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MATHEMATICAL MODELING OF THE PHOTOACOUSTIC EFFECT GENERATED BY THE
HEATING OF METALLIC NANOPARTICLES

FAOUZI TRIKI: AND MARGAUX VAUTHRIN

Abstract. This paper is devoted to the modeling of the photoacoustic effect generated by the electromagnetic
heating of metallic nanoparticles embedded in a biological tissue. We first derive an asymptotic model for
the plasmonic resonances and the electromagnetic fields. We then describe the acoustic generation created
by the electromagnetic heating of the nanoparticle. Precisely, we derive the model equations that describes
the coupling between the temperature rise in the medium and the acoustic wave generation. We obtain a
direct relation between the acoustic waves and the electromagnetic external sources. Finally, we solve the
multiwave inverse problem that consists in the recovery of the electric permittivity of the biological tissue from
the measurements of the generated acoustic waves on the boundary of the sample.
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1. The PhotoacousticModel and main results

Photoacoustic imaging [18, 4, 26, 35, 37, 22, 55, 25, 58, 5] is a recent hybrid imaging modality that
couples electromagnetic waves with acoustic waves to achieve high-resolution imaging of optical proper-
ties of heterogeneous media such as biological tissues. Our objective in this paper is to derive a realistic
complete mathematical model for the photoacoustic generation by a single nanoparticle embedded in a bio-
logical tissue. We introduce the mathematical framework and give the main result in the first section. In the
second section we describe the mechanism of enhancement of light through the optical scattering properties
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2 FAOUZI TRIKI AND MARGAUX VAUTHRIN

of metallic nanoparticles. The third section is devoted to the thermal modeling of the part of the electro-
magnetic energy converted into heat. We precisely derive a theoretical model for the generation of acoustic
waves by the thermal expansion of the tissue around the metallic nanoparticles. The inverse photoacoustic
problem is solved asymptotically in section 4. We finally give useful technical results in the appendix.

We now give a mathematical framework for the whole photoacoustic effect. Let Ω be a bounded C2

domain in R2. The outward unit normal at x to BΩ is denoted by νΩpxq. The domain Ω is referred to as
the biological sample that we aim to image by the non-invasive photoacoustic modality. Assume that Ω

contains a single nanoparticule, of the form Bα :“ z‹ ` αB, where B is a bounded, C2 smooth domain
containing the origin, α ą 0 is a small constant that represents the size of the nanoparticle, and z‹ is the
position of the nanoparticle. The first step in photoacoustic imaging system is to illuminate the sample by
an electromagnetic wave produced by a laser source. The time dependent, linear Maxwell’s equations take
the form

∇ˆ E “´µ0
B

Bt
H,

∇ˆH “ ε
B

Bt
E,

where E and H are the total electric field and the total magnetic field respectively. The coefficients ε and µ
are the electric permittivity and magnetic permeability of the sample. The magnetic permeability is assumed
to be constant equals to µ0 the permeability of the free space, while the electric permittivity is given by

εpxq “
"

εspxq for x P R2zBα,
εm for x P Bα,

where εm is the permittivity of the metal that will be specified later, and εspxq is the permittivity of the
sample that is assumed of class C2 and is constant equal to ε0 ą 0, the permittivity of the free space, outside
Ω. We assume throughout that 0 ă c0 ă <pεspz‹qq ă |<pεmq|, for all x P Ω, =pεspxqq belongs C2

0pΩq and
satisfies =pεspz‹qq ą c0. The imaginary part of the electric permittivity =pεspxqq, is related to the absorp-
tion of the electromagnetic energy, and provides a good description of the state of the biological tissue. Our
objective in this paper is to recover this parameter around the nanoparticles.

We assume that during the illumination of the sample a part of the electromagnetic energy is dissipated
by absorption inside the biological tissue and inside the nanoparticle. The absorption of the electromagnetic
energy by the biological tissue is transformed into heat and leads through the thermo-elastic expansion of
the tissue to the generation of an acoustic pressure ppx, tq that propagates to the detectors on the boundary
BΩ. The measurements of ppx, tq on the boundary allow the reconstruction of the absorption and diffusion
coefficients in the conventional plused photoacoustic imaging system. In practice, it has been observed in
various experiments that the imaging depth, i.e. the maximal depth of the sample at which features can be
resolved at expected resolution, is still fairly limited, usually on the order of millimeters. This is mainly
due to the limitation on the penetration ability of the electromagnetic waves in the tissue: optical signals
are attenuated significantly by absorption and scattering. In [24], the authors showed that the resolution is
proportional to the magnitude of the laser fluence in the sample, and recently in [54] the mechanism of depth
resolution is mathematically investigated. Metallic nanoparticles are very attractive as photoacoustic con-
trast agents because of their large capacity to absorb light and convert it to heat and their spectral selectivity.
When they are illuminated at their plasmonic resonances their absorption of light is amplified and their
temperature increases significantly leading to various phenomena including heating the surrounding media.
For example in Hyperthermia therapy for cancer treatments one seeks to destroy tumors through heating
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metallic nanoparticles [52]. In the context of photoacoustic imaging the heat of the surrounding biological
tissue will generate a strong acoustic pressure wave ppx, tq that can also be detected on the boundary BΩ.
The principal idea for the use of metallic nanoparticles in photoacoustic imaging is that one can insert them
at any position inside the sample and obtain strong acoustic sources inside the sample. This will overcome
the problem of the limitation in the penetration resolution depth of the conventional photoacoustic imaging
modality based on the illumination of only the biological tissue. There are already several related results in
the physicists community [23, 53].

Our objective in this paper is to study the inverse problem to recover =pεspxqq at z‹ from measurements
of the pressure ppx, tq on the boundary BΩ.

Assuming that |∇Hpz‹q| “ 0, B is ball, and that z‹ is known we derive the the following global stability
estimate. It shows how the errors in measurements can effect the reconstruction of the electric permittivity
at z‹.

Theorem 1.1. Let τp ą τΩ where τp “ supx,yPΩ |x ´ y|. Let papx, tq (resp. pbpx, tq) the acoustic pres-
sure generated by an external electromagnetic source in a medium with electric permittivity εs,apxq (resp.
εs,bpxq).

Then, there exists a constant C ą 0 that does not depend on α and the boundary measurements such that

|=pεs,apz‹qq ´ =pεs,bpz‹qq| ď C

˜

›

›

›

›

Bpa

Bt
´
Bpb

Bt

›

›

›

›

L2pBΩˆp0,τpqq

` }∇pa ´ ∇pb}L2pBΩˆp0,τpqq

¸
1
4

` Opαq.

The proof of the theorem is given in section 4. It is based on asymptotic expansion of the electromagnetic
fields when α tends to zero. The coupling between the acoustic and electromagnetic waves allows us to
retrieve the inner asymptotic expansion of the electromagnetic fields in a small neiborhood of z‹ (Theorem
4.1, and subsection 4.2.2). Since α, the size of the nanoparticle is small, the stability estimate of Hölder
type shows that the reconstruction of =pεspz‹qq from measurements of the pressure ppx, tq on the boundary
BΩ is in fact a well-posed inverse problem. In subsection 2.1 we derived the asymptotic expansion of the
plasmonic resonances of the system nanoparticle and biological tissue. Later on in subsection 4.2.2, we
showed that choosing the incident wave frequency close to the real part of a plasmonic resonance enhance
the photoacoustic signal measured on the boundary. Finally, the stability result can be easily extended to
cover the case where many well separated nanoparticles are embedded in the sample.

2. Electromagnetic excitation

The first syntheses of metallic small particles date back to the 4th or 5th century BC where gold specimen
were reported in China and Egypt. Their optical properties were used for coloration of glass, ceramics, china
and pottery (see [44] and references therein).

It is now well known that the interesting diffractive properties of these particles are linked to resonances
phenomena. In fact plasmon resonances may occur in metallic particles if the dielectric permittivity inside
the particle is negative and the wavelength of the incident excitation is much larger than the dimension of the
particle. For nanoscale metallic particles, these resonances occur in the optical frequency range and they re-
sult in an extremely large enhancement of the electromagnetic field near the boundary of the particles. This
phenomena has applications in many areas such as nanophotonics, nanolithography, near field microscopy
and biosensors. The desired resonance frequencies as well as the local fields enhancement can be achieved
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by controlling the geometry of the metallic nanostructure.

In mathematical point of view these resonances values are the complex eigenvalues of Maxwell’s equa-
tions that only occur when the dielectric permittivity of the nanoparticles is negative and the size of the
nanoparticles is less than the incident wavelength. A formal asymptotic expansion in [43, 42] showed that
if the ratio between the incident wavelength and the size of the nanoparticle tends to zero the plasmonic res-
onances approches the eigenvalues of the Neumann-Poincaré operator or the variational Poincaré operator
[43, 42]. In [21], the authors have derived a rigorous justification of the quasi-static approximation in har-
monic frequency regime [43, 42]. It is well known that the resonance phenomena occur only in transverse
magnetic polarization (TM) polarization. Here we consider the time harmonic regime in (TM) polarization
that is, E “ <pEeiωtq and H “ =pHeiωtq, where E “ pEpx1, x2q, 0q and H “ p0, 0,Hpx1, x2qq.

The total magnetic field can be decomposed into two parts H “ Hi`Hs where Hi and Hs are respectively
the incident and scattered waves.

The homogeneous frequency-domain, linear Maxwell’s equations, in the transverse magnetic polarization
(TM) and in absence of internal sources, take the form

∇ ¨

ˆ

1
ε
∇H

˙

` ω2µ0H “ 0 in R2.(2.1)

with the Sommerfeld radiation condition as |x| Ñ `8 [46]:

BHs

B|x|
´ iω

?
ε0µ0Hs “ Op

1
a

|x|
q.(2.2)

Recall that the electric permittivity is given by

εpxq “

$

&

%

ε0 for x P R2zΩ,

εspxq for x P ΩzBα,
εmpωq for x P Bα,

where ε0 is the permittivity of the free space. The incident field Hi satisfies

∆Hi ` ω2µ0ε0Hi “ 0 in R2.

The electric field E can deduced directly from the magnetic field through the relation

Epxq “

ˆ

Bx2 Hpxq
´Bx1 Hpxq

˙

.(2.3)

The metal that fills the nanoparticle is assumed to be real and its dielectric constant is described by the Drude
model:

εmpωq “ ε0

˜

ε8 ´
ω2

P

ω2 ` iωΓ

¸

,(2.4)

where ε8 ą 0, ωP ą 0 and Γ ą 0 are the metal parameters that are usually fitted utilizing experiment
data [44]. The dielectric constant εm depends on the frequency ω, and so incident waves can cause a change
in the metal behavior. Media having such a property are termed dispersive media.

The Drude model considered here describes well the optical properties of many metals within relatively
wide frequency range. For example the function εmpωq with effective parameters: ε8 “ 9.84 eV , ωP “
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9.096 eV , Γ “ 0.072 eV for gold, and ε8 “ 3.7 eV , ωP “ 8.9 eV , Γ “ 0.021 eV for silver reproduce
quite well the experimental values of the dielectric constant in the frequency range 0.8 eV to 4 eV (see for
instance [32]).

2.1. Plasmonic resonances. When the frequency lies in the upper half complex space, that is, =pωq ě 0,
the system (2.1) has a unique solution. The resolvent of the differential operator (2.1) with condition (2.2)
has a meromorphic continuation in the lower complex plane.

The complex number ω is said to be a plasmonic resonant frequency of the nanoparticle Bα if there exists
a non-trivial solution H to the system (2.1)-(2.2) with zero incident wave.

It is known that the set of scattering resonances tω ju of the above Helmholtz equation in the absence of
dispersion (εm does not depend on ω) is discrete and symmetric in the complex plane about the imaginary
axis. Further, it can be easily seen that all the resonant frequencies tω ju are in the lower half-space =ω ă 0.
They can be found explicitly for a circular or ellipsoid shape and are connected in this case with the zeros
of certain Bessel functions. More elaborate results assert that for strictly convex shapes in dimension three
the resonant frequencies accumulate rapidly on the real axis as |<ω| Ñ 8 [51].
It has been shown in dimension one that the scattering resonances of a non-dispersive medium satisfy [29,
48]

=pωq ě C1e´C2|<pωq|
2
,

where the constants Ci, i “ 1, 2 only depend on ε and the size of the domain.
The imaginary part of a resonance gives the decay rate of the associated resonant states. Thus, resonances
close to the real axis give information about long term behavior of waves. In particular, since the work of
Lax-Phillips [38] and Vainberg [57], resonance free regions near the real axis have been used to understand
decay of waves. Several works in nano-optics have related the amplification and enhancement of light to the
behavior of the imaginary part of the scattering resonances close to the real axis [14, 20, 19].

Alike the non-dispersive case, the plasmonic resonances form a set of discrete and isolated complex values
`

ω jpαq
˘

j. In [21] the authors have derived the asymptotic expansion of the plasmonic resonant frequencies
as α tends to zero and when the nanoparticle is surrounded by a homogeneous medium with a constant
electric permittivity. We adapt in the following paragraph their techniques to our problem and derive the
first term in the asymptotic expansion of the plasmonic resonances. We refer the reader to [3, 16, 8, 11] for
recent and interesting mathematical results on plasmonic resonances for nanoparticles.

Making the change of variables x “ z‹ ` αξ in the spectral problem (2.1), we get

∇ ¨

ˆ

1
ε̃α
∇ rH

˙

` α2ω2µ0 rH “ 0 in R2,(2.5)

with the radiation condition
B rH
B|ξ|

´ iαω
?
ε0µ0 rH “ Op

1
a

|ξ|
q as |ξ| Ñ `8,(2.6)

where rHpξq “ Hpz‹ ` αξq, and ε̃αpξq “ εpz‹ ` αξq is given by

ε̃αpξq “

$

&

%

ε0 for ξ P R2zΩα,

εspz‹ ` αξq for ξ P ΩαzB,
εmpωq for ξ P B.
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Here Ωα denotes
!

x´z‹
α ; x P Ω

)

. It contains zero and tends to the whole space when α approaches zero.

Similarly the piecewise smooth function ε̃αpξq converges in L8locpR
2q to the piecewise constant function

ε̃pξq “

"

εspz‹q for ξ P R2zB,
εmpωq for ξ P B.

In the quasi-static regime αω ăă ω ăă 1, the above spectral problem formally converges, to the quasi-
static spectral problem

∇ ¨

ˆ

1
ε̃
∇ rH0

˙

“ 0 in R2,(2.7)

where the field rH0pxq belongs to W1,´1
0 pR2q, where

W1,´1
0 pR2q :“

"

u P H1
locpR

2q : u{p1` |ξ|2q
1
2 lnp1` |ξ|2q P L2pR2q;∇u P L2pR2q; lim

|ξ|Ñ`8
u “ 0

*

.

Next, we define the integral operator T0 : W1,´1
0 pR2q Ñ W1,´1

0 pR2q by
ż

R2
∇T0w∇vdξ “

ż

B
∇w∇vdξ for all v P W1,´1

0 pR2q.

We introduce the single layer vector space

H :“ tu P W1,´1
0 pR2q : ∆u “ 0 in BY R2zB; u|` “ u|´ on BBu.

We deduce from [21] that the restriction of T0 to H is a self-adjoint operator of Fredholm type with index
zero. In fact 1

2 I ´ T0 is a compact operator .

Let us denote as
!

β˘j

)

jě1
the eigenvalues of T0 : HÑ H, ordered in the following way:

0 “ β´1 ď β´2 ď ... ď β`8 “
1
2
,

and
β`8 “

1
2
ď ... ď β`2 ď β`1 ă 1,

and satisfies lim jÑ`8 β
˘
j “ β˘8 “

1
2 . We deduce immediately from the min-max principle for the compact,

self-adjoint operator 1
2 I ´ T0 the following characterization of the spectrum of T0 [21].

Proposition 2.1. Let
!

w˘j
)

jě1
be the set of corresponding eigenfunctions of the operator T0, associated to

the eigenvalues
!

β˘j

)

jě1
. The following equalities hold

β´j “ min
uPH

uKw´1 ,...,w´j´1

ż

D
|∇u|2 dx

ż

Ω

|∇u|2 dx
“ max

F jĂH
dimpF jq“ j´1

min
uPFKj

ż

D
|∇u|2 dx

ż

Ω

|∇u|2 dx
,

and

β`j “ max
uPH

uKw`1 ,...,w`j´1

ż

D
|∇u|2 dx

ż

Ω

|∇u|2 dx
“ min

F jĂH
dimpF jq“ j´1

max
uPFKj

ż

D
|∇u|2 dx

ż

Ω

|∇u|2 dx
,

for all j ě 1.
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We define the quasi-static resonances
´

ω˘j p0q
¯

jě1
of the spectral problem (2.7) the complex roots of the

following dispersion equations

εmpωq

εspz‹q
“ k˘j :“

β˘j

β˘j ´ 1
, 1 ď j ď 8.(2.8)

We first remark that since β˘j belong to r0, 1q the values on the right side of the equality k˘j are negative
reals. Thus <pεmpωqq, the real part of the electric permittivity, at the quasi-static plasmonic resonances
´

ω˘j p0q
¯

jě1
takes negative reals. This is exactly what one would expect in a such situation, and the exis-

tence of the plasmonic resonances can not occur if the material inside the nanoparticle is a modest electric
permittivity that has always a strictly positive real part.

Lemma 2.1. The complex roots to the dispersion relation (2.8) are explicitly given by

´i
Γ

2
˘

g

f

f

e

ω2
p

ε8 ´ k˘j εspz‹q
´

Γ2

4
,(2.9)

where
?

z is the complex square root function defined on Czip0,8q.

We note that the quantities k j and ε8 ´ 4ω
2
P

Γ2 only depend respectively on the shape of the particle and
the nature of the metal that fills the particle. Based on this calculation we remark that the circular shape has

only four quasi-static resonances given by´iΓ
2 ˘

c

ω2
p

ε8
´ Γ2

4 , and´iΓ
2 ˘

c

ω2
p

ε8`εspz‹q
´ Γ2

4 . They satisfy re-

spectively the dispersion equation with k´1 “ 0, and k˘8 “ ´1. We remark that only the resonances related
to k˘8 “ ´1 depend on the surrounding media electric permittivity εspz‹q and may provide later information
on it. Finally, the eigenfunctions associated to k´1 “ 0, are constant on the boundary BB.

We follow the same steps as in the proof of Theorem 2.1 in [21, 13, 14] and prove the following asymptotic
result.

Proposition 2.2. Let ωp0q be a quasi-static resonance with multiplicity m. Then there exist a constant
α0 ą 0 such that for 0 ă α ă α0 there exist m plasmonic resonances

`

ω jpαq
˘

1ď jďm satisfying the following
asymptotic expansion as αÑ 0:

1
m

m
ÿ

j“1

ω jpαq “ ωp0q ` op1q.(2.10)

Next, we derive the asymptotic expansion of the electromagnetic fields when the size of the nano-particle
tends to zero.

2.2. Small volume expansion of the EM fields. Our strategy here is to use the tools developed in [6, 9] and
references therein to derive the leading terms in the asymptotic expansion of electromagnetic fields when the
volume of the nano-particle tends to zero. Since the frequency of the incident wave is real and thus far away
from the complex plasmonic resonances we expect that the remaining terms of the asymptotic expansion
stay uniformly bounded.

Let H0 “ Hi ` H0s, be the total electric field in the absence of the nanoparticle. It satisfies the system

∇ ¨

ˆ

1
εs
∇H0

˙

` ω2µ0H0 “ 0 in R2.(2.11)
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with the Sommerfeld radiation condition as |x| Ñ `8:

BH0s

B|x|
´ iω

?
ε0µ0H0s “ Op

1
a

|x|
q.(2.12)

Recall that in the quasi-static regime the scattering resonances are far away from the real axis. Conse-
quently the system (2.11)-(2.12) above has a unique solution H for any given real frequency ω. Hence the
following Green function Gpx, yq is well defined.

∇ ¨

ˆ

1
εs
∇G

˙

` ω2µ0G “ δypxq in R2.(2.13)

with the Sommerfeld radiation condition as |x| Ñ `8:

BG
B|x|

´ iω
?
ε0µ0G “ Op

1
a

|x|
q,(2.14)

A simple integration by parts in the system (2.11)-(2.12) yields

Hpxq “ H0pxq `
ż

Bα

ˆ

1
εm
´

1
εspxq

˙

∇Hpyq∇yGpx, yqdy,(2.15)

which leads to the following result.

Proposition 2.3. There exists a constant C ą 0, independent of α and Hi such that

}Hpxq ´ H0pxq}H1pΩq ď Cα}Hi}H1pΩq.

This proposition shows that if ω is real, the field H0pxq is the first term in the asymptotic expansion of
Hpxq when α tends to zero. However, the constant C in the proposition depend on εpxq and ω can be large.
In fact, considering the results in proposition (2.2) and lemma (2.1) if the attenuation Γ tends to zero the
plasmonic resonances will approach the real axis and then the constant C may blow up. In a such situation
one needs to take into account further terms in the asymptotic expansion of Hpxq when α tends to zero in
order to improve the approximation. Here we will derive formally the first and second terms in the asymp-
totic expansion. In [9] an uniform asymptotic expansion of the magnetic field is derived using the method
of matched asymptotic expansions for α small enough. Here we apply the same approach to obtain a formal
asymptotic expansion of the electromagnetic fields. We shall represent the field Hpxq by two different ex-
pansions, an inner expansion for x near z‹, and an outer expansion for x far away from z‹.

The outer expansion takes the form

Hpxq “ H0pxq ` αH1pxq ` α2H2pxq ` ¨ ¨ ¨ , for |x´ z‹| ąą Opαq,(2.16)

where H1,H2 satisfy the following Helmholtz equation

∇ ¨

ˆ

1
εs
∇Hi

˙

` ω2µ0Hi “ 0 in |x´ z‹| ąą Opαq,

with the Sommerfeld radiation condition as |x| Ñ `8:

BHi

B|x|
´ iω

?
ε0µ0Hi “ Op

1
a

|x|
q.

Introducing the microscale variable ξ “ px´ z‹q{α, then the inner expansion can be written as

Hpz‹ ` αξq “ h0pξq ` αh1pξq ` α2 lnpαqh2pξq ` ¨ ¨ ¨ , for |ξ| “ Op1q,(2.17)
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where the functions h0, h1, h2 satisfy the following divergence form equations:

∇ ¨

ˆ

1
ε̃
∇h0

˙

“ 0 in R2,(2.18)

∇ ¨

ˆ

1
ε̃
∇h1

˙

` ∇ ¨ pη1pξq∇h0q “ 0 in R2,(2.19)

∇ ¨

ˆ

1
ε̃
∇h2

˙

“ 0 in R2,(2.20)

where η1pξq and η2pξq are the coefficients of the inner expansion of 1
εpz‹`αξqgiven by

1
εpz‹ ` αξq

“
1
ε̃pξq

` η1pξqα` η2pξqα
2 ` ¨ ¨ ¨ ,(2.21)

with

η1pξq “

"

∇p 1
εs
qpz‹qξ in R2zB,

0 in B,

and

η2pξq “

#

∇2p 1
εs
qpz‹q ξ

2

2 in R2zB,
0 in B,

Obviously the inner and outer expansions are not valid everywhere and the systems of equations satisfied by
the functions Hi and hi are not complete. In order to determine these functions uniquely, we need to equate
the inner and the outer expansions in a some overlap domain within which the microscale variable ξ is large
and x´ z‹ is small. In this domain the matching conditions are:

H0pyq ` αH1pyq ` α2H2pyq ` ¨ ¨ ¨ „ h0pξq ` αh1pξq ` α2 lnpαqh2pξq ` ¨ ¨ ¨

A change of variables in the Lippman-Schwinger integral representation formula (2.15) yields

Hpz‹ ` αξq “(2.22)

H0pz‹ ` αξq ` α

ż

B

ˆ

1
εm
´

1
εspz‹ ` αξ1q

˙

Bξk

`

Hpz‹ ` αξ1q
˘

BxkGpz
‹ ` αξ, z‹ ` αξ1qdξ1.

An asymptotic expansion of the quantities above gives

H0pz‹ ` αξq “ H0pz‹q ` Bxi H0pz‹qξiα` B
2
xi x j

H0pz‹qξiξ j
α2

2
` opα2q,

and

αBξkGpz
‹ ` αξ, z‹ ` αξq “ εspz‹qBξkΦ0pξ, ξ

1q `
1

4π
Bxkεspz‹qα lnpαq ` αΦ1pξ, ξ

1q ` opαq,

where Φ0pξ, ξ
1q “ 1

2π lnp|ξ ´ ξ1|q is the Green function of the Laplacian in the whole space, and Φ1pξ, ξ
1q is

a weakly singular function (see Theorem 5.1 in Appendix).

Inserting now the inner expansion of H, and the above asymptotic expansion into (2.22) we obtain

h0pξq “ H0pz‹q,

h1pξq “ Bxi H0pz‹qξi `

ˆ

εspz‹q
εm

´ 1
˙
ż

B
BξkΦ0pξ, ξ

1qBξk h1pξ
1qdξ1,
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and

h2pξq “

ˆ

εspz‹q
εm

´ 1
˙
ż

B
BξkΦ0pξ, ξ

1qBξk h2pξ
1qdξ1 `

1
4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1.

Now we suppose that the functions h0, h1 and h2 are defined not just in the domain B, but everywhere in
R2. Considering the asymptotic expansions obtained from the Lipmann-Schwinger equation and matching
conditions, we obtain

h0pξq “ H0pz‹q,(2.23)

∇ ¨

ˆ

1
ε̃
∇h1pξq

˙

“ 0 in R2,(2.24)

lim
ξÑ`8

ph1pξq ´ Bxi H0pz‹qξiq “ 0,(2.25)

and

∇ ¨

ˆ

1
ε̃
∇h2pξq

˙

“ 0 in R2,(2.26)

lim
ξÑ`8

ˆ

h2pξq ´
1

4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1
˙

“ 0.(2.27)

Using a variational approach in the Hilbert space W1,´1
0 pR2q one can prove that the systems (2.24)- (2.25)

and (2.26)- (2.27) have unique solutions. Precisely, it can be shown that h1pξq satisfies the following volume
integral equation

ˆ

εmpωq

εspz‹q ´ εmpωq
I ` T0

˙

ph1pξq ´ Bxi H0pz‹qξiq “ Bxi H0pz‹qξ̂ipξq,(2.28)

where ξ̂ipξq P W1,´1
0 pR2q is the orthogonal projection of ξiχBpξq onto W1,´1

0 pR2q, which can be defined as
the unique solution to the system

ż

R2
∇ξ̂i∇vdξ “

ż

B
∇ξi∇vdξ for all v P W1,´1

0 pR2q.(2.29)

Since T0 is self-adjoint and εmpωq

εspz‹q´εmpωq
has a nonzero imaginary component, the equation (2.28) has a

unique solution.

Similarly, a forward calculation yields
ˆ

εmpωq

εspz‹q ´ εmpωq
I ` T0

˙ˆ

h2pξq ´
1

4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1
˙

“ 0,

and consequently

h2pξq “
1

4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1,(2.30)

is indeed a constant function.
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Now, we shall determine the outer expansion functions H1 and H2. To do so we again consider the
Lipmann-Schwinger equation

Hpxq “(2.31)

H0pxq ` α

ż

B

ˆ

1
εm
´

1
εspz‹ ` αξ1q

˙

Bξk

`

Hpz‹ ` αξ1q
˘

Bxk

`

Gpx, z‹ ` αξ1q
˘

dξ1.

Using the inner expansion of H and the regularity of the Green function G we obtain

H1pxq “ 0,(2.32)

H2pxq “
ˆ

1
εm
´

1
εspz‹q

˙
ż

B
Bξk h1pξ

1qdξ1BxkGpx, z
‹q.(2.33)

It is well known that the inner and outer expansions are not valid uniformly in x [9]. In order to obtain an
asymptotic expansion of the fields as α tends to zero that is valid uniformly in space variable, we merge to
the two expansions together. Thus, adding the outer and inner expansions and subtracting out the common
part, we formally find the following uniform expansions: for all x P Ω:

Hpxq “ H0pxq ` αH1p
x´ z‹

α
q ` α2 lnpαqH2p

x´ z‹

α
q ` α2H2pxq ` Opα2 lnpαqq,(2.34)

where

H1pξq “ h1pξq ´ ξiBxi H0pz‹q `
ˆ

εspz‹q
εm

´ 1
˙

1
π

ż

B
Bξih1pξ

1qdξ1
ξi

|ξ|2
,

H2pξq “
1

4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1.

Following the steps of the proof of Theorem 2.1 in [9] one can obtain the following uniform asymptotic
expansion.

Theorem 2.1. For δ P p0, 1q, there exists a constant C ą 0, independent of α and Hi such that

}Hpxq ´ H0pxq ´ αH1p
x´ z‹

α
q ´ α2 lnpαqH2p

x´ z‹

α
q ´ α2H2pxq}H1pΩq ď Cα2}Hi}H1pΩq.

The approximation can be improved by considering the inner expansion term of order α2 and computing
the limit of Φ1pξ, ξ

1q as ξ tends to `8. Opposite of the first impression, the term α2H2pxq on the right hand
side is necessary to cancel out the singularity of H1pξq when ξ tends to zero. Finally, if Bxkεspz‹q “ 0 one
can recover the results of [9] by adding the order α2 inner term.

2.3. The radial case. Here we assume that Ω and B are the unit disc, and z‹ “ 0. We also assume that the
electric permittivity ε is piecewise constant.

Let pr, θq be the polar coordinates in R2, m be a fixed integer larger than 1, and consider

Hipr, θq “ Jmp
ω

c0
rqeimθ,

to be the magnetic incident field, where Jmpξq is the Bessel function of the first kind of order m, and
c0 “

1?
ε0µ0

is the speed of light in the free space.

Then, the total magnetic field takes the form Hpr, θq “ hαprqeimθ, with

hprq “

$

&

%

κ1Hmp
ω
c0

rq ` Jmp
ω
c0

rq for r ě 1,
κ2Hmp

ω
cs

rq ` κ3Jmp
ω
cs

rq for α ď r ď 1,
κ4Jmp

ω
cm

rq for r ď α,
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where cs “
1?
εsµ0

, and cm “ 1?
εmµ0

are the speed of light in the dielectric coating and in the metallic
nanoparticle respectively. Hmpξq is the Hankel function of the first kind of order m.

The transmission conditions for r “ 1 and r “ α give the following system

¨

˚

˚

˝

Hmp
ω
c0
q ´Hmp

ω
cs
q ´Jmp

ω
cs
q 0

c0
cs

H1mp
ω
c0
q ´H1mp

ω
cs
q ´J1mp

ω
cs
q 0

0 Hmp
ω
cs
αq Jmp

ω
cs
αq ´Jmp

ω
cm
αq

0 cs
cm

H1mp
ω
cs
αq cs

cm
J1mp

ω
cs
αq ´J1mp

ω
cm
αq

˛

‹

‹

‚

ÝÑκ “

¨

˚

˚

˝

´Jmp
ω
c0
q

´J1mp
ω
c0
q

0
0

˛

‹

‹

‚

.

The plasmonic resonances, in this case, are exactly the zeros of the determinant dαpωq, of the scattering
matrix. An asymptotic expansion of the later when α tends to zero gives

dαpωq “
d0pωq

α
` op

1
α
q,

where

d0pωq :“
ˆ

´Hmp
ω

c0
qJ1mp

ω

cs
q `

cs

c0
H1mp

ω

c0
qJmp

ω

cs
q

˙

cm
s

πω
pc2

m ` c2
sq

1

cm`1
m

.

Hence a limiting value ωp0q of a sequence of plasmonic resonances has to be finite and satisfies the disper-
sion equation d0pωp0qq “ 0. We remark that the complex roots of the function

´Hmp
ω

c0
qJ1mp

ω

cs
q `

c0

cs
H1mp

ω

c0
qJmp

ω

cs
q,

are exactly the scattering resonances of the domain Ω in absence of the nanoparticle. If we drop the assump-
tion that ω is small, and if the material that fills the nanoparticle is non-dispersif, we obtain the well known
convergence of the scattering resonances to the non perturbed ones (see for instance [6, 9]).

A careful analysis of the zeros of d0pωq in the quasi-static regime leads to εmpωp0qq “ ´εs or εmpωp0qq “
0, which correspond exactly to the plasmonic values of the circular shape nanoparticle β˘8 “

1
2 and β´1 “ 0

(see for instance (2.8)).

In the case where m is equal to one the determinant dαpωq has the following asymptotic expansion
dαpωq “ d0pωq lnpαq`oplnpαqq as α tends to zero. Using Rouché Theorem one can determine the complete
asymptotic expansion of the plasmonic resonances in the case of a circular shape.

3. Photoacoustic effect

In this section we consider a metallic nanoparticle in a liquid medium and we want to describe the photoa-
coustic generation created by the electromagnetic heating of the nanoparticle. We derive the model equations
that describe the coupling between the temperature rise in the medium and the acoustic wave generation.

3.1. Acoustic sources. We write the fundamental equations of acoustics as explained in [53], i.e the equa-
tion of continuity, the Euler equation and the continuity equation for heat flow.

(3.1)
Bρ

Bt
“ ´ρ0divpvq,

(3.2) ρ0
Bv
Bt
“ ´∇p,
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(3.3) ρ0T
Bs
Bt
“ divpκ∇T q ` Pv,

where ρ is the mass density, ppr, tq is the acoustic pressure, vpr, tq is the acoustic displacement velocity,
spr, tq is the specific entropy, T pr, tq is the temperature and Pv is the heat source. The change of density is
assumed small (ρ´ρ0

ρ0
! 1). The thermal conduction κ is given by

κpxq “
"

κspxq for x P ΩzBα,
κ0 for x P Bα,

where κspxq ą 0 is the thermal conduction of the liquid and κ0 ą 0 is the thermal conduction of the metal
that fills the nanoparticle, and verifies κ0 ąą κs.

We can write the two equations of state giving the change of density δρ and the change of entropy δs in
terms of δp and δT [45].

(3.4) δρ “
γ

c2
s
δp´ ρ0βδT,

(3.5) δs “
cp

T
pδT ´

γ ´ 1
ρ0βc2

s
δpq,

where cp “ T
`

Bs
BT

˘

p is the specific heat capacity at constant pressure, cv “ T
`

Bs
BT

˘

ρ
is the specific heat

capacity at constant volume, γ “ cp
cv

, β “ ´ 1
ρ

´

Bρ
BT

¯

p
is the thermal expansion coefficient, and cs is the

isentropic sound velocity.

We deduce from equation (3.4) and (3.5) the two following equations:

(3.6)
Bρ

Bt
“

γ

c2
s

Bp
Bt
´ ρ0β

BT
Bt
,

(3.7)
Bs
Bt
“

cp

T
p
BT
Bt
´
γ ´ 1
ρ0βc2

s

Bp
Bt
q.

We can make the assumption for liquids that γ “ 1. With this assumption and combining equations (3.3)
and (3.7), we obtain the following equation for the temperature field T :

(3.8) ρ0cp
BT
Bt
“ divpκ∇T q ` Pv.

We now use equations (3.1) and (3.2) to get B
2ρ

Bt2 ´ ∆p “ 0. We can transform this equation thanks to
equation (3.4) and we obtain:

(3.9)
γ

c2
s

B2 p
Bt2 ´ ∆p “ ρ0

B

Bt

ˆ

β
BT
Bt

˙

.

With the assumption that γ “ 1 and that β “ β0, we finally have the following system of coupled
equations for the generation of photoacoustic waves in a liquid medium:

(3.10) ρ0cp
BT
Bt
“ divpκ∇T q ` Pv,
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(3.11)
1
c2

s

B2 p
Bt2 ´ ∆p “ ρ0β0

B2T
Bt

.

3.2. Electromagnetic sources. The source term Pv in equation (3.3) is the energy produced by electromag-
netic heating. It can be written as follows [52]:

(3.12) Pv “ Qgen ` Qmet,

where Qgen is the volumetric power density of the electromagnetic source, and Qmet is the metabolic heat
generated by biological tissues. We consider here that Qmet “ 0.

The electromagnetic coefficients of the medium are the complex electric permittivity εs, the magnetic
permeability µ0. Since the electromagnetic wave is time pulsed and because of the difference of time scales
between the acoustic and electromagnetic waves, the volumetric power density is described by the time
averaging of the real part of the divergence of the Poynting vector S “ E ˆ H times the Dirac function at
zero. On the other hand the divergence of S is given by

(3.13) ´∇ ¨ S “ iωε|E|2 ` iωµ0|H|
2.

By the taking the real part and time averaging of the divergence of the Poynting vector we finally have

Qgen “ ω=pεqx|E|2yδ0ptq “ ω=pεq|E|2δ0ptq,(3.14)

where the time averaging is defined by x f y :“ limτÑ`8

şτ
0 f ptqdt, and δ0 is the Dirac function at 0.

We can finally write the following system of coupled equations that describes the photoacoustic genera-
tion by the electromagnetic heating of a metallic nanoparticle

ρ0cp
BT
Bt

“ divpκ∇T q ` ω=pεq|E|2δ0ptq,(3.15)

1
c2

s

B2 p
Bt2 ´ ∆p “ ρ0β0

B2T
Bt

.(3.16)

with the initial conditions at t “ 0:

T “ p “
Bp
Bt
“ 0.(3.17)

Following the same analysis as in [10] one cane show that the temperature T approaches T0 as α tends to
zero, where T0 is the solution to

ρ0cp
BT0

Bt
“ divpκs∇T0q ` ω=pεq|E|2δ0ptq,

with initial boundary condition T0 “ 0 at t “ 0, and lim|x|Ñ`8 T0pxq “ 0. Here we did not consider the
first and second terms in the small volume asymptotic expansion because the thermal conduction κ is fre-
quency independent, and hence the limiting problems are well posed compared to the ones in the asymptotic
expansion of the EM fields.

Since the conductivity κs of the biological is very small compared to the other quantities we neglect it and
find the following equation for the temperature

ρ0cp
BT0

Bt
“ ω=pεq|E|2δ0ptq,
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which combined with the acoustic waves (3.16), provides at the end the following model for the photo
acoustic effect by a metallic nanoparticle:

$

’

&

’

%

1
c2

s

B2 p
Bt2 px, tq ´ ∆ppx, tq “ 0 in R2 ˆ R`,

ppx, 0q “ ωβ0
cp
=pεqpxq|Epxq|2 in R2,

Bp
Bt px, 0q “ 0 in R2.

(3.18)

The system above (3.18) coupled with the Helmholtz equation (2.1)-(2.2) represents the forward problem.
Next, we study the photoacoustic inverse problem.

4. The photoacoustic inverse problem

In this section we study the inverse problem of the reconstruction of the electric permittivity ε from the
measurements of the acoustic waves ppx, tq, px, tq P BΩˆp0, τpq, generated by the photoacoustic effect from
the heating of the small metallic nanoparticle Bα in the presence of electromagnetic fields at a frequency
close to a plasmonic resonance. Here τp ą 0 is the period of time where the measurements are taken, that
will be specified later. We have two inversions: the acoustic inversion where we assume that the speed of the
wave is a known constant cs and reconstruct the initial pressure =pεpxqq|Epxq|2, x P Ω from the knowledge
of ppx, tq, px, tq P BΩˆ p0, τpq; the second step is to recover the electric permittivity εpxq from the internal
data =pεpxqq|Epxq|2, x P Ω.

4.1. Acoustic inversion. Recall that =pεqpxq is a compactly supported function in Ω, and that we have
assumed that the acoustic wave speed in the tissue takes a constant value cp that corresponds to the isentropic
acoustic speed in the water, that is 1400 m/s. These two assumptions allow us to use well know results from
control theory to derive a stability estimate for the acoustic inversion. The following result is based on the
multiplier method and can be found in [30, 39].

Theorem 4.1. Let τp ą τΩ where τp “ supx,yPΩ |x ´ y|. Then, there exists a constant C “ CpΩq ą 0 such
that

ωβ0

cp
}=pεpxqq|Epxq|2}L2pΩq ď C}

Bp
Bt
}L2pBΩˆp0,τpqq

` }∇p}L2pBΩˆp0,τpqq

We refer the readers to the survey [36] on related reconstruction methods and different approaches based
on integral equations for constant acoustic speed. The stability result shows that the reconstruction of the
electromagnetic energy responsible for the generation of the acoustic signal by heating the nanoparticle,
from boundary measurements of the acoustic waves is stable if the observation time τp is large enough. This
result can be extended to a non constant acoustic speed as well as measurements of the acoustic waves on a
small part of the boundary [4, 49, 33]. In this paper for the sake of simplicity we do not handle such general
cases.

We further assume that the constants β0 and cp are given. Let OM denotes the ball centered at 0 and of
radius M ą 0 in H2pBRpz‹qq, where R ą 0 is large enough such that Ω Ă BRpz‹q.

Corollary 4.1. Assume that ε P BMp0q, and let τp ą τΩ. Then, there exists a constant C “ Cpω,M, β0, cpq ą

0 such that the following estimate

}=pεq|∇H|2}C0pΩq
ď C

˜

›

›

›

›

Bp
Bt

›

›

›

›

L2pBΩˆp0,τpqq

` }∇p}L2pBΩˆp0,τpqq

¸
1
4

,(4.1)

holds.
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Proof. A simple calculation yields |Epxq|2 “ |∇Hpxq|2 over Ω. Using the interpolation between Sobolev
spaces [40], we estimate =pεq|∇H|2 in H

3
2 pΩq in terms of its norms in L2pΩq and H2pΩq respectively. Thus

we deduce (4.1) from Elliptic regularity of the system (2.1) and the estimate in theorem (4.1).
�

4.2. Optical inversion. In this part of the paper we assume that the internal electromagnetic energy

=pεpxqq|∇Hpxq|2,

for x P Ω is recovered, and we study the inverse problem of determining εpxq over Ω using the small vol-
ume asymptotic expansion of the EM fields in the previous section. In fact in applications we only need to
recover the imaginary part of the electric permittivity which is related to the absorption of the EM fields and
the generation of the photoacoustic wave.

Recall that the absorption of EM energy by only the biological tissue is negligible inside Ω. In practice
the photoacoustic signal generated by such absorption is weak inside Ω and can not be used to image the
tissue itself.

From section 2 we deduce the inner and outer asymptotic expansions of the magnetic field |∇Hpxq|2.
Our strategy here is to first analyze the information about the medium and the nanoparticle contained in the
outer asymptotic expansion. This problem is a classical boundary/internal inverse problem, and has some
known limitations. Then we complete the recovery of the optical properties of the medium using information
retrieved from the inner expansion of the magnetic field and the apriori information about the shape of the
nanoparticle.

4.2.1. Inversion using the outer expansion. Recall the outer asymptotic expansion (2.16)- (2.32) of the
magnetic field:

Hpxq “ H0pxq ` α2H2pxq ` opα2q for x P BΩ,

where H0pxq is the solution to the system (2.11)- (2.12), and H2pxq is given by

H2pxq “
ˆ

1
εmpωq

´
1

εspz‹q

˙
ż

B
Bξk h1pξ

1qdξ1BxkGpx, z
‹q,

with h1pξq is the unique solution to the system (2.24)-(2.25).

In fact the asymptotic expansion above is valid in a neighboring region of the boundary BΩ, but since the
internal data is of the form =pεpxqq|∇Hpxq|2, where =pεq is compactly supported in Ω, we can only retrieve
information about the magnetic field on the boundary BΩ. Note that since ε0 is given one can retrieve the
the Cauchy data of the magnetic field on BΩ form the knowledge of its trace on the same set.

The function H2pxq can be rewritten in terms of the first order polarization tensor Mp εmpωq

εspz‹q
q “ pMklq1ďk,lď2,

as follows (see for instance [7] and references therein)

H2pxq “
ˆ

1
εmpωq

´
1

εspz‹q

˙

∇Gpx, z‹q ¨ M∇H0pz‹q,

where

Mkl “

ż

B
Bξkφlpξ

1qdξ1,(4.2)
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and φlpξq, l “ 1, 2 are the unique solutions to the system

∇ ¨

ˆ

1
ε̃
∇φlpξq

˙

“ 0 in R2,(4.3)

lim
ξÑ`8

pφlpξq ´ ξlq “ 0.(4.4)

On the other hand φlpξq, l “ 1, 2 can be rewritten as follows

φlpξq “ ξl ´

ˆ

εmpωq

εspz‹q ´ εmpωq
I ` T0

˙´1

ξ̂lpξq,(4.5)

where ξ̂lpξq P W1,´1
0 pR2q is the orthogonal projection of ξlχBpξq onto W1,´1

0 pR2q defined in (2.29).
Regarding the integral equation (4.5), we observe than when ω tends to a plasmonic resonance ω jpαq the

functions φlpξq, and consequently the polarization tensor M will most likely blows up. Since in applications
ω is real, and the plasmonic resonances of the nanoparticle embedded in the medium approaches the quasi-
static resonances ω jp0q when α tends to zeo (proposition (2.2), we expect that the coefficient M become
large in the case where ω coincides with<pω jp0qq, and Γ ăă 1.

Many works have considered the localization of small inhomogeneities in a known background medium,
and most of the proposed methods are based on an appropriate averaging of the asymptotic expansion by
using particular background solutions as weights [7, 12]. In other words, the position z‹ of the nanoparticle
can be uniquely determined from the outer expansion of Hpxq, that is H0pxq ` α2H2pxq, x P BΩ, if the
electric permittivity of the background medium εspxq is known everywhere. But this is not the case in our
problem, since our objective is to determine εspxq, while εmpωq is known (which is the complete opposite
of the setting where small inhomogeneities are imaged). Here to overcome these difficulties we may pro-
pose the use of multifrequency measurements H2pxq, ω P pω,ωq to localize z‹ [15, 28], where ω,ω are two
strictly positive constants satisfying ω ăă ω. We will study this specific inverse problem in future works.
From now on we assume that the position z‹ of the nanoparticle is known.

Note that in general if εspxq is known, it is still not possible to recover simultaneously the shape of
the nanoparticle BB and the contrast εspz‹q

εmpωq
from only the measurement of the outer expansion H0pxq `

α2H2pxq, x P BΩ. Meanwhile in our setting the shape of the nanoparticle is assumed to be known. For
example, if we consider the circular shape, that is B is the unit disc, ξ̂lpξq, l “ 1, 2, and hence φlpξq, l “ 1, 2,
can be determined explicitly

ξ̂lpξq “

#

ξl
2 for ξ P B,
ξl

2|ξ|2 for ξ P R2zB,(4.6)

φlpξq “

# 2εmpωq

εspz‹q`εmpωq
ξl for ξ P B,

ξl ´
εspz‹q´εmpωq

εspz‹q`εmpωq
ξl
|ξ|2

for ξ P R2zB,
(4.7)

which implies that the polarization tensor can be simplified into

Mkl “
2εmpωq

εspz‹q ` εmpωq
|B|δkl,
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where δkl is Kronecker symbol. Assuming that H0pxq, x P BΩ is given, we deduce from the outer expansion
the following approximation [7, 12]:

1
ε0

ż

BΩ

ˆ

H
BH0

BνΩ

´
BH
BνΩ

H0

˙

dspxq(4.8)

“ α2
ˆ

1
εmpωq

´
1

εspz‹q

˙

∇H0pz‹q ¨ M∇H0pz‹q ` opα2q

“ 2|B|
εspz‹q ´ εmpωq

εmpωq ` εspz‹q
1

εspz‹q
|∇H0pz‹q|

2 α2 ` opα2q,(4.9)

To ensure that the first term of the asymptotic expansion does not vanish, and to guarantee the success of
the identification procedure it becomes necessary to assume the following non-degeneracy condition

|∇H0pz‹q|
2
“ 0.

For a circular shape nanoparticle we can immediately see from the explicit expression of the first term in
the asymptotic expansion that when ω is close to a plasmonic resonance, that is εmpωq “ ´εspz‹q, the
polarization tensor constant blows up. In the next paragraph we investigate the inner expansion of the
magnetic field which represents our photoacoustic data, in order to derive the contrast εspz‹q

εmpωq
.

4.2.2. Inversion using the inner expansion. We further assume that the position z‹, the size α and the shape
BB of the nanoparticle are known. Recall the inner expansion (2.17):

Hpz‹ ` αξq “ H0pz‹q ` αh1pξq ` α2 lnpαqh2pξq ` Opα2q for |ξ| “ Op1q.

where h1pξq is the unique solution to the system (2.24)-(2.25), that is

∇ ¨

ˆ

1
ε̃
∇h1pξq

˙

“ 0 in R2,

lim
ξÑ`8

ph1pξq ´ Bxi H0pz‹qξiq “ 0,

and h2pξq is a constant fucntion given by

h2pξq “
1

4π

ˆ

1
εm
´

1
εspz‹q

˙

Bxkεspz‹q
ż

B
Bξk h1pξ

1qdξ1.

Using the functions φl, l “ 1, 2 solutions to the system (4.3)-(4.4), we can rewrite h1pξq as

h1pξq “ φkpξqBxk H0pz‹q.(4.10)

Recall that the acoustic inversion provides the internal function Ψpxq “ =pεpxqq|∇Hpxq|2, x P Ω.
Combining (2.17) and (2.21), we obtain the following inner expansion

Ψpz‹ ` αξq “ =pεpz‹ ` αξqq|∇Hpz‹ ` αξq|2

“ =pε̃pξqq|∇ξh1pξq|
2 ` Opα2q, for |ξ| “ Op1q.(4.11)

We further assume that B is the unit disc. Our objective is to recover εspz‹q from the knowledge of
=pε̃pξqq|∇ξh1pξq|

2 for ξ P 2B, where 2B is the disc of center zero and radius 2.

Combining (4.10) and (4.7), we find

h1pξq “

#

p1´ κq ξ ¨ ∇H0pz‹q for ξ P B,
´

1´ κ
|ξ|2

¯

ξ ¨ ∇H0pz‹q for ξ P 2BzB,
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where

κ :“
εspz‹q ´ εmpωq

εspz‹q ` εmpωq
.

Hence

Ψpz‹ ` αξq ` opαq “

#

=pεmpωqq|1´ κ|2|∇H0pz‹q|2 for ξ P B,

=pεspz‹qq
ˇ

ˇ

ˇ
∇ξ

´´

1´ κ
|ξ|2

¯

ξ

|ξ|2
¨ ∇H0pz‹q

¯ˇ

ˇ

ˇ

2
for ξ P 2BzB.

A forward calculation yields

Ψpz‹ ` αξq “ =pεspz‹qq
ˇ

ˇ

ˇ

ˇ

ˆ

1´
κ

|ξ|2

˙

∇H0pz‹q ` 2κ
ξ

|ξ|2
¨ ∇H0pz‹q

ξ

|ξ|2

ˇ

ˇ

ˇ

ˇ

2

` Opαq,

for ξ P 2BzB.

Now taking the ratio between Ψ|`
BBα

and Ψpz‹q “
?

Bα
Ψpxqdx, we obtain

Ψpz‹ ` αξq|`

Ψpz‹q
“
=pεspz‹qq
=pεmpωqq

˜

ˇ

ˇ

ˇ

ˇ

1` κ

1´ κ

ˇ

ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ

ˇ

∇H0pz‹q
|∇H0pz‹q|

¨ ξ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

∇H0pz‹q
|∇H0pz‹q|

¨ ξK
ˇ

ˇ

ˇ

ˇ

2
¸

` Opαq,

“ Ψ0pξq ` Opαq,(4.12)

for ξ P BB “
 

ξ1 P R2; |ξ1| “ 1
(

, where ξK is a π
2 counterclockwise rotation of ξ.

Now, assuming that |<pεmpωqq| ą |<pεspz‹qq|, we have
ˇ

ˇ

ˇ

ˇ

1` κ

1´ κ

ˇ

ˇ

ˇ

ˇ

ą 1,

and thus the function Ψ0pξq takes its maximum and minimum on BB at ξ “ ˘ ∇H0pz‹q
|∇H0pz‹q|

and ξ “ ˘∇H0pz‹qK

|∇H0pz‹q|
respectively.

Consequently

=pεspz‹qq
=pεmpωqq

“
Ψpz‹ ` α

∇H0pz‹qK

|∇H0pz‹q|
q|`

Ψpz‹q
` Opαq,(4.13)

“ min
ξPBB

Ψpz‹ ` αξq|`

Ψpz‹q
` Opαq,(4.14)

and

=pεspz‹qq
=pεmpωqq

ˇ

ˇ

ˇ

ˇ

1` κ

1´ κ

ˇ

ˇ

ˇ

ˇ

2

“
Ψpz‹ ` α

∇H0pz‹q
|∇H0pz‹q|

q|`

Ψpz‹q
` Opαq,(4.15)

“ max
ξPBB

Ψpz‹ ` αξq|`

Ψpz‹q
` Opαq,(4.16)

Since εmpωq is given, we can retrieve =pεspz‹qq from equality (4.13), and then <pεspz‹qq from equality
(4.14). Now, we are able to prove the main stability estimate.
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4.3. Proof of the main theorem (1.1). We deduce from equalities (4.13)-(4.14) the following estimates.

Theorem 4.2. Under the same assumptions as in theroem (1.1), there exists a constant C ą 0 that does not
depend on α, such that

|=pεs,apz‹qq ´ =pεs,apz‹qq| ď C}Ψa ´ Ψb}L8p2Bαq ` Opαq.

Proof. Equalities (4.13)-(4.14) imply

Ψ0,ap
∇H0,apz‹qK

|∇H0,apz‹q|
q “ min

ξPBB
Ψ0,apξq

“ min
ξPBB

pΨ0,bpξq ` Ψ0,apξq ´ Ψ0,bpξqq .

Therefore

min
ξPBB

pΨ0,bpξq ´ |Ψ0,apξq ´ Ψ0,bpξqq | ď Ψ0,ap
∇H0,apz‹qK

|∇H0,apz‹q|
q ď min

ξPBB
pΨ0,bpξq ` |Ψ0,apξq ´ Ψ0,bpξq|q ,

which implies

|Ψ0,ap
∇H0,apz‹qK

|∇H0,apz‹q|
q ´ Ψ0,bp

∇H0,bpz‹qK

|∇H0,apz‹q|
q| ď max

ξPBB
|Ψ0,a ´ Ψ0,b|,(4.17)

and consequently

|Ψ0,ap
∇H0,apz‹qK

|∇H0,apz‹q|
q ´ Ψ0,ap

∇H0,bpz‹qK

|∇H0,apz‹q|
q| ď 2 max

ξPBB
|Ψ0,a ´ Ψ0,b|,

Using the explicit expression of Ψ0,apξq given in (4.12), we find
ˇ

ˇ

ˇ

ˇ

∇H0,apz‹qK

|∇H0,apz‹q|
´
∇H0,bpz‹qK

|∇H0,bpz‹q|

ˇ

ˇ

ˇ

ˇ

ď C max
ξPBB

|Ψ0,a ´ Ψ0,b|.

Since εs,apz‹q is lower bounded, Combining the estimate above and (4.17), we obtain the desired result.
�

Now, by combining the results of theorems (4.1) (corollary (4.1)), and (4.2), we have the main stability
estimate in theorem (1.1).

5. Appendix

In this section we derive the asymptotic expansion of the gradient of the Green function ∇xGpz‹`αξ, z‹`
αξ1q when α tends to zero.

Theorem 5.1. Let Gpx, yq be the Green function solution to the system (2.13)- (2.14). Then, the following
asymptotic expansion holds

αBxkGpz
‹ ` αξ, z‹ ` αξ1q “ εspz‹qBξkΦ0pξ, ξ

1q `
1

4π
Bxkεspz‹qα lnpαq ` αΦ1pξ, ξ

1q ` opαq,

for all ξ, ξ1 P B satisfying ξ “ ξ1, and opαq is uniform in ξ, ξ1 P B.

Φ0pξ, ξ
1q “ 1

2π lnp|ξ ´ ξ1|q is the Green function of the Laplacian in the whole space, and Φ1pξ, ξ
1q has

a logarithmic singularity on the diagonal ξ “ ξ1, that is |Φ1pξ, ξ
1q| ď C|Φ0pξ, ξ

1q|, for all ξ, ξ1 P B, with
C ą 0 is constant that only depends on εspxq.
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Proof. We first use the Liouville transformation and substitute the Green function Gpx, yq by

Gpx, yq “
1

ε
1
2
s pxqε

1
2
s pyq

Gpx, yq,

in the system (2.13)- (2.14), to obtain

∆Gpx, yq ` VpxqGpx, yq “ δypxq in R2.(5.1)

with the Sommerfeld radiation condition as |x| Ñ `8:

BG
B|x|

´ iω
?
ε0µ0G “ Op

1
a

|x|
q,(5.2)

and where

Vpxq :“ ω2µ0εspxq ´
∆ε

1
2
s pxq

ε
1
2
s pxq

.(5.3)

For simplicity, we assume that Vpz‹q “ 0. If it is not the case the proof can be slightly modified.

Let G0px, yq be the Green function of the Helmholtz equation in the free space, solution to the system

∆G0px, yq ` VpyqG0px, yq “ δypxq in R2.(5.4)

with the Sommerfeld radiation condition as |x| Ñ `8:

BG0

B|x|
´ i

b

VpyqG0 “ Op
1

a

|x|
q.(5.5)

The function G0px, yq is given by

G0px, yq “ ´
i
4

Hp1q0 p

b

Vpyq|x´ y|q, for x “ y,

where Hp1q0 ptq is the Hankel function of the first kind of order zero.

Now, we shall derive the asymtotic expansion of BxkGpx, yq as x tends to y.
Let

Gpξ, ξ1q :“ Gpx, yq ´G0px, yq.

It satisfies the Helmholtz equation

∆Gpx, yq ` VpxqGpx, yq “ ´pVpxq ´ VpyqqG0px, yq in BRpz‹q.(5.6)

with the boundary condition

Gpx, yq “ Gpx, yq ´G0px, yq on BBRpz‹q.(5.7)

Further we fix R ą 1 such that the system (5.6)-(5.7) has a unique solution. Since the Hp1q0 ptq has a logarith-
mic singularity as t tends to zero, the right hand side belongs to C0,ιpBRpz‹qq for any ι P r0, 1q, uniformly in
y P B1pz‹q (see for instance Proposition 4.1 in [20]).

Considering the fact that Gpx, yq ´G0px, yq P C8pBBRpz‹q ˆ B1pz‹qq, we deduce from elliptic regularity
that Gpx, yq P C2,ιpBRpz‹qq uniformly in y P B1pz‹q [41]. In addition, due to the explicit expression of the
right hand side in equation (5.6), on can prove easily that BxkGpz

‹ ` αξ, z‹ ` αξ1q has a finite continuous
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limit when α tends to zero, denoted by Φ11pξ, ξ
1q.

From known asymptotic expansions of Hankel functions, we have [1]

BxkG0pz
‹ ` αξ, z‹ ` αξ1q “

1
α
BxkΦ0pξ, ξ

1q ` α lnpαq|ξ ´ ξ1| ` Opαq,

where Opαq is uniform in ξ, ξ1 P B.

Consequently

αBxkGpz
‹ ` αξ, z‹ ` αξ1q “ BxkΦ0pξ, ξ

1q ` αΦ11pξ, ξ
1q ` opαq,

which combined with the regularity of εspxq achieves the proof of the theorem.
�
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