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Abstract. In oligotrophic tropical and subtropical oceans,
where strong stratification can limit the replenishment of sur-
face nitrate, dinitrogen (N2) fixation by diazotrophs can rep-
resent a significant source of nitrogen (N) for primary pro-
duction. The VAHINE (VAriability of vertical and tropHIc
transfer of fixed N2 in the south-wEst Pacific) experiment
was designed to examine the fate of diazotroph-derived ni-
trogen (DDN) in such ecosystems. In austral summer 2013,
three large (∼ 50 m3) in situ mesocosms were deployed for
23 days in the New Caledonia lagoon, an ecosystem that typ-
ifies the low-nutrient, low-chlorophyll environment, to stim-
ulate diazotroph production. The zooplankton component of
the study aimed to measure the incorporation of DDN into
zooplankton biomass, and assess the role of direct diazotroph
grazing by zooplankton as a DDN uptake pathway. Inside
the mesocosms, the diatom–diazotroph association (DDA)
het-1 predominated during days 5–15 while the unicellular
diazotrophic cyanobacteria UCYN-C predominated during
days 15–23. A Trichodesmium bloom was observed in the
lagoon (outside the mesocosms) towards the end of the ex-
periment. The zooplankton community was dominated by
copepods (63 % of total abundance) for the duration of the

experiment. Using two-source N isotope mixing models we
estimated a mean ∼ 28 % contribution of DDN to zooplank-
ton nitrogen biomass at the start of the experiment, indicating
that the natural summer peak of N2 fixation in the lagoon was
already contributing significantly to the zooplankton. Stimu-
lation of N2 fixation in the mesocosms corresponded with
a generally low-level enhancement of DDN contribution to
zooplankton nitrogen biomass, but with a peak of ∼ 73 %
in mesocosm 1 following the UCYN-C bloom. qPCR analy-
sis targeting four of the common diazotroph groups present
in the mesocosms (Trichodesmium, het-1, het-2, UCYN-C)
demonstrated that all four were ingested by copepod grazers,
and that their abundance in copepod stomachs generally cor-
responded with their in situ abundance. 15N2 labelled grazing
experiments therefore provided evidence for direct ingestion
and assimilation of UCYN-C-derived N by the zooplankton,
but not for het-1 and Trichodesmium, supporting an impor-
tant role of secondary pathways of DDN to the zooplankton
for the latter groups, i.e. DDN contributions to the dissolved
N pool and uptake by nondiazotrophs. This study appears to
provide the first evidence of direct UCYN-C grazing by zoo-
plankton, and indicates that UCYN-C-derived N contributes
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significantly to the zooplankton food web in the New Cale-
donia lagoon through a combination of direct grazing and
secondary pathways.

1 Introduction

Dinitrogen (N2) fixation by diazotrophs is considered to be
the most important external source of reduced nitrogen (N)
for the ocean, exceeding atmospheric and riverine inputs
(Gruber et al., 2004). The nitrogenase enzyme gives dia-
zotrophs the capacity to reduce N2 gas into bioavailable am-
monium. In the oligotrophic tropical and subtropical oceans,
where strong stratification limits the upward mixing of ni-
trate replete deep water into the photic zone, this new N
is particularly important, sustaining ∼ 50 % of primary pro-
ductivity (Karl et al., 1997). In addition, some experimen-
tal research indicates that N2 fixation will be enhanced by
rising atmospheric carbon dioxide (CO2) concentrations and
ocean warming, highlighting a potentially increasingly im-
portant role of diazotrophs in the oceanic carbon and N cy-
cles (Hutchins et al., 2007, 2009; Levitan et al., 2007; Sheri-
dan and Landry, 2004).

Stable isotope analysis has served as a powerful tool for
investigating the contribution of new N to pelagic food webs
(Carpenter et al., 1999; Hannides et al., 2009; Landrum et
al., 2011; Mompean et al., 2013; Montoya et al., 2002). N2
gas has an N isotope ratio (δ15N) of 0 ‰ and preferential
uptake of 14N leads to δ15N values as low as −2.5 ‰ for
diazotrophs (Montoya et al., 2002). By comparison, the av-
erage ocean nitrate δ15N value is∼ 5 ‰ (Sigman et al., 1997,
1999), leading to higher δ15N values for primary producers
using nitrate as their nitrogen source. The δ15N values of
zooplankton reflect the balance between these contrasting N
sources, the relative contributions of which can be estimated
using a two-part mixing model (Montoya et al., 2002). This
modelling approach has been used to demonstrate a signifi-
cant contribution of diazotroph-derived N (DDN) to partic-
ulate matter and zooplankton biomass (Aberle et al., 2010;
Landrum et al., 2011; Loick-Wilde et al., 2012; Mompean et
al., 2013; Montoya et al., 2002; Sommer et al., 2006; Wan-
nicke et al., 2013), and transfer of DDN beyond zooplank-
ton to micronekton (Hunt et al., 2015). However, despite this
measured contribution of DDN, the predominant pathways of
DDN into marine food webs are still in question (Wannicke
et al., 2013).

Cyanobacteria are considered the major N2-fixing mi-
croorganisms in the ocean (Zehr, 2011). The open ocean
diazotrophic cyanobacteria can be divided into three
groups (Luo et al., 2012): (1) nonheterocystous filamen-
tous cyanobacteria, e.g. Trichodesmium spp. (Capone et al.,
2005); (2) heterocystous cyanobacteria frequently found in
association with diatoms (diatom–diazotroph associations;
DDAs; see review by Foster and O’Mullan, 2008), e.g.

Richelia in association with Rhizosolenia and Hemiaulus
(Rhizosolenia and Hemiaulus are often referred to and quan-
tified by the Richelia strain that associates with each, het-
1 and het-2, respectively); and (3) unicellular cyanobacte-
rial lineages (UCYN-A, B, and C), with a size range of be-
tween 1 and 6 µm (Moisander et al., 2010). Until recently
research related to the role of fixed N in marine food webs
has largely focussed on Trichodesmium spp. It is generally
considered that the majority of Trichodesmium DDN reaches
the food web through the release of dissolved N (Capone et
al., 1994; Glibert and Bronk, 1994; Mulholland and Bronk,
2001, 2004) which is taken up by heterotrophic and au-
totrophic microbes (Bonnet et al., 2016a), and which are
subsequently consumed by the zooplankton (Capone et al.,
1997; O’Neil and Roman, 1992). Dissolved N is released
through a combination of endogenous and exogenous pro-
cesses, including viral lysis (Hewson et al., 2004), zooplank-
ton sloppy feeding (O’Neil et al., 1996), or programmed
cell death (Berman-Frank et al., 2004). Recent research has
demonstrated that UCYN can release similar amounts of dis-
solved N to Trichodesmium (Berthelot et al., 2015a).

The direct pathway of DDN to pelagic food webs,
via zooplankton grazing, has been considered limited due
to cyanobacteria possessing cyanotoxins (Guo and Tester,
1994), large cell size in the case of filamentous cyanobac-
teria such as Trichodesmium spp. and Nodularia spp., and
poor nutritional quality (O’Neil and Roman, 1992; O’Neil,
1999). Experimental studies of direct zooplankton grazing
on cyanobacteria have yielded conflicting results. Reduced
feeding and egg production rates was measured for the Baltic
Sea calanoid copepods Eurytemora affinis and Acartia bi-
filosa when fed a mixed cyanobacteria diet (Sellner et al.,
1996), while others reported that A. bifilosa feeding and egg
production rates were unaffected by a diet of Nodularia spp.
(Koski et al., 2002). In another Baltic Sea study, direct graz-
ing of cyanobacteria was demonstrated to be more preva-
lent amongst Cladocera (small crustacean) than copepods,
and that they favoured the cyanobacterium Aphanizomenon
over Nodularia (Wannicke et al., 2013). Direct grazing on
Trichodesmium spp. has been demonstrated for the harpacti-
coid copepods Macrosetella gracilis, Miracia efferata, and
Oculosetella gracilis in the Caribbean (O’Neil et al., 1996;
O’Neil and Roman, 1994) and Acartia tonsa in the North At-
lantic (Guo and Tester, 1994). In the North Atlantic, stable
isotope measured zooplankton DDN uptake suggested en-
hanced uptake when DDA abundance was higher than Tri-
chodesmium spp., though the actual DDN uptake pathways
could not be determined (Montoya et al., 2002). Combined,
the results of previous research indicate that direct grazing
can be an important pathway of DDN into marine food webs,
but that it is dependent on both the cyanobacteria and zoo-
plankton community composition.

The New Caledonian coral lagoon in the south-western
Pacific is a tropical low-nutrient, low-chlorophyll (LNLC)
system. Oligotrophic ocean water enters the lagoon from
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the south and is driven north by the trade winds and tidal
forcing before exiting through several deep inlets in the
intertidal barrier reef that forms the western boundary of
the lagoon (Ouillon et al., 2010). Primary productivity is
N limited throughout the year (Torréton et al., 2010), giv-
ing N2-fixing microorganisms a competitive advantage over
nondiazotrophic organisms. High abundance of diazotrophs
have been reported during the austral summer, for both Tri-
chodesmium spp. (Rodier and Le Borgne, 2010) and UCYN
(Biegala and Raimbault, 2008). The New Caledonian la-
goon therefore represents an ideal location to investigate
the ecosystem role of diazotrophs. Accordingly, this location
was selected for the implementation of the 23-day VAHINE
(VAriability of vertical and tropHIc transfer of fixed N2 in
the south-wEst Pacific) mesocosm experiment in the austral
summer of 2013. A full description of this experiment is pro-
vided by Bonnet et al. (2015), with core details outlined in
the methods below. VAHINE was designed specifically to
investigate the fate of DDN in the ecosystem, i.e. its trans-
fer to the planktonic food web and its contribution to ex-
port production (Bonnet et al., 2016b). Here, we present the
zooplankton component of the VAHINE program. Our aims
were (1) to measure the contribution of DDN to zooplank-
ton biomass, and (2) investigate the role of direct grazing by
zooplankton on diazotrophs as a pathway for DDN into the
zooplankton food web.

2 Material and methods

2.1 Mesocosms’ description

Briefly, during VAHINE, three large-volume (∼ 50 m3)

mesocosms (M1–3) were deployed 28 km off the coast
(22◦9.10 S, 166◦26.90 E) in the south-west (Noumea) of the
New Caledonian lagoon, from 13 January (day 1) to 4 Febru-
ary 2013 (day 23). The site was located at a depth of 25 m, in
close proximity to Boulari passage and thus strongly influ-
enced by oceanic oligotrophic waters coming from outside
the lagoon. Each mesocosm enclosure comprised a cylindri-
cal bag 2.3 m in diameter and 15 m deep. The mesocosms
open tops were maintained at a height of ∼ 1 m above the
surface to prevent external water additions. Screw-top plastic
bottles (250 mL) were attached to the bottom of the meso-
cosms to collect sinking particles, and these were serviced
daily by scuba divers. To alleviate potential phosphorus lim-
itation and intentionally stimulate diazotrophy, the meso-
cosms were fertilized with ∼ 0.8 µmol L−1 of dissolved in-
organic phosphorus (DIP) on day 4 of the experiment. Phys-
ical conditions (Bonnet et al., 2016c), primary production,
and N2 fixation rates (Berthelot et al., 2015b) were moni-
tored daily in the mesocosms and in an adjacent control site
throughout the experiment (hereafter called lagoon waters),
the methods and results of which are described in detail in
the cited publications.

2.2 Zooplankton sampling and processing

Zooplankton were sampled on seven occasions from the
three mesocosms and lagoon waters (the control site), at
intervals of every 3–4 days, always between 09:30 and
10:30 GMT+ 11. Sampling was done with a 30 cm diameter,
100 cm long, 80 µm mesh net fitted with a filtering cod end.
On each sampling occasion, three vertical hauls (hereafter
called Samples 1, 2, and 3) were collected from the upper
10 m of each site. The total volume sampled on each occa-
sion (sum of the three nets) was 2.13 m3, representing 4 %
of the total mesocosm volume. As reported below, zooplank-
ton densities did not vary appreciably over the course of the
experiment, indicating that the sampling did not significantly
impact the mesocosm communities.

All zooplankton samples were stored in a cooler and re-
turned to the Amédée Island field station located 1 nauti-
cal mile from the mesocosms site for processing within 30–
60 min of the final net haul. Zooplankton Sample 1 was split
in half, and one half was preserved in 4 % buffered formalde-
hyde for community composition analysis and the other half
was filtered onto a pre-combusted 25 mm GF/F filter for mea-
surement of total zooplankton biomass. Sample 2 was filtered
onto a pre-combusted (450 ◦C, 4 h) 25 mm GF/F filter for sta-
ble isotope analysis. Sample 3 was drained using a 64 µm
sieve within 60–90 min of collection, and held in its original
collection jar in an insulated cool container with ice packs
until returning to the Noumea laboratory for processing∼ 6 h
later. In the Noumea laboratory, Sample 3 was filtered onto
a 2 µm polycarbonate filter and then frozen in a Cryovial at
−80 ◦C for molecular analysis of zooplankton gut contents.

Taxonomic analysis of the zooplankton community was
completed using a stereo microscope, from a 1/8 to 1/16
fraction of each sample. Specimens were identified to the
level of order and enumerated. An average of 960 individ-
uals were counted per sample and we estimated an enumera-
tion error of 6.4 % (Gifford and Caron, 2000). The category
copepod nauplii comprised a mix of calanoid, cyclopoid, and
poecilostomatoid copepods. No flowmeter was used with the
nets and counts were converted to individuals m−3 assuming
that the net was sampled with 100 % efficiency. Samples for
biomass estimation were rinsed with ammonium formate to
remove salt, dried at 50 ◦C for 48 h, and weighed to the near-
est 0.01 mg using a microbalance. Values were converted to
mg dry weight (DW) m−3.

Zooplankton samples for stable isotope analysis were first
dried at 50 ◦C for 48 h. Zooplankton were subsequently re-
moved from the GF/F filter, homogenized using a mortar and
pestle, and packaged into ∼ 1 mg subsamples. Stable isotope
analysis of these samples was performed at the IsoEnviron-
mental Laboratory, Rhodes University, South Africa, with
a Europa Scientific 20–20 isotope ratio mass spectrometer
(IRMS) linked to a preparation unit (ANCA SL). Casein and
a mixture of beet sugar and ammonium sulfate were used
as internal standards and were calibrated against the Interna-
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tional Atomic Energy Agency (IAEA) standards CH-6 and
N-1 and the IRMS certified reference material EMA-P2 (see
Certificate BN/132357). δ13C and δ15N values were deter-
mined in parts per thousand (‰) relative to external stan-
dards of Vienna Pee Dee Belemnite and atmospheric N. Re-
peated measurements of an internal standard indicated mea-
surement precision of±0.09 and±0.19 ‰ for δ13C and δ15N
values, respectively.

Samples of suspended particulate matter (PNsusp) were
collected daily in each mesocosm and the lagoon for stable
isotope analysis, to provide baseline δ15N values for the pool
of particles available for zooplankton grazing. Discrete water
samples were collected daily from 6 m depth and filtered onto
pre-combusted 25 mm GF/F filters. δ15N values were deter-
mined by high-temperature combustion coupled with isotope
ratio mass spectrometry using a Delta Plus Thermo Fisher
Scientific mass spectrometer (Knapp et al., 2015).

2.3 Zooplankton DNA extraction and quantitative
PCR (qPCR)

Individual copepods were picked from each filter and iden-
tified to order (calanoid, harpacticoid, or cyclopoid). Cope-
pods were then placed in autoclaved artificial seawater
(ASW) and visually inspected under a dissecting micro-
scope for contamination from phytoplankton and detritus
particularly in the mouthparts and appendages. Large parti-
cles were picked clean from the mouthparts and appendages
with 20 µm Minutien pins (Fine Science Tools, Foster City,
CA, USA) before subsequently rinsing through five sterile
baths of autoclaved ASW water and a final inspection un-
der an epifluorescence microscope equipped with blue (450–
490 nm) and green (510–560 nm) excitation filters (Boling
et al., 2012). Number of copepods and composition varied
with each tow and can be found in Table 1. Aside from
the day 5 samples from M1, where copepods were extracted
by order, all copepods per sample were pooled together for
extraction. DNA extraction was performed with the Qiagen
DNeasy® Blood and Tissue Kit using slight modifications to
the manufacturers “Animal Tissue (Spin-Column)” protocol.
An overnight (12 h) lysis step was performed, all reagent vol-
umes were 50 % of the manufacturer’s suggestions, and the
final elution volume was 35 µL in the provided “Buffer AE.”

For the qPCR assays, we used the TaqMan primers and
probes described by Church et al. (2005) for Trichodesmium
spp., het-1 (Richelia associated with the diatom Rhizosole-
nia) and het-2 (Richelia associated with the diatom Hemi-
aulus), and unicellular group C (UCYN-C) primers and
probes described by Foster et al. (2007). The four target di-
azotrophs were selected based on their being the most abun-
dant N2 fixers throughout the mesocosm experiment (Turk-
Kubo et al., 2015). For all TaqMan PCR, the 20 µL reac-
tions contained 10 µL of 2X Fast Advanced Master Mix (Ap-
plied Biosystems, Stockholm, Sweden), 5.5 µL of nuclease-
free water, 1.0 µL each of Forward and Reverse Primer

(0.5 µmol L−1), 0.5 µL of fluorogenic probe (0.25 µmol L−1),
and 2 µL of template. Each reaction was performed in trip-
licate and 2 µL of no template controls (NTCs) was run. All
PCR amplifications were conducted in an ABI Step One Plus
system (Applied Biosystems) with the following parameters:
50 ◦C for 2 min, 95 ◦C for 20 s, and 40 cycles of 95 ◦C for
1 s, followed by 60 ◦C for 20 s. Gene copy abundances were
calculated from the mean number of cycle (Ct ) of the three
replicates and the standard curve for the appropriate primer
and probe set (see below). In samples where one or two of
the three replicates produced an amplification signal, these
are noted as detectable but not quantifiable.

For each primer and probe set, duplicate standard curves
were made from 10-fold dilutions ranging from 1 to 108

copies per reaction. The standards curves were synthesized
359 bp gene fragments (gBlocks, Integrated DNA Technolo-
gies, Leuven, Belgium) of the nifH gene. Regression analy-
ses of the number of cycles (Ct ) of the standard curves were
calculated in Excel.

2.4 Zooplankton uptake and incorporation of
diazotroph nitrogen: 15N2 labelled grazing
experiments

Uptake and incorporation of diazotroph nitrogen by zoo-
plankton was assessed by a series of three 15N2 labelling
experiments (Fig. 1). Each experiment consisted of 15N2 la-
belled bottle incubations of freshly collected zooplankton
in the presence of natural phytoplankton assemblages. The
15N2 label was taken up by the diazotroph in the incubation
bottle and used as a marker of zooplankton diazotroph in-
gestion. For each experiment (E1, E2, and E4), zooplankton
was collected after sunset (18:00–19:00 GMT+ 11) by re-
peated 1 m s−1 vertical hauls with the same net used for day-
time zooplankton collections (see above), in close proxim-
ity to the mesocosms site. Live zooplankton were collected
with a 64 µm sieve and placed in three 25 L polycarbon-
ate carboys (two net tows per carboy) filled with seawater
collected using a Teflon pump (Saint-Gobain Performance
Plastics) from M1 (1 m depth) on day 12 for experiment
E1, during a DDA-dominated period (> 80 % of diazotroph
community comprised Richelia associated with Rhizosole-
nia, i.e. het-1); from M2 (1 m depth) on day 17 for exper-
iment E2, during a UCYN-C bloom (comprising > 80 % of
diazotroph community); and from lagoon waters (1 m depth)
on day 23 for E4 during a Trichodesmium spp. bloom (com-
prising > 80 % of diazotroph community; Turk-Kubo et al.,
2015). Although each experiment was > 80 % dominated by
a single diazotroph species, it must be noted that each con-
tained other diazotroph species. Carboys were filled to the
top, leaving no head space, and tightly closed with septum
caps. Carboys were immediately amended with 26 mL 15N2
gas (Cambridge isotopes, 98.9 at. % 15N) using a gas-tight
syringe, gently agitated 20 times to facilitate the 15N2 bubble
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Table 1. Summary of copepod samples processed for qPCR, targeting Trichodesmium spp., het-1 and the het-2 (DDA), and unicellular group
C (UCYN-C). All copepods per sample were pooled during the DNA extraction protocol. Site refers to the three VAHINE mesocosms (M1–
3) and the lagoon waters (La). Samples V3–V4 were from the period prior to phosphorous fertilisation (P0; days 0-04); samples V10–V26
were from the period dominated by DDA (het-1) (P1; days 5–14); samples V34–V52 were from the period dominated by UCYN-C (P2; days
15–23). Het-1 is Richelia associated with Rhizosolenia; het-2 is Richelia associated with Hemiaulus; bd is below detection; dnq is detectable
but not quantifiable; number in parenthesis is number of targets hit in three replicates.

Sample Day Site Total no. Calanoid Cyclopoid Harpacticoid Het-1 nifH Het-2 nifH Trichodesmium UCYN-C nifH
ID copepods (n) (n) (n) (n) copies/copepod copies/copepod nifH copies/copepod copies/copepod

V3 2 M2 35 13 13 9 173.31 62.14 264.4 dnq (1)
V4 2 La 22 10 7 5 bd dnq (1) bd bd
V10 5 M3 21 11 7 3 bd bd bd bd
V11 5 M2 7 2 3 2 bd bd bd bd
V17 9 M3 20 12 6 2 dnq (1) bd bd dnq (1)
V18 9 M2 31 10 16 5 dnq (1) bd bd dnq (2)
V19 9 M1 20 9 6 5 47.17 bd bd 49.87
V20 9 La 26 10 13 3 16.52 bd bd bd
V25 12 M3 22 7 10 5 dnq (1) bd bd bd
V26 12 M2 29 11 9 9 34.83 dnq (1) bd dnq (1)
V34 16 M2 18 5 8 6 181.37 n/a 277.94 6.48
V35 16 M1 21 10 9 2 bd bd dnq (1) dnq (2)
V36 16 La 31 16 12 3 128.92 bd dnq (1) dnq (1)
V41 19 M3 27 15 9 3 26.84 bd dnq (1) dnq(2)
V44 19 La 42 35 6 1 dnq (2) bd bd dnq(1)
V49 23 M3 15 9 5 1 dnq (1) bd dnq (2) bd
V50 23 M2 12 7 3 2 bd bd bd dnq (2)
V51 23 M1 11 6 4 1 bd bd bd 28.72
V52 23 La 20 9 4 7 dnq (1) bd dnq (2) 4.58

dissolution, and incubated in situ on a mooring line close to
the mesocosms site at the sampling depth (1 m) for 24–96 h.

Zooplankton T0 atomic enrichment was measured in trip-
licate for E1 and the average value was used as the baseline
for E1, E2, and E4. Incubation termination times were 24,
48, and 72 h for E1; 24, 72, and 96 h for E2; 24 and 40 h
for E4 (Table 2). After incubation, animals were recovered
from each carboy by gravity filtration onto a 64 µm mesh
sieve, transferred to a 20 µm polycarbonate filter, and frozen
until the end of the VAHINE experiment. Subsequently, the
zooplankton on the filters were identified to order and enu-
merated under a stereo microscope (Table 2) before being
dried at 24 h at 60 ◦C. In all cases, composition comprised an
87–100 % mix of poecilostomatoid and calanoid copepods.
All individuals from each time point were pooled for mea-
surement of bulk zooplankton PON 15N enrichment, using a
Delta Plus Thermo Fisher Scientific isotope ratio mass spec-
trometer (Bremen, Germany) coupled with an elemental ana-
lyzer (Flash EA, Thermo Fisher Scientific). Since the role of
the microbial loop in making diazotroph nitrogen available to
the zooplankton was not determined, the experiments are in-
dicative of diazotroph nitrogen uptake and incorporation by
the zooplankton but not necessarily the pathways.

The atomic enrichment of the dominant diazotrophs dur-
ing each experiment were measured after 24 h incubation in
a parallel experiment, using the same enrichment procedure
as the zooplankton grazing experiment, designed to trace the
fate of DDN in phytoplankton (Berthelot et al., 2015b; Bon-
net et al., 2016a, c). Accordingly, atomic enrichment was ob-

tained for UCYN-C (E2) and Trichodesmium spp. (E4), but
not for DDA (E1).

2.5 Statistical analyses

A sample by taxon matrix was created using taxon-specific
densities. Densities were fourth root transformed and the per-
centage similarity between stations from all surveys was cal-
culated using the Bray–Curtis similarity index (Field et al.,
1982). The similarity matrix was then ordinated using non-
metric multidimensional scaling (NMDS), summarizing be-
tween sample variation in community composition into two
dimensions. This multivariate analyses were performed using
PRIMER 6 (Clarke and Warwick, 2001). The NMDS had a
stress value of 0.23. The first two dimensions of the ordina-
tion were plotted against sampling date for each mesocosm
and the lagoon site to enable visual assessment of the change
in zooplankton composition over the course of the experi-
ment.

2.6 Calculation of DDN contribution to zooplankton
biomass

The contribution of DDN (%) to zooplankton δ15N (ZDDN)
values in each sample collected during this study was calcu-
lated using a two-source mixing model following Sommer et
al. (2006):

%ZDDN= 100×

(
δ15Nzpl− δ

15Nzplref

TEF+ δ15Ndiazo − δ15Nzplref

)
, (1)
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Table 2. Summary of three 15N2 labelled diazotroph grazing experiments, indicating number of zooplankton analysed per hourly time period.

Number of zooplankton analysed

Experiment Day Dominant 0 h 24 h 48 h 72 h 96 h
diazotroph (40 h )

E1 12 DDA 70 45 36 15
E2 17 UCYN-C 90 57 28
E4 23 Trichodesmium spp. 37 (15)

Figure 1. Schematic of field 15N2 incubations to measure zooplank-
ton uptake and incorporation of diazotroph nitrogen.

where δ15Nzpl is the isotopic signature of the zooplankton
collected during the experiment; TEF is the trophic enrich-
ment factor, which was set at 2.2± 0.3 ‰ (McCutchan et al.,
2003; Vanderklift and Ponsard, 2003); δ15Ndiazo is the iso-
topic signature of diazotrophs, for which we used a range of
−1 to−2 ‰ (Montoya et al., 2002); δ15Nzplref is the isotopic
signature of zooplankton assuming nitrate-based phytoplank-

ton production, and for this we used a value of 6 ‰ from
the ocean west of New Caledonia where nitrogen fixation is
reduced (Hunt et al., 2015). Minimum, average, and maxi-
mum % ZDDN were estimated using the lower, mean, and
upper bounds of TEF and the δ15Ndiazo values cited above.
Daily DDN production ingested by the zooplankton each day
(mg dry weight day−1) was calculated as follows:

daily DDN ingested day−1
=

(
N production + N excretion

assimilation efficiency

)
×% ZDDN, (2)

where N content (mg DW) was calculated using a mean
value of 4.25 % for a mixed zooplankton community in the
Uvea lagoon (Le Borgne et al., 1997); daily zooplankton pro-
duction (mg DW d−1) was calculated using a production-to-
biomass ratio of 37.5 % (Le Borgne, 1987); daily excretion
was calculated assuming a net growth efficiency (K) of 0.513
(Le Borgne et al., 1997); and assimilation efficiency was set
at 0.7 (Le Borgne et al., 1997). The range of daily DDN pro-
duction ingested by zooplankton was estimated using the cal-
culated minimum, average, and maximum % ZDDN values.
Finally, we estimated the percentage of daily DDN produc-
tion consumed by zooplankton as follows:

% daily DDN production ingested day−1
=

100×

(
daily DDN ingested day−1

daily DDN production

)
. (3)

Daily DDN production (N2 fixation) was calculated from the
mean of the three measurement depths in each mesocosm
over the course of the experiment (Berthelot et al., 2015b).

3 Results

3.1 Environmental context

Briefly, seawater temperature increased inside the meso-
cosms and in Noumea lagoon waters from 25.5 to 26.2 ◦C
over the course of the experiment. The water column was
well mixed in the mesocosms as temperature and salinity
were homogeneous with depth over the course of the ex-
periment (Bonnet et al., 2016b). Prior to the DIP fertiliza-
tion on day 4 (hereafter called P0), DIP concentrations in the
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mesocosms ranged from 0.02 to 0.05 µmol L−1 (Berthelot et
al., 2015b). The day after the fertilization, DIP concentra-
tions were ∼ 0.8 µmol L−1 in all mesocosms. Subsequently
the concentrations decreased steadily towards initial concen-
trations by the end of the experiment. Depth-averaged ni-
trate+ nitrite concentrations were below 0.04 µmol L−1 the
day before DIP fertilization and decreased to 0.01 µmol L−1

towards the end of the experiment. In lagoon waters, ni-
trate+ nitrite remained below 0.20 µmol L−1 and DIP aver-
aged 0.05 µmol L−1 throughout the experiment.

Bulk N2 fixation rates averaged
18.5± 1.1 nmol N L−1 d−1 over the 23 days of the ex-
periment in the three mesocosms (all depths averaged
together; Bonnet et al., 2016a). Rates increased significantly
in the mesocosms over the course of the experiment to
reach an average of 27.3± 1.0 nmol N L−1 d−1 during
the second half of the experiment (days 15–23, hereafter
called P2; Bonnet et al., 2016a). N2 fixation rates mea-
sured in the lagoon waters were significantly (p < 0.05)
lower than rates measured in the mesocosm and remained
relatively consistent over the 23 days of the experiment
(9.2± 4.7 nmol N L−1 d−1).

The diazotroph assemblage in the lagoon on the day that
the mesocosm experiment was initiated was composed pri-
marily of DDAs (het-1: Richelia associated with Rhizosole-
nia; and het-2: Richelia associated with Hemiaulus) and the
symbiotic UCYN-A2 and A1 (Turk-Kubo et al., 2015). Tri-
chodesmium spp. and UCYN-C were minor components, and
at least an additional three phylotypes were present, includ-
ing one heterotrophic diazotroph. The abundance and com-
munity of diazotrophs changed extensively in the mesocosms
over the course of the experiment. From day 1 to day 4, a
shift in the starting community was observed in the meso-
cosms. Het-1 remained the most abundant diazotroph; how-
ever, UCYN-A2 abundances decreased and Trichodesmium
spp. abundances increased with respect to their abundances
in the lagoon, while UCYN-C remained at low abundance
levels. After DIP fertilization, from day 5 to day 14 (hereafter
called P1), the abundance of het-1 increased. Following day
15, the community shifted towards dominance of UCYN-C,
the abundance of which increased substantially during P2
(Turk-Kubo et al., 2015). Het-1 was the dominant diazotroph
in the lagoon waters where a Trichodesmium spp. bloom be-
gan to develop during P2, after day 20 (Turk-Kubo et al.,
2015). Chlorophyll a (Chl a) biomass was < 0.3 µg L−1 in
all three mesocosms during P0 and P1 (Leblanc et al., 2016).
During P2, Chl a increased in all the mesocosms, but particu-
larly M3, reaching maximum depth-averaged concentrations
of 0.55, 0.47, and 1.29 µg L−1 in M1, M2, and M3, respec-
tively. Lagoon Chl a followed a similar pattern to the meso-
cosms, being < 0.3 µg L−1 during the P0 and P1 timeframe,
and increasing to a lower extent to 0.42 µg L−1 during P2.

Figure 2. Zooplankton abundance (ind m−3; above) and biomass
(mg DW m−3; below) over the 23-day VAHINE experiment (13
January to 4 February 2013) for the three VAHINE meso-
cosms (M1–3) and the lagoon waters. P0, P1, and P2 refer to
the pre-phosphorous fertilization, DDA-dominated, and UCYN-C-
dominated periods of the experiment, respectively.

3.2 Zooplankton community and stable isotope
composition

Zooplankton abundance at the start of the experiment aver-
aged ∼ 5000 ind m−3 in lagoon waters, M1, and M2, while
it was 10 735 ind m−3 in M3 (Fig. 2). Over the course
of the experiment abundance in M1 and M2 ranged be-
tween 5425 and 1741 ind m−3. M1 densities had a slight
declining trend, while M2 densities were relatively sta-
ble, even increasing towards the end of the experiment. In
M3, zooplankton abundance was consistently higher than
M1 and M2 though declining after day 12 from 6618 to
4256 ind m−3 on day 23. The lagoon waters differed from
the mesocosms with zooplankton abundance levels increas-
ing to peak at 13 113 ind m−3 on day 16, before declin-
ing to ∼ 7300 ind m−3 on day 23. Zooplankton had a mean
biomass of 24 mg DW m−3 and ranged between 17.2 and
40 mg DW m−3 (Fig. 2). No consistent temporal pattern in
zooplankton biomass was detected over the course of the ex-
periment.

The zooplankton community was dominated by cope-
pod nauplii at all sites, with the exception of day 2 at
M2 when poecilostomatoids dominated and day 9 at M1
when appendicularians dominated (Fig. 3). Copepod nau-
plii contributed an average of 51 % to total abundance
(2784 ind m−3). Appendicularians were the next most abun-
dant group, contributing an average of 15.1% to total abun-
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Figure 3. Proportional composition of zooplankton groups to total
zooplankton abundance in the three VAHINE mesocosms (M1–3)
and the lagoon waters.

dance (801 ind m−3), followed by poecilostomatoid cope-
pods at 11.5 % (541 ind m−3). Peaks in appendicularian
abundance were observed during P1 in M1 and M3. Cy-
clopoid, calanoid, and harpacticoid copepods contributed
5.5, 5, and 1.4 % to total abundance, respectively. Although
the proportional contributions of these groups was low, their
abundance levels were relatively high, averaging 276, 265,
and 72 ind m−3 for cyclopoid, calanoid, and harpacticoids,
respectively.

Bray–Curtis similarity levels among samples exceeded
70 % in all cases with the exception of the day 19 control
sample (∼ 65 %). This is on the high range of similarity for
zooplankton communities (Hunt et al., 2008). The first di-
mension of the NMDS was most variable over the course
of the experiment, and between site variability was highest
on day 2 (Fig. 4). Subsequent to day 2, NMDS scores for
the three mesocosms converged, with M1 and M2 having the
greatest similarity. The NMDS scores for dimension 1 in all
mesocosms diverged from the lagoon waters after day 9. The
opposite directional trends of the mesocosms versus the la-
goon waters was driven primarily by changes in abundance
levels of the same pool of species.

Zooplankton δ15N values averaged 4.9, 4.2, 4.8, and 5.2 ‰
in lagoon waters, M1, M2, and M3, respectively (Fig. 5).
Zooplankton δ15N values were relatively consistent over the
course of the experiment in M2 and M3. In M1, zooplankton
δ15N values decreased from a mean of 5 ‰ between days 2
and 12 (P0 and P1) to a mean of 3.2 ‰ from day 16 to day 23
(P2). In lagoon waters, a decline in zooplankton δ15N values

Figure 4. Zooplankton community NMDS ordination scores (di-
mension 1 above and dimension 2 below), based on Bray–Curtis
similarity of fourth root transformed abundance data, over the 23-
day VAHINE experiment (13 January–4 February 2013) for the
three VAHINE mesocosms (M1–3) and the lagoon waters. P0, P1,
and P2 refer to the pre-phosphorous fertilization, DDA-dominated,
and UCYN-C-dominated periods of the experiment, respectively.

were evident over the course of the experiment, from 6.0 ‰
on day 5 to 4.4 ‰ on day 23.

The δ15N value of PNsusp was more variable than the zoo-
plankton, commensurate with the expected higher cellular
turnover rates of the PNsusp constituents relative to zooplank-
ton. In M3, PNsusp δ

15N values increased to the same level as
the zooplankton on day 11 and remained at that level until the
end of the experiment. An increase in PNsuspδ

15N values to
above zooplankton levels was observed in lagoon waters and
M2 after day 20. Zooplankton δ15N values averaged 1.2 ‰
higher than PNsusp across all sites, less than the expected
2.2 ‰ one trophic level difference between the PNsusp and
zooplankton.

The percent contribution of DDN to zooplankton biomass
averaged 24 % (range is 4–86 %) in the mesocosms and 21 %
(range is 0–39 %) in the lagoon waters (Fig. 6) over the 23-
day experiment. The highest average contribution of DDN
to zooplankton was measured in M1 on day 16 (73 %). The
contribution of DDN to zooplankton biomass in M2 and the
lagoon increased steadily from ∼ 10 % in the middle of P1
(day 9) to > 30 % by the end of the experiment. An initial
increase in the contribution of DDN to zooplankton biomass
was observed in M1 and M3 after day 9 until day 16, af-
ter which it declined until the end of the experiment despite
these mesocosms having the highest N2 fixation rates (Bon-
net et al., 2016a).
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Figure 5. Nitrogen isotope (δ15N) values of zooplankton and sus-
pended particulate nitrogen (PNsusp) over the course of the 23-day
VAHINE experiment (13 January–4 February 2013) for the three
VAHINE mesocosms (M1–3) and the lagoon waters. P0, P1, and
P2 refer to the pre-phosphorous fertilization, DDA-dominated, and
UCYN-C-dominated periods of the experiment, respectively. Zoo-
plankton values are indicated by a solid line and PNsusp by a dashed
line.

Estimated daily DDN production ingested by the zoo-
plankton initially declined in the mesocosm and lagoon, and
remained comparatively low in M1 and M3, while increasing
in M1 and the lagoon after day 9 (Fig. 6). The estimated per-
cent of daily DDN production ingested was generally high,
averaging ∼ 240 %. This difference between estimated DDN
ingestion and measured DDN production likely reflects the
longer integration time of stable isotope measurements and
accumulation of the DDN signature in the zooplankton over
multiple days (Montoya et al., 2002).

3.3 qPCR analysis of direct zooplankton grazing on
diazotrophs

Results from the qPCR are summarized in Table 1. In gen-
eral, the qPCR was successful in amplifying and detecting
the four different targets (het-1, het-2, Trichodesmium spp.,
and UCYN-C) in the copepods collected during the meso-
cosm experiment. Poor detection was listed as either below
detection (bd) or detectable but not quantifiable (dnq; see
Methods).

Of all the oligonucleotides tested, the het-2 and Tri-
chodesmium spp. targets were the least detected. How-
ever, when het-2 and Trichodesmium spp. targets were de-
tected, the abundance was high, e.g. 62.1 and 264.4 nifH

Figure 6. Average percent contribution of diazotroph-derived nitro-
gen (DDN) to zooplankton biomass (above) and estimated average
percent of fixed nitrogen ingested by zooplankton day−1 over the
course of the 23-day VAHINE experiment (13 January–4 Febru-
ary 2013) for the three mesocosms (M1–3) and the lagoon waters.
P0, P1, and P2 refer to the pre-phosphorous fertilization, DDA-
dominated, and UCYN-C-dominated periods of the experiment, re-
spectively. Error bars in the upper panel represent the minimum and
maximum values of % ZDDN calculated using a trophic enrich-
ment factor range of 2.2± 0.3 ‰ (McCutchan et al., 2003; Vanderk-
lift and Ponsard, 2003) and diazotroph δ15N value range of −1 to
−2 ‰ (Montoya et al., 2002). The error bars in the lower panel re-
flect the range of percent DDN production ingested by zooplankton
using the range of percent ZDDN.

copies/copepod, respectively, in M2 during P0 (day 2). Sub-
sequently, het-2 detection was bd for the remainder of the ex-
periment, with the exception of two dnq samples, one from
the lagoon during P0 (day 2) and another from M2 towards
the end of P1 (day 12). Trichodesmium spp. targets were bd
after day 2, until 277.9 nifH copies/copepod was quantified
from a M2 sample on day 16. Overall, Trichodesmium spp.
was more prevalent during P2, being quantifiable or dnq in
five of nine samples. Het-1 and UCYN-C were higher in de-
tection, each being bd in only 6 of the 19 samples tested.
Het-1 targets were the most frequently detected, occurring
at high abundance (16.5–173.3 nifH copies/copepod) in all
of the mesocosms and lagoon waters during P1 and the be-
ginning of P2, but were bd or dnq after day 19. UCYN-C
was detected most frequently and at highest abundance dur-
ing P2, corresponding with this groups’ peak occurrence in
the mesocosms.
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Figure 7. Atomic percent of enrichment of zooplankton in three
15N2 labelled diazotroph grazing experiments. The dominant dia-
zotrophs in Experiments 1, 2, and 4 were DDA (het-1: Richelia as-
sociated with Rhizosolenia), UCYN-C, and Trichodesmium spp., re-
spectively. Zooplankton T0 atomic percent of enrichment was mea-
sured in triplicate for E1 and the average value was used as the
baseline for E1, E2, and E4. The atomic percent of enrichment of
the diazotroph community after 24 h was 1.515 % for UCYN-C and
0.613 % for Trichodesmium spp. No enrichment value was obtained
for DDA.

3.4 Zooplankton incorporation of diazotroph nitrogen

After 24 h incubation, the atomic enrichment of UCYN-C
was 1.515 at. % and Trichodesmium spp. 0.613 at. %. No di-
rect measurement of atomic enrichment was obtained from
DDA. The average atomic enrichment of zooplankton at T =
0 in E1 was 0.373± 0.005 at. %. This T0 value was applied
as the baseline for E2 and E4. Zooplankton showed weak
atomic enrichment over the course of E1 (het-1-dominated
diazotroph community) and none over the course of E4 (Tri-
chodesmium spp.-dominated diazotroph community; Fig. 7).
Conversely, a large increase of ∼ 0.1 at. % was measured
over the course of E2 (UCYN-C-dominated diazotroph com-
munity). It should be noted that zooplankton were not al-
lowed to purge their stomach contents after the incubation
experiments, and this may have been a source of overestima-
tion of diazotroph nitrogen incorporation. However, the per-
sistent increase during E2 does indicate that diazotroph nitro-
gen incorporation was the primary factor in observed atomic
enrichment. Although E1 and E4 were of shorter duration
than E2, discernable atomic enrichment was measured in E2
even after 24 h. The only instance where the dominant dia-
zotroph in the water collected on the day of experiment initi-
ation was also detected in high abundance in copepod guts on
or within 1 day of this water collection was E2/UCYN-C (Ta-
ble 1; Fig. 7). Trichodesmium spp. was dnq in copepod guts

on day 23 in the lagoon (E4), while there was no evidence of
het-1 in copepod guts on day 12 (E2).

4 Discussion

The zooplankton biomass sampled during VAHINE, both in-
side the mesocosms and in lagoon waters, was is the nor-
mal range for the New Caledonian lagoon (Le Borgne et al.,
2010). Over the course of the experiment ∼ 28 % of the to-
tal volume of each mesocosm was sampled. An additional
2–5 % of the zooplankton community was lost to the meso-
cosm sediment traps and qualified as swimmers (Berthelot et
al., 2015b). These two sources of losses likely accounted for
the slight declining trend in abundance in M1 and M2, and
M3 after day 12. Despite the divergence of lagoon waters and
mesocosms abundance levels over the course of the experi-
ment, a high level of similarity (> 70 %) was maintained in
the community composition among sites, indicating that the
mesocosm zooplankton communities remained largely rep-
resentative of the natural lagoon conditions. On average, this
community comprised 63 % copepods, with the next high-
est community contributor being appendicularians (∼ 15%).
Harpacticoid copepods, which have previously been noted as
important diazotroph grazers, contributed < 1.5 % on aver-
age.

The δ15N values of PNsusp over the course of the exper-
iment was high in comparison to measurements from other
areas of the world’s oceans with significant N2 fixation (Al-
tabet, 1988; Dore et al., 2002; Montoya et al., 2002). It has
been noted that elevated δ15N values of PNsusp in the New
Caledonian lagoon may be influenced by island runoff, and
particularly untreated sewage which typically has a δ15N val-
ues of 5 to 20 ‰ (Cole et al., 2004). Although the VAHINE
site was located 28 km from the coast, and strongly influ-
enced by inflowing oceanic water, the elevated δ15N values
of PNsusp, despite a high contribution of N2 fixation, indi-
cated that the δ15N values of PNsusp were influenced by land-
derived inputs (Knapp et al., 2015). Notably the δ15N values
of PNsusp did not show a decreasing trend over the course
of the experiment, either inside or outside the mesocosms,
even increasing in M3 during P2, despite the increasing N2
fixation rates in all mesocosms. In contrast, the δ15N val-
ues of PNsusp settling in the sediment traps decreased with
time from 4.2± 0.2 during P0, to 3.0± 0.4 during P1 and
2.3± 0.9 ‰ during P2 (Knapp et al., 2015). Indeed, it is es-
timated that the majority of the DDN that accumulated over
the course of the experiment was exported to the sediment
traps, either through direct sedimentation of diazotrophs or of
nondiazotrophic phytoplankton that had taken up dissolved
N sourced from the DDN pool (Bonnet et al., 2016a).

Overall, zooplankton δ15N values in the mesocosms and
lagoon tended to decline gradually over the course of the ex-
periment, with the exception of M1 where a more marked
decline was observed during P2. A similar, albeit shorter (9
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days), mesocosm study conducted in the Baltic Sea measured
a rapid decrease in zooplankton δ15N values in response to a
Nodularia spumigena bloom (Sommer et al., 2006). In that
study elevated zooplankton δ15N values (9.9 ‰) at the start
of the experiment likely amplified the effect of DDN uptake.
During VAHINE, zooplankton δ15N values were ∼ 5.0 ‰ at
the start of the experiment, and the estimated mean contribu-
tion of DDN to zooplankton biomass on day 2 was ∼ 28 %.
As previously mentioned, diazotroph activity in the New
Caledonian lagoon peaks in the summer months (Biegala
and Raimbault, 2008; Le Borgne et al., 2010). A time series
of monthly zooplankton samples collected between October
2012 and July 2014 reveals a seasonal summer depletion of
δ15N values in the New Caledonia lagoon (B. Hunt, unpub-
lished data). It is therefore not surprising that a depletion in
zooplankton δ15N values was less marked during VAHINE,
which took place during the summer season, despite the in-
crease in N2 fixation rates observed at all sites through the
experiment.

The gradual decline of zooplankton δ15N values corre-
sponded with the increased contribution of DDN to zoo-
plankton biomass over the course of the experiment in both
the mesocosms and lagoon, with the exception of M3. The
peak DDN contribution to the zooplankton of 73 %, on day
16 in M1, was on the high end of values reported in the lit-
erature on the subtropical North Atlantic (Landrum et al.,
2011). The average DDN contribution to the zooplankton at
the start of the experiment (∼ 28 %) was within the range of
estimates for the subtropical North Atlantic (Landrum et al.,
2011; Mompean et al., 2013; Montoya et al., 2002), Baltic
Sea (Sommer et al., 2006; Wannicke et al., 2013), and pelagic
waters off the New Caledonian shelf (Hunt et al., 2015). The
gradual decline of zooplankton δ15N values did not match the
large increase in N2 fixation rates measured during VAHINE,
evident in the declining percent DDN ingested day−1, par-
ticularly during P2. This may be explained in part by a lag
between ingestion and assimilation of DDN (Rolff, 2000).
However, another factor may have been the rapid export of
DDN from the water column, limiting zooplankton ingestion
of new DDN production (Bonnet et al., 2016a).

The combination of qPCR and 15N2 labelled grazing ex-
periments provided insights into the potential role of direct
grazing on diazotrophs as a pathway for DDN into the zoo-
plankton food web. A caveat of our sampling for the qPCR
study was a prolonged period (∼ 6 h) between sample collec-
tion and −80 ◦C freezing. Although the samples were stored
damp and in an ice container prior to freezing, it is likely
that at least some gut evacuation would have occurred be-
cause the samples were not anesthetized immediately upon
collection (Gannon and Gannon, 1975). Moreover, the qPCR
assays were highly specific for their respective targets and as
such, if the animals consumed other targets (i.e. other dia-
zotrophs or nondiazotrophs) these would not have been de-
tected or quantified. Finally, DNA extraction is not 100 %

and underestimation of the targets was therefore also possi-
ble.

However, the results from the qPCR assays do provide
qualitative insights into zooplankton ingestion of the targeted
diazotrophs, and prey selection. All four of the qPCR tar-
geted diazotrophs (Trichodesmium spp., het-1, het-2, UCYN-
C) were found in zooplankton guts. Overall, the most fre-
quently detected targets were het-1 and UCYN-C. Het-1
was most frequently detected in the zooplankton during P1
and the beginning of P2, when this group dominated the
diazotroph community (Turk-Kubo et al., 2015). Similarly,
UCYN-C was most frequently detected in the zooplankton
during P2, consistent with the UCYN-C bloom observed
during that period. Although target occurrence in the zoo-
plankton largely reflected the prevalence of the diazotroph
in the water column, high detection was also recorded out-
side of periods of peak diazotroph occurrence. For exam-
ple, the highest abundance (277 nifH copies/copepod) for the
Trichodesmium spp. target measured by qPCR was on day
16 in M2, despite low water column abundance of this di-
azotroph at that time; and het-2 was typically bd with the
exception of day 2 when 277 nifH copies/copepod were mea-
sured, again despite having low water column abundance at
that time. This indicates that the generally low abundance of
Trichodesmium spp. and het-2 may have been due in part to
top down control through zooplankton grazing.

The 15N2 labelled grazing experiments supported direct
zooplankton grazing on UCYN-C, and assimilation of in-
gested UCYN-C-derived N. Conversely, weak if any assim-
ilation of DDN was measured in the experiments where
the diazotroph community was dominated by het-1 and Tri-
chodesmium spp. This was a surprising finding given that
het-1, and to a lesser extent Trichodesmium spp., was de-
tected in high abundance in copepod guts. A contributing
factor to the apparent low direct het-1 and Trichodesmium
spp. DDN uptake may have been a lower atomic enrich-
ment of these diazotrophs. Indeed, the atomic enrichment
of UCYN-C was more than double that of Trichodesmium
spp. in this experiment. Unfortunately, the atomic enrich-
ment of het-1 was not measured and thus could not be as-
sessed as a factor in the low-to-zero atomic enrichment of
the copepods in E1. Another contributing factor may have
been variable encounter rates of zooplankton with diazotroph
prey. The total diazotroph abundance levels at the start of E2
and E4 were double (∼ 3.6× 105 and 4.5× 105 nifH copies
L−1, respectively) those of E1 (1.5× 105 nifH copies L−1;
Turk-Kubo et al., 2015). Lower zooplankton encounter rates
with het-1 may therefore have been a factor in the low rate
of DDN uptake during E1. Overall, therefore, questions re-
main as to the efficiency of direct assimilation of het-1 and
Trichodesmium spp. DDN by zooplankton. However, low-to-
zero atomic enrichment of zooplankton in E1, despite a 72 h
incubation, and previous observations that the filamentous
Trichodesmium spp. may not be easily digested by zooplank-
ton (O’Neil and Roman, 1992), do suggest that indirect path-
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ways of Trichodesmium spp. and het-1 DDN (through, e.g.
microzooplankton or nondiazotrophic phytoplankton utiliz-
ing the dissolved DDN pool) to the zooplankton are likely to
be important.

As far as we are aware, this study provides the first evi-
dence of direct zooplankton grazing on UCYN-C. The av-
erage size of UCYN-C cells during VAHINE (5.7 µm) was
on the lower end of the spectrum effectively grazed by
copepods, the dominant zooplankton during the experiment
(Fortier et al., 1994). However, an observation during the
VAHINE experiment was that the majority of the UCYN-
C existed as aggregates (100–500 µm in size), likely making
them more accessible to these grazers (Bonnet et al., 2016a).
During VAHINE it was estimated that ∼ 16 % of total fixed
N2 during the UCYN-C bloom period was released to the
dissolved pool, of which ∼ 20 % was transferred to nondia-
zotrophic phytoplankton within 24 h (Bonnet et al., 2016a).
Therefore, although direct grazing on UCYN-C was demon-
strated in this study, it is likely that secondary pathways were
also important in UCYN-C DDN transfer to zooplankton.
Notably, the largest decline in zooplankton δ15N values dur-
ing VAHINE was observed during the UCYN-C bloom in
M1, further supporting an important contribution of UCYN-
C-derived N to zooplankton biomass in the New Caledonian
lagoon.

5 Conclusions

The natural N isotope abundance of the zooplankton sam-
pled during the VAHINE experiment gave clear evidence for
the importance of DDN to the zooplankton food web in the
oligotrophic south-west New Caledonian lagoon. The mean
DDN contribution to zooplankton biomass at the start of the
experiment was ∼ 28 % indicating that the natural summer
peak in diazotroph production in this region was already con-
tributing significantly to the lagoon plankton food web. Stim-
ulation of N2 fixation rates in the VAHINE mesocosms cor-
responded with a weak enhancement of DDN contribution
to zooplankton biomass. This DDN contribution peaked at
∼ 73 % in M1 which is on the high end of estimates from
other regions.

qPCR analysis, targeting four of the common diazotroph
groups present during VAHINE (Trichodesmium spp., het-
1, het-2, UCYN-C), demonstrated that all were ingested by
copepod grazers. The most frequently detected targets were
het-1 and UCYN-C, and their abundance in the zooplank-
ton corresponded with their periods of peak abundance in the
mesocosms (P1 and P2, respectively). 15N2 labelled grazing
experiments provided evidence for direct ingestion and as-
similation of UCYN-C-derived N by the zooplankton, but
not for het-1 and Trichodesmium spp. We suggest that sec-
ondary pathways of Trichodesmium spp. and het-1 DDN to
the zooplankton are likely to be important.

As far as we are aware, this is the first reported instance of
direct UCYN-C grazing by zooplankton. Aggregation may
make this small diazotroph more accessible to zooplank-
ton grazers, however, in the absence of aggregation, a high
contribution to the dissolved pool, makes UCYN-C-derived
N accessible to the zooplankton via secondary pathways.
Through a combination of these N transfer pathways it is evi-
dent that UCYN-C-derived N contributes significantly to the
zooplankton food web in the New Caledonia lagoon.
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