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Abstract. Microbial gene expression was followed for 23
days within a mesocosm (M1) isolating 50 m3 of seawater
and in the surrounding waters in the Nouméa lagoon, New
Caledonia, in the southwest Pacific as part of the VAriabil-
ity of vertical and tropHIc transfer of diazotroph derived N
in the south wEst Pacific (VAHINE) experiment. The aim of
VAHINE was to examine the fate of diazotroph-derived ni-
trogen (DDN) in a low-nutrient, low-chlorophyll ecosystem.
On day 4 of the experiment, the mesocosm was fertilized
with phosphate. In the lagoon, gene expression was dom-
inated by the cyanobacterium Synechococcus, closely fol-
lowed by Alphaproteobacteria. In contrast, drastic changes
in the microbial community composition and transcriptional
activity were triggered within the mesocosm within the first
4 days, with transcription bursts from different heterotrophic
bacteria in rapid succession. The microbial composition and
activity of the surrounding lagoon ecosystem appeared more
stable, although following similar temporal trends as in M1.
We detected significant gene expression from Chromerida in
M1, as well as the Nouméa lagoon, suggesting these pho-
toautotrophic alveolates were present in substantial num-
bers in the open water. Other groups contributing substan-
tially to the metatranscriptome were affiliated with marine
Euryarchaeota Candidatus Thalassoarchaea (inside and out-
side) and Myoviridae bacteriophages likely infecting Syne-
chococcus, specifically inside M1. High transcript abun-

dances for ammonium transporters and glutamine synthetase
in many different taxa (e.g., Pelagibacteraceae, Synechococ-
cus, Prochlorococcus, and Rhodobacteraceae) was consis-
tent with the known preference of most bacteria for this
nitrogen source. In contrast, Alteromonadaceae highly ex-
pressed urease genes; Rhodobacteraceae and Prochlorococ-
cus showed some urease expression, too. Nitrate reduc-
tase transcripts were detected on day 10 very prominently
in Synechococcus and in Halomonadaceae. Alkaline phos-
phatase was expressed prominently only between days 12
and 23 in different organisms, suggesting that the microbial
community was not limited by phosphate, even before the
fertilization on day 4, whereas the post-fertilization commu-
nity was.

We observed high expression of the Synechococcus sqdB
gene, only transiently lowered following phosphate fertiliza-
tion. SqdB encodes UDP-sulfoquinovose synthase, possibly
enabling marine picocyanobacteria to minimize their phos-
phorus requirements by substitution of phospholipids with
sulphur-containing glycerolipids. This result suggests a link
between sqdB expression and phosphate availability in situ.

Gene expression of diazotrophic cyanobacteria was
mainly attributed to Trichodesmium and Richelia intracellu-
laris (diatom–diazotroph association) in the Nouméa lagoon
and initially in M1. UCYN-A (Candidatus Atelocyanobac-
terium) transcripts were the third most abundant and de-
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clined both inside and outside after day 4, consistent with
16S- and nifH-based analyses. Transcripts related to the Ep-
ithemia turgida endosymbiont and Cyanothece ATCC 51142
increased during the second half of the experiment.

1 Introduction

In the study of natural marine microbial populations, it is
of fundamental interest to identify the biota these popula-
tions consist of and to elucidate their transcriptional activi-
ties in response to biotic or abiotic changes in the environ-
ment. Metatranscriptomics gives insight into these processes
at high functional and taxonomic resolution, as shown, e.g.,
in the analysis of a wide range of marine microbial popula-
tions (Frias-Lopez et al., 2008; Ganesh et al., 2015; Gifford
et al., 2014; Hewson et al., 2010; Hilton et al., 2015; Jones et
al., 2015; Moran et al., 2013; Pfreundt et al., 2014; Poretsky
et al., 2009; Shi et al., 2009; Steglich et al., 2015; Wemheuer
et al., 2015). Here, we report the results of a metatranscrip-
tome analysis from the VAriability of vertical and tropHIc
transfer of diazotroph derived N in the south wEst Pacific
(VAHINE) mesocosm experiment, whose overarching objec-
tive was to examine the fate of diazotroph-derived nitrogen
(DDN) in a low-nutrient, low-chlorophyll (LNLC) ecosys-
tem (Bonnet et al., 2016b). In this experiment, three large-
scale (∼ 50 m3) mesocosms were deployed enclosing ambi-
ent oligotrophic water from the Nouméa (New Caledonia)
lagoon in situ. To alleviate any potential phosphate limita-
tion and stimulate the growth of diazotrophs, the mesocosms
were fertilized on day 4 with 0.8 µmol KH2PO4 as a source of
dissolved inorganic phosphorus (DIP). The mesocosms were
sampled daily for 23 days and analyzed for carbon, nitrogen,
and phosphorus pools and fluxes (Berthelot et al., 2015), the
diazotroph community composition on the basis of nifH tag
sequencing (Turk-Kubo et al., 2015), N2 fixation dynamics,
and the fate of DDN in the ecosystem (Berthelot et al., 2015;
Bonnet et al., 2016a; Knapp et al., 2015). Furthermore, the
composition, succession, and productivity of the autotrophic
and heterotrophic communities were studied (Leblanc et al.,
2016; Pfreundt et al., 2016; Van Wambeke et al., 2016). Dur-
ing days 15–23 of the VAHINE experiment, N2 fixation rates
increased dramatically, reaching > 60 nmol N L−1 d−1 (Bon-
net et al., 2016a), which are among the highest rates re-
ported for marine waters (Bonnet et al., 2016a; Luo et al.,
2012). Based on the analysis of nifH sequences, N2-fixing
cyanobacteria of the UCYN-C type were suggested to domi-
nate the diazotroph community in the mesocosms at this time
(Turk-Kubo et al., 2015). Evidence from 15N isotope label-
ing analyses indicated that the dominant source of nitrogen
fueling export production shifted from subsurface nitrate as-
similated prior to the start of the 23-day experiment to N2
fixation by the end (Knapp et al., 2015). To link these data to
the actual specific activities of different microbial taxa, here

we present the community-wide gene expression based on
metatranscriptomic data from one representative mesocosm
(M1). Throughout the course of the experiment (23 days), we
sampled water from both M1 and the surrounding Nouméa
lagoon every second day from the surface (1 m) and inferred
the metatranscriptomes for the plankton fraction (< 1 mm).

2 Methods

2.1 Sampling, preparation of RNA and sequencing
libraries

Samples were collected in January 2013 every other day at
07:00 LT from mesocosm 1 (hereafter called M1) and from
the Nouméa lagoon (outside the mesocosms) in 10 L carboys
using a Teflon pump connected to PVC tubing. To ensure
quick processing of samples, the carboys were immediately
transferred to the inland laboratory setup on Amédée Island,
located 1 nautical mile off the mesocosms. Samples for RNA
were prefiltered through a 1 mm mesh to keep out larger eu-
karyotes and then filtered on 0.45 µm polyethersulfone fil-
ters (Pall Supor). These filters were immediately immersed
in RNA resuspension buffer (10 mM NaAc pH 5.2, 200 mM
D(+)-sucrose, 100 mM NaCl, 5 mM EDTA) and snap frozen
in liquid nitrogen. Tubes with filters were vortexed, then
agitated in a Precellys bead beater (Peqlab, Erlangen, Ger-
many) 2× 15 s each at 6500 rpm after adding 0.25 mL glass
beads (0.10–0.25 mm, Retsch, Frimley, UK) and 1 mL PGTX
(39.6 g phenole, 6.9 mL glycerol, 0.1 g 8-hydroxyquinoline,
0.58 g EDTA, 0.8 g NaAc, 9.5 g guanidine thiocyanate, 4.6 g
guanidine hydrochloride, H2O to 100 mL; Pinto et al., 2009).
We isolated RNA for metatranscriptomics and DNA for 16S
tag-based community analysis (Pfreundt et al., 2016) from
the same samples by adding 0.7 mL chloroform, vigorous
shaking, incubation at 24 ◦C for 10 min, and subsequent
phase separation by centrifugation. RNA and DNA was re-
tained in the aqueous phase, precipitated together and stored
at −80 ◦C for further use.

The samples were treated by TurboDNase (Ambion,
Darmstadt, Germany), purified with RNA Clean & Concen-
trator columns (Zymo Research, Irvine, USA), followed by
Ribozero (Illumina Inc., USA) treatment for the depletion
of ribosomal RNAs. To remove the high amounts of tRNA
from the rRNA depleted samples, these were purified further
using the Agencourt RNAClean XP kit (Beckman Coulter
Genomics). Then, first-strand cDNA synthesis was primed
with an N6 randomized primer. After fragmentation, Illu-
mina TruSeq sequencing adapters were ligated in a strand-
specific manner to the 5’ and 3’ ends of the cDNA fragments,
allowing the strand-specific PCR amplification of the cDNA
with a proof-reading enzyme in 17–20 cycles, depending
on yields. To secure that the origin of each sequence could
be tracked after sequencing, hexameric TruSeq barcode se-
quences were used as part of the 3’ TruSeq sequencing
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adapters. The cDNA samples were purified with the Agen-
court AMPure XP kit (Beckman Coulter Genomics), qual-
ity controlled by capillary electrophoresis and sequenced by
a commercial vendor (Vertis Biotechnologie AG, Germany)
on an Illumina NextSeq 500 system using the paired-end
(2× 150 bp) setup. All raw reads can be downloaded from
the NCBI Sequence Read Archive under the BioProject ac-
cession number PRJNA304389.

2.2 Pretreatment and de-novo assembly of
metatranscriptomic data

Raw paired-end Illumina data in FASTQ format were pre-
treated as follows (read pairs were treated together in all
steps to not produce singletons): adapters were removed and
each read trimmed to a minimum Phred score of 20 using cu-
tadapt. This left 386 010 015 pairs of good-quality raw reads
for the 22 samples. Ribosomal RNA reads were removed us-
ing SortMeRNA (Kopylova et al., 2012). The resulting non-
rRNA reads (corresponding to a total of 155 022 426 pairs
of raw reads binned from all samples) were used as input
for de-novo transcript assembly with Trinity (Haas et al.,
2013) using digital normalization prior to assembly to even
out kmer coverage and reduce the amount of input data. Re-
markably, data reduction by digital normalization was only
∼ 35 %, hinting at a high complexity of the data set. This
complexity is not surprising regarding that the sample pool
contained transcripts from 3 weeks of experiment in two lo-
cations (mesocosm vs. lagoon), yet it also means that there
will be a relatively large number of transcripts with very low
sequencing coverage. This study thus misses the very rare
transcripts in the analyzed community.

The transcript assembly led to 5 594 171 transcript contigs
with an N50 of 285 nt, a median contig length of 264 nt, and
an average of 326 nt. Transcript abundance estimation and
normalization was done using scripts included in the Trin-
ity package. Align_and_estimate_abundance.pl
used bowtie (Langmead, 2010) to align all reads against
all transcript contigs in paired-end mode, then ran RSEM
(Li and Dewey, 2011) to estimate expected counts, TPM,
and FPKM values for each transcript in each sample. Only
paired-end read support was taken into account. The script
Abundance_estimates_to_matrix.pl was modi-
fied slightly to create a matrix with RSEM expected counts
and a TMM-normalized (trimmed mean of M-values nor-
malization method) TPM matrix (the original script uses
FPKM here) using the R package edgeR. The latter matrix
was used to discard transcript contigs with very low sup-
port (maxTPM >= 0.25 and meanTPM >= 0.02). The re-
maining 3 844 358 transcript contigs were classified using
the Diamond tool (Buchfink et al., 2015) with a blastX-like
database search (BLOSUM62 scoring matrix, maximum e

value 0.001, minimum identity 10 %, minimum bit score 50)
against the NCBI nonredundant protein database from Octo-
ber 2015. Normalized TPM values for each transcript contig

were added as a weight to the query ID in the Diamond tab-
ular output samplewise with a custom script, creating one
Diamond table per sample which served as input to Megan
5.11.3 (Huson and Weber, 2013). Megan is an interactive tool
used here to explore the distribution of blast hits within the
NCBI taxonomy and KEGG hierarchy. The parameters used
to import the diamond output into Megan were minimum e

value 0.01, minimum bit score 30, LCA 5 % (the transcript
will be assigned to the last common ancestor of all hits with
a bit score within 5 % of the best hit), minimum complexity
0.3.

During manual analysis of the top 100 transcript contigs
according to their mean expression over all samples, we
found 9 transcripts to be residual ribosomal RNA or inter-
nal transcribed spacer. These contigs were removed from the
count and TPM matrices for all multivariate statistics analy-
ses. Absence of these rRNA transcripts in the Diamond out-
put was checked and verified.

2.3 Sample clustering and multivariate analysis

The matrix with expected counts for each transcript
contig (see Sect. 2.2) was used as input for differen-
tial expression (DE) analysis with edgeR (Robinson et
al., 2010) as implemented in the Trinity package script
run_DE_analysis.pl for the set of samples taken from
M1 and the Nouméa lagoon, respectively. The edgeR pack-
age can compute a DE analysis without true replicates by us-
ing a user-defined dispersion value, in this case 0.1. We are
aware that significance values are highly dependent on the
chosen dispersion, and thus only considered transcripts with
at least a 4-fold expression change for further DE analysis.
The script analyze_diff_expr.pl was used (parame-
ters -P 1e-3 -C 2) to extract those transcripts that were at least
4-fold differentially expressed at a significance of ≤ 0.001 in
any of the pairwise sample comparisons, followed by hier-
archical clustering of samples and differentially expressed
transcripts depending on normalized expression values
(log2(TPM+1)). The resulting clustering dendrogram was
cut using define_clusters_by_cutting_tree.pl
at 20 % of the tree height, producing subclusters of similarly
responding transcripts.

Nonmetric multidimensional scaling (NMDS) was per-
formed in R on the transposed matrix containing all
3 844 358 transcript contigs and their respective TMM-
normalized TPM values. First, the matrix values were stan-
dardized to raw totals (sample totals) with the decostand
function of the vegan package (Oksanen et al., 2015). Then,
metaMDS was used for calculation of Bray–Curtis dissimi-
larity and the unconstrained ordination.

2.4 Analysis of specific transcripts

A list with genes of interest was created using the Integrated
Microbial Genomes (IMG) system (Markowitz et al., 2015).

www.biogeosciences.net/13/4135/2016/ Biogeosciences, 13, 4135–4149, 2016
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First, 147 genomes close to bacteria and archaea found in
the samples (based on 16S rRNA sequences; Pfreundt et al.,
2016) were selected using “find genomes”. Then, the “find
genes” tool was used to find a gene of interest (for exam-
ple nifH) in all the preselected genomes and the resulting
genes added to the “gene cart”. This was done for all genes
of interest and the full gene list including 50 nt upstream of
each gene (possible 5’ UTR) downloaded in FASTA format.
Usearch_local (Edgar, 2010) was used to find all tran-
scripts mapping to any of the genes in the list with a mini-
mum query coverage and minimum identity of 60 %.

From the full Diamond output (Sect. 2.2), all matching
transcripts together with their taxonomic and functional as-
signment were extracted and false positives discarded (i.e.,
transcripts that mapped to the list of specific genes but had a
different Diamond hit). The top hit for each transcript was
extracted, and the protein classifications manually curated
to yield one common description per function (from differ-
ent annotations for the same protein in different genomes).
The TMM-normalized TPM counts were added to each tran-
script classification, as well as the full taxonomic lineage
from NCBI taxonomy. These taxonomic lineages were cu-
rated manually to align taxonomic levels per entry.

The table was imported into R, all counts per sample
summed up for each combination of protein and family-level
taxa, and a matrix created with samples as row names and
combined protein and family description as column names.
Heat maps were created separately for each protein group
(e.g., rhodopsins or sulfolipid biosynthesis proteins), scaling
all values to the group maximum.

3 Results and discussion

The metatranscriptomic data were analyzed following the
strategy outlined in Fig. 1. We obtained taxonomic assign-
ments for 37 % of all assembled transcript contigs. This re-
flects the fact that the genes of complex marine microbial
communities, especially from infrequently sampled ocean
regimes like the southwest Pacific, are still insufficiently cov-
ered by current databases. The data with taxonomic assign-
ments thus give an overview about the gene expression pro-
cesses during this mesocosm experiment. With this study, we
aimed at identifying global differences in expression patterns
between the mesocosm and the lagoon, as well as between
the different sampling time points within the mesocosm. We
further explored the expression of marker genes for N and P
metabolism, and light utilization in the different taxonomic
groups.

3.1 Transcripts cluster into distinct groups with similar
expression patterns over time in M1 and the lagoon

Gene expression changes roughly followed the timeline,
within both M1 and the Nouméa lagoon, with some excep-
tions (Fig. 2). For the lagoon, samples from day 20 and 23
clustered together, the samples from day 10 to 18 formed a
mid-time cluster, and those from day 2 to 8 an early cluster
(Fig. 2b). In M1, the samples from day 6 to 10 and day 12
to 20 clustered together (Fig. 2a). Deviating from the time-
line, the sample from day 2 was placed close to day 20, day
23 was separated from the late cluster, and day 4, exhibiting
a prominent subcluster of transcripts upregulated only that
day, was the furthest apart from all other samples (Fig. 2a,
black brackets). Closer inspection of this subcluster contain-
ing several hundred different transcripts identified > 80 % of
them as Rhodobacteraceae transcripts, correlating well with
a 5-fold increase of Rhodobacteraceae 16S tags (from 2.5 to
12.5 % of the 16S community) and a leap in bacterial pro-
duction between T2 and T4 (Pfreundt et al., 2016). The ob-
served transcripts were broadly distributed across metabolic
pathways, reflecting a general increase of Rhodobacteraceae
gene expression on day 4. The aberrant clustering of the two
earliest samples in M1 (before the DIP spike) and the tight
clustering of those following the DIP spike (day 6–10) sug-
gest an impact of the confinement within the mesocosm and
of phosphate supplementation on gene expression.

Unconstrained ordination using nonmetric multidimen-
sional scaling (NMDS) confirmed the similar temporal distri-
bution of samples from the Nouméa lagoon and M1 (Fig. 3).
Yet, the samples from M1 showed a much higher variance
and were more dispersed than those from the lagoon (Fig. 3).
Thus, the gene expression profiles within the mesocosm were
more diverse than in the lagoon waters. The comparison of
the whole data set against the KEGG database (Kanehisa et
al., 2014) showed a major difference between M1 and the la-
goon samples only in the category energy metabolism, and
its subcategories photosynthesis and antenna proteins. These
categories comprised 22–36, 8–16, and 2.7–7.5 % in the la-
goon, respectively, and were in M1 (excluding day 23) con-
stantly below 22, 7, and 4 %, respectively (the Supplement
Figs. S1 and S2). This lower contribution of energy-related
functions in M1 was detectable already at the earliest time
point (day 2). Furthermore, diverging dynamics in the mi-
crobial community composition and transcriptional activity
were triggered in M1 already within the first 48 h (before
day 2 was sampled), indicated by the large distance between
M1 and lagoon samples on day 2 (Fig. 3). The early timing
of this effect already on day 2 suggests a rapid remodeling
of the microbial community’s gene expression upon confine-
ment within the mesocosm. In addition, the DIP spike on the
evening of day 4 subsequently triggered distinct ecological
successions in M1. The patterns we observed here are close
to the three temporal phases defined for the VAHINE ex-
periment based on biogeochemical flux measurements (Bon-

Biogeosciences, 13, 4135–4149, 2016 www.biogeosciences.net/13/4135/2016/



U. Pfreundt et al.: Global analysis of gene expression dynamics 4139

11 mesocosm samples
11 lagoon samples

 RNA-Seq paired-end 
sequencing reads

Adapter removal
quality trimming 

minimum length 20 nt

rRNA removal with 
SortMeRNA

Trinity De-novo 
transcript assembly

Trinity
transcripts

Paired-end read 
mapping with bowtie

Transcript abundance 
estimation with 

RSEM

Raw count matrix 
(fragments per 

transcript per sample) Binning of all non-
ribososmal reads from 

all samples

22 datasets with 
non-ribosomal reads

TMM-normalized
TPM count matrix 

Classification with
Diamond

Taxonomic and 
KEGG affilitation 
for each transcript

Taxonomic
and KEGG

Figures

Differential 
expression (DE)
analysis on each
matrix with edgeR

Separation into M1 
and lagoon matrices

Cluster 
DE transcripts

Clustered
Heatmap
(Figure 2)

Subclusters of 
transcripts with similar 
expresison changes 

FASTA file with 
sequences of GOIs from 

147 relevant genomes

Find all transcripts
mapping to GOIs 

with usearch

List of specific 
transcripts

Taxonomic and 
functional classification
of specific transcripts

Integration of
TPM count data
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Function
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Figure 1. Flowchart describing the major steps in the bioinformatics workflow. Preprocessing of RNA-Seq reads was done separately for each
data set, leading to 22 data sets of nonribosomal paired-end reads. These were binned and used as input for de-novo assembly of transcripts.
The nonribosomal reads were mapped back onto the assembled transcripts with bowtie (Langmead, 2010) to infer each transcripts abundance
in each sample using RSEM (Li and Dewey, 2011). Raw abundances were used for differential expression (DE) analysis and cluster analysis
with edgeR on the M1 and lagoon count matrices separately, to find transcripts which changed significantly over time. To enable direct
in-between sample comparison of transcript abundances, raw abundances were converted to TPM (transcripts per kilobase million) and
TMM normalized (trimmed mean of M values) in RSEM, creating the final count matrix used for all figures showing transcript abundances.
Classifications for these transcripts were generated using Diamond (Buchfink et al., 2015) against the RefSeq protein database. Further, a
manually curated list with specific genes involved in N and P metabolism, as well as light utilization (genes of interest, GOIs) was used to
extract the corresponding transcripts, but final classifications were inferred from the Diamond output. This information was used to produce
the integrated function-per-taxon heat maps.

net et al., 2016a) and nifH amplicon analysis (Turk-Kubo
et al., 2015). These were defined as follows (Bonnet et al.,
2016a). Days 1–4 (phase P0): before the DIP fertilization,
P deplete. Days 5–14 (P1): P availability, dominance of
diatom–diazotroph associations. Days 15–23 (P2): decreas-
ing P availability, slightly higher temperature, increasing N2
fixation and a dominance of UCYN-C diazotrophs in the
mesocosms and increase of primary production (PP) inside
and outside the mesocosms.

In the following sections, we refer to P0, P1, or P2 to de-
scribe trends and changes in gene expression when appropri-
ate.

3.2 Succession of gene expression inside mesocosm 1
and in the Nouméa lagoon

3.2.1 Active taxonomic groups differ between M1 and
the lagoon

The most striking difference between M1 and Nouméa la-
goon samples was the 2- to 3-fold dominance of Oscil-
latoriophycideae transcripts over all other taxa in the la-
goon over the full time of the experiment, but not in M1
(Figs. S3a, S4a). Gene expression within the Oscillatorio-
phycideae was mostly attributed to Synechococcus, with a
substantial share of transcript reads in M1 and the lagoon
coming from cyanobacteria closely related to Synechococ-
cus CC9605, a strain representative of clade II within the
picophytoplankton subcluster 5.1A (Dufresne et al., 2008)
and Synechococcus RS9916, a representative of clade IX
within picophytoplankton subcluster 5.1B (Scanlan et al.,

www.biogeosciences.net/13/4135/2016/ Biogeosciences, 13, 4135–4149, 2016
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Figure 2. Heat map showing the expression (median-centered
log2(TPM+1)) of all significantly differentially expressed tran-
scripts in all samples taken from mesocosm M1 (a) and outside (b).
Clustering of samples and transcripts was done using Euclidean
distance measures followed by average agglomerative clustering
(hclust(method= average)). Note that in (a) samples T2 and T4
cluster far away from the other samples. These were taken before
the phosphate spike. In M1, T4 is distinguished by a large cluster
of genes upregulated at that time point, most of which belong to the
Rhodobacteraceae family. The general clustering along the timeline
is evident inside and outside of M1.

2009; Figs. S3d, S4d). Clade II Synechococcus is typical
for oligotrophic tropical or subtropical waters offshore or
at the continent shelf, between 30◦ N and 30◦ S (Scanlan et
al., 2009). Contrary to the Nouméa lagoon, Oscillatoriophy-
cideae transcripts were lower than transcripts from Alpha-
and Gammaproteobacteria in M1 during phases P0 and P1
and only gained a similar level as in the lagoon in P2. We de-
tected substantially higher gene expression from viruses in
M1 compared to the Nouméa lagoon (Fig. 4). These were as-
signed mainly to Myoviridae such as S.SM2, S.SSM7, and
other cyanophages of the T4-like group, which, based on
their known host association (Frank et al., 2013; Ma et al.,
2014), suggest a viral component acting on the Synechococ-
cus fraction in the mesocosm. A burst of cyanophages might
have contributed to the observed low numbers and activ-
ity of Synechococcus in M1 compared to the lagoon during
P0 and P1 (Fig. 4). The recovery of Synechococcus popu-
lations in M1 during P2 mirrors the increase in the energy
and photosynthesis-related functional categories (Figs. S1,
S2) and in Synechococcus 16S tag abundance and cell counts
(Leblanc et al., 2016; Pfreundt et al., 2016).

Owing to the initial decay of Synechococcus in M1,
Alphaproteobacteria, mainly Rhodobacteraceae, SAR11,
and SAR116, dominated the metatranscriptome during P0
(Fig. 4). Gammaproteobacterial transcripts increased at the
beginning of P1, reaching similar levels as those of Al-
phaproteobacteria, and dropped again towards the end of
P1, when the Synechococcus population started recovering
(Fig. S3c). This suggests that the predominant Gammapro-
teobacteria profited from the organic matter released during
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more dispersed in the plot, thus transcription profiles are more di-
verse than outside. This might be due to the DIP fertilization creat-
ing a distinct ecological succession in M1.

bacterial decay. During P2, characterized by an abundant and
very active Synechococcus population, Alphaproteobacteria
gene expression increased again. Among these, only SAR11
transcripts decreased by about 75 %.

Unexpectedly, over 3 weeks, the temporal pattern of
SAR11 transcription appeared tightly coordinated with that
of SAR86 Gammaproteobacteria (Figs. S3, S4). We tested
pairwise correlations of alpha- and gammaproteobacterial
groups and found that SAR11 and SAR86 transcript ac-
cumulation were highly correlated in M1 and the Nouméa
lagoon (Fig. S6, Pearson correlation: 0.88/0.96, Spearman
rank correlation: 0.80/0.98 for M1 and lagoon, respectively).
This matches recent observations in both coastal and pelagic
ecosystems for coupling of SAR11 and SAR86 gene expres-
sion throughout a diel cycle, suggesting specific biological
interactions between these two groups (Aylward et al., 2015).
The fact that we now see this correlation over 3 weeks in
two replicate experiments (M1 and Nouméa lagoon sam-
pling) strengthens this hypothesis substantially. On the other
hand, transcriptional activity was decoupled from 16S-based
abundance estimates for both clades (Pfreundt et al., 2016).
Decoupling of specific activity and cell abundance has been
noted before for SAR11, with specific activity being lower
than cell abundance in the North Pacific (Hunt et al., 2013).
In microcosm experiments, proteorhodopsin transcripts in-
creased under continuous light while gene abundance de-
creased (Lami et al., 2009). No such information is available
for SAR86 in the literature, and the reasons for this decou-
pling remain elusive. We found no hint in the transcriptional
profile that could explain the burst in SAR11 16S tags in M1
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on day 8 (from 8 to 26 %) and in the lagoon on day 16 (from
5 to 28 %; Pfreundt et al., 2016).

3.2.2 Gene expression of oligotrophic marine
Gammaproteobacteria (OMG) and
Alteromonadaceae

A closer look into gammaproteobacterial activities
(Figs. S3c, S4c) revealed a dominant pool of transcripts
from the oligotrophic marine Gammaproteobacteria (OMG)
group (Cho and Giovannoni, 2004; Spring et al., 2013) and
Alteromonadaceae, both in M1 and the lagoon. The temporal
dynamics of the OMG group transcripts were very similar
in both locations. The relatively high activity detected for
OMG bacteria (similar to SAR11 activity) indicated that
these aerobic anoxygenic photoheterotrophs (Spring et
al., 2013) could thrive well both in M1 and the Nouméa
lagoon at the start of the experiment. However, transcript
accumulation declined constantly by 70–90 % until P2, then
increased again during P2 until the end of the experiment,
concurrent with Synechococcus activity and abundance.
This pattern clearly decouples OMG group activity from
phosphate availability, which was much higher in M1 than
in the lagoon during P1, and also from the identity of the
dominant diazotroph, which differed markedly between M1
and the lagoon in P2 (Turk-Kubo et al., 2015).

Alteromonadaceae-related transcript accumulation in-
creased > 2.5-fold in M1 in the first half of phase P1, replac-
ing the initially dominating OMG and SAR86 as the most
active Gammaproteobacteria, but dropping to initial values
in the second half of P1 (Fig. S3c). A burst in Alteromonas
was previously reported as a confinement effect when a ma-
rine mixed microbial population was enclosed in mesocosms
of smaller volumes (Schäfer et al., 2000). Immediately fol-
lowing the increase of Alteromonadaceae-related transcripts
and reaching similar abundances, Idiomarinaceae transcripts
increased 9-fold (Fig. S3c). This group of organotrophs is
phylogenetically related to Alteromonadaceae. Gammapro-
teobacteria such as the Alteromonadaceae occur usually at
rather low abundances in oligotrophic systems, but due to
their copiotrophic metabolism (Ivars-Martinez et al., 2008;
López-Pérez et al., 2012) increase in numbers and activity
under eutrophic conditions or when particulate organic mat-
ter becomes available (García-Martínez et al., 2002; Ivars-
Martinez et al., 2008). The fact that bacterial production
(measured by 3H-leucine assimilation) in M1 was not lim-
ited by phosphate (Van Wambeke et al., 2016) suggests that
the DIP spike in the evening of day 4 was not responsi-
ble for these observations, but rather that both, Alteromon-
adaceae and Idiomarinaceae, reacted to nutrients released
after the Rhodobacteraceae bloom on day 4 and the possibly
virus-induced lysis of Synechococcus. Idiomarinaceae and
Alteromonadaceae were transcriptionally very active com-
pared to their 16S tag-based abundance estimates (Pfreundt
et al., 2016), pointing at a tight regulation of their metabolic

activities as a response to the appearance of suitable energy
and nutrient sources.

3.2.3 Subdominant gene expression: Microalgae,
Flavobacteria, and Spirotricha

Other groups following the dominant classes Oscillato-
riophycideae, Alpha-, and Gammaproteobacteria regarding
transcript abundance in M1 and in the Nouméa lagoon were
Flavobacteria, and the eukaryotic Haptophyceae (Prym-
nesiophyceae), Chromerida and Spirotrichea (Figs. S3a
and S5b, respectively). Chromerida are photoautotrophic
alveolates and closely related to apicomplexan parasites.
Chromerida have been isolated only from stony corals in
Australian waters thus far (Moore et al., 2008; Oborník et
al., 2012). Our finding of significant gene expression from
Chromerida in samples from M1 (Fig. S3a), as well as the
Nouméa lagoon (Fig. S5b) indicates they were present in
substantial numbers in the open water. These findings are
consistent with the predicted wider distribution, higher func-
tional, and taxonomic diversity of chromerid algae (Oborník
et al., 2012).

3.2.4 Gene expression from nitrogen-fixing
cyanobacteria

We specifically examined the gene expression patterns of di-
azotrophic cyanobacteria (Fig. 5) and compared them with
parallel analyses of nifH amplicon sequences (Turk-Kubo et
al., 2015), whereas heterotrophic diazotrophs were orders
of magnitude less abundant (Pfreundt et al., 2016; Turk-
Kubo et al., 2015) and were not considered further. The
nifH amplicon analyses demonstrated a shift in M1 from
a diazotroph community composed primarily of Richelia
(diatom–diazotroph associations, DDAs, Foster et al., 2011)
and Trichodesmium during P0 and P1 (days 2–14) to approx-
imately equal contributions from UCYN-C (unicellular N2-
fixing cyanobacteria type C) and Richelia in phase P2 (days
15–23, Turk-Kubo et al., 2015). This shift was not observed
outside. Consistent with these findings in M1, we also mea-
sured dominant gene expression from Trichodesmium and
Richelia spp. until day 14, and Candidatus Atelocyanobac-
terium thalassa (UCYN-A) until day 8, and an increase in
transcripts mapping to the Epithemia turgida endosymbiont
and Cyanothece sp. ATCC51142 (Fig. 5a), classified within
the UCYN-C nifH group (Nakayama et al., 2014), in P2. The
temporal dynamics of gene expression for Richelia spp. and
Trichodesmium in M1 differed with Trichodesmium gene ex-
pression declining by > 97 % from initiation of the exper-
iment to day 12, while the gene expression from Richelia
species was stable until day 10 and then declined by ∼ 90 %
until day 16 (Fig. 5a). Except for the high (in relation to
other diazotrophs) Trichodesmium transcript abundances on
days 2 and 4; diazotroph transcript abundances matched well
the nifH-gene-based reports (Turk-Kubo et al., 2015). Results
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Figure 5. Gene expression in putative diazotrophic cyanobacteria inside M1 and in the Nouméa lagoon. Note the square-root scale for
both plots and the generally higher transcript abundances inside M1. Transcriptional activity is presented in TPM (transcripts per million
transcripts sequenced), normalized in between samples by TMM normalization (edgeR). Thus, plots can be directly compared, but values
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are also consistent for the lagoon samples, where transcripts
from Trichodesmium, Richelia and UCYN-A dominated the
diazotroph transcript pool throughout the experiment and
no UCYN-C transcripts were observed (Fig. 5b). Again,
the high relative Trichodesmium transcript abundances be-
tween days 2 and 12 were not mirrored by nifH-gene counts,
while the rest were (Turk-Kubo et al., 2015). Notably, Tri-
chodesmium transcripts were 1 order of magnitude lower in
the lagoon than in M1.

3.3 Specific analysis of relevant transcripts

The 100 most highly expressed nonribosomal transcripts, as
identified by highest mean expression in all samples, are pre-
sented in the Supplementary Table S1. Of them, 24 could not
be classified with the NCBI nucleotide or protein databases
and remain unknown. The most abundant transcript over-
all, both inside M1 and outside, was the non-protein-coding
RNA (ncRNA) Yfr103, discussed in Sect. 3.4. All classi-
fied transcripts on the top 9 ranks plus 28 additional tran-
scripts in M1 were related to Synechococcus and encoded
mainly photosynthetic proteins or represented ncRNAs. The
transcripts following on ranks 10–12 in M1 plus five ad-
ditional transcripts were affiliated with the recently defined
new class of marine Euryarchaeota Candidatus Thalassoar-
chaea (Martin-Cuadrado et al., 2015), consistent with their
detection by 16S analysis (Pfreundt et al., 2016). Other top
expressed transcripts were rnpB from various bacteria, one
tmRNA, and transcripts originating from the Rhodobacter-
aceae solely due to their expression peak on day 4. We also
detected three different abundant antisense RNAs (asRNAs),
among them one transcribed from the complementary strand
of Synechococcus gene Syncc8109_1164, encoding a hypo-
thetical protein.

3.3.1 Gene expression relevant for nitrogen
assimilation

To investigate gene-specific expression patterns, we analyzed
genes of interest (GOIs) from specific genera. Transcripts
mapping to the respective genes from different organisms
were extracted, searched against NCBI’s nonredundant pro-
tein database, and the hits were manually curated. This anal-
ysis was only performed for the M1 samples.

Genes indicative of different nitrogen utilization strategies
are shown in Fig. 6. The selected GOIs were related to ni-
trogen fixation, nitrate and nitrite reduction, the uptake and
assimilation of ammonia (transporter AmtA and glutamine
synthetase, glnA gene product), and the assimilation of urea.
Signal transducer PII (glnB gene product) and NtcA (nitro-
gen control transcription factor) were chosen as examples for
the most important regulatory factors (Forchhammer, 2008;
Huergo et al., 2013; Lindell and Post, 2001).

For Trichodesmium and UCYN-A (Candidatus Atelo-
cyanobacterium), the core genes of the nitrogenase enzyme
nifHDK were maximally expressed around day 4, while
UCYN-C and Chromatiaceae (Gammaproteobacteria) nif
expression peaked on day 20 (Fig. 6, nitrogen fixation). As
nitrogenase gene expression and activity is under diel con-
trol, the expression patterns we obtained can only repre-
sent diazotrophs that fix N2 during the light hours because
we sampled in the morning. The nifH phylogeny places the
endosymbiotic diazotroph of Rhopalodia gibba within the
UCYN-C group, but in contrast to other UCYN-C, these en-
dosymbionts were shown to fix N2 in the light (Prechtl et al.,
2004), explaining why our analysis captured their nif tran-
scripts, but none mapping to Cyanothece sp. ATCC 51142.
The nifH and nifD protein sequences of the R. gibba en-
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Figure 6. Expression of selected genes indicative for different nitro-
gen acquisition strategies. TPM counts were summed per taxonomic
family, the names of which are denoted to the right of each line. The
maximum TPM value for each group is written below the name of
that group. For plotting, values were scaled within each functional
group, but not for each line, resulting in the maximum color density
always representing the maximum TPM. After the name, in brack-
ets, is additional annotation information, if deviant from the name
of the functional group. The nifHDK transcript counts were sum-
marized for each taxon to avoid possible classification biases due to
multicistronic transcripts (i.e., a multicistronic transcript might be
classified as either of these depending on the best BLAST match).

dosymbiont and of Epithemia turgida, for which we report
substantial gene expression in Sect. 3.2.4, are 98 % identical,
making it likely that the partial nif transcript contigs reported
here could not be assigned unambiguously and probably be-
long to the Epithemia turgida symbiont or a close relative of
both. Our data correlate with nifH gene abundance measured
by Turk-Kubo et al. (2015). Note, that nif transcripts were
generally very rare in this analysis (at maximum 2 TPM),
making it very likely that below a certain expression thresh-
old, a transcript was not sequenced at all.

Most other bacteria require ammonia, nitrate, or organic
nitrogen sources such as urea, with ammonia being the en-
ergetically most favorable source. The importance of am-

monia was underscored by expression of the respective up-
take systems in many different taxa over long periods of
the experiment and expression of glutamine synthetase (GS)
(Fig. 6, ammonium transporter and glutamine synthetase),
the enzyme forming the central point of entry for the newly
assimilated nitrogen into the metabolism. Ammonia trans-
porters (AMT) were highly expressed in the Pelagibacter-
aceae, throughout days 2–20, in Synechococcus from day
10 to the end, and in Rhodobacteraceae on day 4 (coincid-
ing with maximum GS expression, and the global gene ex-
pression peak in this group, Fig. S3c). For the Halieaceae
(OM60(NOR5) clade), the dominant family within the OMG
group, AMT and GS expression did not coincide with their
general expression peaks on day 2. Instead, these genes as
well as the signal transducer PII were mainly expressed on
day 23, indicating that Halieaceae were nitrogen limited to-
ward the end of the experiment. Alteromonadaceae did not
express either of these genes maximally on day 8, when they
were reaching their highest abundance and transcription. In-
stead, they expressed urease, constituting the highest mea-
sured urease expression in the whole experiment (Fig. 6, ure-
ase subunit alpha). Urea can serve as an alternative nitrogen
source and is metabolized into ammonia. A shift towards
urea utilization was also seen in Rhodobacteraceae. While
most of the N-utilization transcripts analyzed here peaked
on day 4 (coinciding with general expression and abundance
peaks), urease expression in this group was highest from day
10 to 14 (Fig. 6, urease subunit alpha). Further, Prochloro-
coccus but not Synechococcus expressed urease, and both ex-
pressed ammonium transporters.

Nitrate reductase expression was detected on day 10
mainly in Synechococcus and in the Halomonadaceae. It is
not clear why this gene is so strongly expressed on that single
day, especially as nitrite reductase expression in Synechococ-
cus was detectable over a longer period, from day 12 to day
20 (Fig. 6, nitrate reductase and nitrite reductase). Other taxa
showed substantial nitrite reductase expression only on day 6
(Vibrionaceae), day 2 and days 14–16 (Rhodobacteraceae),
or day 10 (SAR116).

The expression of the NtcA transcription factor itself can
be an indicator for the nitrogen status, especially in ma-
rine picocyanobacteria (Lindell and Post, 2001; Tolonen
et al., 2006). Therefore, the clear peaks for NtcA expres-
sion in Prochlorococcus on days 12–14, but in Synechococ-
cus on day 20 indicate their divergent relative nitrogen de-
mands (Fig. 6, NtcA). Noteworthy, ntcA expression was
much stronger in Prochlorococcus than in Synechococcus
compared to their 16S-based abundances and Prochlorococ-
cus did not express it during its first abundance peak on day 6,
but only during the second one (Van Wambeke et al., 2016).
The same was true for Synechococcus and its first abundance
peak on day 12.
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Figure 7. Heat map showing selected genes indicative for different
phosphorus acquisition strategies (a) and genes for light-absorbing
proteins (b). TPM counts were summed up per taxonomic fam-
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always representing the maximum TPM. After the name, in brack-
ets, is additional annotation information, if deviant from the name
of the functional group.

3.3.2 Expression of genes involved in the assimilation
of phosphate and light utilization

In addition to nitrogen, genes involved in phosphate assim-
ilation were analyzed in more detail. Expression of alkaline
phosphatase (AP) was prominent between days 12 and 23
in different organisms (Fig. 7, alkaline phosphatase) and not
expressed before the DIP fertilization, although phosphate
levels were similar before the fertilization event and after
day 13 (Pfreundt et al., 2016), and phosphate turnover time
reached prefertilization levels after day 20 (Berthelot et al.,
2015). Alteromonadaceae increased AP expression steadily
from day 10 to 14. This suggests that the microbial com-
munity was initially adapted to the ambient phosphate lev-
els and not phosphate limited, and that the post-fertilization
community had to actively acquire phosphorus (P) to fulfil
their quota. In a companion paper N limitation, but not P
limitation, was evident for heterotrophic bacteria through-
out the experiment (Van Wambeke et al., 2016). The dom-

inant photoautotroph, Synechococcus, expressed the gene for
the sulfolipid biosynthesis protein, sqdB, in agreement with
Synechococcus abundance (Fig. 7b, sulfolipid biosynthesis).
Van Mooy and colleagues (Van Mooy et al., 2006, 2009) sug-
gested that marine picocyanobacteria could minimize their
P requirements through the synthesis of sulphoquinovosyl-
diacyl glycerols, for which sqdB is required, and substitute
phospholipids. Therefore, our finding of a high expression of
the Synechococcus sqdB gene, especially towards the end of
the experiment is consistent with this idea and with the in-
creasing Synechococcus cell count towards the end of the ex-
periment, when phosphate became limiting again (Pfreundt
et al., 2016).

TonB-dependent transport allows large molecules to pass
through the membrane. This strategy of exploiting larger
molecules as nutrient sources is thought to be prevalent in
SAR86 bacteria (Dupont et al., 2012) and indeed we found
the highest expression of tonB genes for SAR86 at the be-
ginning of the experiment, when phosphate was low. De-
spite increasing SAR86 cell numbers towards day 10 (Van
Wambeke et al., 2016), tonB expression decreased after the
DIP spike, indicating a role in phosphate acquisition for the
TonB transporters in SAR86. Interestingly, Halieaceae ex-
pressed tonB genes together with patatin phospholipase on
day 2 and weaker on day 23, indicating that phospholipids
were utilized as a phosphate source prior to DIP fertilization
when DIP availability was limited, and again at the end of
the experiment when DIP was depleted again.

Proteorhodopsin was highly expressed, especially by
SAR11 (Pelagibacter), underlining the importance of light
as an additional source of ATP for this group. Bacteri-
orhodopsin gene expression was reported to depend on the
ambient light conditions in several different bacteria, in-
cluding Flavobacteria and SAR11 (Gómez-Consarnau et al.,
2010; Kimura et al., 2011; Lami et al., 2009). This is con-
sistent with our observation of upregulated proteorhodopsin
expression towards the end of the experiment in the Pelag-
ibacteraceae (Fig. 7b). There were also archaeal rhodopsins
expressed, but at a ∼ 2 orders of magnitude lower level.

3.4 Highly expressed noncoding RNA in
picocyanobacteria

Although largely unexplored in nonmodel bacteria, ncRNAs
can play important regulatory roles, e.g., in cyanobacteria in
the adaptation of the photosynthetic apparatus to highlight
intensities (Georg et al., 2014) or of the nitrogen assimila-
tory machinery to nitrogen limitation (Klähn et al., 2015).
During the analysis of the 100 transcripts with the highest
mean abundance, we found that 14 of these transcripts corre-
sponded to the recently identified noncoding RNA (ncRNA)
Yfr103. The Yfr103 transcripts were mapped to 14 differ-
ent loci, from these 12 could be assigned to Synechococ-
cus, 1 to Prochlorococcus, and 1 to picocyanobacteria as it
was equally similar to both genera. The expression of these
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14 Yfr103 isoforms was plotted over the time course of
the experiment, indicating their almost constitutive expres-
sion (Fig. S7). Yfr103 was described first as the single most
abundant ncRNA in laboratory cultures of Prochlorococcus
MIT9313 (Voigt et al., 2014) and here we show Yfr103 is
the single most abundant transcript over the entire microbial
population. These data suggest an important function of this
ncRNA in marine Synechococcus and Prochlorococcus.

4 Conclusions

Here, we have studied how mesocosm confinement and DIP
fertilization influenced transcriptional activities of the mi-
crobial community during the VAHINE experiment in the
southwest Pacific. One of the most pronounced effects we
observed was transcript diversification within the mesocosm,
pointing to induced transcriptional responses in several tax-
onomic groups compared to a more stable transcript pool in
the lagoon. Despite this diversification, analysis of differen-
tially expressed transcripts amongst time points showed that
global transcriptional changes roughly followed the timeline
in both M1 and the lagoon. This confirms results from 16S-
based community analysis, where time was shown to be the
factor most strongly influencing bacterial succession in both
locations. Gene expression inside M1 was dominated by Al-
phaproteobacteria until day 12, with Rhodobacteraceae ex-
hibiting a prominent peak on day 4. This was followed by a
burst in Alteromonadaceae-related gene expression on days
8 and 10 and a peak in transcript abundance from Idiomari-
naceae on day 10 in rapid succession. In the lagoon, Syne-
chococcus transcripts were the most abundant throughout the
experiment, and similar abundances were reached in M1 only
in P2. We further observed a tight coupling between gene ex-
pression of SAR86 and SAR11 over the whole experiment.
Such coupling has been observed previously during the diel
cycle (Aylward et al., 2015), whereas we have observed this
phenomenon here for a longer period of time, both inside and
outside (Fig. S6). Such concerted activity changes between
taxonomically distinct groups should affect biogeochemical
transformations and should be governed by structured eco-
logical conditions. However, the environmental determinants
driving this coupling remain to be identified.

The specific gene expression of diazotrophic cyanobac-
teria could be mainly attributed to Trichodesmium and
Richelia intracellularis strains (diatom–diazotroph associ-
ations). UCYN-A (Candidatus Atelocyanobacterium) tran-
scripts were the third most abundant class coming from di-
azotrophic cyanobacteria and declined both inside and out-
side after day 4, consistent with both 16S- and nifH-based
analyses. Transcripts related to the Epithemia turgida en-
dosymbiont and Cyanothece ATCC 51142 increased in P2,
relative to P0 and P1, consistent with the observed increase
in UCYN-C nifH tags after day 14 in M1. Hence, we con-
clude that an unclassified relative of the Epithemia turgida

endosymbiont is the main contributor to UCYN-C N2-fixing
cyanobacteria.

5 Data availability

All raw sequencing data can be downloaded from NCBI’s
Sequence Read Archive (SRA) under the accession number
PRJNA304389 (Pfreundt et al., 2015).

The Supplement related to this article is available online
at doi:10.5194/bg-13-4135-2016-supplement.
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