1 is introduced. For moderately nonlinear appli-

cations, usually 
 ¼ 0:9 is sufficient, for applications as, for example, high-speed impact problems,


 may have to be 0.9 or smaller value.

The use of the central difference method leads to a system of uncoupled linear equations and only

vector operations are performed on global level if diagonal mass matrices are used. This leads to very

little Central Processing Unit (CPU)-time requirements per time step, compared to implicit methods.

Figure 5. Return mapping algorithm.
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Kinematics of the 8-node hex-shell model

In this section, the formulation of the 8-node hex-shell element is briefly recalled. With respect to

nodal designation (Figure 6), the coordinate vector x and displacement vector u of the element are

(Naceur et al., 2013):

x ¼ ~x �, ð Þ þ �

2
V �, ð Þ ¼

X

4

i¼1

Ni �, ð Þ 1� �

2
x�i þ 1þ �

2
xþi

� �

ð38Þ

u ¼
X

4

i¼1

Ni �, ð Þ 1� �

2
u�i þ 1þ �

2
uþi

� �

ð39Þ

where ~x is the position vector at the mid-surface, ĥ and n̂ are the average thickness and the normal of

the sheet, respectively, Ni �, ð Þ are the two-dimensional 4-node Lagrangian interpolation functions,

x�i , u
�
i and xþi , u

þ
i are respectively, the coordinate and displacement vectors of the ith node on the

bottom and top shell surfaces (Figure 6).

In this work, linear, isoparametric hex-shell elements are used with bilinear interpolation in

membrane and linear interpolation in thickness direction.

When dealing with structures under large displacement, it is commonly useful to use the Green–

Lagrange measure to quantify strains

E ¼ 1

2
FTF� I
� �

ð40Þ

with F ¼ Iþ L the deformation gradient. The displacement gradient in the cartesian framework is

obtained from its image in the parametric description

L ¼ L�F
�1
� ð41Þ

Figure 6. Eight-node hex-shell element.
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L� and F� are the displacement gradient tensor and the deformation gradient tensor, respectively,

they are expressed in the parametric space, and are given by

L� ¼ ½u,�; u,; u,��; F� ¼ ½a1�; a2�; a3�� ð42Þ

with the contravariant basis vectors a1� ¼ ~x,� þ 1
2
�V,�, a2� ¼ ~x, þ 1

2
�V, and a3� ¼ 1

2
�V.

Cartesian components of the Green–Lagrange strain tensor E can be related to the curvilinear

strain tensor Et using the orthonormal transformation operator Q ¼ ½t1�; t2�; n��, it can also be

connected to the covariant basis E�, using

Et ¼ QTEQ; E ¼ F�T
� E�F

�1
� ð43Þ

Using equation (43), one can obtain a direct relationship between curvilinear and the covariant

strains

Et ¼ CT
� E�C� ð44Þ

with C� ¼ F�1
� Q, and the covariant components of the Green–Lagrange strain tensor are

E�� ¼ a1� � u,� þ
1

2
u,� � u,�; 2E� ¼ a1� � u, þ a2� � u,� þ u,� � u,

E ¼ a2� � u, þ
1

2
u, � u,; 2E�� ¼ a1� � u,� þ a3� � u,� þ u,� � u,�

E�� ¼ a3� � u,� þ
1

2
u,� � u,�; 2E� ¼ a2� � u,� þ a3� � u, þ u, � u,�

ð45Þ

Principle of virtual work: Internal force vector

In order to deal with the several lockings separately, we need to separate the expression of virtual

internal work by uncoupling the membrane/bending, transverse/thickness and shearing (Naceur

et al., 2013)

Wint ¼
X

nelt

e¼1

We
int; We

int ¼ Wmb
int þWtr

int þWsh
int ð46Þ

Wmb
int ¼

Z

V0

�Emb : SmbdV ¼ �uTf mb

int
; fmb

int
¼

Z

V0

BT
mbSmbdV ð47Þ

Wtr
int ¼

Z

V0

�Etr : StrdV ¼ �uTf tr
int
; f tr

int
¼

Z

V0

BT
trStrdV ð48Þ

Wsh
int ¼

Z

V0

�Esh : SshdV ¼ �uTf sh
int
; fsh

int
¼

Z

V0

BT
shSshdV ð49Þ
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with E the Green–Lagrange strain tensor split into three tensors, namely the membrane/bending

tensor Emb, defined by the components E11,E22,E12, the transverse tensor Etr, defined mainly by

three components E11,E22,E33 and the shearing tensor Esh defined by the shearing strains E13,E23.

The second Piola Kirchhoff Stress tensor S is also decomposed into three parts, Smb, Str and Ssh. The

internal force vector at the element level is then given by

f u
int

¼ f mb

int
þ f tr

int
þ f sh

int
ð50Þ

A hex-shell element formulated using equations equations (47) to (49) with standard integration

based on a 2� 2 Gauss schema in the in-plane of the shell element, will fail because of numerous

locking phenomena.

Remedies for shear locking. An effective method of resolving shear locking is the ANS method in

which the natural transverse shear strains are sampled (Figure 7) and then interpolated at some

discrete element points with a specific order.

The transverse shear strains E�� and E� are calculated according to the average surface plan

(�¼ 0), assuming that they vary linearly, and are functions of E� and E at the mid-side points

EANS
�� ¼ 1� 

2
EA1
� þ 1þ 

2
EA2
� ; EANS

� ¼ 1� �

2
EB1
 þ 1þ �

2
EB2
 ð51Þ

Remedies for trapezoidal locking. Similar to shear locking, trapezoidal locking occurs when lower

order elements such as 8-node hexahedral elements are used to model curved shells so that their

cross-sections assume the trapezoidal shape. These excessive numbers of sampled thickness strains

can be reduced by using a bilinear interpolation of the transverse normal strains sampled at the four

corners of the element mid-surface (Figure 8), namely

EANS
�� ¼

X

4

i¼1

Ni �, ð ÞE�� �i, ið Þ ð52Þ

Figure 7. Shear locking treatment using ANS method.
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Remedies for volumetric locking. Material locking is controlled by a material parameter, the

Poisson ratio �.

Poisson’s ratio coupling requires the thickness strain to be a linear function of �. Because our hex-

shell element has only two layers, as consequence the thickness strain does not vary with � thus the

element fail in reproducing the plane-stress condition.

~EEAS
�� ¼ EANS

�� þ 
�t33 ð53Þ

where 
 represents the seventh independent internal parameter which will be eliminated by special

condensation technique at the element level, t33 is required for transformation to the local element

co-ordinates. An additional condition has now to be satisfied locally, leading to the increment of the

additional degrees of freedom.

@Wint

@u
�uþ @Wint

@

�
 ¼ �Wint u,
ð Þ ð54Þ

On element level, the internal virtual work can now be computed with the compatible and the

enhanced strains as in equation (53)

Wint ¼
X

nl

i¼1

Z

�

Z



Z �iþ1

�i

�Emb : Smb þ �EEAS
tr : Str þ �EANS

sh : Ssh

� �

Jd�dd� ¼ �uTfe
int

ð55Þ

nl is the number of layers and �i is the transverse reference coordinate of the i-th layer along the

cross-section of the element. The internal force vector f e
int

can be obtained explicitly using compatible

and enhanced strains

f e
int

¼ f u
int

� f


k


k
u ð56Þ

where f
 and k

 can be found in Naceur et al. (2013).

Figure 8. Trapezoidal locking treatment using ANS method.
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The global internal force vector F is then obtained by assembling element internal forces f e
int

F ¼
X

nelt

e¼1

fe
int

ð57Þ

The use of a full integration in the in-plane of the shell element, through the use of 2� 2 Gauss

points, allows the obtention of a stiffness matrix that has a correct rank, this reveals that element has

no hourglass modes, therefore, stabilisation is not required in the present model. The present 8-node

hex-shell element has been already validated and presented in previous research works done by the

authors Naceur et al. (2013). It has been shown in previous works, that the present FE model is more

efficient than classical brick elements, especially when dealing with moderately thick structures under

bending loading.

Application to the failure modelling of human femur

Material and protocol

Twenty-one previously frozen, human cadaveric proximal specimens were obtained (11 right and 10

left) from 19 donors for this study (5 men and 14 women). The femora were initially conserved in a

freezer at �21	C. The mean donor age was 87 years (range 63–94). This investigation was approved

by the clinical research ethics board at the University Hospital de la Timone at Marseille.

Anteroposterior standard radiographs of each specimen were obtained and examined by an ortho-

paedic surgeon for signs of previous fracture and metastatic bone disease.

CT scans for each human cadaveric femora were performed and repeated three times using a

LightSpeed VCT scanner from GE Medical Systems. First acquisition was performed prior to

preparing the femurs for the mechanical testing with a detector collimation of 41mm. An additional

acquisition was performed on every femur prior to the mechanical tests to extract precisely the

boundary conditions. A last scan was performed after the mechanical testing, in order to observe

the fracture location in the bone and identify the mechanisms (geometric or architectural) that led to

the damage of the femur. The voxel resolution of the femur CT scan was set to:

0:2mm� 0:2� 0:5mm. While for the specimen extracted from the femoral head, the resolution

was 19:8 mm.

Global mechanical testing on proximal femora

The experimental device was designed according to the loading configurations developed by de

Bakker et al. (2009) and Manske et al. (2009). The proposed experimental setup is able to simulate

a sideways fall on the greater trochanter with a mechanical tension/compression machine shown in

Figure 9. The improvements compared to previous experimental setups are mainly in the strict

control of boundary conditions. The main objective is to reproduce exactly the experimental con-

ditions in future simulations by FEs.

At the beginning, the shaft of the femur has been immersed in a rigid cylinder using an epoxy

resin (type F23 AXSON TECHNOLOGIES), leaving 7.5 cm from the lesser trochanter (Figure 9), in

order to strengthen the fixation of the femur into the device. Two threaded rods have been then

introduced into the coated shaft to ensure the 15	 internal rotation of the femur and put the femoral

neck in the coronal plane. A sample holder allowing horizontal translations in Y direction and free
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rotations in the coronal plane was designed to maintain the femur shaft at 10	 adduction in the

apparatus. The head of the femur was supported by a personalised hemispherical epoxy-based shell

to distribute the load as evenly as possible over the contact surface (Yoshida et al., 2006) and also to

prevent local crushing as it was only constrained from vertical movement. Earlier, mechanical

testing have been carried out on the used epoxy resin (type F23 AXSON TECHNOLOGIES) to

identify its mechanical properties and their effects on the global behaviour of the femora during the

sideways fall testing. The 21 femurs were tested mechanically at room temperature, up to failure

under quasi-static conditions using constant vertical displacement of 10mm=mn through Z direc-

tion. The load was applied to the greater trochanter by means of a personalised epoxy cup. The load

was measured using a three-component load cell sensor (model KISLTER 9327A) coupled with a

charge amplifier (model KISLTER ICAM 5073). Before the test recording, the specimens have been

preloaded to 5N which was defined as the starting zero reference measurements.

The obtained results are discussed in terms of force and displacement. For each femur, the

maximum load in Z direction (F1) characterising the initial bone’s damage and the ultimate load

in Z direction (F2) characterising the bone’s fracture are determined. The specific energy (W) is

absorbed by the femur until the fracture is also computed.

Local testing of the cancellous bone extracted from the femoral head

As mentioned before, in order to use the micromechanical plastic-based damage model presented in

the section ‘Formulation of the micromechanics-based ductile damage model of the femur bone’,

mechanical properties of the trabecular bone have to be identified locally. Namely the Elastic modu-

lus Em, the initial yield stress 	m
y and hardening parameters of the local cancellous bone considered

here as being the matrix. In order to limit the number of unknown material parameters, in this

investigation, the assumption of a linear hardening of the matrix bone is chosen ( �	 ¼ Em
T"

p), leading

to an additional variable represented by a constant tangent elastoplastic modulus Em
T . To this end,

Figure 9. Test set-up of the mechanical testing apparatus. The arrows on the photograph indicate the degrees of

freedom at the proximal and distal ends of the femur.
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three cubic samples of 10� 10� 10mm3 were extracted from the same femoral head along the neck

axis as shown in Figure 10.

The cancellous bone samples used to determine the model parameters in the present investigation

were chosen from the head of the same femur for two reasons: first, because the femoral head

contains the maximal porosity in the femur, and the second reason, it was not possible to use the

greater trochanter because this region has been submitted to compression using a stiff contactor

during the sideways fall experimentation on the femur. At the end of the experiment, the trochanter

region was totally compressed and was not suitable for dissection. For the other femurs, we decided

to use each femur to identify its own parameters, using its femoral head, this is to avoid inter-

individual variability.

The concerned femur is first referenced and the periosteum of the femoral head is removed. The

selected area of the head is divided into several sections of 10mm thickness. A second axial cutting is

done in order to obtain three cubic specimens of pure cancellous bone (Figure 10). By means of the

X-ray microtomography technique three samples were scanned using a SKYSCAN 1172 micro-

scanner with a resolution of 20 mm for the identification of initial porosity. Each of the specimens is

instrumented using gauges for strain measurement and provides a load/displacement and stress/

strain curves, characteristic of the local mechanical behaviour of the femoral bone. Compression

mechanical tests are performed at room temperature (20	C) with a single-column machine type

Hounsfield H5KT, controlled by an electric stepper engine as shown in Figure 11.

A cell of 5 kN effort is used. Each specimen is loaded to 50% deformation with a velocity of

10mm/min. Each test provides a load/displacement curve, characteristic of the mechanical behav-

iour of the specimen tested.

A summary of the experimentally measured material parameters are given in Table 1. The result-

ing load–displacement curves obtained from the experimental compression testing on the cubic

samples are also given in Figure 12. All compression tests have been done up to 50% of deformation,

and as we can notice all three tests gave approximately the same behaviour, with a relatively small

elastic zone (up to 2%) and a very small value of the yielding stress (up to 1MPa), which has been

already expected for the cancellous bone.

Numerical identification of local cancellous bone mechanical properties

Based on the above experimental results given in Figure 12, a numerical procedure for the identi-

fication of the femur matrix material parameters has been carried out using the developed

Figure 10. Head femoral dissection for the local study of the trabecular bone mechanical parameters.
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Figure 11. Experimental set-up used for femoral head specimens compression.

Table 1. Summary of the experimentally local measured material parameters.

No. exp. E (MPa) � fp (%)

Sample 1 39 0.19 77.95

Sample 2 40 0.19 85.05

Sample 3 50 0.19 87.20

Min–Max 39–50 0.19 77.95–87.20

Mean 43 0.19 83.4

Figure 12. Experimental stress–strain response of the femoral head specimens under compression.
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homogenised hex-shell element based on MCK criterion (Monchiet et al., 2011) and implemented

within user routine UMAT in LS�DYNA� software. In the present inverse identification the cubic

samples were meshed using 10� 10� 10 hex-shell elements, and compression was performed using a

controlled velocity of 10mm/min. Each specimen was loaded up to 90% deformation.

For the inverse identification, we used a Sequential Quadratic Programming algorithm (Zhang

and Zhang, 2003) in order to perform the fitting of computed results with the experimental meas-

urements by finding the optimal set of constitutive parameters, namely the Young’s modulus Em, the

initial yield stress 	m
y and the tangent elastoplastic modulus Em

T of the matrix bone. The void volume

fraction was measured by microtomography for each sample as reported in Table 1. The aspect ratio

is taken w¼ 1, which corresponds to the assumption of spherical voids of the local cancellous bone

inside the femoral head. In this investigation, Poisson ratio was not studied and was fixed equal to

the experimental measured value of 0.19 as reported in Table 1.

Table 2 summarises the obtained results using the inverse identification procedure. As we can

observe, the identified Young’s modulus Em of the cancellous matrix bone shows slight variations

from 304MPa to 517MPa with an average value of 415MPa, this is a direct consequence of the

variations observed on the measurement data themselves.

The same conclusions could be drawn, from the observation of the identified initial yield stress 	m
y

and the tangent elastoplastic modulus Em
T of the matrix bone in the femoral head, which varies from

5.34MPa to 6.13MPa and from 3.22MPa to 8.25MPa, respectively. These results are also presented

in the form of stress–strain curves in Figure 14. One can observe that even with the assumption of a

linear hardening of the matrix bone �	 ¼ Em
T"

p, the obtained model response after yielding presents a

strong nonlinear character. This is due to the cancellous bone densification effects, generally

observed in compression testing of cellular materials. Mean values of the Young’s modulus

Em ¼ 415MPa, the yield stress 	m
y ¼ 5:67MPa and the tangent elastoplastic modulus

Em
T ¼ 5:93MPa, allow obtaining the average ‘bold-black’ stress–strain curve shown in Figure 14.

These average values are used as bone material data in the present model to carry out a global

compression testing on the femora.

Numerical validation using the global testing on proximal femur

The final stage is a numerical validation of the implemented MCK model, through the use of a

global sideways fall on the greater trochanter as exposed in the section ‘Global mechanical testing on

proximal femora’. The first step in this phase was the reconstruction of the 3D geometry of the femur

starting from the digitalised STL inner and outer surfaces of the femur. As shown in Figure 15, the

digitalised STL mesh was split into two different parts (inner and outer surfaces).

The outer surface is constituted by cortical bone of initial porosity fp ¼ 10% and the inner one by

trabecular bone of initial porosity fp ¼ 77%, obtained using a SKYSCAN 1172 microscanner. Then

each STL surface was partitioned along the transverse direction into small parts (Figure 15) using

Table 2. Identified material parameters of the cancellous bone in MPa (matrix and homogenised parameters).

No. exp. Em 	m
y EmT Ehom Eexp 	hom

y

Sample 1 304 6.13 8.25 40.21 39 1.04

Sample 2 425 5.52 6.34 39.57 40 0.99

Sample 3 517 5.34 3.22 48.83 50 0.68

Mean 415 5.67 5.93 42.87 43 0.90
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HYPERMESH� software (Altair Engineering, 2013). The small local surfaces are developed based

on their edges which have been regenerated thanks to HYPERMESH� CAD facilities. Once the

total inner and outer surfaces of the femur are built up, a first mapped shell mesh is generated using

only quadrilateral shell elements. Then a 3D mesh of the femur volume is generated with hexahedra,

thanks to the 3D meshing facilities available in HYPERMESH� software (see Figure 15).

The total mesh of the femur includes 7400 hex-shell elements. The FE simulation was carried out

using the Explicit Dynamic algorithm within LS�DYNA� code, with a total running CPU time of

8min 46 s using a Dell Precision PWS690 workstation with two 64-bit Quad-Core Intel Xeon pro-

cessors of 2.66GHz and 8GB of RAM. Figure 16 shows the load–displacement response of the

modelled femur compared to the corridor obtained experimentally using the set of 21 tested femurs.

We can observe globally, that a good agreement is obtained for the estimation of the ultimate load

supported by the femur before collapse.

Figure 13. FE mesh using 10� 10� 10 homogenised hex-shell elements for the REV modelling.

Figure 14. Numerical vs. experimental results obtained for the femoral head specimens under compression test.
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Moreover, from Figure 17, we can observe that the damage evolution was started locally at the

superior cortex of femoral neck (see Figure 17(d)). As the load augmented, the damage starts

invading the inferior tensile side of femoral neck. Then due to maximum tensile and compressive

strains, the damage propagated rapidly to the lower surface following a diagonal path, resulting

almost a complete separation of the proximal femur at the end (Figure 17(h)).

Predicted proximal femur rupture shape consistent with different cracks propagation stages in

relation with the load–displacement response is shown in Figure 18. The damage started at the upper

compression side at a stroke of 3mm (Figure 17(d)), then it spreads gradually until a stroke of 5mm

(Figure 17(f)) where the upper crack starts to bifurcate towards the lower tensile side of the femoral

Figure 15. Proximal femur CAD geometry and FE mesh using 7400 hex-shell elements.

Figure 16. Load–displacement femora response: Expreimental vs. numerical comparison.
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neck. At a stroke of 7mm (Figure 17(g)) the crack is initiated almost close to the greater trochanter

at the lower tensile side, and grows quickly towards the upper compression side resulting in almost a

complete separation of the proximal femur in the form of basicervical fracture at a stroke of 9mm

(Figure 17(h)).

Basicervical fractures are a specific kind of hip fracture taking place at the base of the neck of the

proximal femur. The fracture path goes through the femoral neck nearby to the trochanter.

Basicervical fracture (Figure 18) is a debatable sort of hip fracture, which can be viewed as either

high intertrochanteric fractures (Guss, 1997) or low neck fractures (Konishiike et al., 1999). It lacks

a precise definition in the most commonly used classifications.

Discussion and limitations

While the present investigation emphasised the capabilities of a newly proposed micromechanical

model for the prediction of the human proximal femora ultimate load and its fracture pattern;

however the underlying micromechanical model still has some limitations. Even though, it employed

only five material parameters (elastic modulus, yield stress and tangent modulus of the matrix, the

aspect ratio and the porosity) to describe accurately a very complex behaviour of a human bone,

some of these parameters are difficult to measure directly because they have been introduced using

somehow strong assumptions. For instance, it is assumed in the present investigation, that the bone

matrix properties are the same for the cancellous and the cortical bone and therefore the differences

Figure 17. Damage evolution in the cancellous femoral bone during compression. (a) Femur at the initial position

before loading; (b) Femur loaded until the initial yield stress is reached; (c) First buckling and damage initiation starting

at the superior cortex of femoral neck; (d) Damage propagation at the superior cortex of femoral neck; (e) Second

buckling and damage initiation starting at the inferior cortex of femoral neck; (f) Crack initiation at the superior

cortex of femoral neck; (g) Crack initiated close to the greater trochanter at the lower tensile side and (h) Complete

separation of the proximal femur at the end (basicervical fracture).
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in the stiffness come only from the porosity factor i.e. the volume void fraction as well as from the

voids architecture and orientations. It is well known that trabecular bone has more connected

network of pores than cortical bone. Specifically, cortical bone porosity consists primarily of cylin-

drical canals serving the vascular system (i.e. longitudinal Haversian canals and transverse

Volkmann canals). Though for the sake of simplicity, it has been assumed only one family of

ellipsoidal voids to represent both cortical and trabecular bones, where the average size was deter-

mined thanks to the CT-scan measure of the porosity and the Mean-Intercept-Length giving the 3D

orientations of voids. Indeed, it was possible to include several families of voids or inclusions of

different shapes such as: one family of ellipsoidal voids for the trabecular bone and a second family

of cylindrical cavities for the cortical bone. This will certainly improve the global response of the

bone but at the same time will increase the computational time necessary for the homogenisation

procedure. Another alternative would be the use of only one family of ellipsoidal voids but intro-

ducing two different aspect ratios of the ellipsoid. An average value of the aspect ratio close to 1 will

be given to the cancellous bone, while a higher value the aspect ratio 100 will be given to the cortical

bone, stretching the ellipsoid to tend a cylindrical shape. Aside from their importance upon the

global response of the proposed model, micromechanical plastic parameters represented by the yield

stress and the tangent modulus of the matrix bone, have to be determined more precisely using direct

measurements such as nano-indentation which will bring more local details of the bone and hence

enrich the hardening micromechanical model. While in the present investigation authors use the

inverse method to identify the former parameters, the obtained results show that the proposed

model can describe accurately the global behaviour of human proximal femora.

A last point concerning the introduction of solid-shell elements, it is well known that classical

solid FEs are not appropriate to model thin structures. Additionally, the more thinner the layer is,

the higher the number of solid elements will be needed. Therefore, one solution would be the use of

at least five tetrahedral elements in the thickness of the cortical layer, if one needs to achieve good

results. Then, a second problem arises, corresponding to the element size transition between the

cancellous and the cortical regions. The use of only classical solid FEs for the modelling of long

bones (including cortical and cancellous) may overestimate the overall stiffness, unless a special care

Figure 18. Qualitative comparison between predicted fracture zone and examples of typical basicervical fracture

from Guss (1997) and Konishiike et al., 1999. (a) Example of a radiograph of a 78-year-old woman with a femoral neck

fracture from Guss (1997). (b) Radiograph of a 56-year-old man with a type-A displaced fracture from Konishiike et al.

(1999). (c) Predicted fracture profile using the MCK damage model.
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is given and a fine mesh is used in the relatively thin cortical region. An alternative would be the use

of prismatic solid-shell FEs, which can be generated automatically and are of a higher accuracy than

classical tetrahedral FEs. Therefore, the cancellous region will be modelled with classical tetrahedral

solid elements and the external thin cortical bone will be modelled using only one or two prismatic

solid-shell to achieve to a good accuracy at a reasonable cost.

Conclusion

The goal of this investigation was to develop, implement and validate a useful hex-shell FE based on

the MCK micromechanical damage model in order to simulate the complete response and the

pattern of the fractured area of proximal femur.

The framework of homogenisation was used to derive a yield criterion using an approximate limit-

analysis based on the MCK criterion for porous biological materials. The elastic properties of these

materials were determined by a coupling from the Mori–Tanaka scheme and experimental measure-

ments of 3D anisotropy using microtomography techniques. The model takes into account the aniso-

tropic behaviour (resulting from the architectural nature of the cancellous bone) coupled to ductile

damage to describe the progressive crack initiation and propagation within proximal femoral. The

model has been implemented into LS-DYNA code via the user material subroutine UMAT.

To illustrate the potential of the current approach, a right adult human femur was simulated until

complete fracture under sideways loading. Predicted load–displacement response shows a same ten-

dency as those observed experimentally. Our results predicted progressive fracture profiles depending

on the vertical trochanter stroke. The predicted fracture path follows a diagonal line from the inner

surface of the neck (basal) to the outer surface towards the greater trochanter. A comparison between

predicted fracture path and radiographs of basicervical fractures from the literature shows a quite

good agreement, even if loading conditions (unknown for the radiograph) may be different.

The main ambition of the present investigation was to show the potential of the proposed MCK

micromechanical model taking into account the anisotropic behaviour and ductile damage to predict

the human proximal femora response and its ultimate load as well as the fracture pattern. The

progressive changes in bone microarchitecture and material properties attributed to elderly, may

be included into the micromechanical model for a more accurate predictions to evaluate the hip

fracture risk of elderly population.

Further improvements will be performed into the present model to be able to simulate the bone

behaviour by taking into account the strain rate effects to assess hip fracture accruing due to falls or

in sports accidents.
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