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This paper is devoted to the modeling of the photoacoustic effect generated by the electromagnetic heating of metallic nanoparticles embedded in a biological tissue. We first derive an asymptotic model for the plasmonic resonances and the electromagnetic fields. We then describe the acoustic generation created by the electromagnetic heating of the nanoparticle. Precisely, we derive the model equations that describes the coupling between the temperature rise in the medium and the acoustic wave generation. We obtain a direct relation between the acoustic waves and the electromagnetic external sources. Finally, we solve the multiwave inverse problem that consists in the recovery of the electric permittivity of the biological tissue from the measurements of the generated acoustic waves on the boundary of the sample.

Photoacoustic imaging [START_REF] Bal | Inverse diffusion theory of photoacoustics[END_REF][START_REF] Ammari | Mathematical modelling in photo-acoustic imaging of small absorbers[END_REF][START_REF] Fisher | Photoacoustic effect for multiply scattered light[END_REF][START_REF] Kirsch | Simultaneous reconstructions of absorption density and wave speed with photoacoustic measurements[END_REF][START_REF]Mathematics of thermoacoustic and photoacoustic tomography[END_REF][START_REF] Burgholzer | Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface[END_REF][START_REF] Scherzer | Handbook of Mathematical Methods in Imaging[END_REF][START_REF] Cox | Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity[END_REF][START_REF] Wang | Photoacoustic Imaging and Spectroscopy[END_REF][START_REF] Ammari | Photo-acoustic imaging for attenuating acoustic media[END_REF] is a recent hybrid imaging modality that couples electromagnetic waves with acoustic waves to achieve high-resolution imaging of optical properties of heterogeneous media such as biological tissues. Our objective in this paper is to derive a realistic complete mathematical model for the photoacoustic generation by a single nanoparticle embedded in a biological tissue. We introduce the mathematical framework and give the main result in the first section. In the second section we describe the mechanism of enhancement of light through the optical scattering properties of metallic nanoparticles. The third section is devoted to the thermal modeling of the part of the electromagnetic energy converted into heat. We precisely derive a theoretical model for the generation of acoustic waves by the thermal expansion of the tissue around the metallic nanoparticles. The inverse photoacoustic problem is solved asymptotically in section 4. We finally give useful technical results in the appendix.

We now give a mathematical framework for the whole photoacoustic effect. Let Ω be a bounded C 2 domain in R 2 . The outward unit normal at x to BΩ is denoted by ν Ω pxq. The domain Ω is referred to as the biological sample that we aim to image by the non-invasive photoacoustic modality. Assume that Ω contains a single nanoparticule, of the form B α :" z ‹ `αB, where B is a bounded, C 2 smooth domain containing the origin, α ą 0 is a small constant that represents the size of the nanoparticle, and z ‹ is the position of the nanoparticle. The first step in photoacoustic imaging system is to illuminate the sample by an electromagnetic wave produced by a laser source. The time dependent, linear Maxwell's equations take the form

∇ ˆE " ´µ0 B Bt H, ∇ ˆH " ε B Bt E,
where E and H are the total electric field and the total magnetic field respectively. The coefficients ε and µ are the electric permittivity and magnetic permeability of the sample. The magnetic permeability is assumed to be constant equals to µ 0 the permeability of the free space, while the electric permittivity is given by εpxq "

" ε s pxq for x P R 2 zB α , ε m for x P B α ,
where ε m is the permittivity of the metal that will be specified later, and ε s pxq is the permittivity of the sample that is assumed of class C 2 and is constant equal to ε 0 ą 0, the permittivity of the free space, outside Ω. We assume throughout that 0 ă c 0 ă pε s pz ‹ qq ă | pε m q|, for all x P Ω, pε s pxqq belongs C 2 0 pΩq and satisfies pε s pz ‹ qq ą c 0 . The imaginary part of the electric permittivity pε s pxqq, is related to the absorption of the electromagnetic energy, and provides a good description of the state of the biological tissue. Our objective in this paper is to recover this parameter around the nanoparticles.

We assume that during the illumination of the sample a part of the electromagnetic energy is dissipated by absorption inside the biological tissue and inside the nanoparticle. The absorption of the electromagnetic energy by the biological tissue is transformed into heat and leads through the thermo-elastic expansion of the tissue to the generation of an acoustic pressure ppx, tq that propagates to the detectors on the boundary BΩ. The measurements of ppx, tq on the boundary allow the reconstruction of the absorption and diffusion coefficients in the conventional plused photoacoustic imaging system. In practice, it has been observed in various experiments that the imaging depth, i.e. the maximal depth of the sample at which features can be resolved at expected resolution, is still fairly limited, usually on the order of millimeters. This is mainly due to the limitation on the penetration ability of the electromagnetic waves in the tissue: optical signals are attenuated significantly by absorption and scattering. In [START_REF] Choulli | Qualitative stability estimate for the second inversion in photoacoustic inverse problem[END_REF], the authors showed that the resolution is proportional to the magnitude of the laser fluence in the sample, and recently in [START_REF] Ren | A Global stability estimate for the photo-acoustic inverse problem in layered media[END_REF] the mechanism of depth resolution is mathematically investigated. Metallic nanoparticles are very attractive as photoacoustic contrast agents because of their large capacity to absorb light and convert it to heat and their spectral selectivity. When they are illuminated at their plasmonic resonances their absorption of light is amplified and their temperature increases significantly leading to various phenomena including heating the surrounding media. For example in Hyperthermia therapy for cancer treatments one seeks to destroy tumors through heating metallic nanoparticles [START_REF] Pearce | Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures[END_REF]. In the context of photoacoustic imaging the heat of the surrounding biological tissue will generate a strong acoustic pressure wave ppx, tq that can also be detected on the boundary BΩ. The principal idea for the use of metallic nanoparticles in photoacoustic imaging is that one can insert them at any position inside the sample and obtain strong acoustic sources inside the sample. This will overcome the problem of the limitation in the penetration resolution depth of the conventional photoacoustic imaging modality based on the illumination of only the biological tissue. There are already several related results in the physicists community [START_REF] Chen | EnvironmentDependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles[END_REF][START_REF] Prost | Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime[END_REF].

Our objective in this paper is to study the inverse problem to recover pε s pxqq at z ‹ from measurements of the pressure ppx, tq on the boundary BΩ.

Assuming that |∇Hpz ‹ q| " 0, B is ball, and that z ‹ is known we derive the the following global stability estimate. It shows how the errors in measurements can effect the reconstruction of the electric permittivity at z ‹ . Theorem 1.1. Let τ p ą τ Ω where τ p " sup x,yPΩ |x ´y|. Let p a px, tq (resp. p b px, tq) the acoustic pressure generated by an external electromagnetic source in a medium with electric permittivity ε s,a pxq (resp. ε s,b pxq).

Then, there exists a constant C ą 0 that does not depend on α and the boundary measurements such that

| pε s,a pz ‹ qq ´ pε s,b pz ‹ qq| ď C ˜› › › › B p a Bt ´B p b Bt › › › › L 2 pBΩˆp0,τ p qq `}∇p a ´∇p b } L 2 pBΩˆp0,τ p qq ¸1 4 `Opαq.
The proof of the theorem is given in section 4. It is based on asymptotic expansion of the electromagnetic fields when α tends to zero. The coupling between the acoustic and electromagnetic waves allows us to retrieve the inner asymptotic expansion of the electromagnetic fields in a small neiborhood of z ‹ (Theorem 4.1, and subsection 4.2.2). Since α, the size of the nanoparticle is small, the stability estimate of Hölder type shows that the reconstruction of pε s pz ‹ qq from measurements of the pressure ppx, tq on the boundary BΩ is in fact a well-posed inverse problem. In subsection 2.1 we derived the asymptotic expansion of the plasmonic resonances of the system nanoparticle and biological tissue. Later on in subsection 4.2.2, we showed that choosing the incident wave frequency close to the real part of a plasmonic resonance enhance the photoacoustic signal measured on the boundary. Finally, the stability result can be easily extended to cover the case where many well separated nanoparticles are embedded in the sample.

Electromagnetic excitation

The first syntheses of metallic small particles date back to the 4th or 5th century BC where gold specimen were reported in China and Egypt. Their optical properties were used for coloration of glass, ceramics, china and pottery (see [START_REF] Moores | The plasmon band in noble nanoparticles: an introduction to theory and applications[END_REF] and references therein).

It is now well known that the interesting diffractive properties of these particles are linked to resonances phenomena. In fact plasmon resonances may occur in metallic particles if the dielectric permittivity inside the particle is negative and the wavelength of the incident excitation is much larger than the dimension of the particle. For nanoscale metallic particles, these resonances occur in the optical frequency range and they result in an extremely large enhancement of the electromagnetic field near the boundary of the particles. This phenomena has applications in many areas such as nanophotonics, nanolithography, near field microscopy and biosensors. The desired resonance frequencies as well as the local fields enhancement can be achieved by controlling the geometry of the metallic nanostructure.

In mathematical point of view these resonances values are the complex eigenvalues of Maxwell's equations that only occur when the dielectric permittivity of the nanoparticles is negative and the size of the nanoparticles is less than the incident wavelength. A formal asymptotic expansion in [START_REF] Mayergoyz | Numerical analysis of plasmon resonances in nanoparticules[END_REF][START_REF] Mayergoyz | Electrosta tic (plasmon) resonances in nanoparticles[END_REF] showed that if the ratio between the incident wavelength and the size of the nanoparticle tends to zero the plasmonic resonances approches the eigenvalues of the Neumann-Poincaré operator or the variational Poincaré operator [START_REF] Mayergoyz | Numerical analysis of plasmon resonances in nanoparticules[END_REF][START_REF] Mayergoyz | Electrosta tic (plasmon) resonances in nanoparticles[END_REF]. In [START_REF] Bonnetier | Asymptotic of plasmonic resonances[END_REF], the authors have derived a rigorous justification of the quasi-static approximation in harmonic frequency regime [START_REF] Mayergoyz | Numerical analysis of plasmon resonances in nanoparticules[END_REF][START_REF] Mayergoyz | Electrosta tic (plasmon) resonances in nanoparticles[END_REF]. It is well known that the resonance phenomena occur only in transverse magnetic polarization (TM) polarization. Here we consider the time harmonic regime in (TM) polarization that is, E " pEe iωt q and H " pHe iωt q, where E " pEpx 1 , x 2 q, 0q and H " p0, 0, Hpx 1 , x 2 qq.

The total magnetic field can be decomposed into two parts H " H i `Hs where H i and H s are respectively the incident and scattered waves.

The homogeneous frequency-domain, linear Maxwell's equations, in the transverse magnetic polarization (TM) and in absence of internal sources, take the form

∇ ¨ˆ1 ε ∇H ˙`ω 2 µ 0 H " 0 in R 2 . (2.1)
with the Sommerfeld radiation condition as |x| Ñ `8 [START_REF] Nédélec | Electromagnetic and Acoustic Waves[END_REF]:

BH s B|x| ´iω ? ε 0 µ 0 H s " Op 1 a |x| q. (2.2)
Recall that the electric permittivity is given by εpxq "

$ & % ε 0 for x P R 2 zΩ, ε s pxq for x P ΩzB α , ε m pωq for x P B α ,
where ε 0 is the permittivity of the free space. The incident field H i satisfies

∆H i `ω2 µ 0 ε 0 H i " 0 in R 2 .
The electric field E can deduced directly from the magnetic field through the relation

Epxq " ˆBx 2 Hpxq ´Bx 1 Hpxq ˙. (2.3)
The metal that fills the nanoparticle is assumed to be real and its dielectric constant is described by the Drude model:

ε m pωq " ε 0 ˜ε8 ´ω2 P ω 2 `iωΓ ¸, (2.4)
where ε 8 ą 0, ω P ą 0 and Γ ą 0 are the metal parameters that are usually fitted utilizing experiment data [START_REF] Moores | The plasmon band in noble nanoparticles: an introduction to theory and applications[END_REF]. The dielectric constant ε m depends on the frequency ω, and so incident waves can cause a change in the metal behavior. Media having such a property are termed dispersive media.

The Drude model considered here describes well the optical properties of many metals within relatively wide frequency range. For example the function ε m pωq with effective parameters: ε 8 " 9.84 eV, ω P " 9.096 eV, Γ " 0.072 eV for gold, and ε 8 " 3.7 eV, ω P " 8.9 eV, Γ " 0.021 eV for silver reproduce quite well the experimental values of the dielectric constant in the frequency range 0.8 eV to 4 eV (see for instance [START_REF] Johnson | Optical constants of the noble metals[END_REF]).

2.1. Plasmonic resonances. When the frequency lies in the upper half complex space, that is, pωq ě 0, the system (2.1) has a unique solution. The resolvent of the differential operator (2.1) with condition (2.2) has a meromorphic continuation in the lower complex plane.

The complex number ω is said to be a plasmonic resonant frequency of the nanoparticle B α if there exists a non-trivial solution H to the system (2.1)-(2.2) with zero incident wave.

It is known that the set of scattering resonances tω j u of the above Helmholtz equation in the absence of dispersion (ε m does not depend on ω) is discrete and symmetric in the complex plane about the imaginary axis. Further, it can be easily seen that all the resonant frequencies tω j u are in the lower half-space ω ă 0. They can be found explicitly for a circular or ellipsoid shape and are connected in this case with the zeros of certain Bessel functions. More elaborate results assert that for strictly convex shapes in dimension three the resonant frequencies accumulate rapidly on the real axis as | ω| Ñ 8 [START_REF] Popov | Resonances Near the Real Axis for Transparent Obstacles[END_REF]. It has been shown in dimension one that the scattering resonances of a non-dispersive medium satisfy [START_REF] Harrell | General lower bounds for resonances in one dimension[END_REF][START_REF] Osting | Long-lived Scattering Resonances and Bragg Structures[END_REF] 

pωq ě C 1 e ´C2 | pωq| 2 ,
where the constants C i , i " 1, 2 only depend on ε and the size of the domain. The imaginary part of a resonance gives the decay rate of the associated resonant states. Thus, resonances close to the real axis give information about long term behavior of waves. In particular, since the work of Lax-Phillips [START_REF] Lax | Scattering theory[END_REF] and Vainberg [START_REF] Vainberg | Asymptotic methods in equations of mathematical physics[END_REF], resonance free regions near the real axis have been used to understand decay of waves. Several works in nano-optics have related the amplification and enhancement of light to the behavior of the imaginary part of the scattering resonances close to the real axis [START_REF] Ammari | Resonances for microstrip transmission lines[END_REF][START_REF] Bonnetier | Asymptotic of the Green function for the diffraction by a perfectly conducting plane perturbed by a sub-wavelength rectangular cavity Math[END_REF][START_REF] Bonnetier | Enhancement of electromagnetic fields caused by interacting subwavelength cavities[END_REF].

Alike the non-dispersive case, the plasmonic resonances form a set of discrete and isolated complex values `ω j pαq ˘j. In [START_REF] Bonnetier | Asymptotic of plasmonic resonances[END_REF] the authors have derived the asymptotic expansion of the plasmonic resonant frequencies as α tends to zero and when the nanoparticle is surrounded by a homogeneous medium with a constant electric permittivity. We adapt in the following paragraph their techniques to our problem and derive the first term in the asymptotic expansion of the plasmonic resonances. We refer the reader to [START_REF] Ammari | Surface plasmon resonance of nanoparticles and applications in imaging[END_REF][START_REF] Ando | Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincaré operator[END_REF][START_REF] Ando | Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions[END_REF][START_REF] Ammari | Mathematical analysis of plasmonic nanoparticles: the scalar case[END_REF] for recent and interesting mathematical results on plasmonic resonances for nanoparticles.

Making the change of variables x " z ‹ `αξ in the spectral problem (2.1), we get

∇ ¨ˆ1 εα ∇ r H ˙`α 2 ω 2 µ 0 r H " 0 in R 2 , (2.5) with the radiation condition B r H B|ξ| ´iαω ? ε 0 µ 0 r H " Op 1 a |ξ| q as |ξ| Ñ `8, (2.6)
where r

Hpξq " Hpz ‹ `αξq, and εα pξq " εpz ‹ `αξq is given by εα pξq "

$ & % ε 0 for ξ P R 2 zΩ α , ε s pz ‹ `αξq for ξ P Ω α zB, ε m pωq for ξ P B.
Here Ω α denotes

! x´z ‹ α ; x P Ω )
. It contains zero and tends to the whole space when α approaches zero.

Similarly the piecewise smooth function εα pξq converges in L 8 loc pR 2 q to the piecewise constant function εpξq "

" ε s pz ‹ q for ξ P R 2 zB, ε m pωq for ξ P B.
In the quasi-static regime αω ăă ω ăă 1, the above spectral problem formally converges, to the quasistatic spectral problem

∇ ¨ˆ1 ε ∇ r H 0 ˙" 0 in R 2 , (2.7)
where the field r H 0 pxq belongs to W 1,´1 0 pR 2 q, where W 1,´1 0 pR 2 q :"

" u P H 1 loc pR 2 q : u{p1 `|ξ| 2 q 1 2 lnp1 `|ξ| 2 q P L 2 pR 2 q; ∇u P L 2 pR 2 q; lim |ξ|Ñ`8 u " 0 * .
Next, we define the integral operator

T 0 : W 1,´1 0 pR 2 q Ñ W 1,´1 0 pR 2 q by ż R 2 ∇T 0 w∇vdξ " ż B ∇w∇vdξ for all v P W 1,´1 0 pR 2 q.
We introduce the single layer vector space

H :" tu P W 1,´1 0 pR 2 q : ∆u " 0 in B Y R 2 zB; u| `" u| ´on BBu.
We deduce from [START_REF] Bonnetier | Asymptotic of plasmonic resonances[END_REF] that the restriction of T 0 to H is a self-adjoint operator of Fredholm type with index zero. In fact 1 2 I ´T0 is a compact operator .

Let us denote as

! β j ) jě1
the eigenvalues of T 0 : H Ñ H, ordered in the following way:

0 " β 1 ď β 2 ď ... ď β 8 " 1 2 ,
and

β 8 " 1 2 ď ... ď β 2 ď β 1 ă 1,
and satisfies lim jÑ`8 β j " β 8 " 1 2 . We deduce immediately from the min-max principle for the compact, self-adjoint operator 1 2 I ´T0 the following characterization of the spectrum of T 0 [START_REF] Bonnetier | Asymptotic of plasmonic resonances[END_REF].

Proposition 2.1. Let ! w j )
jě1 be the set of corresponding eigenfunctions of the operator T 0 , associated to the eigenvalues

! β j ) jě1 .
The following equalities hold

β j " min uPH uKw 1 ,...,w j´1 ż D |∇u| 2 dx ż Ω |∇u| 2 dx " max F j ĂH dimpF j q" j´1 min uPF K j ż D |∇u| 2 dx ż Ω |∇u| 2 dx
, and

β j " max uPH uKw 1 ,...,w j´1 ż D |∇u| 2 dx ż Ω |∇u| 2 dx " min F j ĂH dimpF j q" j´1 max uPF K j ż D |∇u| 2 dx ż Ω |∇u| 2 dx
, for all j ě 1.

We define the quasi-static resonances ´ωj p0q ¯jě1

of the spectral problem (2.7) the complex roots of the following dispersion equations ε m pωq ε s pz ‹ q " k j :"

β j β j ´1 , 1 ď j ď 8. (2.8)
We first remark that since β j belong to r0, 1q the values on the right side of the equality k j are negative reals. Thus pε m pωqq, the real part of the electric permittivity, at the quasi-static plasmonic resonances ´ωj p0q ¯jě1 takes negative reals. This is exactly what one would expect in a such situation, and the existence of the plasmonic resonances can not occur if the material inside the nanoparticle is a modest electric permittivity that has always a strictly positive real part.

Lemma 2.1. The complex roots to the dispersion relation (2.8) are explicitly given by

´i Γ 2 ˘g f f e ω 2 p ε 8 ´kj ε s pz ‹ q ´Γ2 4 , (2.9)
where ? z is the complex square root function defined on Czip0, 8q.

We note that the quantities k j and ε 8 ´4 ω 2 P Γ 2 only depend respectively on the shape of the particle and the nature of the metal that fills the particle. Based on this calculation we remark that the circular shape has only four quasi-static resonances given by ´i Γ

2 ˘c ω 2 p ε 8 ´Γ2 4 , and ´i Γ 2 ˘c ω 2 p ε 8 `εs pz ‹ q ´Γ2 4 .
They satisfy respectively the dispersion equation with k 1 " 0, and k 8 " ´1. We remark that only the resonances related to k 8 " ´1 depend on the surrounding media electric permittivity ε s pz ‹ q and may provide later information on it. Finally, the eigenfunctions associated to k 1 " 0, are constant on the boundary BB.

We follow the same steps as in the proof of Theorem 2.1 in [START_REF] Bonnetier | Asymptotic of plasmonic resonances[END_REF][START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF][START_REF] Ammari | Resonances for microstrip transmission lines[END_REF] and prove the following asymptotic result.

Proposition 2.2. Let ωp0q be a quasi-static resonance with multiplicity m. Then there exist a constant α 0 ą 0 such that for 0 ă α ă α 0 there exist m plasmonic resonances `ω j pαq ˘1ď jďm satisfying the following asymptotic expansion as α Ñ 0:

1 m m ÿ j"1 ω j pαq " ωp0q `op1q. (2.10)
Next, we derive the asymptotic expansion of the electromagnetic fields when the size of the nano-particle tends to zero.

Small volume expansion of the EM fields.

Our strategy here is to use the tools developed in [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF] and references therein to derive the leading terms in the asymptotic expansion of electromagnetic fields when the volume of the nano-particle tends to zero. Since the frequency of the incident wave is real and thus far away from the complex plasmonic resonances we expect that the remaining terms of the asymptotic expansion stay uniformly bounded. Let H 0 " H i `H0s , be the total electric field in the absence of the nanoparticle. It satisfies the system

∇ ¨ˆ1 ε s ∇H 0 ˙`ω 2 µ 0 H 0 " 0 in R 2 . (2.11)
with the Sommerfeld radiation condition as |x| Ñ `8:

BH 0s B|x| ´iω ? ε 0 µ 0 H 0s " Op 1 a |x| q. (2.12)
Recall that in the quasi-static regime the scattering resonances are far away from the real axis. Consequently the system (2.11)-(2.12) above has a unique solution H for any given real frequency ω. Hence the following Green function Gpx, yq is well defined.

∇ ¨ˆ1 ε s ∇G ˙`ω 2 µ 0 G " δ y pxq in R 2 . (2.13)
with the Sommerfeld radiation condition as |x| Ñ `8:

BG B|x| ´iω ? ε 0 µ 0 G " Op 1 a |x| q, (2.14)
A simple integration by parts in the system (2.11)-(2.12) yields

Hpxq " H 0 pxq `żB α ˆ1 ε m ´1 ε s pxq ˙∇Hpyq∇ y Gpx, yqdy, (2.15) which leads to the following result.

Proposition 2.3. There exists a constant C ą 0, independent of α and H i such that

}Hpxq ´H0 pxq} H 1 pΩq ď Cα}H i } H 1 pΩq .
This proposition shows that if ω is real, the field H 0 pxq is the first term in the asymptotic expansion of Hpxq when α tends to zero. However, the constant C in the proposition depend on εpxq and ω can be large. In fact, considering the results in proposition (2.2) and lemma (2.1) if the attenuation Γ tends to zero the plasmonic resonances will approach the real axis and then the constant C may blow up. In a such situation one needs to take into account further terms in the asymptotic expansion of Hpxq when α tends to zero in order to improve the approximation. Here we will derive formally the first and second terms in the asymptotic expansion. In [START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF] an uniform asymptotic expansion of the magnetic field is derived using the method of matched asymptotic expansions for α small enough. Here we apply the same approach to obtain a formal asymptotic expansion of the electromagnetic fields. We shall represent the field Hpxq by two different expansions, an inner expansion for x near z ‹ , and an outer expansion for x far away from z ‹ .

The outer expansion takes the form

Hpxq " H 0 pxq `αH 1 pxq `α2 H 2 pxq `¨¨¨, for |x ´z‹ | ąą Opαq, (2. [START_REF] Ando | Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincaré operator[END_REF] where H 1 , H 2 satisfy the following Helmholtz equation

∇ ¨ˆ1 ε s ∇H i ˙`ω 2 µ 0 H i " 0 in |x ´z‹ | ąą Opαq,
with the Sommerfeld radiation condition as |x| Ñ `8:

BH i B|x| ´iω ? ε 0 µ 0 H i " Op 1 a |x| q.
Introducing the microscale variable ξ " px ´z‹ q{α, then the inner expansion can be written as Hpz ‹ `αξq " h 0 pξq `αh 1 pξq `α2 lnpαqh 2 pξq `¨¨¨, for |ξ| " Op1q, (2.17)

where the functions h 0 , h 1 , h 2 satisfy the following divergence form equations:

∇ ¨ˆ1 ε ∇h 0 ˙" 0 in R 2 , (2.18) ∇ ¨ˆ1 ε ∇h 1 ˙`∇ ¨pη 1 pξq∇h 0 q " 0 in R 2 , (2.19) ∇ ¨ˆ1 ε ∇h 2 ˙" 0 in R 2 , (2.20)
where η 1 pξq and η 2 pξq are the coefficients of the inner expansion of 1 εpz ‹ `αξq given by

1 εpz ‹ `αξq " 1 εpξq `η1 pξqα `η2 pξqα 2 `¨¨¨, (2.21) with η 1 pξq " " ∇p 1 ε s qpz ‹ qξ in R 2 zB, 0 in B, and 
η 2 pξq " # ∇ 2 p 1 ε s qpz ‹ q ξ 2 2 in R 2 zB, 0 in B,
Obviously the inner and outer expansions are not valid everywhere and the systems of equations satisfied by the functions H i and h i are not complete. In order to determine these functions uniquely, we need to equate the inner and the outer expansions in a some overlap domain within which the microscale variable ξ is large and x ´z‹ is small. In this domain the matching conditions are: 

H 0 pyq `
H 0 pz ‹ `αξq `α ż B ˆ1 ε m ´1 ε s pz ‹ `αξ 1 q ˙Bξ k `Hpz ‹ `αξ 1 q ˘Bx k Gpz ‹ `αξ, z ‹ `αξ 1 qdξ 1 .
An asymptotic expansion of the quantities above gives

H 0 pz ‹ `αξq " H 0 pz ‹ q `Bx i H 0 pz ‹ qξ i α `B2 x i x j H 0 pz ‹ qξ i ξ j α 2 2 `opα 2 q, and 
αB ξ k Gpz ‹ `αξ, z ‹ `αξq " ε s pz ‹ qB ξ k Φ 0 pξ, ξ 1 q `1 4π B x k ε s pz ‹ qα lnpαq `αΦ 1 pξ, ξ 1 q `opαq,
where Φ 0 pξ, ξ 1 q " 1 2π lnp|ξ ´ξ1 |q is the Green function of the Laplacian in the whole space, and Φ 1 pξ, ξ 1 q is a weakly singular function (see Theorem 5.1 in Appendix).

Inserting now the inner expansion of H, and the above asymptotic expansion into (2.22) we obtain

h 0 pξq " H 0 pz ‹ q, h 1 pξq " B x i H 0 pz ‹ qξ i `ˆε s pz ‹ q ε m ´1˙ż B B ξ k Φ 0 pξ, ξ 1 qB ξ k h 1 pξ 1 qdξ 1 ,
and

h 2 pξq " ˆεs pz ‹ q ε m ´1˙ż B B ξ k Φ 0 pξ, ξ 1 qB ξ k h 2 pξ 1 qdξ 1 `1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 .
Now we suppose that the functions h 0 , h 1 and h 2 are defined not just in the domain B, but everywhere in R 2 . Considering the asymptotic expansions obtained from the Lipmann-Schwinger equation and matching conditions, we obtain h 0 pξq " H 0 pz ‹ q, (2.23)

∇ ¨ˆ1 ε ∇h 1 pξq ˙" 0 in R 2 , (2.24) lim ξÑ`8 ph 1 pξq ´Bx i H 0 pz ‹ qξ i q " 0, (2.25)
and

∇ ¨ˆ1 ε ∇h 2 pξq ˙" 0 in R 2 , (2.26) lim ξÑ`8 ˆh2 pξq ´1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 ˙" 0. (2.27)
Using a variational approach in the Hilbert space W 1,´1 0 pR 2 q one can prove that the systems (2.24)-(2.25) and (2.26)-(2.27) have unique solutions. Precisely, it can be shown that h 1 pξq satisfies the following volume integral equation ˆεm pωq ε s pz ‹ q ´εm pωq I `T0 ˙ph 1 pξq ´Bx i H 0 pz ‹ qξ i q " B x i H 0 pz ‹ q ξi pξq, (2. [START_REF] Garnier | Passive synthetic aperture imaging with limited noise sources[END_REF] where ξi pξq P W 1,´1 0 pR 2 q is the orthogonal projection of ξ i χ B pξq onto W 1,´1 0 pR 2 q, which can be defined as the unique solution to the system

ż R 2 ∇ ξi ∇vdξ " ż B ∇ξ i ∇vdξ for all v P W 1,´1 0 pR 2 q. (2.29)
Since T 0 is self-adjoint and ε m pωq ε s pz ‹ q´ε m pωq has a nonzero imaginary component, the equation (2.28) has a unique solution.

Similarly, a forward calculation yields

ˆεm pωq ε s pz ‹ q ´εm pωq I `T0 ˙ˆh 2 pξq ´1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 ˙" 0,
and consequently

h 2 pξq " 1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 , (2.30)
is indeed a constant function. Now, we shall determine the outer expansion functions H 1 and H 2 . To do so we again consider the Lipmann-Schwinger equation Hpxq " (2.31)

H 0 pxq `α ż B ˆ1 ε m ´1 ε s pz ‹ `αξ 1 q ˙Bξ k `Hpz ‹ `αξ 1 q ˘Bx k `Gpx, z ‹ `αξ 1 q ˘dξ 1 .
Using the inner expansion of H and the regularity of the Green function G we obtain H 1 pxq " 0, (2.32)

H 2 pxq " ˆ1 ε m ´1 ε s pz ‹ q ˙żB B ξ k h 1 pξ 1 qdξ 1 B x k Gpx, z ‹ q. (2.33)
It is well known that the inner and outer expansions are not valid uniformly in x [START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF]. In order to obtain an asymptotic expansion of the fields as α tends to zero that is valid uniformly in space variable, we merge to the two expansions together. Thus, adding the outer and inner expansions and subtracting out the common part, we formally find the following uniform expansions: for all x P Ω:

Hpxq " H 0 pxq `αH 1 p

x ´z‹ α q `α2 lnpαqH 2 p x ´z‹ α q `α2 H 2 pxq `Opα 2 lnpαqq, (2.34) where

H 1 pξq " h 1 pξq ´ξi B x i H 0 pz ‹ q `ˆε s pz ‹ q ε m ´1˙1 π ż B B ξ i h 1 pξ 1 qdξ 1 ξ i |ξ| 2 , H 2 pξq " 1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 .
Following the steps of the proof of Theorem 2.1 in [START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF] one can obtain the following uniform asymptotic expansion.

Theorem 2.1. For δ P p0, 1q, there exists a constant C ą 0, independent of α and H i such that }Hpxq ´H0 pxq ´αH 1 p

x ´z‹ α q ´α2 lnpαqH 2 p x ´z‹ α q ´α2 H 2 pxq} H 1 pΩq ď Cα 2 }H i } H 1 pΩq .

The approximation can be improved by considering the inner expansion term of order α 2 and computing the limit of Φ 1 pξ, ξ 1 q as ξ tends to `8. Opposite of the first impression, the term α 2 H 2 pxq on the right hand side is necessary to cancel out the singularity of H 1 pξq when ξ tends to zero. Finally, if B x k ε s pz ‹ q " 0 one can recover the results of [START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF] by adding the order α 2 inner term.

The radial case.

Here we assume that Ω and B are the unit disc, and z ‹ " 0. We also assume that the electric permittivity ε is piecewise constant.

Let pr, θq be the polar coordinates in R 2 , m be a fixed integer larger than 1, and consider

H i pr, θq " J m p ω c 0 rqe imθ ,
to be the magnetic incident field, where J m pξq is the Bessel function of the first kind of order m, and c 0 " 1 ? ε 0 µ 0 is the speed of light in the free space.

Then, the total magnetic field takes the form Hpr, θq " h α prqe imθ , with hprq "

$ & % κ 1 H m p ω c 0 rq `Jm p ω c 0 rq for r ě 1, κ 2 H m p ω c s rq `κ3 J m p ω c s rq for α ď r ď 1, κ 4 J m p ω c m rq for r ď α,
where c s " 1 ? ε s µ 0 , and c m " 1 ? ε m µ 0 are the speed of light in the dielectric coating and in the metallic nanoparticle respectively. H m pξq is the Hankel function of the first kind of order m.

The transmission conditions for r " 1 and r " α give the following system ¨Hm p ω c 0 q ´Hm p ω c s q ´Jm p ω c s q 0

c 0 c s H 1 m p ω c 0 q ´H1 m p ω c s q ´J1 m p ω c s q 0 0 H m p ω c s αq J m p ω c s αq ´Jm p ω c m αq 0 c s c m H 1 m p ω c s αq c s c m J 1 m p ω c s αq ´J1 m p ω c m αq ‹ ‹ ' Ý Ñ κ " ¨´J m p ω c 0 q ´J1 m p ω c 0 q 0 0 ‹ ‹ ' .
The plasmonic resonances, in this case, are exactly the zeros of the determinant d α pωq, of the scattering matrix. An asymptotic expansion of the later when α tends to zero gives

d α pωq " d 0 pωq α `op 1 α q,
where

d 0 pωq :" ˆ´H m p ω c 0 qJ 1 m p ω c s q `cs c 0 H 1 m p ω c 0 qJ m p ω c s q ˙cm s πω pc 2 m `c2 s q 1 c m`1 m .
Hence a limiting value ωp0q of a sequence of plasmonic resonances has to be finite and satisfies the dispersion equation d 0 pωp0qq " 0. We remark that the complex roots of the function

´Hm p ω c 0 qJ 1 m p ω c s q `c0 c s H 1 m p ω c 0 qJ m p ω c s q,
are exactly the scattering resonances of the domain Ω in absence of the nanoparticle. If we drop the assumption that ω is small, and if the material that fills the nanoparticle is non-dispersif, we obtain the well known convergence of the scattering resonances to the non perturbed ones (see for instance [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | A Khelifi Electromagnetic scattering by small dielectric inhomogeneities[END_REF]).

A careful analysis of the zeros of d 0 pωq in the quasi-static regime leads to ε m pωp0qq " ´εs or ε m pωp0qq " 0, which correspond exactly to the plasmonic values of the circular shape nanoparticle β 8 " 1 2 and β 1 " 0 (see for instance (2.8)).

In the case where m is equal to one the determinant d α pωq has the following asymptotic expansion d α pωq " d 0 pωq lnpαq `oplnpαqq as α tends to zero. Using Rouché Theorem one can determine the complete asymptotic expansion of the plasmonic resonances in the case of a circular shape.

Photoacoustic effect

In this section we consider a metallic nanoparticle in a liquid medium and we want to describe the photoacoustic generation created by the electromagnetic heating of the nanoparticle. We derive the model equations that describe the coupling between the temperature rise in the medium and the acoustic wave generation.

3.1. Acoustic sources. We write the fundamental equations of acoustics as explained in [START_REF] Prost | Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime[END_REF], i.e the equation of continuity, the Euler equation and the continuity equation for heat flow. 

ρ 0 Bv Bt " ´∇p, (3.3) ρ 0 T Bs Bt " divpκ∇T q `Pv ,
where ρ is the mass density, ppr, tq is the acoustic pressure, vpr, tq is the acoustic displacement velocity, spr, tq is the specific entropy, T pr, tq is the temperature and P v is the heat source. The change of density is assumed small ( ρ´ρ 0 ρ 0 ! 1). The thermal conduction κ is given by κpxq " " κ s pxq for x P ΩzB α , κ 0 for x P B α ,

where κ s pxq ą 0 is the thermal conduction of the liquid and κ 0 ą 0 is the thermal conduction of the metal that fills the nanoparticle, and verifies κ 0 ąą κ s .

We can write the two equations of state giving the change of density δρ and the change of entropy δs in terms of δp and δT [START_REF] Morse | Theoretical acoustics[END_REF]. (3.4) δρ " γ

c 2 s δp ´ρ0 βδT, (3.5) δs " c p T pδT ´γ ´1 ρ 0 βc 2 s δpq,
where c p " T `Bs BT ˘p is the specific heat capacity at constant pressure, c v " T `Bs BT ˘ρ is the specific heat capacity at constant volume, γ "

c p c v , β " ´1 ρ ´Bρ
BT ¯p is the thermal expansion coefficient, and c s is the isentropic sound velocity.

We deduce from equation (3.4) and (3.5) the two following equations:

(3.6) Bρ Bt " γ c 2 s B p Bt ´ρ0 β BT Bt , (3.7) Bs Bt " c p T p BT Bt ´γ ´1 ρ 0 βc 2 s B p Bt q.
We can make the assumption for liquids that γ " 1. With this assumption and combining equations (3.3) and (3.7), we obtain the following equation for the temperature field T :

(3.8) ρ 0 c p BT Bt " divpκ∇T q `Pv .
We now use equations (3.1) and (3.2) to get B 2 ρ Bt 2 ´∆p " 0. We can transform this equation thanks to equation (3.4) and we obtain:

(3.9) γ c 2 s B 2 p Bt 2 ´∆p " ρ 0 B Bt ˆβ BT Bt ˙.
With the assumption that γ " 1 and that β " β 0 , we finally have the following system of coupled equations for the generation of photoacoustic waves in a liquid medium:

(3.10) ρ 0 c p BT Bt " divpκ∇T q `Pv , (3.11) 1 c 2 s B 2 p Bt 2 ´∆p " ρ 0 β 0 B 2 T Bt .
3.2. Electromagnetic sources. The source term P v in equation (3.3) is the energy produced by electromagnetic heating. It can be written as follows [START_REF] Pearce | Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures[END_REF]:

(3.12)

P v " Q gen `Qmet ,
where Q gen is the volumetric power density of the electromagnetic source, and Q met is the metabolic heat generated by biological tissues. We consider here that Q met " 0.

The electromagnetic coefficients of the medium are the complex electric permittivity ε s , the magnetic permeability µ 0 . Since the electromagnetic wave is time pulsed and because of the difference of time scales between the acoustic and electromagnetic waves, the volumetric power density is described by the time averaging of the real part of the divergence of the Poynting vector S " E ˆH times the Dirac function at zero. On the other hand the divergence of S is given by

(3.13) ´∇ ¨S " iωε|E| 2 `iωµ 0 |H| 2 .
By the taking the real part and time averaging of the divergence of the Poynting vector we finally have

Q gen " ω pεqx|E| 2 yδ 0 ptq " ω pεq|E| 2 δ 0 ptq, (3.14)
where the time averaging is defined by x f y :" lim τÑ`8 ş τ 0 f ptqdt, and δ 0 is the Dirac function at 0.

We can finally write the following system of coupled equations that describes the photoacoustic generation by the electromagnetic heating of a metallic nanoparticle

ρ 0 c p BT Bt " divpκ∇T q `ω pεq|E| 2 δ 0 ptq, (3.15) 1 c 2 s B 2 p Bt 2 ´∆p " ρ 0 β 0 B 2 T Bt . (3.16)
with the initial conditions at t " 0:

T " p " B p Bt " 0. (3.17)
Following the same analysis as in [START_REF] Ammari | Asymptotic formulas for thermography based recovery of anomalies[END_REF] one cane show that the temperature T approaches T 0 as α tends to zero, where T 0 is the solution to

ρ 0 c p BT 0 Bt " divpκ s ∇T 0 q `ω pεq|E| 2 δ 0 ptq,
with initial boundary condition T 0 " 0 at t " 0, and lim |x|Ñ`8 T 0 pxq " 0. Here we did not consider the first and second terms in the small volume asymptotic expansion because the thermal conduction κ is frequency independent, and hence the limiting problems are well posed compared to the ones in the asymptotic expansion of the EM fields.

Since the conductivity κ s of the biological is very small compared to the other quantities we neglect it and find the following equation for the temperature ρ 0 c p BT 0 Bt " ω pεq|E| 2 δ 0 ptq, which combined with the acoustic waves (3.16), provides at the end the following model for the photo acoustic effect by a metallic nanoparticle:

$ ' & ' % 1 c 2 s B 2 p Bt 2 px, tq ´∆ppx, tq " 0 in R 2 ˆR`, ppx, 0q " ωβ 0 c p pεqpxq|Epxq| 2 in R 2 , B p Bt px, 0q " 0 in R 2 .
(3.18)

The system above (3.18) coupled with the Helmholtz equation (2.1)-(2.2) represents the forward problem.

Next, we study the photoacoustic inverse problem.

The photoacoustic inverse problem

In this section we study the inverse problem of the reconstruction of the electric permittivity ε from the measurements of the acoustic waves ppx, tq, px, tq P BΩˆp0, τ p q, generated by the photoacoustic effect from the heating of the small metallic nanoparticle B α in the presence of electromagnetic fields at a frequency close to a plasmonic resonance. Here τ p ą 0 is the period of time where the measurements are taken, that will be specified later. We have two inversions: the acoustic inversion where we assume that the speed of the wave is a known constant c s and reconstruct the initial pressure pεpxqq|Epxq| 2 , x P Ω from the knowledge of ppx, tq, px, tq P BΩ ˆp0, τ p q; the second step is to recover the electric permittivity εpxq from the internal data pεpxqq|Epxq| 2 , x P Ω.

Acoustic inversion.

Recall that pεqpxq is a compactly supported function in Ω, and that we have assumed that the acoustic wave speed in the tissue takes a constant value c p that corresponds to the isentropic acoustic speed in the water, that is 1400 m/s. These two assumptions allow us to use well know results from control theory to derive a stability estimate for the acoustic inversion. The following result is based on the multiplier method and can be found in [START_REF] Ho | Observabilité frontière de l' équation des ondes[END_REF][START_REF] Lions | Exact Controllability, Stabilizability, and Perturbations for Distributed Systems[END_REF]. Theorem 4.1. Let τ p ą τ Ω where τ p " sup x,yPΩ |x ´y|. Then, there exists a constant C " CpΩq ą 0 such that

ωβ 0 c p } pεpxqq|Epxq| 2 } L 2 pΩq ď C} B p Bt } L 2 pBΩˆp0,τ p qq `}∇p} L 2 pBΩˆp0,τ p qq
We refer the readers to the survey [START_REF] Kuchment | Mathematics of thermoacoustic tomography[END_REF] on related reconstruction methods and different approaches based on integral equations for constant acoustic speed. The stability result shows that the reconstruction of the electromagnetic energy responsible for the generation of the acoustic signal by heating the nanoparticle, from boundary measurements of the acoustic waves is stable if the observation time τ p is large enough. This result can be extended to a non constant acoustic speed as well as measurements of the acoustic waves on a small part of the boundary [START_REF] Ammari | Mathematical modelling in photo-acoustic imaging of small absorbers[END_REF][START_REF] Plamen | Thermoacoustic tomography with variable sound speed[END_REF][START_REF] Hristova | Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media[END_REF]. In this paper for the sake of simplicity we do not handle such general cases.

We further assume that the constants β 0 and c p are given. Let O M denotes the ball centered at 0 and of radius M ą 0 in H 2 pB R pz ‹ qq, where R ą 0 is large enough such that Ω Ă B R pz ‹ q.

Corollary 4.1. Assume that ε P B M p0q, and let τ p ą τ Ω . Then, there exists a constant C " Cpω, M, β 0 , c p q ą 0 such that the following estimate

} pεq|∇H| 2 } C 0 pΩq ď C ˜› › › › B p Bt › › › › L 2 pBΩˆp0,τ p qq `}∇p} L 2 pBΩˆp0,τ p qq ¸1 4 , (4.1) holds. 
Proof. A simple calculation yields |Epxq| 2 " |∇Hpxq| 2 over Ω. Using the interpolation between Sobolev spaces [START_REF] Lions | Non-homogeneous Boundary values Problems and Applications I[END_REF], we estimate pεq|∇H| 2 in H 3 2 pΩq in terms of its norms in L 2 pΩq and H 2 pΩq respectively. Thus we deduce (4.1) from Elliptic regularity of the system (2.1) and the estimate in theorem (4.1).

Optical inversion.

In this part of the paper we assume that the internal electromagnetic energy pεpxqq|∇Hpxq| 2 , for x P Ω is recovered, and we study the inverse problem of determining εpxq over Ω using the small volume asymptotic expansion of the EM fields in the previous section. In fact in applications we only need to recover the imaginary part of the electric permittivity which is related to the absorption of the EM fields and the generation of the photoacoustic wave.

Recall that the absorption of EM energy by only the biological tissue is negligible inside Ω. In practice the photoacoustic signal generated by such absorption is weak inside Ω and can not be used to image the tissue itself.

From section 2 we deduce the inner and outer asymptotic expansions of the magnetic field |∇Hpxq| 2 . Our strategy here is to first analyze the information about the medium and the nanoparticle contained in the outer asymptotic expansion. This problem is a classical boundary/internal inverse problem, and has some known limitations. Then we complete the recovery of the optical properties of the medium using information retrieved from the inner expansion of the magnetic field and the apriori information about the shape of the nanoparticle. 4.2.1. Inversion using the outer expansion. Recall the outer asymptotic expansion (2.16)-(2.32) of the magnetic field:

Hpxq " H 0 pxq `α2 H 2 pxq `opα 2 q for x P BΩ, where H 0 pxq is the solution to the system (2.11)-(2.12), and H 2 pxq is given by

H 2 pxq " ˆ1 ε m pωq ´1 ε s pz ‹ q ˙żB B ξ k h 1 pξ 1 qdξ 1 B x k Gpx, z ‹ q,
with h 1 pξq is the unique solution to the system (2.24)-(2.25).

In fact the asymptotic expansion above is valid in a neighboring region of the boundary BΩ, but since the internal data is of the form pεpxqq|∇Hpxq| 2 , where pεq is compactly supported in Ω, we can only retrieve information about the magnetic field on the boundary BΩ. Note that since ε 0 is given one can retrieve the the Cauchy data of the magnetic field on BΩ form the knowledge of its trace on the same set.

The function H 2 pxq can be rewritten in terms of the first order polarization tensor Mp ε m pωq ε s pz ‹ q q " pM kl q 1ďk,lď2 , as follows (see for instance [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF] and references therein)

H 2 pxq " ˆ1 ε m pωq ´1 ε s pz ‹ q ˙∇Gpx, z ‹ q ¨M∇H 0 pz ‹ q,
where

M kl " ż B B ξ k φ l pξ 1 qdξ 1 , (4.2)
and φ l pξq, l " 1, 2 are the unique solutions to the system ∇ ¨ˆ1 ε ∇φ l pξq ˙" 0 in R 2 , (4.3) lim ξÑ`8 pφ l pξq ´ξl q " 0. (4.4)

On the other hand φ l pξq, l " 1, 2 can be rewritten as follows φ l pξq " ξ l ´ˆε m pωq ε s pz ‹ q ´εm pωq I `T0 ˙´1 ξl pξq, (4.5)

where ξl pξq P W 1,´1 0 pR 2 q is the orthogonal projection of ξ l χ B pξq onto W 1,´1 0 pR 2 q defined in (2.29). Regarding the integral equation (4.5), we observe than when ω tends to a plasmonic resonance ω j pαq the functions φ l pξq, and consequently the polarization tensor M will most likely blows up. Since in applications ω is real, and the plasmonic resonances of the nanoparticle embedded in the medium approaches the quasistatic resonances ω j p0q when α tends to zeo (proposition (2.2), we expect that the coefficient M become large in the case where ω coincides with pω j p0qq, and Γ ăă 1.

Many works have considered the localization of small inhomogeneities in a known background medium, and most of the proposed methods are based on an appropriate averaging of the asymptotic expansion by using particular background solutions as weights [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF][START_REF] Ammari | Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume[END_REF]. In other words, the position z ‹ of the nanoparticle can be uniquely determined from the outer expansion of Hpxq, that is H 0 pxq `α2 H 2 pxq, x P BΩ, if the electric permittivity of the background medium ε s pxq is known everywhere. But this is not the case in our problem, since our objective is to determine ε s pxq, while ε m pωq is known (which is the complete opposite of the setting where small inhomogeneities are imaged). Here to overcome these difficulties we may propose the use of multifrequency measurements H 2 pxq, ω P pω, ωq to localize z ‹ [START_REF] Ammari | The concept of heterogeneous scattering coefficients and its application in inverse medium scattering[END_REF][START_REF] Garnier | Passive synthetic aperture imaging with limited noise sources[END_REF], where ω, ω are two strictly positive constants satisfying ω ăă ω. We will study this specific inverse problem in future works. From now on we assume that the position z ‹ of the nanoparticle is known.

Note that in general if ε s pxq is known, it is still not possible to recover simultaneously the shape of the nanoparticle BB and the contrast ε s pz ‹ q ε m pωq from only the measurement of the outer expansion H 0 pxq ὰ2 H 2 pxq, x P BΩ. Meanwhile in our setting the shape of the nanoparticle is assumed to be known. For example, if we consider the circular shape, that is B is the unit disc, ξl pξq, l " 1, 2, and hence φ l pξq, l " 1, 2, can be determined explicitly ξl pξq "

# ξ l 2 for ξ P B, ξ l 2|ξ| 2 for ξ P R 2 zB, (4.6) φ l pξq " # 2ε m pωq ε s pz ‹ q`ε m pωq ξ l for ξ P B, ξ l ´εs pz ‹ q´ε m pωq ε s pz ‹ q`ε m pωq ξ l |ξ| 2 for ξ P R 2 zB, (4.7) 
which implies that the polarization tensor can be simplified into

M kl " 2ε m pωq ε s pz ‹ q `εm pωq |B|δ kl ,
where δ kl is Kronecker symbol. Assuming that H 0 pxq, x P BΩ is given, we deduce from the outer expansion the following approximation [START_REF] Ammari | Reconstruction of small inhomogeneities from boundary measurements[END_REF][START_REF] Ammari | Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume[END_REF]:

1 ε 0 ż BΩ ˆH BH 0 Bν Ω ´BH Bν Ω H 0 ˙dspxq (4.8) " α 2 ˆ1 ε m pωq ´1 ε s pz ‹ q ˙∇H 0 pz ‹ q ¨M∇H 0 pz ‹ q `opα 2 q " 2|B| ε s pz ‹ q ´εm pωq ε m pωq `εs pz ‹ q 1 ε s pz ‹ q |∇H 0 pz ‹ q| 2 α 2 `opα 2 q, (4.9)
To ensure that the first term of the asymptotic expansion does not vanish, and to guarantee the success of the identification procedure it becomes necessary to assume the following non-degeneracy condition

|∇H 0 pz ‹ q| 2 " 0.
For a circular shape nanoparticle we can immediately see from the explicit expression of the first term in the asymptotic expansion that when ω is close to a plasmonic resonance, that is ε m pωq " ´εs pz ‹ q, the polarization tensor constant blows up. In the next paragraph we investigate the inner expansion of the magnetic field which represents our photoacoustic data, in order to derive the contrast ε s pz ‹ q ε m pωq . 4.2.2. Inversion using the inner expansion. We further assume that the position z ‹ , the size α and the shape BB of the nanoparticle are known. Recall the inner expansion (2.17):

Hpz ‹ `αξq " H 0 pz ‹ q `αh 1 pξq `α2 lnpαqh 2 pξq `Opα 2 q for |ξ| " Op1q.

where h 1 pξq is the unique solution to the system (2.24)-(2.25), that is

∇ ¨ˆ1 ε ∇h 1 pξq ˙" 0 in R 2 , lim ξÑ`8
ph 1 pξq ´Bx i H 0 pz ‹ qξ i q " 0, and h 2 pξq is a constant fucntion given by

h 2 pξq " 1 4π ˆ1 ε m ´1 ε s pz ‹ q ˙Bx k ε s pz ‹ q ż B B ξ k h 1 pξ 1 qdξ 1 .
Using the functions φ l , l " 1, 2 solutions to the system (4.3)-(4.4), we can rewrite h 1 pξq as

h 1 pξq " φ k pξqB x k H 0 pz ‹ q. (4.10)
Recall that the acoustic inversion provides the internal function Ψpxq " pεpxqq|∇Hpxq| 2 , x P Ω. Combining (2.17) and (2.21), we obtain the following inner expansion

Ψpz ‹ `αξq " pεpz ‹ `αξqq|∇Hpz ‹ `αξq| 2 " p εpξqq|∇ ξ h 1 pξq| 2 `Opα 2 q, for |ξ| " Op1q. (4.11)
We further assume that B is the unit disc. Our objective is to recover ε s pz ‹ q from the knowledge of p εpξqq|∇ ξ h 1 pξq| 2 for ξ P 2B, where 2B is the disc of center zero and radius 2.

Combining (4.10) and (4.7), we find h 1 pξq " # p1 ´κq ξ ¨∇H 0 pz ‹ q for ξ P B, ´1 ´κ |ξ| 2 ¯ξ ¨∇H 0 pz ‹ q for ξ P 2BzB, where κ :" ε s pz ‹ q ´εm pωq ε s pz ‹ q `εm pωq .

Hence

Ψpz ‹ `αξq `opαq " # pε m pωqq|1 ´κ| 2 |∇H 0 pz ‹ q| 2 for ξ P B, pε s pz ‹ qq ˇˇ∇ ξ ´´1 ´κ |ξ| 2 ¯ξ |ξ| 2 ¨∇H 0 pz ‹ q ¯ˇˇ2 for ξ P 2BzB.

A forward calculation yields

Ψpz ‹ `αξq " pε s pz ‹ qq ˇˇˇˆ1 ´κ |ξ| 2 ˙∇H 0 pz ‹ q `2κ ξ |ξ| 2 ¨∇H 0 pz ‹ q ξ |ξ| 2 ˇˇˇ2 `Opαq,
for ξ P 2BzB. Now taking the ratio between Ψ| BB α and Ψpz ‹ q "

B α Ψpxqdx, we obtain

Ψpz ‹ `αξq| Ψpz ‹ q " pε s pz ‹ qq pε m pωqq ˜ˇˇˇ1 `κ 1 ´κ ˇˇˇ2 ˇˇˇ∇ H 0 pz ‹ q |∇H 0 pz ‹ q| ¨ξˇˇˇˇ2 `ˇˇˇ∇ H 0 pz ‹ q |∇H 0 pz ‹ q| ¨ξK ˇˇˇ2 ¸`Opαq, " Ψ 0 pξq `Opαq, (4.12) 
for ξ P BB " ξ 1 P R 2 ; |ξ 1 | " 1 ( , where ξ K is a π 2 counterclockwise rotation of ξ. Now, assuming that | pε m pωqq| ą | pε s pz ‹ qq|, we have

ˇˇˇ1 `κ 1 ´κ ˇˇˇą 1,
and thus the function Ψ 0 pξq takes its maximum and minimum on BB at ξ " ˘∇H 0 pz ‹ q |∇H 0 pz ‹ q| and ξ " ˘∇H 0 pz ‹ q K |∇H 0 pz ‹ q| respectively.

Consequently

pε s pz ‹ qq pε m pωqq " Ψpz ‹ `α ∇H 0 pz ‹ q K |∇H 0 pz ‹ q| q| Ψpz ‹ q `Opαq, (4.13) " min ξPBB Ψpz ‹ `αξq| Ψpz ‹ q `Opαq, (4.14) and pε s pz ‹ qq pε m pωqq ˇˇˇ1 `κ 1 ´κ ˇˇˇ2 " Ψpz ‹ `α ∇H 0 pz ‹ q |∇H 0 pz ‹ q| q| Ψpz ‹ q `Opαq, (4.15) " max ξPBB Ψpz ‹ `αξq| Ψpz ‹ q `Opαq, (4.16)
Since ε m pωq is given, we can retrieve pε s pz ‹ qq from equality (4.13), and then pε s pz ‹ qq from equality (4.14). Now, we are able to prove the main stability estimate. 4.3. Proof of the main theorem (1.1). We deduce from equalities (4.13)-(4.14) the following estimates. Theorem 4.2. Under the same assumptions as in theroem (1.1), there exists a constant C ą 0 that does not depend on α, such that | pε s,a pz ‹ qq ´ pε s,a pz ‹ qq| ď C}Ψ a ´Ψb } L 8 p2B α q `Opαq. Since ε s,a pz ‹ q is lower bounded, Combining the estimate above and (4.17), we obtain the desired result. Now, by combining the results of theorems (4.1) (corollary (4.1)), and (4.2), we have the main stability estimate in theorem (1.1).

Appendix

In this section we derive the asymptotic expansion of the gradient of the Green function ∇ x Gpz ‹ `αξ, z ‹ ὰξ 1 q when α tends to zero. Theorem 5.1. Let Gpx, yq be the Green function solution to the system (2.13)- (2.14). Then, the following asymptotic expansion holds αB x k Gpz ‹ `αξ, z ‹ `αξ 1 q " ε s pz ‹ qB ξ k Φ 0 pξ, ξ 1 q `1 4π B x k ε s pz ‹ qα lnpαq `αΦ 1 pξ, ξ 1 q `opαq, for all ξ, ξ 1 P B satisfying ξ " ξ 1 , and opαq is uniform in ξ, ξ 1 P B.

Φ 0 pξ, ξ 1 q " 1 2π lnp|ξ ´ξ1 |q is the Green function of the Laplacian in the whole space, and Φ 1 pξ, ξ 1 q has a logarithmic singularity on the diagonal ξ " ξ 1 , that is |Φ 1 pξ, ξ 1 q| ď C|Φ 0 pξ, ξ 1 q|, for all ξ, ξ 1 P B, with C ą 0 is constant that only depends on ε s pxq. For simplicity, we assume that Vpz ‹ q " 0. If it is not the case the proof can be slightly modified.

Let G 0 px, yq be the Green function of the Helmholtz equation in the free space, solution to the system ∆G 0 px, yq `VpyqG 0 px, yq " δ y pxq in R 2 . Now, we shall derive the asymtotic expansion of B x k Gpx, yq as x tends to y. Let Gpξ, ξ 1 q :" Gpx, yq ´G0 px, yq.

It satisfies the Helmholtz equation ∆Gpx, yq `VpxqGpx, yq " ´pVpxq ´VpyqqG 0 px, yq in B R pz ‹ q. (5.6) with the boundary condition Gpx, yq " Gpx, yq ´G0 px, yq on BB R pz ‹ q.

(5.7) Further we fix R ą 1 such that the system (5.6)-(5.7) has a unique solution. Since the H p1q 0 ptq has a logarithmic singularity as t tends to zero, the right hand side belongs to C 0,ι pB R pz ‹ qq for any ι P r0, 1q, uniformly in y P B 1 pz ‹ q (see for instance Proposition 4.1 in [START_REF] Bonnetier | Asymptotic of the Green function for the diffraction by a perfectly conducting plane perturbed by a sub-wavelength rectangular cavity Math[END_REF]).

Considering the fact that Gpx, yq ´G0 px, yq P C 8 pBB R pz ‹ q ˆB1 pz ‹ qq, we deduce from elliptic regularity that Gpx, yq P C 2,ι pB R pz ‹ qq uniformly in y P B 1 pz ‹ q [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]. In addition, due to the explicit expression of the right hand side in equation (5.6), on can prove easily that B x k Gpz ‹ `αξ, z ‹ `αξ 1 q has a finite continuous limit when α tends to zero, denoted by Φ 11 pξ, ξ 1 q.

From known asymptotic expansions of Hankel functions, we have [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] B x k G 0 pz ‹ `αξ, z ‹ `αξ 1 q " 1 α B x k Φ 0 pξ, ξ 1 q `α lnpαq|ξ ´ξ1 | `Opαq,

where Opαq is uniform in ξ, ξ 1 P B.

Consequently αB x k Gpz ‹ `αξ, z ‹ `αξ 1 q " B x k Φ 0 pξ, ξ 1 q `αΦ 11 pξ, ξ 1 q `opαq, which combined with the regularity of ε s pxq achieves the proof of the theorem.

  Proof. Equalities (4.13)-(4.14) imply Ψ 0,a p ∇H 0,a pz ‹ q K |∇H 0,a pz ‹ q| q " min ξPBB Ψ 0,a pξq " min ξPBB pΨ 0,b pξq `Ψ0,a pξq ´Ψ0,b pξqq .Thereforemin ξPBB pΨ 0,b pξq ´|Ψ 0,a pξq ´Ψ0,b pξqq | ď Ψ 0,a p ∇H 0,a pz ‹ q K |∇H 0,a pz ‹ q| q ď min ξPBB pΨ 0,b pξq `|Ψ 0,a pξq ´Ψ0,b pξq|q , which implies |Ψ 0,a p ∇H 0,a pz ‹ q K |∇H 0,a pz ‹ q| q ´Ψ0,b p ∇H 0,b pz ‹ q K |∇H 0,a pz ‹ q| q| ď max ξPBB |Ψ 0,a ´Ψ0,b |, (4.17)and consequently|Ψ 0,a p ∇H 0,a pz ‹ q K |∇H 0,a pz ‹ q| q ´Ψ0,a p ∇H 0,b pz ‹ q K |∇H 0,a pz ‹ q| q| ď 2 max ξPBB |Ψ 0,a ´Ψ0,b |,Using the explicit expression of Ψ 0,a pξq given in (4.12), we findˇˇˇ∇ H 0,a pz ‹ q K |∇H 0,a pz ‹ q| ´∇H 0,b pz ‹ q K |∇H 0,b pz ‹ q| ˇˇˇď C max ξPBB |Ψ 0,a ´Ψ0,b |.

Proof.

  We first use the Liouville transformation and substitute the Green function Gpx, yq by Gpx, yq " in the system (2.13)-(2.14), to obtain ∆Gpx, yq `VpxqGpx, yq " δ y pxq in R 2 . (5.1) with the Sommerfeld radiation condition as |x| Ñ `8

5 )0

 5 The function G 0 px, yq is given by G 0 px, yq " ptq is the Hankel function of the first kind of order zero.
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