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A finite element method with overlapping meshes for
free-boundary axisymmetric plasma equilibria in

realistic geometries

Holger Heumann1, Francesca Rapetti

CASTOR Team, INRIA Sophia-Antipolis and Université de Nice
Parc Valrose, 06108 Nice cedex 02, FR

Abstract

Existing finite element implementations for the computation of free-boundary
axisymmetric plasma equilibria approximate the unknown poloidal flux function
by standard lowest order continuous finite elements with discontinuous gradi-
ents. As a consequence, the location of critical points of the poloidal flux, that
are of paramount importance in tokamak engineering, is constrained to nodes
of the mesh leading to undesired jumps in transient problems. Moreover, recent
numerical results for the self-consistent coupling of equilibrium with resistive
diffusion and transport suggest the necessity of higher regularity when approx-
imating the flux map. In this work we propose a mortar element method that
employs two overlapping meshes. One mesh with Cartesian quadrilaterals cov-
ers the vacuum chamber domain accessible by the plasma and one mesh with
triangles discretizes the region outside. The two meshes overlap in a narrow re-
gion. This approach gives the flexibility to achieve easily and at low cost higher
order regularity for the approximation of the flux function in the domain cov-
ered by the plasma, while preserving accurate meshing of the geometric details
outside this region. The continuity of the numerical solution in the region of
overlap is weakly enforced by a mortar-like mapping.

Keywords: axisymmetric plasma equilibria in tokamaks, domain
decomposition mortar element method, overlapping meshes, linear and cubic
finite elements

Note: Some figures in this paper are in color only in the electronic version.

1. Introduction

Computing plasma equilibria is maybe the most fundamental step in mod-
eling for magnetic fusion applications. Main algorithmic approaches to the
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axisymmetric equilibrium problems were developed long time ago (we can refer
to text books like [8] or [38] for details and references).5

In general, one differentiates between the so-called free-boundary problem
and the fixed-boundary problem. The fixed-boundary problem is a semi-linear
elliptic boundary value problem in the plasma domain with imposed Dirich-
let data at the plasma/vacuum interface (which is assumed to be known, in
this case). The most recent achievements [35, 49] for this kind of equilibrium10

problem propose to use higher order/spectral methods to describe with high
accuracy the physical field. Higher order/spectral methods [20, 53, 39] are well-
established approaches to approximate the solution of linear and non-linear
elliptic boundary valued problems. They require isoparametric or transfinite
mappings to guarantee the accuracy of the approximation as soon as the com-15

putational domain contains non-polygonal boundaries, as it occurs with the
plasma modeling. The less canonical approach to higher order methods for the
fixed-boundary equilibrium problem in [50] uses approximations of conformal
mappings (see also [26]), nevertheless it does not cover the very important case
of plasma boundaries with corners. To tackle the fixed-boundary equilibrium20

with prescribed curved boundary in the frame of high order methods is mainly
an issue of proficiency in numerical methods for PDEs on curved domains. It
is indeed important to stress that the boundary of the plasma is not known a
priori. Assuming an arbitrarily detailed knowledge of the plasma boundary is
not realistic for the actual physical application. The boundary is either deduced25

from measurements through experiments combined with reconstruction proce-
dures or it is the output of the free-boundary equilibrium problem. In the latter
case, which is the focus of this article, we have to solve a semi-linear elliptic
problem in an unbounded domain where the region covered by the plasma is
not known. Hence, it is of practical relevance to have numerical methods which30

are, to a very high degree, independent of the actual plasma boundary.
In this work we will focus on the free-boundary problem and propose an

extension of the finite element (FE) method introduced in [11] (see also [33]). A
very important application for the free-boundary problem is the so-called self-
consistent coupling of equilibrium with resistive diffusion and transport [27] that35

allows to simulate the evolution of the plasma equilibrium over very long time
scales. Modeling in a numerically cheap and practical way the plasma/vacuum
interface movement during the evolution of the plasma equilibrium is an issue
of physical interest. Such simulations are essential for in silico studies of ex-
periments in tokamaks but it turns out that the FE approach with piecewise40

polynomial, globally continuous approximations has two main drawbacks: 1.)
The definition of the plasma boundary hinges on the critical points of the un-
known flux. If the derivatives are not continuous, these points will not move in
a continuous way during the evolution. 2.) The resistive diffusion and trans-
port are described by one-dimensional equations containing metric coefficients45

that depend on the gradient of the solution of the equilibrium problem. These
coefficients are not well-defined if the gradients are not continuous.

Hence, in this work we propose a very practical approach that allows to
achieve easily continuous differentiability where it is beneficial but stays with
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the standard methods in the rest of the domain.50

In general, it is very cumbersome to define FE spaces that allow for glob-
ally continuous differentiability. If one keeps along with triangular meshes, the
reduced quintic element [3] is the lowest order FE with this property. Reduced
quintic FEs were introduced for fusion applications firstly in [37]. In the case
of Cartesian meshes however, continuous differentiability can be easily achieved55

with lower order polynomials. By taking tensor products of one dimensional
spline basis functions of polynomial order three we end up with a FE space of
piecewise bicubic polynomials with continuous derivatives, also known as the
Bogner-Fox-Schmit FE [12, 16]. Inspired by [15] we present a FE method that
employs two meshes, one of rectangles in the parts of the vacuum chamber do-60

main that is accessible by the plasma, and one of triangles outside this region.
This approach gives the flexibility to achieve easily and at low cost higher or-
der regularity for the approximation of the flux function in the domain covered
by the plasma, while preserving accurate meshing of the geometric details of
passive structures and coils. As it is impossible to align the boundary of the65

mesh of rectangles with the interface of the exterior domain, we will allow for an
overlap in a narrow region around the interface. The continuity of the numerical
solution in the region of overlap is weakly enforced by relying on a mortar-like
mapping.

Such an overlapping mesh approach will be an important ingredient for fast70

solvers for the free-boundary equilibrium problem. The experience with hp-finite
element methods (hp-FEM) teaches us, that the most performant discretization,
the one that gives the lowest error for the minimal number of unknowns, uses
high polynomial degree and large elements in regions where the solution is very
smooth and very small elements and low polynomial degree where the solution is75

singular. Regions where the smoothness deteriorates are for example the neigh-
bourhoods of material corners (iron core, passive structures) or of discontinuous
source terms (coils). It is not economical to use bicubic or even biquintic FEs
there. It would be very detrimental for the efficiency of the method to increase
the polynomial degree everywhere, while only on the plasma domain continuous80

derivatives are needed. This reasoning is even more important for iron core
transformer tokamaks like WEST, where the vacuum chamber domain repre-
sents a small portion of the overall computational domain (see Figure 1). Note,
that the current use of linear FEs everywhere outside the vacuum chamber is
not very performant either, but it is very flexible and easy to implement. It can85

be easily extended to a hp-FEM with adapted mesh sizes and polynomial de-
grees, once accuracy and computing time become critical. As we deal here only
with 2D problems and do not focus on realtime applications the computational
time is currently not an issue. The implementation, not yet runtime optimized,
suggests that the computational complexity of the proposed overlapping mesh90

method with bicubic FEs is only slightly larger than the previous approach with
linear FEs everywhere. Bicubic FEs with isoparametric mappings everywhere,
very common in fixed-boundary equilibrium calculations [36, 45], is not an op-
tion since we want that the meshes resolve the corners of the geometry (such as
coils, passive structures, iron core).95
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The proposed overlapping mesh approach provides an approximation of the
poloidal flux that is the solution to the discretized equilibrium problem and has
continuous derivatives. It would be of course also possible, as suggested in [38,
page 131], to improve a posteriori the smoothness of a numerical solution that
has not continuous derivatives. But these improved solutions, also called recon-100

structions, in general do not solve a discretization of the equilibrium problem.
Moreover, it can be fairly tricky to provide good reconstruction algorithms that
avoid nonphysical oscillations. Moreover, improving a posteriori the smoothness
will not affect the accuracy of the boundary defining point and the magnetic
axis that is so important due to the definition of the current profile in terms of105

the normalized flux. Rather than solving first a discretization of the equilibrium
problem to obtain a bilinear FE approximation that is afterwards mapped onto
piecewise bicubics FEs using, e.g., the method in [1], we do solve directly for
the unknown coefficients, the flux values and derivatives at the nodes.

The outline for the rest of the article is the following: The next two sections110

introduce the axisymmetric plasma equilibrium problem and present a weak
formulation in a domain decomposition spirit with two distinct subdomains,
one is part of the vacuum chamber accessible by the plasma and the other is
the rest of the vacuum chamber together with the exterior domain. Section 4 is
devoted to the presentation of the numerical method combining linear FEs for115

the exterior domain and the Bogner-Fox-Schmit FE in some parts of the vacuum
chamber domain. Continuity is weakly enforced via a mortar-like mapping.
Section 5 presents validation tests and applications from nuclear fusion science.
We end with a short summary and outlook on perspectives in Section 6.

2. Free-Boundary Equilibrium of Toroidal Plasma120

The essential equations for describing plasma equilibrium in a tokamak are
force balance, the solenoidal condition and Ampère’s law that read respectively

grad p = J×B, divB = 0, curl
1

µ
B = J, (1)

where p is the plasma kinetic pressure, B is the magnetic induction, J is the
current density and µ the magnetic permeability. In the quasi-static approxi-
mation these equations are augmented by Faraday’s law in all other conducting
structures, and by Ohm’s laws in plasma, coils and passive structures.

For the considered setting, axial symmetry is a perfectly valid approximation.125

It is convenient to formulate (1) in a cylindrical coordinate system (r, ϕ, z) in
order to consider only a section at ϕ = constant of the tokamak, generally
referred to as poloidal section. We recall that we pass from (x, y, z) to (r, ϕ, z)
by the transformation2 x = r cosϕ and y = r sinϕ. Working in a poloidal

2We thus have a transformation in reference system, from (ex, ey , ez) to (er, eϕ, ez)

ex = er cosϕ− eϕ sinϕ, ey = er sinϕ+ eϕ cosϕ,
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Figure 1: Left: Geometric description of the tokamak in the poloidal plane. Middle and right:
Sketch for characteristic plasma shapes. The plasma boundary touches the limiter (middle)
or the plasma is enclosed by a flux line that goes through an X-point (right).

section, the scalar field p does not depend on the angle ϕ, thus ∇p belongs to130

the poloidal (r, z)-plane. We introduce Ω∞ = [0,∞] × [−∞,∞], the positive
half plane, to denote the meridian plane that contains the tokamak centered at
the origin. The geometry of the tokamak determines the various subdomains
(see Fig. 1):

- ΩFe ⊂ Ω∞ denotes those parts of Ω∞ made of iron; for an air-transformer135

tokamak ΩFe = ∅;
- Ωci ⊂ Ω∞, 1 ≤ i ≤ N , denotes the intersection of the ith coil with the

poloidal plane. We suppose that Ωci has ni wire turns, total resistance Ri
and cross section area |Ωci |;

- ΩL ⊂ Ω∞, denotes the domain bounded by the limiter, thus the domain140

accessible by the plasma;

- Ωp ⊂ ΩL, denotes the domain covered by the plasma.

The classical primal unknowns for toroidal plasma equilibria described by (1)
are the poloidal magnetic flux ψ = ψ(r, z), the pressure p and the diamagnetic
function f . The poloidal magnetic flux ψ := rA · eϕ is the scaled toroidal145

component (ϕ-component) of the magnetic vector potential A, such that B =
curlA, and eϕ the unit vector for the ϕ coordinate. The diamagnetic function
f = rB · eϕ is the scaled toroidal component of the magnetic field B. It can
be shown that both the pressure p and the diamagnetic function f are constant
on ψ-isolines, i.e. p = p(ψ) and f = f(ψ). We refer to standard text books,150

e.g. [22], [8], [58], [25], [24] and [38] for the details and state in the following
paragraphs only the final equations.

and in the partial derivatives for any scalar field p, from (∂xp, ∂yp) to (∂rp, ∂ϕp), as follows

∂xp = ∂rp cosϕ− ∂ϕp sinϕ
r
, ∂yp = ∂rp sinϕ+ 1

r
∂ϕp sinϕ

so that ∇p = er∂rp+ eϕ
1
r
∂ϕp+ ez∂zp.
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Force balance, the solenoidal condition and Ampère’s law in (1) yield, in
axisymmetric configuration, the following set of equations for the flux ψ(r, z):

−∇ ·
(

1
µr∇ψ

)
=


rp′(ψ) + 1

µ0r
ff ′(ψ) in Ωp(ψ) ;

Ii/|Ωci | in Ωci ;
0 elsewhere in Ω∞ ,

ψ(0, z) = 0 ; lim
‖(r,z)‖→+∞

ψ(r, z) = 0 ;

(2)

where ∇ is the gradient in the half plane Ω∞, Ii is the total current (in At,
Ampère turns) in the ith coil and µ is a functional of ψ that reads

µ =

{
µFe( |∇ψ|

2

r2 ) in ΩFe

µ0 elsewhere ,
(3)

with µ0 the constant magnetic permeability of vacuum and µFe the non-linear
magnetic permeability of iron. Here again, we would like to stress that the
plasma domain Ωp(ψ) is an unknown, which depends non-linearly on the mag-155

netic flux ψ: the plasma domain Ωp(ψ) is a functional of the poloidal flux ψ.
The different characteristic shapes of Ωp(ψ) are illustrated in Figure 1: the
boundary of Ωp(ψ) either touches the boundary of ΩL (limiter configuration) or
the boundary contains one or more saddle points of ψ (divertor configuration).
The saddle points of ψ, denoted by (rX, zX)=(rX(ψ), zX(ψ)), are called X-points160

of ψ. The plasma domain Ωp(ψ) is the largest subdomain of ΩL bounded by
a closed ψ-isoline in ΩL and containing the magnetic axis (rmax, zmax). The
magnetic axis is the point (rmax, zmax) = (rmax(ψ), zmax(ψ)), where ψ has its
global maximum in ΩL. For convenience, we introduce also the coordinates
(rbdp, zbdp) = (rbdp(ψ), zbdp(ψ)) of the point that determines the plasma bound-165

ary. Note that (rbdp, zbdp) is either an X-point of ψ or the contact point with
the limiter ∂ΩL.

The equation (2) in the plasma domain, i.e.

−∂r
(

1

µ0r
∂rψ

)
− ∂z

(
1

µ0r
∂zψ

)
= rp′(ψ) +

1

µ0r
ff ′(ψ), (4)

is the celebrated Grad-Shafranov-Schlüter equation [28, 54, 43]. The domain
of p′ and f f ′ is the interval [ψbdp, ψmax] with the scalar values ψmax and ψbdp

being the flux values at the magnetic axis and at the boundary of the plasma:

ψmax(ψ) := ψ(rmax(ψ), zmax(ψ)) ,

ψbdp(ψ) := ψ(rbdp(ψ), zbdp(ψ)) .
(5)

The two functions p′ and f f ′ and the currents Ii in the coils are not deter-
mined by the model (2) and have to be supplied as data. Since the domain of p′

and f f ′ depends on the poloidal flux itself, it is more practical to supply these
profiles as functions of the normalized poloidal flux ψN(r, z):

ψN(r, z) =
ψ(r, z)− ψmax(ψ)

ψbdp(ψ)− ψmax(ψ)
. (6)
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These two functions, subsequently termed Sp′ and Sff ′ , have, independently
of ψ, a fixed domain [0, 1]. They are usually given as piecewise polynomial
functions. Another frequent a priori model is

Sp′(ψN) = λ
β

r0
(1− ψαN)γ , Sff ′(ψN) = λ(1− β)µ0r0(1− ψαN)γ , (7)

with r0 the major radius (in meters) of the vacuum chamber and α, β, γ ∈
R given parameters. We refer to [44] for a physical interpretation of these
parameters. The parameter β is related to the poloidal beta [8, p. 15], whereas170

α and γ describe the peakage of the current profile, λ is a scaling parameter
related to the total plasma current.

As we are going to present later a discretization scheme for the problem (2)
that employs different approximation spaces on ΩL and its complement, we for-
mulate the variational problem directly in a domain decomposition framework.175

3. Weak Formulation

We choose a semi-circle Γ of radius ρΓ surrounding the iron domain ΩFe and
the coil domains Ωci . The truncated domain, we use for the computations, is
denoted Ω ⊂ Ω∞, with boundary ∂Ω = Γ ∪ Γ0, where Γ0 := {(0, z), −ρΓ ≤ z ≤
ρΓ}. Let L2

∗(Ω), be the functional space3

L2
∗(Ω) = {g : Ω→ R, ‖g‖2∗,Ω :=

∫
Ω

g2r−1drdz <∞}

and H1(Ω) = {u ∈ L2
∗(Ω), ∇u ∈ L2

∗(Ω)2} the Hilbert space endowed with the
norm ‖u‖2H1(Ω) = ‖u‖2∗,Ω + |u|2H1(Ω) where |u|2H1(Ω) = ‖∂ru‖2∗,Ω + ‖∂zu‖2∗,Ω. For

ψ ∈ H1(Ω) the trace on Γ0 vanishes in the following sense [31]

lim
r→0+

∫
{r}×[−ρΓ,ρΓ]∩Ω

r−2ψ(r, z)2dz = 0 .

To formulate (2) as variational problem in a domain decomposition frame-
work, let us introduce the functional space

V = {(v, w) ∈ H1(Ωex)× (H1(ΩL) ∩ C0(ΩL)), v|Γ0
= 0, v|γ = w|γ} ,

where Ωex = Ω \ΩL is the complement of ΩL in Ω. We require continuity in ΩL

in order to have meaningful ψmax and ψbdp that appear in the definition of Ωp

and ψN [8, Remark I.5, page 18]. It is not necessary to require differentiability
to have a notion of maximum or minimum. Then, the weak formulation of (2)
is: Find (ψex, ψL) ∈ V s.t.

aex(ψex, v) + aL(ψL, w) = `(~I, v) ∀(v, w) ∈ V. (8)

3Let H(curl,Ω × [0, 2π]) be the space of vector fields in L2(Ω × [0, 2π])3 with curl in
L2(Ω× [0, 2π])3. We remark that: r−1ψeφ ∈ H(curl,Ω× [0, 2π]) if and only if ψ ∈ H1(Ω).
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In (8), we have set

aex(ψ, v) :=

∫
Ωex

1

µ(ψ)r
∇ψ · ∇v drdz + c(ψ, v),

aL(ψ,w) :=

∫
ΩL

1

µ0r
∇ψ · ∇w drdz − jp(ψ,w) ,

where

jp(ψ, ξ) :=

∫
Ωp(ψ)

(
rSp′(ψN) +

1

µ0r
Sff ′(ψN)

)
ξ drdz ,

`(~I, ξ) :=

N∑
i=1

~Ii
|Ωci |

∫
Ωci

ξ drdz ,

(9)

and the bilinear form c(·, ·) defined as

c(ψ, ξ) :=
1

µ0

∫
Γ

ψ(x)N(x)ξ(x)dS(x)

+
1

2µ0

∫
Γ

∫
Γ

(ψ(x)− ψ(y))M(x,y)(ξ(x)− ξ(y)) dS(x) dS(y) , (10)

accounts for the boundary conditions at infinity [2], with x = (xr,xz), y =
(yr,yz) and

M(x,y) =
kx,y

2π(xryr)
3
2

(
2− k2

x,y

2− 2k2
x,y

E(kx,y)−K(kx,y)

)

N(x) =
1

xr

(
1

δ+
+

1

δ−
− 1

ρΓ

)
and δ± =

√
x2
r + (ρΓ ± xz)2 .

Here, K and E are the complete elliptic integrals of first and second kind,
respectively, and

kx,y =

√
4xryr

(xr + yr)2 + (xz − yz)2
.

We refer to [29, Chapter 2.4] for the details of the derivation. The bilinear form
c(·, ·) follows basically from the so called uncoupling procedure in [23] for the
usual coupling of boundary integral and FE methods.

In the case of vanishing plasma, Sp′ = Sff ′ = 0, the weak formulation (8)180

is the classical problem of non-linear magneto-statics; existence and uniqueness
can be established under a monontonicity assumption for µ in the iron parts.
The result follows directly from combining those for non-linear magneto-statics
in [51] with the results for non-linear problems in unbounded domains [23]. If
in addition we had ΩFe = ∅ we would end up with an even simpler linear elliptic185

problem, for which existence and uniqueness are immediately available [31, 30].
Rigorous existence and uniqueness assertion for the general case are still an open
problem. See [56, 4, 9, 47] for some theoretical work related to such results.
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4. Finite Element Method with Overlapping Meshes

We wish to use, in the domain ΩL, FE approximations ψh for the poloidal190

flux ψ that are not only continuous but have also continuous gradients ∇ψh.
This is particularly simple if we adopt a Cartesian mesh of rectangles in ΩL and
use the bicubic Bogner-Fox-Schmit FE space [12, 16]. The Bogner-Fox-Schmit
rectangular FE is one of the simplest that provides continuous differentiability
of the approximated solution. However, it can be applied only on a mesh of195

rectangles or paralellogramms, hence only to domains with boundaries that are
parallel to two different straight fixed directions. As meshes with only rectan-
gular elements are not very suitable for a realistic geometry description of the
tokamak, we prefer to keep a mesh of triangles and linear Lagrangian FEs for
the exterior domain Ωex. It is clearly not possible to cover ΩL perfectly with a200

mesh of rectangles, we thus accept a certain overlap of the two meshes and use a
mortar-like mapping to enforce continuity of traces at the interface. This modi-
fied version of the mortar element method for overlapping subdomains is related
to the numerical zoom method in [32] and was introduced for non-distructive
testing in [15], using a slightly different but equivalent formulation. The original205

mortar element method for overlapping subdomains and a convergence analysis
of the method for a model problem can be found in [42] and [13].

4.1. Preliminary Notation

We assume that the interface γ := ∂ΩL, between the domain ΩL, bounded by
the limiter, and the exterior domain Ωex, is polygonal and introduce a standard210

mesh τ ex of triangular elements that covers the domain Ωex exterior to the
domain ΩL. The boundary of Ωex is ∂Ωex = Γ ∪ Γ0 ∪ γ. We assume that
triangles Ti of τ ex are shape regular and quasi-uniform. Next we introduce a
(second, independent) mesh τ in of rectangular elements Kj that covers a domain
Ωin such that ΩL ⊂ Ωin. We assume that Ωin has a non-vanishing overlap with215

the domain Ωex, that is, Ωov := Ωin ∩ Ωex 6= ∅. Note that ∂Ωov = γ ∪ γ̃ with
γ̃ = ∂Ωin. Both γ and γ̃ are polygonal lines with nodes and edges from the
meshes τ ex and τ in. We use Nγ (resp. Nγ̃) to denote the set of all nodes of γ
(resp. γ̃). Additionally we denote by N r

γ̃ (resp. N z
γ̃ ) all the nodes of γ̃ that

belong to an edge of γ̃ that is parallel to the r-axis (resp. the z-axis). Moreover,220

we suppose that Ωci ∩ Ωin = ∅, 1 ≤ i ≤ N (together with ΩFe ∩ Ωin = ∅ when
ΩFe 6= ∅).

We introduce two FE spaces over τ ex and τ in

V ex = {φ ∈ C0(Ωex) : φ|Γ0
= 0, φ|T is a linear polynomial ∀T ∈ τ ex}

V in = {ϕ ∈ C1(Ωin), ∂2
rzϕ ∈ C0(Ωin) : ϕ|K is a bicubic polynomial ∀K ∈ τ in}

and denote by V ex
∂ (resp. V in

∂ ) the trace space of V ex (resp. V in) on the
closed polygonal line γ (resp. γ̃), namely, V ex

∂ = {φ|γ , φ ∈ V ex} (resp. V in
∂ =

{ϕ|γ̃ , ϕ ∈ V in}). Note that V ex is the standard linear Lagrangian FE space225

and V in is known as the Bogner-Fox-Schmit FE space. Then the trace space
V ex
∂ ⊂ C0(γ) is the span of affine linear functions defined on the mesh over γ

9



Figure 2: Left: A sketch of the computational domain Ω (ρΓ = 5.8m) and of the different
domains for the tokamak WEST. Orange, light blue and green domains are the ΩL bounded
by the limiter, the coils Ωci and the iron domain ΩFe. The red domains, the passive structures
will be important for transient simulations. Middle and Right: Two close-ups to the vacuum
chamber domain with ΩL and the two meshes τex and τ in. The black and the red lines are
γ and γ̃. The blue stars correspond to the degrees of freedom of V ex

∂ . The red crosses and

green circles signify the degrees of freedom of V in
∂ . The green circles are the nodes in N zγ̃ ,

the nodes of γ̃ that belong to an edge of γ̃ that is parallel to the r-axis, and the red crosses
are the nodes in N rγ̃ , the nodes of γ̃ that belong to an edge of γ̃ that is parallel to the z-axis.
Both red crosses and green circles belong to Nγ̃ .
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that is induced by τ ex. The degrees of freedom of V ex can be chosen to be the
nodal values at the nodes of τ ex that are not in Γ0, and the degrees of freedom
of the trace space V ex

∂ can be chosen to be the nodal values on nodes in Nγ , i.e.230

the nodes of τ ex that are on γ (see Figure 2, right). For V in the standard choice
of degrees of freedom involves the nodal values of the function, its first order
partial derivatives and its second order mixed derivatives at the nodes of τ in.
Then, as degrees of freedom for the Dirichlet trace space V in

∂ ⊂ C0(γ̃) one can
simply choose the nodal values at nodes of γ̃ together with the nodal values of235

the partial derivative in the r-direction (resp. z-direction) if the node belongs
to an edge of γ̃ parallel to the r-direction (resp. z-direction).

4.2. The two mortar-like mappings

Since vex
|γ̃ 6∈ V

in
∂ (resp. vin

|γ 6∈ V
ex
∂ ) for vex ∈ V ex (resp. vin ∈ V in) to impose

the transmission condition at γ and γ̃ at the discrete level we rely on two mortar-240

like mappings, called nodal interpolations. More precisely, it is possible to define
two operators πin : V ex → V in

∂ and πex : V in → V ex
∂ based on the particular

choice of degrees of freedom of V ex
∂ and V in

∂ :
a) For ψin ∈ V in we define πexψin ∈ V ex

∂ such that

(πexψin)(ri, zi) := ψin(ri, zi) , ∀(ri, zi) ∈ Nγ . (11)

b) For ψex ∈ V ex we define πinψex ∈ V in
∂ such that

(πinψex)(ri, zi) := ψex(ri, zi) , ∀(ri, zi) ∈ Nγ̃ ,
∂r(π

inψex)(ri, zi) := ∂rψex(ri, zi) , ∀(ri, zi) ∈ N r
γ̃ ,

∂z(π
inψex)(ri, zi) := ∂zψex(ri, zi) , ∀(ri, zi) ∈ N z

γ̃ .

(12)

We remark that πin is not well defined when the nodes (ri, zi) ∈ N r
γ̃ or (ri, zi) ∈

N z
γ̃ happen to lie on an edge of τ ex, since the gradients of functions in V ex are245

not single valued on edges of τ ex. In the rare cases where we need to manage
this multivalued situation, we simply choose one of the possible values. The
difference tends to zeros for decreasing mesh size, and hence the impact of this
choice is not very crucial.

4.3. The mortar-like Galerkin formulation250

By the definition of V ex and V in there are FE spaces V ex
◦ and V in

◦ such that

V ex = V ex
◦ ⊕ EV ex

∂ and V in = V in
◦ ⊕ EV in

∂ ,

where E denotes the trivial extension operators. The elements of V ex
◦ and V in

◦
have vanishing Dirichlet trace on γ and γ̃, respectively.

We are now able to formulate the discrete variational problem: Find (ψex, ψin) ∈
V ex × V in such that

aex(ψex, v) + ain(ψin, w) = `(~I, v) ∀(v, w) ∈ V ex
◦ × V in

◦ ,

ψex − πexψin = 0 on γ ,

ψin − πinψex = 0 on γ̃ ,

(13)
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where

aex(ψ, v) :=

∫
Ωex

1

µ(ψ)r
∇ψ · ∇v drdz + c(ψ, v) ,

ain(ψ,w) :=

∫
Ωin

1

µ0r
∇ψ · ∇w drdz − jp(ψ,w) .

(14)

The mappings `(~I, v), jp(ψ,w) and c(ψ, v) are the same as in (9) and (10). An
important difference to the method presented in [42] is that we do not introduce
weighting coefficients to compensate for the twofold integration over the over-255

lapping domain and hence the consistency error can not be estimated as easily
as in [13, Section 4.2]. On the other hand it is the absence of weighting coeffi-
cients that avoids the need of computing the polygonal intersections of triangles
and rectangles for the assembling of ain(ψ,w) and aex(ψ, v). With a non-zero
overlap, we expect that the consistency error can nevertheless be controlled. At260

least the numerical experiments in [15, Section 5.] show convergence of optimal
order for a eddy current problem in non-destructive testing using this kind of
mortar approach.

Remark 1. Most of the theoretical work on mortar element methods [59, 5]
assumes the operators πex and πin to be L2-projections. It is standard to define
the operator πex : H1(Ωin)→ V ex

∂ and πin : H1(Ωex)→ V in
∂ as follows:∫

γ

πexψ ξ dS =

∫
γ

ψ ξ dS ∀ξ ∈ V ex
∂ ,

and ∫
γ̃

πinψ ξ dS =

∫
γ̃

ψ ξ dS ∀ξ ∈ V in
∂ .

The choice of πex and πin as L2-orthogonal projections guarantees stabil-
ity in the Hs-norm, 0 ≤ s ≤ 1. Unfortunately, in practical implementations,265

this choice leads to undesired difficulties due to integration of products of FE
functions defined on different meshes. This approach would require to find in-
tersections of edges of one mesh with the elements from the other mesh. The
nodal interpolations in Section 4.2 require only to find the element of the first
mesh where a node of the second mesh is located.270

4.4. Newton’s method for (13)

Note that aex(·, ·) (resp. ain(·, ·)) in (13) is linear in the second argument
but not in the first, due to the non-linear dependence of the physical coefficient
µ (resp. of jp) on the solution ψ. Hence, we will use Newton-type methods to
find solutions of the discrete problem associated with (13). This amounts to
iterating the following update rule for (ψk+1

ex , ψk+1
in ):

dψa
ex(ψkex, v)(ψk+1

ex − ψkex) + dψa
in(ψkin, w)(ψk+1

in − ψkin)+

= `(~I, v)− am((ψkex, ψ
k
in), (v, w)) ∀(v, w) ∈ V ex

◦ × V in
◦ ,

ψk+1
ex − πexψk+1

in = 0 on γ

ψk+1
in − πinψk+1

ex = 0 on γ̃

12



For the non-linear mapping aex(·, ·), taking into account (3), we have

dψa
ex(ψ, ξ)(ψ̃) =c(ψ̃, ξ) +

∫
Ωex

1

µ(ψ)r
∇ψ̃ · ∇ξ drdz

− 2

∫
ΩFe

µ′Fe(|∇ψ|2r−2)

µ2
Fe(|∇ψ|2r−2)r3

(∇ψ̃ · ∇ψ) (∇ψ · ∇ξ) drdz ,

and for the non-linear mapping ain(·, ·), we have

dψa
in(ψ, ξ)(ψ̃) =

∫
ΩL

1

µ0r
∇ψ̃ · ∇ξ drdz + j′p(ψ; ξ, ψ̃) , (15)

where j′p(ψ; ξ, ψ̃) is the approximation of the derivative

dψjp(ψ, ξ)(ψ̃) =

∫
Ωp(ψ)

(
rS′p′(ψN(ψ)) +

1

µ0r
S′ff ′(ψN(ψ))

)
dψψN(ψ)(ψ̃) ξ drdz,

−
∫
∂Ωp(ψ)

(
rSp′(1) +

1

µ0r
Sff ′(1)

)
|∇ψ|−1(ψ̃ − ψ̃(rbd(ψ), zbd(ψ)))ξ dΓ

(16)
given in [8, Lemma I.4], where

(dψψN(ψ)(ψ̃))(r, z) =

ψ̃(r, z)− ψN(ψ)ψ̃(rbdp(ψ), zbdp(ψ))− (1− ψN(ψ))ψ̃(rmax(ψ), zmax(ψ))

ψbdp(ψ)− ψmax(ψ)
.

The derivation involves shape calculus [46, 19] and the non-trival derivatives:

dψψmax(ψ)(ψ̃) = ψ̃(rmax(ψ), zmax(ψ)) and dψψbdp(ψ)(ψ̃) = ψ̃(rbdp(ψ), zbdp(ψ)) .

There are two different approaches to introduce approximations j′p(ψ; ξ, ψ̃) of the

derivative of the non-linear mapping jp(ψ, ξ)(ψ̃). The first replaces the integra-
tion in the analytic expression (16) of the derivative with standard quadrature
rules. The second introduces numerical quadrature to approximate the inte-275

grals in the analytical expression (9) of the non-linear mapping and uses the
analytical derivative of this approximation. While in many cases, including the
derivatives of aex(ψ, ξ), the two approaches yield the same approximation, this
is not the case for jp(ψ, ξ) and we refer to [33, Section 3] for a detailed discussion
on this topic. As one generally establishes convergence of numerical solutions280

of a discretization of a non-linear problem towards the exact solution, it is more
natural to follow the second approach and to calculate analytically derivatives
of discretized non-linear mappings.

We use Gauss-Legendre quadrature of order 5 for integrals on rectangles.
Moreover, in the approximation of

jp(ψ, ξ) =

∫
Ωp(ψ)

(
rSp′(ψN) +

1

µ0r
Sff ′(ψN)

)
ξ drdz

13



we do not compute exactly the intersection K∩Ωp(ψ) of an element K with the
plasma domain Ωp(ψ), but extend Sp′(ψN) and Sff ′(ψN) by zero when ψN > 1.285

Assuming that Sp′(·) and Sff ′(·) are smooth mappings from R+ to R+ we can
use indeed standard quadrature rules on the rectangular elements K.

Let us underline that the second term on the righthand side of (16) van-
ishes whenever Sp′(1) = Sff ′(1) = 0. Moreover, the second and third term

of dψψmax(ψ)(ψ̃) make dψjp(ψ, ξ)(ψ̃) non-local in the sense that it does not290

vanish for ξ and ψ̃ with disjoint supports, whenever (rmax(ψ), zmax(ψ)) or

(rbdp(ψ), zbdp(ψ)), respectively, is in the support of ψ̃.
The computation of (rmax(ψin), zmax(ψin)) and (rbdp(ψin), zbdp(ψin)) for a

piece wise bicubic polynomial ψin ∈ V in is much more involved than in the case
of linear Lagrangian FEs. Indeed, with piece wise linear Lagrangian FEs, the295

critical points are located at nodes of the mesh, whereas with high-order FEs,
they occupy a position that does not coincide necessarily with a node but can
be at the interior of an element. For the determination of (rmax(ψin), zmax(ψin))
we look first for the maximum of ψin at a finite number of evenly distributed
points. Such an initial guess is then refined by looking for a critical point300

in the neighborhood which can be accomplished with standard algorithms for
constrained optimization problems, where the objective is the minimization of
|∇ψin|2/2 and the boundaries of the rectangular element set the constraints. In
the current implementation we rely on the interior point method [48, Chapter
19], being the default algorithm in the function fmincon of MATLAB 2015a.305

For the determination of saddle points of ψin ∈ V in we interpolate ψin first
onto the lower dimensional bilinear FE space and compute the saddle points for
this representation. Then we refine the location by solving again a constrained
minimization problem.

4.5. Algebraic Newton iterations310

We recall the direct decomposition of V ex and V in

V ex = V ex
◦ ⊕ EV ex

∂ and V in = V in
◦ ⊕ EV in

∂ .

Then, if uex and uin represent the vector of the values of degrees of freedom
of ψex ∈ V ex and ψin ∈ V in we have the decomposition uex = (uex

◦ ,u
ex
∂ ) and

uin = (uin
◦ ,u

in
∂ ), where uex

◦ (resp. uin
◦ ) and uex

∂ (resp. uin
∂ ) are the degrees of

freedom in V ex
◦ (resp. V in

◦ ) and V ex
∂ (resp. V in

∂ ).
The matrix form of conditions (11) and (12) thus read, respectively:

uin
∂ = Pin

∂,◦u
ex
◦ + Pin

∂,∂u
ex
∂ , uex

∂ = Pex
∂,◦u

in
◦ + Pex

∂,∂u
in
∂ . (17)

More precisely, if {bin◦,i(r, z)}i and {bin∂,j(r, z)}j are the sets of basis functions

corresponding to the degrees of freedom in uin
◦ and uin

∂ we have

(Pex
∂,◦)kj = bin◦,j(rk, zk) and (Pex

∂,∂)kj = bin∂,j(rk, zk) ∀(rk, zk) ∈ Nγ .
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Figure 3: Nodal Interpolation (left): The node (r3, z3) of the triangular mesh τex is in Nγ
and located in the rectangle {1 2 3 4}: it leads to 16 entries in Pex

∂,◦ and Pex
∂,∂ , corresponding

to the values of the 16 basis functions of the Bogner-Fox-Schmit FE space not vanishing on
the rectangle {1 2 3 4}. The node (r5, z5) of the Cartesian mesh τ in is in Nγ̃ and Nr

γ̃ and

located in the triangle {4 9 10}: it leads to 6 entries in Pin
∂,◦ and Pin

∂,∂ , corresponding to the

values of the 3 basis functions of the linear Lagrangian FE space not vanishing on the triangle
{4 9 10}. L2-projection (right): See Remark 2.

Likewise, if {bex
◦,i(r, z)}i and {bex

∂,j(r, z)}j are the sets of basis functions corre-
sponding to the degrees of freedom in uex

◦ and uex
∂ we have

(Pin
∂,◦)kj = bex

◦,j(rk, zk) and (Pin
∂,∂)kj = bex

∂,j(rk, zk) ∀(rk, zk) ∈ Nγ̃ ,
(Pin

∂,◦)kj = ∂rb
ex
◦,j(rk, zk) and (Pin

∂,∂)kj = ∂rb
ex
∂,j(rk, zk) ∀(rk, zk) ∈ N r

γ̃ ,

(Pin
∂,◦)kj = ∂zb

ex
◦,j(rk, zk) and (Pin

∂,∂)kj = ∂zb
ex
∂,j(rk, zk) ∀(rk, zk) ∈ N z

γ̃ .

Hence, the assembling of (17) amounts mainly to finding the element in which315

each node (rk, zk) is located. See Figure 3 for details.
The weak formulation (13) yields the following non-linear algebraic system:

Aex
◦ (uex

◦ ,u
ex
∂ ) = Fex

◦

Ain
◦ (uin

◦ ,u
in
∂ ) = 0

uex
∂ −Pex

∂,◦u
in
◦ −Pex

∂,∂u
in
∂ = 0

uin
∂ −Pin

∂,◦u
ex
◦ −Pin

∂,∂u
ex
∂ = 0

(18)

where Aex
◦ (uex

◦ ,u
ex
∂ ) is the discretization of the non-linear mapping aex(·, ·) and

Ain
◦ (uin

◦ ,u
in
∂ ) is the discretization of the non-linear mapping ain(·, ·).

Newton’s method is used to solve iteratively the non-linear algebraic system
(18). At each iteration we solve a linear system of the following form:

Aex
◦,◦ Aex

◦,∂ 0 0

0 0 Ain
◦,◦ Ain

◦,∂
0 Iex

∂,∂ −Pex
∂,◦ −Pex

∂,∂

−Pin
∂,◦ −Pin

∂,∂ 0 Iin
∂,∂




∆uex
◦

∆uex
∂

∆uin
◦

∆uin
∂

 =


Fex
◦ −Aex

◦ (uex
◦ ,u

ex
∂ )

−Ain
◦ (uin

◦ ,u
in
∂ )

Pex
∂,◦u

in
◦ + Pex

∂,∂u
in
∂ − uex

∂

Pin
∂,◦u

ex
◦ + Pin

∂,∂u
ex
∂ − uin

∂

 .
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The different blocks Aex
◦,◦, A

ex
◦,∂ (resp. Ain

◦,◦, A
in
◦,∂) correspond to the derivatives

of the discretized non-linear mappings aex(·, ·) (resp. ain(·, ·)) that we introduced320

in (14).

Remark 2. In the case of mortar-like mappings defined by L2-projection we
have in (17)

Pin
∂,◦ = (Min)−1Qin

∂,◦ , Pin
∂,∂ = (Min)−1Qin

∂,∂ ,

Pex
∂,◦ = (Mex)−1Qex

∂,◦ , Pex
∂,∂ = (Mex)−1Qex

∂,∂ ,

with

(Min)ij =

∫
γ̃

bin∂,ib
in
∂,jdrdz , (Mex)ij =

∫
γ

bex
∂,ib

ex
∂,jdrdz ,

(Qin
∂,◦)ij =

∫
γ̃

bin∂,ib
ex
◦,jdrdz , (Qin

∂,∂)ij =

∫
γ̃

bin∂,ib
ex
∂,jdr dz ,

(Qex
∂,◦)ij =

∫
γ

bex
∂,ib

in
◦,jdrdz , (Qex

∂,∂)ij =

∫
γ

bex
∂,ib

in
∂,jdr dz .

In contrast to the mortar-like mapping via nodal interpolation, we need to find
not only the location of nodes of one mesh in elements of the other mesh but
also the location of the edges. Let us explain this for the setting in Figure 3.
Basis functions and degrees of freedoms are associated to a particular node of
the mesh and the basis functions vanish on all elements that do not share this
particular node. If bin◦,4 denotes a basis function of V in associated to the node

4 of τ in in Figure 3 and bex
∂,3 denotes a basis function of V ex associated to the

node 3 of τ ex we have that

(Qex
∂,◦)34 =

∫
γ83

bex
∂,3b

in
◦,4drdz +

∫
γ34

bex
∂,3b

in
◦,4drdz ,

where γ83 and γ34 are the edges of γ between the nodes 8, 3 and 4. It is not
possible to approximate these integrals directly with quadrature as the function
bin◦,4 is not smooth on the edges γ83 and γ34. Hence, we need to find the intersec-

tion of these edges with the elements of the mesh τ in and decompose the edges325

into lines where both basis functions bin◦,4 and bex
∂,3 are smooth. The edge γ34

for example, is split into two segments e1 and e2 that are contained in different
elements of τ in.

Similarly for the computation of Qin
∂,∂ and Qin

∂,◦ the edges of γ̃ need to be
split into segments contained in elements of the triangular mesh τ ex. The edge330

γ̃23 of γ̃ between the nodes 2 and 3 for example, is split into three parts b1, b2
and b3.

4.6. Geometric Coefficients

A very important output of equilibrium calculations are the so called geomet-
ric coefficients. The Grad/Hogan approach [27] to the simulation of evolution335

of plasma in a tokamak on very long timescales, asserts that the fluid model
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quantities such as densities or temperatures are constant on the level lines of
the poloidal flux. Hence, transforming the corresponding conservation laws into
a curvilinear coordinate system with one coordinate line aligned with the level
lines of the poloidal flux ψ, we end up with a system of one dimensional equa-340

tions, with metric coefficients due to the non-linear coordinate transformation.
As the coordinate transformation depends on ψ, also the metric coefficients
depend on ψ. In the tokamak literature these coefficients are referred to as
geometric coefficients (see [10] for a concise introduction to this topic focusing
on numerical methods). The Grad/Hogan approach is implemented in many345

productive simulation tools [40, 17, 60, 34] that are used to study the evolution
of plasma in tokamaks.

More precisely, the geometric coefficients are non-linear functionals of the
following form

gc,ψN(y) =

∫
{(r,z)∈Ωp(ψ), ψN(r,z)=y}

c(r, z)r

|∇ψN(r, z)|
ds , (19)

that, for given smooth scalar functions c : Ω → R, are integrals along the level
line {(r, z) ∈ Ω, ψN(r, z) = y}. For the numerical approximation of gc,ψN

(y) we
need to find the elements that intersect with the level line {(r, z) ∈ Ω, ψin

N (r, z) =
y}, where ψin

N is the normalization based on ψin ∈ V in, the solution of the
Galerkin formulation (13). Since ψin is piecewise bicubic, we have only an
implicit representation of the level line. It is not possible, not even in each
element K, to have a closed form expression for a parametrization s : [0, t]→ Ω
such that ∫

{(r,z)∈Ωp(ψ), ψin
N (r,z)=y}∩K

c(r, z)r

|∇ψin
N (r, z)|

ds =

∫ 1

0

|ṡ(t)| c(s(t))sr(t)
|∇ψin

N (s(t))|
dt .

To exploit nevertheless the high order polynomial representation of ψin we use
the Simpson quadrature rule∫
{(r,z)∈Ωp(ψ), ψin

N (r,z)=y}∩K

c(r, z)r

|∇ψin
N (r, z)|

ds =

∫ 1

0

|ṡ(t)| c(s(t))sr(t)
|∇ψin

N (s(t))|
dt ≈

1

6

(
|ṡ(0)| c(s(0))sr(0)

|∇ψin
N (s(0))|

+ 4|ṡ(0.5)|c(s(0.5))sr(0.5)

|∇ψin
N (s(0.5))|

+ |ṡ(1)| c(s(1))sr(1)

|∇ψin
N (s(1))|

)
.

with s(0) and s(1) the two intersection points of the level line with the boundary
∂K of the element. To determine the intermediate point s(0.5) and the tangent
vectors ṡ(0), ṡ(0.5) and ṡ(1) we follow the procedure outlined in [20, p. 199]:
We write any point s(t) of the level line {(r, z)∈ Ωp(ψ), ψin

N (r, z) = y} ∩K as
the intersection of two level lines:

ψin
N (s(t)) = 0 ,

(1− t)A(s(t)) + tB(s(t)) = 0 ,
(20)
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where the second level line is implicitly defined as convex combination of two
lines, different from the level line of ψ, that intersect the level line of ψ in the
two end points s(0) and s(1). In our calculations we decided for affine functions

A(s) = (s− s(0)) · (s(1)− s(0)) ,

B(s) = (s− s(1)) · (s(1)− s(0)) .

Hence, the intermediate point s(0.5) verifies the non-linear problem

ψin
N (s(0.5)) = 0 ,

0.5(s(0.5)− s(0)) · (s(1)− s(0)) + 0.5(s(0.5)− s(1)) · (s(1)− s(0)) = 0 .

Differentiating (20) with respect to t we see that the tangent vectors ṡ(t) verify

∇ψin
N (s(t)) · ṡ(t) = 0 ,

(1− t)∇A(s(t)) · ṡ(t) + t∇B(s(t)) · ṡ(t) = A(s(t))−B(s(t)) ,

which is a linear problem once we know s(t).

5. Numerical results

In this section we present some numerical results that highlight the features350

of the proposed method. All the implementations and experiments were done
with FEEQS.M 4. FEEQS.M is a MATLAB implementation of the methods for
axisymmetric free boundary plasma equilibria that are described in [33]. The
code utilizes in large parts vectorization, and therefore, the running time is
comparable to C/C++ implementations (see [41, 14] and [18] for a review and355

earlier references). FEEQS.M is publicly available and a forthcoming release will
contain the here introduced overlapping mesh methods for plasma equilibrium
calculations.

We start with examples that show qualitatively the feasibility of the mortar-
like FE method (MEM) for overlapping subdomains introduced in Section 4.360

Next we study numerically the dependence of the location of critical points,
such as saddle points and maxima, on the values of the currents in the poloidal
field coils. This is a very important application for scenario design in tokamaks.
We finish this section by presenting results for the geometric coefficients, the
level line integrals introduced in Section 4.6, which are necessary for simulations365

of transient plasmas in tokamaks.
All subsequent application examples, if not stated differently, are based on

the WEST tokamak (see Figure 1 for a sketch of the different subdomains ΩL,
Ωci and ΩFe

5. The imposed currents and the numbering of the coils can be
inferred from Figure 4. For parameters in the current profile (7) we choose370

α = 0.9, β = 1.5, γ = 0.9, λ = 1806600 and R0 = 2.4m. All the computations
where performed on a MacBook Pro with a 2,8 GHz Intel Core i7 processor and
16 GB RAM, using MATLAB 2015a.

4http://www-sop.inria.fr/members/Holger.Heumann/Software.html
5an ASCII-file with the precise definition can be provided upon request
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id current id current
1 0 10 54000
2 0 11 54000
3 0 12 54000
4 28800 13 66000
5 −239040 14 66000
6 −239040 15 66000
7 −288000 16 66000
8 0
9 0

Figure 4: The values of the current (in At) for then numerical tests with the WEST tokamak.
The small coils close to the ΩL are numbered 10 to 16 going from left to right and top to
bottom.

5.1. Feasibility

The initial guess of the plasma domain Ωp(ψ) for given currents in the375

poloidal field coils plays a crucial role in free-boundary equilibrium problems.
It is common to find such initial guesses by trial and error. More sophisticated
approaches are based on the formulation of inverse problems or optimal control
problems, where a desired shape and position of the plasma domain is the ob-
jective and the precise values of the currents is unknown [8, 33]. The virtual380

casing principle by Shafranov and Zakharov [55] is another fairly intuitive way
of determining coil currents for a desired plasma boundary. In the present case
we do not focus on this technical issue, but assume we have a good initial guess
for the poloidal flux ψ, e.g., from a non-mortar formulation of the free-boundary
equilibrium problem that is based on linear Lagrangian FEs. In Figure 5 we385

show the contour plots of the solution of the MEM for an increasing number of
elements (see the table in Figure 6) of the interior rectangular mesh τ in. Not
very surprisingly the solutions do not differ much and are close to the one with-
out MEM. The visualization in Figure 6 emphasizes this observation in focusing
on the plasma boundary and the data in the table of the same figure give more390

quantitative evidence. We need less than 10 Newton iterations to reduce the
relative residual of the non-linear discrete system to values below 10−12.

The MEM has higher complexity, than the standard P1 method. Neverthe-
less, most of the additional effort for assembling the algebraic systems is neg-
ligible and can be done before the Newton loop starts. The largest additional395

computational effort is most likely the inversion of the matrix in the Newton it-
erations, but as we work here with two dimensional problems we can rely on the
very efficient direct solvers, that work very well also for non-structured matrices
(see the table in Figure 6 for some timings). The implementations here are not
yet run time optimized, so for the moment we are not able to make general400

assertions about the performances. The experiments show that with minimal
additional computational effort it is possible to do free-boundary equilibrium
calculations with continuous derivatives.
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Figure 5: Contour plots of the solution by the MEM (13) and Bogner-Fox-Schmit (BFS)
elements for an increasing number of elements in the interior rectangular mesh τ in (1st, 2nd
and 3rd from the left) and a solution without MEM but with linear Lagrangian finite elements.

all P1
P1/BFS

all P1
P1/BFS

all P1
P1/BFS

rmax(m) zmax(m) ψmax(Wb) rbdp(m) zbdp(m) ψbdp(Wb)
P1 [33] 2.5879 0.0026 1.3968 2.2795 −0.6125 1.1652
BFS 1 2.5843 0.0073 1.3949 2.2646 −0.6197 1.1614
BFS 2 2.5799 0.0160 1.3890 2.2726 −0.6174 1.1582
BFS 3 2.5842 0.0163 1.3959 2.2794 −0.6158 1.1641

number of degrees of run(s) solve j assembling
freedom V ex + V in (s/nNewton) (s/nNewton)

P1 [33] 14008 + 4336 6.82 2.14/11 0.69/11
BFS 1 14060 + 3664 6.52 2.81/8 1.91/8
BFS 2 14060 + 14064 11.47 6.29/7 2.44/7
BFS 3 14060 + 53344 45.43 30.85/7 5.57/7

Figure 6: Top: the ψbdp-level lines of the solution by the MEM (13) for an increasing number
of elements in the interior rectangular mesh τ in (1st, 2nd and 3rd from the left) in comparison
with ψbdp-level lines for the solution obtained wit the standard method. Center: Table of the
location of the magnetic axis and the plasma boundary defining point and the corresponding
values for the solution without the MEM at the top line. Bottom: Some characteristic running
times, the total run time (run), the time for the inversion of algebraic system in the nNewton

Newton iterations (solve), the time for assembling j(·, ·) in the nNewton Newton iterations (j
assembling) and the numbers of degrees of freedom (V ex + V in).
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As we combine linear Lagrangian FEs with Bogner-Fox-Schmit FEs, we can
in general only expect that the error reduction in each mesh refinement step is405

comparable to the error reduction of a solution without MEM relying on linear
Lagrangian FEs everywhere. Clearly, a genuinely high order MEM combines
high order FEs on the exterior with high order FEs on the interior. We refer
to [15, Section 5] for convergence studies on a linear problem using a similar
MEM and lowest order spaces both in the exterior and the interior domains.410

Numerical analysis and extensive numerical experiments for a related method
can be also found in [21].

To validate the convergence for the setting of this work, we consider the
linear problem

−∇ · (∇u) = f in Ω , u = u0 in ∂Ω , (21)

on a rectangular domain Ω = [−1, 1]2 and define ΩL as the polygon with ver-
tices (−0.125, 0.5), (0.375, 0.25), (0.375,−0.375), (0,−0.5), (−0.375,−0.375),
and (−0.5, 0.25). The meshes τ in and τ ex for the interior domain Ωin and ex-415

terior domain Ωex will be a Cartesian mesh and a triangular mesh. If hex

(resp. hin) is the maximal diameter of elements in τ ex (resp. τ in), and pex

(resp. pin) the local polynomial degree of the FE spaces V ex (resp. V in), one
has optimal convergence if, for a smooth solution, the approximation error in
the H1(Ωex) and H1(Ωin)-norms behaves as O(hp−1), with h = max(hex, hin)420

and p = min(pex, pin). This reasoning is confirmed by the numerical exper-
iments (see Figure 7), where we took in (21) the data f and u0 such that
u(r, z) = cos(πr) sin(πz) is the solution. We do not observe any quantitative
difference between the MEM using either the L2-projection or the nodal in-
terpolation in the coupling condition. The use of a bicubic polynomial in the425

interior domain Ωin allows to achieve with the MEM a given error level with
elements in Ωin larger than those used with linear Lagrangian FEs everywhere.
Due to the behavior of this particular solution, we cannot expect further profit
from the Bogner-Fox-Schmit FE.

Next, taking a clue from the theory of hp-FE methods we consider the data430

f(r, z) and ψ0 such that ψ(r, z) = cos(πr)4 cos(πz)4, for (r, z) ∈ [−0.5, 0.5]2,
and ψ(r, z) = 0, for (r, z) on Ω \ [−0.5, 0.5]2, is the solution of (21). As the
solution goes very fast to zero on Ω \ ΩL we can expect here to see high order
convergence due to the Bogner-Fox-Schmit FE space over Ωin. This is confirmed
by the experiments (see Figure 8). We not only see higher order convergence435

w.r.t. refinement, but observe also that the computing time is much shorter
than that for a low order method. This shows that the additional overhead due
to coupling mappings is easily compensated. More numerical test for the MEM
and the model problem (21) can be found in [57].

5.2. Movement of (rmax, zmax) and (rbdp, zbdp)440

In this example we are running a sequence of 30 simulations where all cur-
rents except one, namely the current in coil 4, are set to the values in the table
of Figure 4. The current in coil 4 goes through uniform steps from I4 = 28800 At
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Figure 9: Evolution of the perturbations (∆rmax,∆zmax) and (∆rbdp,∆zbdp) of the magnetic
axis and the boundary defining point w.r.t. the current perturbation ∆I4: the MEM (13)
with the Bogner-Fox-Schmit element (left) and the MEM with bilinear finite elements instead
of the Bogner-Fox-Schmit elements (right).

to I4 = 104965 At. This test case mimics the evolution of a plasma induced by
the variation of currents in time. In the conforming case with linear Lagrangian445

FEs the magnetic axis (rmax, zmax) and the plasma boundary defining point
(rbdp, zbdp) undergo a discontinuous evolution as their location is inherently re-
stricted to vertices of the mesh. With the MEM we are able to introduce FE
functions in Ωin that are not only continuous but have also continuous deriva-
tives, hence the location of critical points is no more restricted to a finite number450

of points. This reasoning agrees perfectly with the observations. In Figure 9 we
see that the evolution of the perturbations (∆rmax,∆zmax) and (∆rbdp,∆zbdp)
of magnetic axis and boundary defining point evolve smoothly with the cur-
rent perturbation. To highlight the influence of the continuous derivatives we
compare the results with the MEM that uses bilinear FEs (Q1) instead of the455

bicubic Bogner-Fox-Schmit FEs. Maxima and minima of bilinear FE functions
are again necessarily on vertices of the mesh, while saddle points can lie either
on vertices or inside an element (see Figure 9 right). We would like to stress
that the evolution of the perturbations ∆ψmax and ∆ψbdp of the values of ψ
at the magnetic axis and the boundary defining point is smooth in both cases.460

The discontinuous behavior of the location of critical points is not inherited to
the values of ψh at its critical points.

The visualization in Figure 10 stresses the undesired behavior that appears
due to non-continuous gradients and shows how this defect can be cured by
using the Bogner-Fox-Schmit FE.465

5.3. Geometric Coefficients

We are validating the computation of the geometric coefficients described in
section 4.6 for the following elliptic data

ψE(r, z) = ψmax −
(

(r − rmax)2

a2
+

(z − zmax)2

b2

)
, (22)
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Figure 10: Locations of (rmax, zmax) (left) and (rbdp, zbdp) (right) for variations ∆I4 of the
current in coil 4. Simulations are done on a mesh (top) and on a refinement of it (bottom).
The solution with bilinear (Q1) FEs is compared with the numerical solution using the Bogner-
Fox-Schmit (BFS) FEs.
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and ψbdp = 0 with parameters a = 1, b = 3, rmax = 2, zmax = 0 and ψmax = 2
for which we find closed form expression:

g 1
r ,ψ

E
N

(y) =|ψmax|abπ ,

g1,ψE
N

(y) =|ψmax|abπrmax ,

g 1
r2
,ψE

N
(y) =

|ψmax|abπ√
r2
max + a2ψmaxy

,

g |∇ψE|2
r2

,ψE
N

(y) =4π|ψmax|
(b2 − a2)rmax(rmax −

√
r2
max + a2ψmaxy)− a4ψmaxy

a3b
√
r2
max + a2ψmaxy

.

(23)
We project the elliptic data onto the Bogner-Fox-Schmit FE space defined over
the domain [0.1, 4]× [−4.5, 4.5], then we compare the numerical values obtained
for the geometric coefficients with the analytical ones. Figure 11 shows the
convergence on a sequence of mesh refinements. We are computing numerically470

the values of the geometric coefficients at 40 equidistant values between 0 and
1 and monitor the maximal relative error. We obtain the expected high order
convergence. Not very surprisingly the rate of convergence seems to correspond
to the rate of convergence of the projection error for ψE in the H1-norm. Com-
pared to bilinear FEs we can achieve higher accuracy with a fixed number of475

unknowns. This example puts in evidence that with an appropriately chosen
numerical algorithm for the approximation of the geometric coefficients, the ac-
curacy is directly linked to the quality to the approximation of ψ. Next, the
theoretical understanding of higher order FE methods on the one end and the
results of the experiments in section 5.1 on the other hand, show that the MEM480

for the non-linear equilibrium problem with Bogner-Fox-Schmit FEs in some
parts of the vacuum chamber allows to achieve a fixed accuracy with less de-
grees of freedoms compared to lower order FEs. So, we can conclude that the
MEM with Bogner-Fox-Schmit FEs yields more accurate geometric coefficients
than lower order methods.485

Finally, we perform a quantitative comparison of the geometric coefficients
for the WEST application example. Figure 12 shows the geometric coefficients
for a solution obtained by the MEM coupled either with the bilinear FE space
or with the Bogner-Fox-Schmit FE space. Computations use the coarsest mesh
from Figure 5 and we see that the coefficients based on MEM with the bilinear490

FE space suffer from small oscillations, that are due to lack of accuracy. The
small oscillations near y = 0 disappear when using the Bogner-Fox-Schmit FEs.

6. Conclusions and Outlook

We have shown that the MEM combining Cartesian and triangular meshes is
a very flexible approach to introduce locally higher order regular FEs for plasma495

equilibrium calculations in tokamaks. While it is easy to define higher order reg-
ular FE spaces on Cartesian meshes, the triangular meshes in turn allow for an
accurate resolution of design details in realistic geometries. It is possible to
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use similar ideas for the coupling of more complex plasma models with eddy
current modeling in coils and passive structures. Moreover, we could enforce500

not only continuous derivatives but also continuity for higher order derivatives,
using tensor products of higher order splines to define appropriate FE spaces in
analogy to the Bogner-Fox-Schmit FE one. Figure 13 shows a numerical result
that uses a biquintic FE space in Ωin that ensures continuity of second order
derivatives. Continuity of second order derivatives goes beyond the scope of con-505

forming FEs on unstructured meshes, but thanks to MEM we can provide now
plasma equilibrium solvers with this feature. The main motivation for this work
is more accurate computation of geometric coefficients and location of axis and
boundary defining point for forthcoming simulations of the Grad/Hogan model.
But there are many more applications in fusion science that can benefit from an510

MEM approach. The control of the location of the plasma boundary defining
point for heat load minimization of divertor design [6, 7] or the computation
of plasma equilibria with so-called snowflake configuration [52] are two of such
very relevant applications.
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[30] H. Haddar, Z. Jiang. Axisymmetric eddy current inspection of highly con-
ducting thin layers via asymptotic models. Inverse Problems, 31/11 (2015)
1–25.600

[31] H. Haddar, Z. Jiang, A. Lechleiter. Artificial boundary conditions for ax-
isymmetric eddy current probe problems. Comp. Math. Appl., 68/12, Part
A (2014) 1844–1870.

[32] F. Hecht, A. Lozinski, O. Pironneau. Numerical zoom and the Schwarz
algorithm. In Domain decomposition methods in science and engineering605

XVIII, volume 70 of Lect. Notes Comput. Sci. Eng., pages 63–73. Springer,
Berlin, 2009.

30



[33] H. Heumann, J. Blum, C. Boulbe, B. Faugeras, G. Selig, J.-M. Ané,
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