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Exact simulation of the jump times of a class of
Piecewise Deterministic Markov Processes
Vincent Lemaire∗† Michèle Thieullen∗‡ Nicolas Thomas∗§

Abstract

In this paper, we are interested in the exact simulation of a class of Piecewise Deterministic
Markov Processes (PDMP). We show how to perform efficient thinning algorithms depending
on the jump rate bound. For different types of jump rate bounds, we compare theoretically
the mean number of generated (total) jump times and we compare numerically the simulation
times. We use thinning algorithms on Hodgkin-Huxley models with Markovian ion channels
dynamic to illustrate the results.

Keywords: Piecewise Deterministic Markov Process; Exact simulation; Thinning; Neural model;
Channel noise
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1 Introduction
In many areas it is important to be able to simulate exactly and rapidly trajectories of a stochas-
tic process. This is the case for Monte Carlo methods, statistical estimation, bootstrap. In
this article, we are interested in the exact simulation (perfect sampling) of a class of Piecewise
Deterministic Markov Processes (PDMP). These processes, introduced by M.H.A. Davis in [9],
are based on an increasing sequence of random times in which the processes have a jump and
on a deterministic evolution between two successive random times. The law of a PDMP is thus
determined by three parameters called the characteristics of the PDMP: a family of vector fields,
a jump rate (intensity function) and a transition measure. These parameters can be given but in
some cases we may have only access to few of them. In this study we suppose that the flows of the
PDMP are known, this means that we explicitly know the solution of each ordinary differential
equations associated to each vector fields. This hypothesis is not a restriction. Indeed, many
random phenomena are modelled by PDMPs with explicit flows. For example, we can quote the
temporal evolution of the membrane potential and ionic channels in neuroscience (see [24]), the
evolution of a food contaminant in the human body in pharmacokinetic (see [3]), the growth of
bacteria in biology (see [12]), the data transmission in internet network (see [5]) or the evolution
of a chemical network in chemistry (see [1]).
The flows being known, we focus on the simulation of the jump times. The basic tool we use is
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the thinning method introduced by Lewis and Schedler in [19] to simulate Poisson processes and
generalised by Ogata [22] to simulate any point processes. This method became classic when the
jump rate of the process admits a constant upper bound λ. It consists in generating the jump
times of a (homogeneous) Poisson process with intensity λ then selecting some of these times by
a rejection argument. In this case, we obtain an algorithm that is easy to implement. However,
it is intuitive that a constant bound λ will not provide a powerful algorithm when the jump rate
of the process present significant variations.
Let us go back to PDMPs. The main result of this article is to develop thinning algorithms
where the jump rate bound closely follows the evolution in time of the jump rate of the PDMP
to simulate. In the sequel, such a bound is called optimal bound.
We see at least three interests in this result. The first is that it applies with weak hypotheses on
the jump rate: we are not assuming that the jump rate is bounded, it can depend on time, being
monotone or not. The second is that it provides powerful thinning algorithms. The drawback of
this method is that more the jump rate bound is close to the jump rate more the method is time
consuming. It is thus necessary to look for a satisfactory balance. We discuss this difficulty on
a numerical example. Finally, the optimal bound is constructed by following each vector fields
of the family. This construction is thus natural in the context of switching processes such as
PDMPs. For this reason we think that the algorithms studied in this article can be applied to a
much larger family of processes such as Hawkes processes or jump (P)SDE with state-dependent
intensity.
Let us now give some details on the content of the article. In this study we will consider three
types of jump rate bounds:

• the global bound, the coarsest, which is constant (in particular it is independent of the state
of the PDMP and of time),

• the local bound, which depends on each post-jump values of the PDMP and which is con-
stant between two successive jump times,

• the optimal bound, the finest, which depends on each post-jump values of the PDMP and
also on the time evolution of the process between two successive jump times.

For each of the three jump rate bounds we theoretically compare the mean number of rejected
points, then, on a numerical example, the simulation times.
As an indicator of the efficiency of the thinning method, we choose the mean value of the ratio
between the number of accepted jump times and the number of proposed jump times. We call
it rate of acceptance. This indicator is between 0 and 1 and is easily understood, the closer it
is to 1 the less we reject points, thus the more the method is efficient. We explicitly express
this rate of acceptance in terms of the transition measure of a discrete time Markov chain which
carries more than the information of the PDMP only. Note that it is not the embedded Markov
chain of the PDMP since it contains also all the rejected jump times. The rate of acceptance
is also expressed as a function of the ratio between the jump rate of the PDMP and the jump
rate bound. This expression allows to see that more the jump rate bound is close to the jump
rate of the PDMP more the algorithm is efficient. Let us also note that the rate of acceptance
is different from the definition of efficiency given in [19] or [11] chap. 6 where it is defined as
the ratio between the mean number of accepted jump times and the mean number of proposed
jump times. However, in the case of Poisson processes, the rate of acceptance coincides with the
definition of efficiency given in [19] or [11] chap. 6.
When the flows are not known explicitly, we can simulate PDMPs with the algorithms given in
[25] or in [28] which essentially consist in repeatedly solving ODEs.
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We chose to illustrate the results on the efficiency of the optimal bound on two stochastic Hodgkin-
Huxley (HH) models, the subunit model and the channel model [24]. The subunit model is the
stochastic model whose deterministic limit (when the number of channels goes to infinity) is
the classical four-dimensional deterministic HH model [16] whereas the deterministic limit of the
channel model is a fourteen-dimensional model [24]. The difference between the two stochastic
models comes from the modelling of the conductance of the membrane. In the subunit model,
the conductance is given by the proportion of open gates whereas, in the channel model, it is
given by the proportion of open channels. Note that the two deterministic models are equivalent
when the initial conditions satisfy a binomial relation [24]. The channel model is known to be
more bio-realistic than the subunit model but also more complex.
Thinning algorithms are better suited than algorithms in [25] or[28] to simulate variables of bi-
ological interest such as mean spiking times or mean dwell times using classical Monte Carlo.
Indeed, in addition to be faster, thinning algorithms do not introduce bias since the simulation
is exact.
We present both stochastic HH models as PDMPs. The jump rates of these models present
high variations especially when the membrane is in a depolarization phase, thus, it allows to
check whether the optimal bound speed up simulation compared to the global bound and the local
bound. Moreover the jump rates (which come from the modelling [16]) are complex functions,
thus numerical inversion of the distribution function can be time consuming. To the best of
our knowledge, when flows are known, no studies of the error have been carried out when we
numerically inverse the distribution function.
Several algorithms can be found to simulate stochastic HH models. These algorithms can be
classified into three categories: channel-state tracking algorithms (CST) [7], [26], [2] channel-
number-tracking algorithms (CNT) [27], [6], [2] and approximate algorithms [23], [14], [13]. The
main difference between the CNT and CST algorithms comes from the simulation of the inter-
jump times and we emphasise that thinning algorithms can be used in both types of algorithm.
In the literature, the term exact algorithm (simulation) is employed to denote CST and CNT
algorithms (see [13], [2]) even if we use some Euler integration to numerically solve the inversion
of the distribution function problem. In this article, the meaning of "exact" signifies that the
simulated trajectories are realizations of these processes.
We show how to determine jump rate bounds in such stochastic HH models. We also present a
new way to simulate the transition measure of the channel model by using the transition mea-
sure of the subunit model. This approach is numerically more efficient than the classical method
used for example in [20] p.587. For the stochastic HH models studied here, we show that the
simulation time is reduced by 2 in going from the global bound to the local bound and that it is
also reduced by 2 in going from the local bound to the optimal bound.
The paper is organised as follows. In section 2, we give the definition of PDMPs and set the
notations used in other sections. In section 3, we introduce the jump rate bounds and we present
the thinning procedure. In section 4, we give the theoretical results concerning the comparison of
the jump rate bounds and the rate of acceptance. In section 5, we introduce the Hodgkin-Huxley
models. In section 6 we numerically illustrates the results.

2 Formal definition of PDMPs
A PDMP is a stochastic process in which the source of randomness comes from random jump
times and post-jump locations. In this paper, we consider that such a process takes the following
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general form
xt = (θt, Vt) ∀t ≥ 0

where:

• θ : R+ → K is a jump process that characterizes the mode of the system, m ≥ 1.

• V : R+ → D ⊆ Rd is a stochastic process which evolves deterministically between two
successive jumps of the process θ, d ≥ 1.

• K is a finite or countable space.

Let us denote E = K×D so that (xt)t≥0 is an E-valued process. We note (Tn)n≥0 the sequence
of jump times of the PDMP and (Nt)t≥0 the counting process Nt =

∑
n≥1 1Tn≤t. We make the

following assumption

Assumption 2.1 : for every starting point x ∈ E, Ex[Nt] <∞ for all t ≥ 0.

This assumption implies in particular that Tn → ∞ almost surely. Such a PDMP is uniquely
defined by its three characteristics (φ, λ,Q) where

• The deterministic flow φ : R+ × E → D is supposed continuous and induced by a vector
field F : E → D. For t ∈ [Tn, Tn+1[, V takes the following form Vt = φ(t − Tn, xTn) and
the trajectory of the process (xt)t≥0 is then given by

xt =
∑
n≥0

(
θTn , φ(t− Tn, xTn)

)
1Tn≤t<Tn+1 .

For notational convenience, we define a vector field G : E → E such that for x ∈ E

G(x) =
(

0
F (x)

)
. Then we can represent the PDMP as follows

xt =
∑
n≥0

ψ(t− Tn, xTn)1Tn≤t<Tn+1 .

Where ψ is the flow induced by G such that for t ∈ [Tn,+∞[

ψ(t− Tn, xTn) =
(
θTn , φ(t− Tn, xTn)

)
.

• The jump rate λ : E → R+ is a non-negative measurable function that characterizes the
frequency of jumps and such that for each x ∈ E there exists σ(x) such that the function
s→ λ

(
ψ(s, x)

)
is integrable on [0, σ(x)[. Then the trajectory of the (stochastic) jump rate

is given by
λ(xt) =

∑
n≥0

λ(ψ(t− Tn, xTn))1Tn≤t<Tn+1 .

The formula is to be understood as follows: the intensity of the inter-jump time Sn+1 is
λ(ψ(t− Tn, xTn)) for t ≥ Tn.

• The transition measure Q : E×B(E)→ [0, 1] governs the post-jump location of the process.
It verifies

Q
(
x, {x}

)
= 0 ∀x ∈ E.
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The iterative construction of these processes in [9] and [10] provides a way to simulate their
trajectories although the problem of the exact simulation of the inter-jump times is not obvious.
In [10], M.H.A Davis shows that there exists a filtered probability space (Ω,F ,Ft,Px) such that
the process (xt)t≥0 is a Markov process. He also shows that (xTk)k≥0 is a Markov chain with
kernel Z such that for x0 ∈ E

Z(x0, A) = P
(
xT1 ∈ A|xT0 = x0

)
=
∫ ∞

0
Q
(
ψ(t, x0)), A

)
λ
(
ψ(t, x0)

)
e
−
∫ t

0
λ

(
ψ(s,x0)

)
ds
dt.

The randomness of the PDMP is contained in the associated jump process (ηt) defined by

ηt = xTn Tn ≤ t < Tn+1.

Because Tn = inf{t > Tn−1 : θt− 6= θt}, the knowledge of (ηt)t≥0 implies the knowledge of
(Tn)n≥0.

3 Simulation of PDMPs by thinning
In this section, we first present the three different jump rate bounds. Secondly, we describe the
thinning method to simulate inter-jump times of PDMPs.

3.1 Jump rate bounds
In this section we introduce the different jump rate bounds, namely, the optimal bound, the local
bound and the global bound. The optimal bound is particularly efficient in term of reject because
it is as close as we want to the jump rate. Let us first introduce a general bound of λ, namely λ̃,
defined by

λ̃(xt, t) =
∑
n≥0

λ̃(ψ(t− Tn, xTn), t)1Tn≤t<Tn+1

where (Tn)n≥0 denotes the jump times of the PDMP. For n ≥ 0 and conditionally on (Tn, xTn)
the function t 7−→ λ̃(ψ(t− Tn, xTn), t) is defined on [Tn,+∞[ and verifies

λ(ψ(t− Tn, xTn)) ≤ λ̃(ψ(t− Tn, xTn), t) ∀t ≥ Tn.

We shall precise that the function of time λ̃(ψ(t−Tn, xTn), t) is used to simulate Sn+1. For n ≥ 0
and conditionally on (Tn, xTn) we define the function Λ̃n : R+ → R+ by

Λ̃n(t) =
∫ t

Tn

λ̃(ψ(s− Tn, xTn), s)ds

We denote by
(
Λ̃n
)−1 the inverse of Λ̃n.

3.1.1 The global bound

We define the global bound by

λ̃glo(xt, t) =
∑
n≥0

sup
x∈E

λ(x)1Tn≤t<Tn+1
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By definition, this bound is constant and does not depend on the state of the PDMP nor on
time, we will denote it by λ̃glo. This bound is probably the most used and has the advantage to
lead to an easy implementation. Indeed, to simulate the jump times of the PDMP we simulate a
homogeneous Poisson process with jump rate λ̃glo disregarding the state of the PDMP. For n ≥ 0
and conditionally on (Tn, xTn), the integrated jump rate bound is given by Λ̃glo

n (t) = λ̃glo(t−Tn)
for t ≥ Tn and the inverse is given by (Λ̃glo

n )−1(s) = s/λ̃glo + Tn for s ≥ 0.

3.1.2 The local bound

We define the local bound by

λ̃loc(xt, t) ≡
∑
n≥0

(
sup
t≥Tn

λ (ψ(t− Tn, xTn))
)
1Tn≤t<Tn+1

By definition, this bound is constant between two successive jump times and has the advantage
of being adapted to the state of the PDMP right-after a jump. To each jump time of the
PDMP corresponds a homogeneous Poisson process whose intensity depends on the state of the
PDMP at the jump time. For n ≥ 0 and conditionally on (Tn, xTn), the integrated jump rate
bound is Λ̃loc

n (t) =
(

supt≥Tn λ(ψ(t − Tn, xTn))
)

(t − Tn) for t ≥ Tn and the inverse is given by

(Λ̃loc
n )−1(s) =

(
s/ supt≥Tn λ(ψ(t− Tn, xTn))

)
+ Tn for s ≥ 0.

3.1.3 The optimal bound

Let P be a finite or a countable space. For n ≥ 0, let us denote by (PTnk )k∈P a partition of
[Tn,+∞[. Thus, for k ∈ P , PTnk is an interval of [Tn,+∞[. We define the optimal bound by

λ̃opt(xt, t) ≡
∑
n≥0

(∑
k∈P

sup
t∈PTn

k

λ(ψ(t− Tn, xTn))1PTn
k

(t)
)
1Tn≤t<Tn+1

By definition, this bound is piecewise constant between two successive jump times, thus it is
adapted to the state of the PDMP right-after a jump but also to the evolution in time of the
jump rate. To each jump time of the PDMP corresponds a non-homogeneous Poisson process
whose intensity depends on the state of the PDMP at the jump time and on the flow starting
from this state. For n ≥ 0 and conditionally on (Tn, xTn), the integrated jump rate bound is, for
t ≥ Tn,

Λ̃opt
n (t) =

∑
k∈P

sup
t∈PTn

k

λ
(
ψ(t− Tn, xTn)

)∣∣∣PTnk ∩ [Tn, t]
∣∣∣

where
∣∣∣PTnk ∩ [Tn, t]

∣∣∣ represents the length of the interval PTnk ∩ [Tn, t]. As P is at most countable,

let us denote by pi for i = 0, . . . ,Card(P ) its elements. The inverse,
(
Λ̃opt
n

)−1, is given by

(
Λ̃opt
n

)−1 (s) =
card(P )∑
i=0

(s−∑i−1
k=0 supt∈PTnpk λ

(
ψ(t− Tn, xTn)

)∣∣∣PTnpk ∣∣∣
supt∈PTnpi λ

(
ψ(t− Tn, xTn)

) +Tn+
i−1∑
l=0

∣∣∣PTnpl ∣∣∣)1[κpi−1 ,κpi [(s)

where κpi =
∑i
k=0 supt∈PTn

k
λ
(
ψ(t − Tn, xTn)

)∣∣∣PTnk ∣∣∣ and, by convention
∑−1
l=0

∣∣∣PTnpl ∣∣∣ = 0 and
κp−1 = 0.
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Remark 1: Let P = N and let ε > 0. The optimal bound with the partition (PTn,εk )k∈N where,
for k ∈ N, PTn,εk = [Tn + kε, Tn + (k + 1)ε[ can be use even if the jump rate λ is not bounded.
A bounded hypothesis on λ is required to use the global bound and it can be weakened for the
local bound (for example if the flows are bounded and λ continuous).

Remark 2: For the three jump rate bounds, the simulation is exact. In particular, for all finite
or countable P , that is, for any partitions of [Tn,+∞[, the simulation remains exact.

Remark 3: The choice of the bound depends on the PDMP we want to simulate. If the jump
rate does not vary very much in time, the local bound or the global constant bound can be
adopted but if the jump rate presents high variations in a small time interval, the optimal bound
is preferable.

3.2 Thinning
In this section, we detail the thinning procedure to simulate a PDMP. Details on the thinning of
Poisson processes may be find in [19] or [11]. We present the procedure with the general bound λ̃
of section 3.1. In practice, one has to apply the procedure with one of the three bounds (optimal,
local or global). We simulate a sample path of the PDMP (xt)t≥0 with values in E, starting from
a fixed initial point xT0 = x0 at time T0 as follows.
Let (T̃ 0

k )k≥0 be the Poisson process defined on [0,+∞[ with jump rate λ̃(ψ(t, x0), t) for t ≥ 0,
and

τ1 = inf{k > 0 : Ukλ̃(ψ(T̃ 0
k , x0), T̃ 0

k ) ≤ λ(ψ(T̃ 0
k , x0))}

where (Un)n≥1 is a sequence of independent random variables with uniform distribution on [0, 1],
independent of (T̃ 0

k )k≥0 and x0. The first jump time T1 = S1 of the PDMP is the first jump of a
non-homogeneous Poisson process defined on [0,+∞[ with jump rate λ(ψ(t, x0)) for t ≥ 0. We
simulate T1 by thinning the process (T̃ 0

k )k≥0, then, T1 = T̃ 0
τ1
. On [0, T1[ the PDMP evolves as

follows
xt = ψ(t, x0)

and the random variable xT1 has distribution Q
(

(ψ(T1, x0)), .
)
. Note that conditionally on

(T0, xT0 , T1) the process (T̃ 0
k )k≥1 is a Poisson process on [T0, T1[ with jump rate λ̃(ψ(t, x0), t)−

λ(ψ(t, x0)), see [11] chap.6.

Suppose we have simulated Ti, then, conditionally on (Ti, xTi), the PDMP (xt) restarts from xTi
at time Ti independently from the past. Let (Ti + T̃ ik)k≥0 be the Poisson process on [Ti,+∞[
with jump rate λ̃(ψ(t− Ti, xTi), t) for t ≥ Ti and

τi+1 = inf{k > 0 : Ukλ̃(ψ(T̃ ik, xTi), Ti + T̃ ik) ≤ λ(ψ(T̃ ik, xTi))}

where (Un)n≥1 is a sequence of independent uniform random variables, independent of (T̃ ik)k≥0
and xTi . Ti+1 is the first jump of a non-homogeneous Poisson process defined on [Ti,+∞[ with
jump rate λ(ψ(t − Ti, xTi)) for t ≥ Ti. We simulate Ti+1 by thinning the process (Ti + T̃ ik)k≥0,
then, Ti+1 = Ti + T̃ iτi+1

. On [Ti, Ti+1[ the process evolves as follows

xt = ψ(t− Ti, xTi)

and the random variable xTi+1 has distribution Q
(

(ψ(Si+1, xTi)), .
)
. Note that, conditionally

on (Ti, xTi , Ti+1), the process (Ti + T̃ ik)k≥1 is a Poisson process on [Ti, Ti+1[ with jump rate
λ̃(ψ(t− Ti, xTi), t)− λ(ψ(t− Ti, xTi)).
Moreover, conditionally in (T0, xT0 , . . . , Ti, xTi , Ti+1), the points in [Ti, Ti+1[ obtained from the
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Poisson process (Ti+T̃ ik)k≥1 are independent of the points in [Tj−1, Tj [ obtained from the Poisson
process (Tj + T̃ jk )k≥1 for j = 1, . . . , i. Thus, we have constructed a point process

T0 < T̃ 0
1 < . . . < T̃ 0

τ1−1 < T1 < T1 + T̃ 1
1 < . . . < T1 + T̃ 1

τ2−1 < T2 < T2 + T̃ 2
1 < . . . (1)

Notation: In the sequel, the process defined by (1) is noted (T̃k)k≥0 and the associated counting
process is noted (Ñt)t≥0. We also denote by (T k)k≥0 the process formed by all the rejected points
(i.e the process (T̃k)k≥0 without the jump times (Tk)k≥0) and (N t)t≥0 the associated counting
process.

The sequence (T̃k)k≥0 contains both rejected and accepted points and the sub-sequence noted
(Tk)k≥0 such that for k ≥ 1, Tk =

∑k
l=1 T̃

l−1
τl

defines the jump times of the PDMP. Thus, we
have constructed the jumps of the PDMP by thinning the process (T̃k)k≥0 with non-constant
probabilities (pk) such that pk = λ(xT̃k−)/λ̃(xT̃k−, T̃k) is the probability to accept T̃k.
An important fact in the procedure is that (T̃k)k≥0 is composed by pieces of independent Poisson
processes (T̃ 0

k ), (T̃ 1
k ), . . . , (T̃ ik), . . ..

The thinning procedure provides an algorithm to simulate trajectories of the PDMP.

Algorithm

Step 1.
Fix the initial time T0, the initial condition xT0 = (θT0 , VT0) and set a jump counter n = 0. Set
also an auxiliary jump counter k = 0 and an auxiliary variable T̃k = Tn.
Step 2.
k ← k + 1
Simulate U2k−1 ∼ U(]0, 1[)
Simulate Ek = − log(U2k−1)
T̃k =

(
Λ̃n
)−1 (

Ek + Λ̃n(T̃k−1)
)

Step 3.
Simulate U2k ∼ U(]0, 1[)
if U2kλ̃(ψ(T̃k − Tn, xTn), T̃k) > λ(ψ(T̃k − Tn, xTn)) go to Step 2
Step 4.
Tn+1 = T̃k
Let Vt = φ(t− Tn, xTn) for t ∈ [Tn, Tn+1[.
If Tn+1 > T stop at t = T .
Step 5.
Otherwise, simulate a post-jump value xTn+1 according to the Markovian kernelQ (ψ(Sn+1, xTn), .).
Step 6.
Set n = n+ 1 and return to Step 2.

4 Efficiency of the thinning procedure
In this section, we compare the efficiency of the thinning method in term of reject for the different
bounds. Recall that the number of points needed to simulate one inter-jump time of the PDMP
is given by

τxi = inf{k > 0 : Ukλ̃x
(
ψ(T̃ i−1

k , xTi−1), Ti−1 + T̃ i−1
k

)
≤ λ

(
ψ(T̃ i−1

k , xTi−1)
)
}
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for i ≥ 1, x ∈ {glo, loc, opt} where (Un)n≥1 and (T̃ i−1
k )k≥0 are defined as in section 3.2. We

begin by a lemma.

Lemma 4.1: We have the following uniform convergence

sup
x∈E

sup
t≥0
|λ̃ε(t, x)− λ

(
ψ(t, x)

)
| −→
ε→0

0

where
λ̃ε(t, x) =

∑
k≥0

sup
s∈[kε,(k+1)ε[

λ
(
ψ(s, x)

)
1[kε,(k+1)ε[(t)

Proof. For n > 0 we set ε = 1/n, thus

λ̃1/n(t, x) =
∑
k≥0

sup
s∈[k/n,(k+1)/n[

λ
(
ψ(s, x)

)
1[k/n,(k+1)/n[(t).

Let M = supx∈E supt≥0

∣∣∣∂λ∂t (ψ(t, x)
)∣∣∣, ν > 0, N = dM/νe and n ≥ N . Let x ∈ E and t ≥ 0,

there exists l ≥ 0 such that t ∈ [l/n, (l + 1)/n[. Thus

λ̃1/n(t, x) = sup
s∈[l/n,(l+1)/n[

λ
(
ψ(s, x)

)
.

Let t0 ∈ [l/n, (l + 1)/n] such that sups∈[l/n,(l+1)/n[ λ
(
ψ(s, x)

)
= λ

(
ψ(t0, x)

)
. The application of

the mean value inequality to the function λ ◦ ψ gives

|λ
(
ψ(t0, x)

)
− λ
(
ψ(t, x)

)
| ≤M |t0 − t| ≤M

1
n
≤ ν.

And the conclusion follows.

4.1 Comparison of the mean number of total jump times
In this section, the τxi for x ∈ {glo, loc, opt} are called local reject. In proposition 4.1, we show
that the best local reject is obtained with the optimal bound. More the local reject is small less
pseudo-random variables have to be simulated. Thus, the simulation time using the optimal
bound is expected to be smaller than with the two other bounds.

Proposition 4.1: For all i ≥ 1, We have

E[τopt
i |xTi−1 , Ti−1] ≤ E[τ loc

i |xTi−1 , Ti−1] ≤ E[τglo
i |xTi−1 , Ti−1].

Proof. Let i ≥ 1 and Si = Ti − Ti−1. We apply theorem 2.2 of [11] chap.6 and obtain

E[τglo
i |xTi−1 , Ti−1] = λ̃glo

∫ +∞

Ti−1

e
−
∫ t
Ti−1

λ(ψ(s−Ti−1,xTi−1 ))ds
dt = λ̃gloE[Si|xTi−1 , Ti−1]

E[τ loc
i |xTi−1 , Ti−1] = sup

t≥Ti−1

λ
(
ψ(t− Ti−1, xTi−1)

)∫ +∞

Ti−1

e
−
∫ t
Ti−1

λ(ψ(s−Ti−1,xTi−1 ))ds
dt

= sup
t≥Ti−1

λ
(
ψ(t− Ti−1, xTi−1)

)
E[Si|xTi , Ti−1]

E[τopt
i |xTi−1 , Ti−1] =

∑
k≥0

sup
s∈P

Ti−1
k

λ
(
ψ(s− Ti−1, xTi−1)

)∫
P
Ti−1
k

e
−
∫ t
Ti−1

λ(ψ(s−Ti−1,xTi−1 ))ds
dt.

9



We have

λ̃glo = sup
x∈E

λ(x) ≥ sup
t≥Ti−1

λ
(
ψ(t− Ti−1, xTi−1)

)
≥ sup
t∈P

Ti−1
k

λ
(
ψ(t− Ti−1, xTi−1)

)
for all k ≥ 0. Since, for all i ≥ 1, E[Si|xTi−1 , Ti−1] ≥ 0, the conclusion follows.

From Proposition 4.1, we deduce that E[Ñopt
t ] ≤ E[Ñ loc

t ] ≤ E[Ñglo
t ] where Ñopt

t , Ñ loc
t and Ñglo

t

are counting processes with intensity λ̃opt
t , λ̃loc

t and λ̃glo
t respectively.

4.2 Rate of acceptance
We are now interested in the rate of acceptance, that is the mean proportion of accepted points
in an interval of the form [0, t] for t > 0. Let (Nt) be the counting process of the PDMP and
(Ñt) the counting process with general jump rate λ̃ (see section 3.1). In proposition 4.2 we give
an explicit formula of the rate of acceptance defined as E[Nt/Ñt|Ñt ≥ 1]. Recall that, for k ≥ 1,

pk = λ(ψ(T̃k − Tnk , xTnk ))/λ̃(ψ(T̃k − Tnk , xTnk ), T̃k)

is the probability to accept the point T̃k where Tnk denotes the last accepted point before T̃k and
(T̃n) is defined by (1). Let J : R+ → R+ be the process defined by Jt =

∑
k≥0(t−Tk)1Tk≤t<Tk+1 ,

thus, for t ≥ 0, Jt gives the age of the last accepted point before t. Then, for k ≥ 1, we can write
the probabilities pk as follows

pk = λ(ψ(JT̃k−1
+ S̃k, ηT̃k−1

))/λ̃(ψ(JT̃k−1
+ S̃k, ηT̃k−1

), T̃k)

where S̃k = T̃k − T̃k−1 and (ηt) is as in section 2. The process (S̃k, T̃k, JT̃k , ηT̃k)k≥0 defines a
Markov chain on R+ × Ẽ where Ẽ = R+ × R+ × E with semi-Markovian kernel

M(T̃k−1, JT̃k−1
, ηT̃k−1

, ds, dt, dj, dx) = Q̃(s, T̃k−1, JT̃k−1
, ηT̃k−1

, dt, dj, dx)α(T̃k−1, JT̃k−1
, ηT̃k−1

, ds)

where

α(T̃k−1, JT̃k−1
, ηT̃k−1

, ds) = λ̃(ψ(JT̃k−1
+ s, ηT̃k−1

), T̃k−1 + s)e−
∫ s

0
λ̃(ψ(JT̃k−1

+z,ηT̃k−1
),T̃k−1+z)dz

ds

and

Q̃(s, T̃k−1, JT̃k−1
, ηT̃k−1

, dt, dj, dx) =(
1−

λ(ψ(JT̃k−1
+ s, ηT̃k−1

))
λ̃(ψ(JT̃k−1

+ s, ηT̃k−1
), t)

)
δJT̃k−1

+s(dj)δηT̃k−1
(dx)δT̃k−1+s(dt)+

λ(ψ(JT̃k−1
+ s, ηT̃k−1

))
λ̃(ψ(JT̃k−1

+ s, ηT̃k−1
), t)

Q
(
λ(ψ(JT̃k−1

+ s, ηT̃k−1
)), dx

)
δ0(dj)δT̃k−1+s(dt)

Proposition 4.2: Let (Nt)t≥0 be the counting process of the PDMP (xt)t≥0, (Ñt)t≥0 be
the counting process with jump times (T̃n)n≥0 and M be the kernel of the Markov chain
(S̃k, T̃k, JT̃k , ηT̃k)k≥0, we have

E
[Nt
Ñt
|Ñt ≥ 1

]
= 1

P(Ñt ≥ 1)

∑
n≥1

1
n

∫
R+

∫
Ẽ

n∑
k=1

 λ
(
ψ(jk−1 + sk, xk−1)

)
λ̃
(
ψ(jk−1 + sk, xk−1), tk

)
 e
−
∫ t−tn

0
λ̃(ψ(jn+z,xn),tn+z)dz

1t≥tnµ(dx0)M(0, 0, x0, ds1, dt1, dj1, dx1) . . .M(tn−1, jn−1, xn−1, dsn, dtn, djn, dxn)

where µ is the law of ηT̃0
.
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Proof. We provide a proof into two steps. First, we establish that, with an appropriate con-
ditioning, the conditional law of Nt is the conditional law of a sum of independent Bernoulli
random variables with different parameters. Then, we use this property as well as the kernel M
to compute the rate of acceptance.
Let n ≥ 1 and let us define n independent Bernoulli random variables Xi with parameters pi
such that

pi =
λ(ψ(JT̃i−1

+ S̃i, ηT̃i−1
))

λ̃(ψ(JT̃i−1
+ S̃i, ηT̃i−1

), T̃i)

We note X =
∑n
i=1 Xi the sum of the Bernoulli variables and At,n = {Ñt = n, p1, . . . , pn}. By

noting that, for 0 ≤ k ≤ n, we have

{Nt = k|At,n} =
⋃

1≤i1<...<ik≤n

[ ⋂
i∈In

k

{Ui ≤ pi}
⋂
i∈Ink

{Ui > pi}
]

= {X = k|p1, . . . , pn}

where Ink = {i1, . . . , ik} ⊆ {1, . . . , n}, I
n

k the complementary of Ink in {1, . . . , n} and (Ui) are
independent random variables uniformly distributed in [0, 1] and independent of (pi), we deduce
that

L(Nt|At,n) = L(X|p1, . . . , pn).

In particular, E[Nt|At,n] = E[X|p1, . . . , pn] =
∑n
i=1 pi. Thus, one can write

E
[Nt
Ñt
|Ñt ≥ 1

]
= 1

P(Ñt ≥ 1)

∑
n≥1

1
n
E
[
Nt1Ñt=n

]
= 1

P(Ñt ≥ 1)

∑
n≥1

1
n
E
[
E
[
Nt|At,n

]∣∣∣Ñt = n
]
P(Ñt = n)

= 1
P(Ñt ≥ 1)

∑
n≥1

1
n
E
[ n∑
i=1

pi1Ñt=n
]

= 1
P(Ñt ≥ 1)

∑
n≥1

1
n
E
[ n∑
i=1

pi1t−T̃n≥0E
[
1S̃n+1≥t−T̃n |ηT̃0

, S̃1, . . . , S̃n, T̃n, JT̃n , ηT̃n

]]
Conditionally to (ηT̃0

, S̃1, T̃1, JT̃1
, ηT̃1

, . . . , S̃n, T̃n, JT̃n , ηT̃n), the random variable S̃n+1 is a hazard
law with rate λ̃(ψ(JT̃n + t, ηT̃n), T̃n + t) for t ≥ 0, thus

E
[Nt
Ñt
|Ñt ≥ 1

]
= 1

P(Ñt ≥ 1)

∑
n≥1

1
n
E
[ n∑
i=1

pie
−
∫ t−T̃n

0
λ̃(ψ(JT̃n+u,ηT̃n ),T̃n+u)du1t−T̃n≥0

]
= 1

P(Ñt ≥ 1)

∑
n≥1

1
n
E
[
f(ηT̃0

, S̃1, T̃1, JT̃1
, ηT̃1

, . . . , S̃n, T̃n, JT̃n , ηT̃n)
]

Where
f(ηT̃0

, S̃1, T̃1, JT̃1
, ηT̃1

, . . . , S̃n, T̃n, JT̃n , ηT̃n) =

=
n∑
i=1

(
λ(ψ(JT̃i−1

+ S̃i, ηT̃i−1
))

λ̃(ψ(JT̃i−1
+ S̃i, ηT̃i−1

), T̃i)

)
e
−
∫ t−T̃n

0
λ̃(ψ(JT̃n+u,ηT̃n ),T̃n+u)du1t−T̃n≥0

11



Since (S̃k, T̃k, JT̃k , ηT̃k)k≥0 is a Markov chain with kernel M , we obtain

E
[
f(ηT̃0

, S̃1, . . . , S̃n, JT̃n , ηT̃n)
]

=
∫
R+

∫
Ẽ

f(x0, s1, t1, j1, x1 . . . , sn, tn, jn, xn)

µ(dx0)M(0, 0, x0, ds1, dt1, dj1, dx1) . . .M(tn−1, jn−1, xn−1, dsn, dtn, djn, dxn)

Where µ is the law of ηT̃0
. Thus we have the result.

When λ̃ is close to λ, the rate of acceptance is expected to be close to 1. As an example, consider
the case of two Poisson processes (Nt) and (Ñt) with intensity λ(t) and λ̃(t) respectively such
that λ̃(t) = λ̃ for all t ≥ 0. Thus, for n ≥ 1, S̃1, . . . , S̃n are independent exponential variables
with parameter λ̃. Let us also consider that λ(t) ' λ̃ for t ≥ 0. In this case, the rate of acceptance
is

E
[Nt
Ñt
|Ñt ≥ 1

]
' 1

1− e−λ̃t
∑
n≥1

∫
(R+)n

e
−λ̃
(
t−(s1+...+sn)

)
1t≥s1+...+snα(ds1), . . . , α(dsn)

where α(ds) = λ̃e−λ̃sds. Since, T̃n = S̃1 + . . .+ S̃n is gamma distributed with parameters n and
λ̃, we have

E
[Nt
Ñt
|Ñt ≥ 1

]
' 1

1− e−λ̃t
∑
n≥1

E[e−λ̃(t−T̃n)1t≥T̃n ] ' 1
1− e−λ̃t

∑
n≥1

(λ̃t)n

n! e−λ̃t ' 1

4.3 Convergence of the counting process with a specific optimal bound
as jump rate

Let P = N and let ε > 0, we consider the optimal bound with the partition (PTn,εk )k∈N where,
for k ∈ N, PTn,εk = [Tn + kε, Tn + (k+ 1)ε[, we denote it by λ̃opt,ε(xt, t) and we note (Ñopt,ε

t ) the
corresponding counting process. The number of points needed to simulate one inter-jump time
with this particular partition is noted τopt,ε

i .
We first show, in proposition 4.3, that (T k)k≥0 (defined in section 3.2) is a Cox process with
stochastic jump rate λ̃(xt, t)− λ(xt). Details on Cox processes can be found in [18].

Then we show, in proposition 4.4, that the counting process (Ñ ε
t ) whose jump rate is λ̃opt,ε

converge to the counting process (Nt) of the PDMP.
Proposition 4.5 states that more the parameter ε is small less rejected points are simulated.

However, when ε is too small, step 2 of the algorithm requires many iterations to compute Λ̃(.)
and

(
Λ̃
)−1 (.) and the simulation time increases. We will see in the numerical section 6.2.1 that

taking an ε of order maxn(Tn+1 − Tn) leads to the optimal simulation time.

Proposition 4.3 : Let ξ be a point process and µ be a random measure such that

ξ([0, t]) =
∑
n≥0

1Tn≤t and µ([0, t]) =
∫ t

0
λ̃(xs, s)− λ(xs)ds

Then ξ is a Cox process directed by µ.

Proof. Let us first note that for t ≥ 0

λ̃(xt, t)− λ(xt) =
∑
n≥0

[
λ̃(ψ(t− Tn, xTn), t)− λ(ψ(t− Tn, xTn))

]
1Tn≤t<Tn+1

12



Thanks to [18], we show that for any measurable and non-negative functions f , the Laplace
functional of ξ is

E[e−ξf ] = E[e−µ(1−e−f )]

Let f be a non-negative measurable function. Let us note fT (t) = f(t)1t≤T for T > 0, such that
limT→∞ fT (t) = f(t) with fT increasing with T . Thus, by Beppo-Levi’s theorem, ξfT ↗ ξf and
then e−ξfT ↘ e−ξf when T goes to infinity. Moreover, e−ξfT ≤ 1, thus by Lebesgue’s Dominated
Convergence Theorem

E[e−ξfT ]→ E[e−ξf ]

With the same type of arguments, we show that

E[e−µ(1−e−fT )]→ E[e−µ(1−e−f )]

Thus, it is sufficient to show (2) for functions fT .

E[e−ξfT ] = E[e−
∑

n≥1
fT (Tn)]

=
∑
k≥0

E[e−
∑

n≥1
fT (Tn)|NT = k]P(NT = k)

=
∑
k≥0

E
[
E[

k∏
i=0

e
−
∑

n≥1
fT (Tn)1

Ti≤Tn<Ti+1 |NT = k, (ηt)0≤t≤T ]|NT = k
]
P(NT = k)

By the thinning procedure, the points Tn in [Ti, Ti+1[ may be written as Ti + T̃ il for some l ≥ 1
where (T̃ il )l≥1 is, conditionally on xTi , a Poisson process with jump rate λ̃(ψ(t − Ti, xTi), t) −
λ(ψ(t − Ti, xTi)) for t ≥ Ti. Since (T̃ il ) is independent of (T̃ jl ) for i 6= j, the random variables

Xi := e
−
∑

n≥1
fT (Tn)1

Ti≤Tn<Ti+1 are independent. Thus, since the Laplace functional of a Poisson
process ξ with intensity µ verifies E[e−ξf ] = e−µ(1−e−f ), we obtain

E[e−ξfT ] =
∑
k≥0

E
[ k∏
i=0

E[e−
∑

n≥1
fT (Tn)1

Ti≤Tn<Ti+1 |NT = k, (ηt)0≤t≤T ]|NT = k
]
P(NT = k)

=
∑
k≥0

E
[
e
−
∑NT

i=0

∫ (
1−e

−fT (s)1Ti≤s<Ti+1

)(
λ̃(ψ(s−Ti,xTi ),s)−λ(ψ(s−Ti,xTi ))

)
ds
|NT = k

]
P(NT = k)

= E
[
e
−
∑

i≥0

∫ (
1−e−fT (s)

)
1Ti≤s<Ti+1

(
λ̃(ψ(s−Ti,xTi ),s)−λ(ψ(s−Ti,xTi ))

)
ds
]

= E[e−µ(1−e−fT )]

Proposition 4.4: Let (Ñ ε
t ) be the counting process whose jump rate is λ̃opt,ε and let (Nt) be

the counting process of the PDMP xt, we have the following convergence in law

Ñ ε −→
ε→0

N

13



Proof. Let f be a non-negative measurable function . We show the convergence of the Laplace
transform [8], that is

E[e−
∫
fdÑε ] −→

ε→0
E[e−

∫
fdN ].

Let T > 0, as in proposition 4.3, it is sufficient to show the convergence of the Laplace transform
for functions fT (t) = f(t)1t≤T . Let (T̃ εn) be the points of the process Ñ ε.

E[e−
∫
fT dÑ

ε

] = E[e−
∑

n≥0
fT (T̃ εn)]

= E
[
E[e−

∑
n≥0

fT (T̃ εn)|(ηt)0≤t≤T ]
]

= E
[
e
−
∑

n≥0
fT (Tn)E[e−

∑
n≥0

fT (T εn)|(ηt)0≤t≤T ]
]

Where (T εn) denotes the rejected points. Since (T εn) is a Cox process with stochastic jump rate
λ̃opt,ε(xt, t)− λ(xt), we obtain

E[e−
∫
fT dÑ

ε

] = E
[
e
−
∑

n≥0
fT (Tn)

e−
∫

(1−e−fT (s))(λ̃opt,ε(xs,s)−λ(xs))ds
]

Since e−
∑

n≥0
fT (Tn)

e−
∫

(1−e−fT (s))(λ̃opt,ε(xs,s)−λ(xs))ds ≤ 1, we obtain by Lebesgue’s Dominated
Convergence Theorem and by continuity of the exponential

lim
ε→0

E[e−
∫
fT dÑ

ε

] = E
[
e
−
∑

n≥0
fT (Tn)

elimε→0
∫
−(1−e−fT (s))(λ̃opt,ε(xs,s)−λ(xs))ds

]
.

We have

−T sup
x∈E

sup
t≥0

(
λ̃ε(t, x)− λ(ψ(t, x))

)
≤
∫
−(1− e−fT (s))(λ̃opt,ε(xs, s)− λ(xs))ds ≤ 0

where
λ̃ε(t, x) =

∑
k≥0

sup
s∈[kε,(k+1)ε[

λ
(
ψ(s, x)

)
1[kε,(k+1)ε[(t)

By lemma 4.1, we obtain that almost surely elimε→0
∫
−(1−e−fT (s))(λ̃opt,ε(xs,s)−λ(xs))ds = 1, the

conclusion follows since E
[
e
−
∑

n≥0
fT (Tn)

]
= E

[
e−
∫
fT dN

]
.

Proposition 4.5: For all i ≥ 1 we have

E[τopt,ε
i |xTi−1 , Ti−1] −→

ε→0
1

Proof. Let i ≥ 1 and ε > 0. From theorem 2.2 in chap.6 of [11] we have

E[τopt,ε
i |xTi−1 , Ti−1] =

∫ +∞

Ti−1

λ̃εi−1(t− Ti−1)e
−
∫ t
Ti−1

λ(ψ(s−Ti−1,xTi−1 ))ds
dt

Where
λ̃εi−1(t− Ti−1) =

∑
k≥0

sup
s∈P

Ti−1
k

λ
(
ψ(s− Ti−1, xTi−1)

)
1
P
Ti−1,ε
k

(t)

from theorem 2.3 in [11] chap.6, we deduce that

E[τopt,ε
i |xTi−1 , Ti−1] ≤ sup

t≥Ti−1

λ̃εi−1(t− Ti−1)

λ
(
ψ(t− Ti−1, xTi−1)

) .
14



By Lemma 4.1, we obtain
lim
ε→0

E[τopt,ε
i |xTi−1 , Ti−1] ≤ 1.

Since E[τopt,ε
i |xTi−1 , Ti−1] ≥ 1 for all ε > 0, the conclusion follows.

5 Hodgkin-Huxley models
In this section we apply the thinning algorithms above to different stochastic versions of the
Hodgkin-Huxley model. First, we introduce the classical deterministic model and the stochastic
models, then we give essential points of the simulation.

5.1 Deterministic Hodgkin-Huxley model
Alan Lloyd Hodgkin and Andrew Huxley provided two models in 1952 to explain the ionic mech-
anisms underlying the initiation and propagation of action potentials in the squid giant axon
[16].
In the present section, we only consider models of initiation of action potentials. It means that
we clamp (isolate) a piece of the axon or of the soma and we study electrical properties in time
in this clamped area (also called membrane-patch).
Neuron’s membrane separates the intracellular environment from the extracellular one and al-
lows exchanges of material and energy between these two environments. These exchanges are
allowed by the opening and closing of gates located on the membrane. In most neurons, the
intracellular environment contains a large proportion of potassium ions, whereas the extracellu-
lar environment contains a majority of sodium ones. Hodgkin and Huxley discovered that the
initiation of action potentials principally relies on the movement of these two kind of ions across
the membrane via ionic channels. A ionic channel is constituted by four gates which can be of
different types (activation and inactivation) and is specific to one type of ions, for example, a
sodium channel allows sodium ions only to pass the membrane. We say that a channel is active
when all his gates are open.
A stimulation (it can be an input from other neurons or external applied current) makes the
sodium channels active, thus sodium ions enter in the intracellular environment : the membrane
is depolarized. This depolarizing step increases the conductance of the membrane and when the
voltage exceeds a threshold value there is an action potential. After being active, sodium chan-
nels become inactive, while potassium gates open (these opening make the potassium channels
active). Potassium ions leave the intracellular environment to compensate the entry of sodium
ions : the membrane is re-polarized. Potassium channels stay active longer than sodium ones
: the membrane is hyper-polarized. Then, a protein makes the sodium ions go back into the
intracellular environment and expels potassium ions outside. These are the principal steps of the
initiation of an action potential.

In the models studied in this section, we distinguish three types of channels : sodium, potas-
sium, and leak. We consider that a sodium (potassium) channel is composed by three activation
gates represented by the variable m and one inactivation gate h (four activation gates n and zero
inactivation gates) and that leak channels are always open and allow all type of ions to pass the
membrane.
In fact, there exists other ionic channels as for example calcium ones. In some cases, the cal-
cium plays the role of the sodium to initiate action potentials as in the giant barnacle muscle
fiber [21], or more generally in crustacean muscles [15]. Calcium channels have also many other
functionalities [15]. Classically, the Hodgkin-Huxley model is the set of nonlinear differential
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Figure 1: A trajectory of the deterministic Hodgkin-Huxley model with the values of the param-
eters given in appendix A and I(t) = 301[1,2](t).

equations

C
dV

dt
= I − IL(V )− INa(V,m, h)− IK(V, n)

dm

dt
= (1−m)αm(V )−mβm(V )

dh

dt
= (1− h)αh(V )− hβh(V )

dn

dt
= (1− n)αn(V )− nβn(V )

The function V represents the membrane potential (voltage). The functions m, h, n correspond
to the fraction of open gates of type m, h, or n. The functions αx and βx for x = m,h, n are
opening and closing rates of gates x respectively. I is a time-dependent function which represents
the input current, C is the membrane capacity. For z ∈ {Na,K,L}, Iz = gz(V − Vz) represents
the ionic currents where gNa = gNam

3h, gK = gKn
4 and gL = gL are the conductances of the

sodium, potassium and leak respectively. gL, gNa, gK are the conductances when all gates are
opened and VL, VNa, VK are the resting potentials. Note that, the conductance of the membrane
depends on the state of the gates. Thus, more the open gates are, more the conductance is high.
This model describes the electrical behaviour of a neuron with an infinite number of gates. Thus,
it does not reflect the variability observed experimentally.

5.2 Stochastic Hodgkin-Huxley models
Neurons are subject to various sources of fluctuations, intrinsic (from the membrane) and ex-
trinsic (from synapses). The intrinsic fluctuations are mainly caused by ion channels. To take
into account these fluctuations in the model, we fix a finite number of sodium channels NNa and
potassium ones NK, and replace the deterministic dynamic of the gates by stochastic processes.
Here, we discuss about two stochastic models, namely the subunit model and the channel model.
These models belong to the class of Piecewise Deterministic Markov Processes.

5.2.1 The subunit model

The subunit model is obtained by considering that the conductance of the membrane depends on
the empirical measure defined by the proportion of open gates. Recall that m (respectively n)
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denotes an activation gate of the sodium (respectively potassium) channels and h an inactivation
one. We define the number of gatesm (respectively h, n) by Nm = 3NNa (respectivelyNh = NNa,
Nn = 4NK). Let us consider that each gate is represented by a {0, 1}-valued Markovian Jump
Process (MJP) noted u(x)

k for x = m,h, n and k = 1, . . . , Nx. State 1 corresponds to the open
configuration and 0 to the close one. Recall also that the opening and closing rates which depend
on the voltage are noted αx(.) and βx(.) respectively. The dynamic of a gate can be represented
by the following diagram

0

αx(.)
−→
←−
βx(.)

1

We consider that all MJPs are independent and we define the number of open gates x at time t
by

θ(x)(t) =
Nx∑
k=1

u
(x)
k (t).

Furthermore, let Θsub = {0, . . . , Nn} × {0, . . . , Nm} × {0, . . . , Nh} be the state space of the pro-
cess θt =

(
θ(n)(t), θ(m)(t), θ(h)(t)

)
which records the number of open gates at time t. Note that,

Nx − θ(x)(t) gives the number of close gates x at time t. The subunit model takes the following
form

(S)
{
C dVt

dt = f sub(θt, Vt, t)
(θt)

Where

f sub(θ, V, t) = I(t)−gL

(
V −VL

)
−gNaN

−3
m

(
θ(m)

)3
N−1
h θ(h)

(
V −VNa

)
−gKN

−4
n

(
θ(n)

)4(
V −VK

)
We also define the jump rate of the process by

λsub(θ, V ) =
(
αm(V )(Nm − θ(m)) + βm(V )θ(m)

)
+
(
αh(V )(Nh − θ(h)) + βh(V )θ(h)

)
+(

αn(V )(Nn − θ(n)) + βn(V )θ(n)
)

The component V represents the membrane potential and is continuous, thus, the Markovian
kernel Qsub is only concerned by the post-jump location of the jump process θ. We suppose that
two channels do not change states simultaneously almost surely. For example, the probability of
the event of exactly one gate n opens (conditionally on the last jump time being Tk) is given by

Qsub
(

(θTk−1 , VTk), {θTk−1 + (1, 0, 0)}
)

= αn(VTk)(Nn − θ(n)(Tk−1))
λsub(θTk−1 , VTk)

To summarize, the subunit model can be expressed as a PDMP xsub
t = (θt, Vt, t) ∈ Θsub × R× R+

with vector field f sub : Θsub × R× R+ → R, jump rate λsub : Θsub × R→ R+, and a Markovian
kernel Qsub : Θsub × R× B(Θsub)→ [0, 1].

5.2.2 The channel model

In the channel model, we form groups of four gates to make channels. Unlike the subunit model, we
define independent MJPs u(Na)

k for k = 1, . . . , NNa (respectively u(K)
k for k = 1, . . . , NK) to model
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the sodium (respectively potassium) channels. These independent MJPs follow kinetic scheme
given in appendix B. Note that the conducting state (the state that makes the channel active)
of sodium (respectively potassium) channels is {m3h1} (respectively {n4}) which corresponds to
three open gates m and one open gate h (respectively four open gates n). The conductance of
the membrane depends on the empirical measure defined by the proportion of active channels
and we define the number of active channels at time t ≥ 0 by

θ(m3h1)(t) =
NNa∑
k=1

1{m3h1}

(
u

(Na)
k (t)

)
,

θ(n4)(t) =
NK∑
k=1

1{n4}

(
u

(K)
k (t)

)
.

For i = 0, 1, 2, 3 and j = 0, 1, let θ(mihj) be the number of channels in state {mihj} and for
k = 0, 1, 2, 3, 4, let θ(nk) be the number of channels in state {nk}. Let

Θchan = {θ ∈ {0, . . . , NNa}8 × {0, . . . , NK}5 :
3∑
i=0

1∑
j=0

θ(mihj) = NNa,

5∑
k=0

θ(nk) = NK}

be the state space of the process θt =
(

(θ(mihj)(t))i,j , (θ(nk)(t))k
)
which records the configuration

of the channels at time t. The channel model takes the following form

(C)
{
C dVt

dt = f chan(θt, Vt, t)
(θt)

where

f chan(θ, V, t) = I(t)− gL

(
V − VL

)
− gNaN

−1
Na θ

(m3h1)
(
V − VNa

)
− gKN

−1
K θ(n4)

(
V − VK

)
.

A change in the configuration of the channels (which can be observable or not unlike the subunit
model in which all changes are observable) happens when a gate opens or closes. We define the
application η : Θchan → Θsub which, given a configuration of channels, returns the configuration
of the corresponding gates. We have

η(θ) =

 θ(n1) + 2θ(n2) + 3θ(n3) + 4θ(n4)

θ(m1h0) + 2θ(m2h0) + 3θ(m3h0) + θ(m1h1) + 2θ(m2h1) + 3θ(m3h1)

θ(m0h1) + θ(m1h1) + θ(m2h1) + θ(m3h1)


The first component of the vector η(θ) contains θnopen, the number of open gates n, the second
θmopen, the number of open gates m and the third θhopen, the number of open gates h. Thus, for
x = m,h, n, θxclose(t) = Nx − θxopen(t) gives the number of close gates x at time t. We define the
jump rate of the channel model by

λchan(θ, V ) = λsub(η(θ), V )

Where

λsub(η(θ), V ) =
(
αm(V )(Nm − θmopen) + βm(V )θmopen

)
+
(
αh(V )(Nh − θhopen) + βh(V )θhopen

)
+(

αn(V )(Nn − θnopen) + βn(V )θnopen

)
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Since V is continuous, the kernel Qchan is also only concerned by the post-location of the process
θ. Define Qchan as it is classically do in the literature ([25] p.53 and [20] p.587) is computationally
expensive because we have more transitions to deal with than in the subunit model. We propose
to decompose the kernel Qchan into a product of two kernels. The decomposition is based on the
following observation : it is a change in the configuration of the gates that implies a change in
the configuration of the channels. Thus, to determine which transition occurs at time t among
the 28 transitions given in appendix B, we first determine which gate opens or closes by using the
kernel Qsub with λsub(η(.), .) and then, depending on which gate changes state, we determine a
channel transition by using another kernel. For example, suppose that at time t a gate m opens,
thus, the possible channel transitions are : {m0h0 → m1h0}, {m1h0 → m2h0}, {m2h0 → m3h0},
{m0h1 → m1h1}, {m1h1 → m2h1}, {m2h1 → m3h1} and the next transition is one of those. We
define six kernels to take into account all the possibilities.
Let Lmopen, Lmclose, Lhopen, Lhclose, Lnopen, Lnclose be kernels defined on Θchan × R × B(Θchan) with
values in [0, 1] such that Lmopen is the kernel which choose a transition as above, Lhopen is a
kernel which choose a transition among the following ones {m0h0 → m0h1}, {m1h0 → m1h1},
{m2h0 → m2h1}, {m3h0 → m3h1} and so on. For example, the probability of the event of
having the transition {m0h0 → m1h0} (conditional on the last jump time being Tk) is given by

Qchan
(

(θTk−1 , VTk), {θTk−1 + (−1,+1, 0, . . . , 0)}
)

=

Qsub
(

(η(θTk−1), VTk), {η(θTk−1) + (0, 1, 0)}
)
× Lmopen

(
(θTk−1 , VTk), {θTk−1 + (−1,+1, 0, . . . , 0)}

)
Where

Qsub
(

(η(θTk−1), VTk), {η(θTk−1) + (0, 1, 0)}
)

= αm(VTk)θmclose(Tk−1)
λsub(η(θTk−1), VTk)

Lmopen

(
(θTk−1 , VTk), {θTk−1 + (−1,+1, 0, . . . , 0)}

)
= 3θ(m0h0)(Tk−1)

θmclose(Tk−1)

Finally, the probability of having the transition {m0h0 → m1h0} is, as expected, given by the
rate of this transition multiplied by the number of channels in the state {m0h0} divided by the
total rate.
For x ∈ E, the support Kchan

x of the discrete measure of probability Qchan(x, .) contains at
most 28 elements (depending on the current state x), thus, in the worst case we have to do 28
"if − then" tests to determine the next transition. With the decomposition of Qchan, we have,
in the worst case 12 "if − then" tests to do. Indeed, for x ∈ E the support Ksub

x of the discrete
probability Qsub(η(x), .) contains at most six elements, and the support of the probabilities
Lmopen(x, .), Lmclose(x, .), Lhopen(x, .), Lhclose(x, .), Lnopen(x, .), Lnclose(x, .) contains also at most six
elements (when we deal with a transition of a gate m). Therefore, it is computationally cheaper
to decompose the kernel.
Thus, the channel model can be expressed as a PDMP xchan

t = (θt, Vt, t) ∈ Θchan × R× R+ with
vector field f chan : Θchan × R × R+ → R, jump rate λchan : Θchan × R → R+, and a Markovian
kernel Qchan : Θchan × R× B(Θchan)→ [0, 1].

5.2.3 Explicit form of the flow of the PDMP between two successive jump times

In this section, we determine the explicit expression of the flow of both models. For n ≥ 0,
t ≥ Tn and x ∈ {sub, chan}, the trajectory of the flow φ on [Tn,+∞[ is given by the following
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ODE {
dφ(t−Tn,xTn )

dt = fx
(
θTn , φ(t− Tn, xTn), t

)
= −axnφ(t− Tn, xTn) + bxn + 1

C I(t)
φ(0, xTn) = VTn

where

asub
n = 1

C

(
gL + gNaN

−3
m

(
θ(m)(Tn)

)3
N−1
h θ(h)(Tn) + gKN

−4
n

(
θ(n)(Tn)

)4
)

bsub
n = 1

C

(
gLVL + gNaVNaN

−3
m

(
θ(m)(Tn)

)3
N−1
h θ(h)(Tn) + gKVKN

−4
n

(
θ(n)(Tn)

)4
)

achan
n = 1

C

(
gL + gNaN

−1
Na θ

(m3h1)(Tn) + gKN
−1
K θ(n4)(Tn)

)
bchan
n = 1

C

(
gLVL + gNaVNaN

−1
Na θ

(m3h1)(Tn) + gKVKN
−1
K θ(n4)(Tn)

)
Then, the flow is

φθTn (t− Tn, VTn) = e−a
x
n(t−Tn)

[
VTn + bxn

axn
(ea

x
n(t−Tn) − 1) + 1

C

∫ t

Tn

ea
x
n(s−Tn)I(s)ds

]
For both models we consider that the stimulation I takes the form I(t) = K1[t1,t2](t) with K > 0
and t, t1, t2 ∈ R+.

6 Simulations
We now proceed to the simulations of the subunit model and the channel model by using the
thinning procedure of section 3.2. Firstly, we explicit the three bounds for both models. Secondly,
we numerically compare the efficiency of the bounds in term of reject and simulation time.
Finally, we use the thinning procedure to compute a variable of biological interest for both
models.

6.1 Determination of the jump rate bounds
For simplicity of presentation, we do not distinguish the flows of the subunit model and the
channel model, one has to use asub and bsub for the subunit model and achan and bchan for the
channel model. The determination of the bounds relies on the fact that αn, αm, βh are increasing
functions, βn, βm, αh are decreasing, and that for n ≥ 0 the flow φ(.− Tn, xTn) is bounded.

6.1.1 The global bound

To determine the global bound we use a result in [4] concerning the channel model which
state that if V0 ∈ [V−, V+] then Vt ∈ [V−, V+] ∀t ≥ 0 with V− = min{VNa, VK, VL} and
V+ = max{VNa, VK, VL}. By using the monotony of the opening and closing rate functions,
we find

λ̃glo = Nmαm(VNa) +Nhβh(VNa) +Nnαn(VNa)

The result in [4] is also applicable to the subunit model and leads to the same expression of the
global bound for this model.
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6.1.2 The local bound

Let n ≥ 0 and t ≥ Tn. We note λ̃n = supt≥Tn λ (ψ(t− Tn, xTn)). To determine the constant λ̃n
we write the flow as follows

φ(t− Tn, xTn) = fn(t) + gn(t)

where

fn(t) = e−an(t−Tn)
(
VTn + bn

an
(ean(t−Tn) − 1)

)
gn(t) = e−an(t−Tn) 1

C

∫ t

Tn

ean(s−Tn)I(s)ds

The purpose is to determine a lower and an upper bound of the flow. We have an > 0, bn may
be negative or non-negative, and fn is monotone. By using the fact that ∀t ≥ 0, I(t) ≤ K we
find that

V Tn ≤ φ(t− Tn, xTn) ≤ V Tn (2)

where V Tn = VTn ∨ bn
an

+ K
Can

, and V Tn = VTn ∧ bn
an
. Then, by using the monotony of the opening

and closing rate functions we obtain

λ̃n =
(
αm(V Tn)(Nm − θmopen(Tn)) + βm(V Tn)θmopen(Tn)

)
+
(
αh(V Tn)(Nh − θhopen(Tn))+

βh(V Tn)θhopen(Tn)
)

+
(
αn(V Tn)(Nn − θnopen(Tn)) + βn(V Tn)θnopen(Tn)

)
.

The expression of the local bound is the same for the channel and subunit model but the Markov
chain θ is different.

6.1.3 The optimal bound

In the case of the optimal bound, we consider two partitions of [Tn,+∞[. The first one is the
same as in section 4.3 which is noted, for fixed ε > 0, (PTn,εk )k∈N. We recall that, for k ∈ N,
PTn,εk = [Tn+kε, Tn+ (k+ 1)ε[. We precise that the integrated optimal bound is given for t ≥ Tn
by

Λ̃εn(t) =
∑
k≥0

sup
s∈PTn,ε

k

λ
(
ψ(s− Tn, xTn)

)[
(k + 1)ε ∧ (t− Tn)− kε ∧ (t− Tn)

]
and that the inverse is given by

(
Λ̃εn
)−1 (t) =

∑
p≥0

( t− ε∑p−1
k=0 sups∈PTn,ε

k
λ
(
ψ(s− Tn, xTn)

)
sups∈PTn,εp

λ
(
ψ(s− Tn, xTn)

) + Tn + pε
)
1[κp−1,κp[(t)

where κp = ε
∑p
k=0 sups∈PTn,ε

k
λ
(
ψ(s − Tn, xTn)

)
and, by convention, κ−1 = 0. For k ∈ N, we

have

sup
s∈PTn,ε

k

λ
(
ψ(s− Tn, xTn)

)
=
(
αm(V k,εTn )(Nm − θmopen(Tn)) + βm(V k,εTn )θmopen(Tn)

)
+(

αh(V k,εTn )(Nh − θhopen(Tn)) + βh(V k,εTn )θhopen(Tn)
)

+(
αn(V k,εTn )(Nn − θnopen(Tn)) + βn(V k,εTn )θnopen(Tn)

)
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Where

V
k,ε

Tn = fn (Tn + kε) ∨ fn (Tn + (k + 1)ε) + e−ankε
∫ Tn+(k+1)ε

Tn

ean(s−Tn)I(s)ds,

V k,εTn = fn (Tn + kε) ∧ fn (Tn + (k + 1)ε) + e−an(k+1)ε
∫ Tn+kε

Tn

ean(s−Tn)I(s)ds.

The second partition is obtained for P = {0, 1} and is noted (QTn,εk )k∈P whereQTn,ε0 = [Tn, Tn+ε[
and QTn,ε1 = [Tn + ε,+∞[. The integrated optimal bound is

Λ̃εn(t) = λ
ε

n

[
ε ∧ (t− Tn)

]
+ λ̃n

[
(t− Tn)− ε ∧ (t− Tn)

]
Where λ̃n is the previous local bound and

λ
ε

n = sup
t∈QTn,ε0

λ
(
ψ(t− Tn, xTn)

)
.

The inverse is given by(
Λ̃εn
)
−1(s) =

( s

λ
ε

n

+ Tn

)
1[0,ελεn[(s) +

(s− ελεn
λ̃n

+ Tn + ε
)
1[ελεn,+∞[(s)

Once again, the expression of the optimal bound is the same for both models but the Markov
chain is different. We precise that we used the local bound to define the optimal bound with the
partition (QTn,εk )k∈{0,1}.
Note that, for n ≥ 1, it is possible to define an εn which is "adapted" to the inter jump time
Tn+1 − Tn. To determine such an εn, we use the bounds of the flow in inequality (2) to define a
lower local bound λn such that

λn =
(
αm(V Tn)(Nm − θmopen(Tn)) + βm(V Tn)θmopen(Tn)

)
+
(
αh(V Tn)(Nh − θhopen(Tn))+

βh(V Tn)θhopen(Tn)
)

+
(
αn(V Tn)(Nn − θnopen(Tn)) + βn(V Tn)θnopen(Tn)

)
.

We note (Tn)n≥0 the corresponding point process, then we have

0.05 = P(Tn+1 − Tn > εn) ≤ P(Tn+1 − Tn > εn) = e−εnλn

and we take
εn = − log(0.05)

λn
.

Note that the value εn is in fact adapted to the inter jump time Tn+1 − Tn.

6.2 Numerical results
In this section, we numerically compare the three different jump rate bounds and we use thinning
algorithm to simulate a variable of biological interest, the spiking times.
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Figure 2: First column : subunit model. Second column : channel model. Vertical lines are the
standard deviation of the spiking times (see section 6.2.2).

6.2.1 Numerical comparison of the jump rate bounds

In this part, we first show trajectories of the two stochastic Hodgkin-Huxley models obtained
with the thinning method using the optimal bound. Then, we collect in several tables and graphs
the results concerning the simulation time and the rate of acceptance of both models.

In the sequel, for ε > 0, the optimal-Qε (respectively optimal-Pε) bound denotes the optimal
bound using the partition (QTn,εk )k∈{0,1} (respectively (PTn,εk )k∈N). All numerical values are
obtained from a classical Monte Carlo method with 100 000 trials. Parameters of the models are
given in Appendix A - B. We denote by Nchan the common number of sodium and potassium
channels, Nchan = NNa = NK. The input current is I(t) = 301[1,2](t). The simulation time
represents the time needed to simulate one path of the PDMP on [0,10].

Each lines of Figure 2 shows fifty trajectories of the subunit and the channel model with a
different number of channels, Nchan = 30, 300, 3000. It allows to see the different behaviours of
the two models. In each lines, we see that the behaviour of the channel model is more erratic
than the subunit model one (except for the third line where the two models have approximately
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Figure 3: Simulation time and rate of acceptance with the optimal-Pε bound as a function of
the parameter ε.

the same behaviour). Differences in trajectories are mainly explained by two distinct modelling
approaches of the conductance of the membrane. In the subunit model, we consider that the
conductance at time t depends on the fraction of open gates at time t, thus, the equation of the
voltage changes rapidly at the same time as the state of the gates. In the channel model, the
conductance at time t depends on the fraction of active channels at time t, therefore, a change
in the state of the gates may not implies a change in the voltage’s equation. Thus, the dynamic
of the membrane potential change less than in the first case and trajectories are more irregular.
We also see that more the number of channels is high more the differences in trajectories are
small. It illustrates a result in [24] where the authors showed that the deterministic limit when
the number of channels goes to infinity of both models are equivalent. However, it seems that
the convergence speed is not the same.

Concerning the optimal-Pε bound, we see on Figure 3 that in both models, more ε is small less
rejected points are. It illustrates the fact that Ñ ε converge to N when ε goes to 0 (proposition
4.4). Figure 3 also shows that, for fixedNchan, the simulation time varies with ε. For both models,
the value of ε which minimize the simulation time is inversely proportional to the parameter
Nchan. Let ε(Nchan) be that optimal value of ε. For increasing ε > ε(Nchan), the rate of acceptance
decreases, thus, we have to simulate more and more uniform pseudo-random variables and the
simulation time increases. For decreasing ε < ε(Nchan), the rate of acceptance increases but
the simulation time too because of the increasing number of iterations needed to compute the
integrated jump rate bound and its inverse. Thus, one has to take a small (respectively large) ε
when the jumps frequency is high (respectively low).
We see on Figure 4 that more ε is small more the rate of acceptance of the optimal-Qε bound is
close to the one of the local bound. Note that the value of ε which maximise the rate of acceptance
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Figure 4: Simulation time and rate of acceptance with the optimal-Qε bound as a function of
the parameter ε.
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Table 1: Simulation time and rate of acceptance for Nchan = 30. The lines ODE represent the
algorithm in [25] with h = 10−3 for both subunit model and channel model

Model Bound simulation time (sec) rate of acceptance
Optimal-Qεn 0,003 (±8.10−7) 0,857 (±2.10−3)

Channel Local 0,008 (±6.10−6) 0,141 (±2.10−3)
Global 0,012 (±3.10−6) 0,065 (±6.10−5)
ODE 0.009 (±1.10−7)

Optimal-Qεn 0,016 (±1.10−6) 0,88 (±1.10−3)
Subunit Local 0,050 (±2.10−4) 0,22 (±1.10−3)

Global 0,12 (±3.10−4) 0,061 (±2.10−5)
ODE 0.016 (±2.10−7)

Table 2: Simulation time and rate of acceptance for Nchan = 300. The lines ODE represent the
algorithm in [25] with h = 10−4 for both subunit model and channel model.

Model Bound simulation time (sec) rate of acceptance
Optimal-Qεn 0,030 (±3.10−5) 0,962 (±9.10−5)

Channel Local 0,050 (±1.10−4) 0,223 (±3.10−4)
Global 0,120 (±3.10−4) 0,062 (±7.10−5)
ODE 0.094 (±1.10−5)

Optimal-Qεn 0,148 (±5.10−4) 0,957 (±9.10−5)
Subunit Local 0,244 (±1.10−3) 0,237 (±8.10−5)

Global 0,322 (±2.10−3) 0,061 (±1.10−5)
ODE 0.157 (±1.10−5)

is the same which minimize the simulation time. As in the case of the optimal-Pε bound, the
optimal value of ε is inversely proportional to Nchan. For decreasing ε < ε(Nchan), the rate of
acceptance decreases and the simulation time increases because we use the local bound λ̃n instead
of the smaller bound λεn (see section 6.1.3). For increasing ε > ε(Nchan), the rate of acceptance
decreases and the simulation time increases because the bound λεn becomes bigger and bigger.
By comparing the optimal-Qε(Nchan) and the optimal-Pε(Nchan) bound we see that the first one is
the most efficient in term of simulation time, it is also the simplest to implement. However, this
bound does not exist when the jump rate or the flow is not bounded. In this case, one may use
the optimal-Pε(Nchan) bound which is efficient too but more complex to implement.
From figure 3 and 4, we see that for both the optimal-Qε and the optimal-Pε bound the best
simulation time is achieved for ε(30) = 0.1, ε(300) = 0.01 and ε(3000) = 0.005. We saw in
sections 5.2.1 and 5.2.2 that the subunit model and the channel model share the same jump rate.
For both models, the maximum value of the inter-jump times is of order 10−1 for Nchan = 30,
10−2 for Nchan = 300 and 10−3 for Nchan = 3000. It coincides with the values ε(Nchan) which, in
this case, confirm that the optimal simulation time is obtained for ε of order maxn |Tn+1 − Tn|.

Tables 1-3 show results of numerical computations of the simulation time and of the rate
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Table 3: Simulation time and rate of acceptance for Nchan = 3000. The lines ODE represent the
algorithm in [25] with h = 10−5 for both subunit model and channel model.

Model Bound simulation time (sec) rate of acceptance
optimal-Qεn 0,296 (±3.10−3) 0,965 (±2.10−5)

Channel Local 0,474 (±6.10−3) 0,236 (±3.10−5)
Global 1,184 (±2.10−2) 0,060 (±3.10−7)
ODE 0.940 (±5.10−4)

Optimal-Qεn 1,471 (±3.10−2) 0,964 (±9.10−6)
Subunit Local 2,478 (±4.10−2) 0,238 (±7.10−6)

Global 3,315 (±3.10−1) 0,060 (±9.10−8)
ODE 1.567 (±1.10−3)

of acceptance of the thinning method for the global, local and optimal-Qεn bound using both
the channel and the subunit model with different values of the parameter Nchan. For both
models and for all the studied values of Nchan, the simulation time using the optimal bounds
(Qε(Nchan),Pε(Nchan) and Qεn) is better than the one obtained with both the global and local
bound. Note that the optimal-Qεn bound is more efficient than the optimal-Pε(Nchan) bound to
simulate the subunit model. Since the computation of εn requires the computation of the jump
rate bound at each iterations, the optimal-Qεn bound will be more efficient when the jumps
frequency is low. Thus, for all studied values of Nchan, the optimal-Qε(Nchan) is the most efficient.
The differences of simulation time between the subunit and the channel model are explained by
the fact that the numerical computation of the flow of the channel model is cheaper than the
one of the subunit model. Note that the simulation time using the three bounds (global, local,
optimal) increases linearly as a function of Nchan.
In the ODE algorithm [25], we need to adapt the time step h when the parameter Nchan varies,
otherwise, we do not simulate the expected trajectories. Thinning algorithm in the channel model
speeds up the simulation by a factor 3 compared to the ODE method whereas in the subunit
model the factor is approximately 1. Such a difference is explained by the fact that the ratio of
the simulation times between the flows of the subunit and the channel (for thinning algorithm)
is bigger than the ratio of the simulation times between the vector fields of the subunit and the
channel (for ODE algorithm).
Despite the complexity of the optimal bound compared to the two others, it is the most efficient
one to simulate both the channel model and the subunit model.

6.2.2 Spiking times

Bio-scientists believe that the timing of action potentials is one of the characteristics of the
nervous system which carries the most of informations. It has been shown experimentally [29]
that if a neuron is repeatedly stimulated by identical pulses, both the amplitude and the timing
of the action potentials is variable. In the sequel we numerically compare the mean value of the
spiking time of the subunit and channel model to the one of the deterministic Hodgkin-Huxley
model.
Let (xt) be the subunit model or the channel model defined on a filtered probability space
(Ω,F ,Ft,Px). We consider that the stimulation is a monophasic current which produces only
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one action potential within a given time window [0, T ] as in Figure 1. We suppose that a spike
occurs when the membrane potential exceeds a certain value noted ν. Let T be the spiking time
defined by

T = inf{t ∈ [0, T ] : Vt ≥ ν}

We are interested in the numerical computation of the mean and the standard deviation of T
as a function of the number of channels. For low values of the parameters NNa and NK a spike
may never occur. In this case, T = T and we do not count these trajectories in the Monte Carlo
procedure. Thus, we evaluate the mean value of the spiking time conditionally on having a spike,
E[T |T < T ], with the following estimator IM = (1/M)

∑M
k=1 Tk where (Tk) are iid realizations

of T conditionally on {T < T}.
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the channel model as a function of the number of channels Nchan.

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0  200  400  600  800  1000  1200  1400  1600

m
e
a
n
 v

a
lu

e
 s

p
ik

e
 t

im
e
 +

 e
rr

o
rb

a
rs

number of channel

Spike time subunit model
Spike time of the deterministic Hodgkin/Huxley model

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  200  400  600  800  1000  1200  1400  1600

m
e
a
n
 v

a
lu

e
 e

rr
o
r 

+
 e

rr
o
rb

a
rs

number of channel

Spike time channel model
Spike time of the deterministic Hodgkin/Huxley model

Figure 6: Mean value of the spiking time (ms) with standard deviation as a function of the
number of channels Nchan. Left: subunit model. Right: channel model.

It has been shown in [24] that the deterministic limits of both the subunit (Hodgkin-Huxley
of dimension four [16]) and the channel model (Hodgkin-Huxley of dimension fourteen [24]) are
equivalent when the initial conditions satisfy a combinatorial relationship. We consider that, at
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time t = 0, all the gates of the subunit model are closed and all the channels of the channel model
are in the corresponding state, i.e state {m0h0} for the sodium and {n0} for the potassium.
These initial conditions satisfy the combinatorial relationship in [24]. The initial conditions of
both deterministic Hodgkin-Huxley models are also chosen so that they satisfy the binomial
relation. Thus, the spiking time of these deterministic models is the same. In the simulations,
we take T = 10, ν = 60, we consider that the stimulation is given by I(t) = 301[1,2](t) and that
NNa = NK = Nchan. In this case, the spiking time of the deterministic model is T deter = 2, 443.
Figure 6 illustrates the convergence of the mean spiking time of both the subunit and the channel
model when the number of channels goes to infinity. For Nchan = 1500 we see that the dispersion
of the spiking time around its deterministic limit is approximately of order 10−1 ms for the
subunit model and of order 10−2 ms for the channel model. Thus, a membrane patch with a
number of channels superior to 1500 mimics the behaviour of the deterministic Hodgkin-Huxley
model. For a number of channels inferior to 500, we see from figure 5 that the neuron may not
respond to the stimuli. In this case, the dispersion of the spiking time ranges from approximately
10−1 and almost 1 ms and are consistent with the observations in [29]. Since the simulation is
exact the estimator IM is unbiased and errors due to the Monte Carlo procedure are of order of
M−1/2.

A Rate functions and parameters
αn(V ) = (0.1−0.01V )

exp(1−0.1V )−1 , αm(V ) = (2.5−0.1V )
exp(2.5−0.1V )−1 , αh(V ) = 0.07 exp(− V

20 ),

βn(V ) = 0.125 exp(− V
80 ), βm(V ) = 4 exp(− V

18 ), βh(V ) = 1
exp(3−0.1V )+1 ,

VNa = 115, gNa = 120, VK = −12, gK = 36, VL = 0, gL = 0.3, C = 1.

B Markov schemes for the channel model
Sodium (Na) scheme:

m0h0

3αm
−→
←−
βm

m1h0

2αm
−→
←−
2βm

m2h0

αm
−→
←−
3βm

m3h0

βh ↑↓ αh βh ↑↓ αh βh ↑↓ αh βh ↑↓ αh

m0h1

3αm
−→
←−
βm

m1h1

2αm
−→
←−
2βm

m2h1

αm
−→
←−
3βm

m3h1

Potassium (K) scheme:

n0

4αn
−→
←−
βn

n1

3αn
−→
←−
2βn

n2

2αn
−→
←−
2βn

n3

αn
−→
←−
4βn

n4
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C Rate of acceptance for the thinning of Poisson processes
Let N and Ñ be two Poisson processes with jump rate λ and λ̃ respectively and jump times
(Tn)n≥1 and (T̃n)n≥1 respectively. Assume that N is the thinning of Ñ . Since P(Ñt = 0) =
e
−
∫ t

0
λ̃(s)ds, we define the rate of acceptance by E[Nt/Ñt|Ñt ≥ 1]. In the case of Poisson processes

this indicator takes the following form

E[Nt
Ñt
|Ñt ≥ 1] =

∫ t
0 λ(s)ds∫ t
0 λ̃(s)ds

(7)

To get (7), we use the following result which is similar to the n-uplet of non-ordering uniform
variables in the Poisson homogeneous case

f(T̃1,...,T̃n|Ñt=n)(t1, . . . , tn) = λ̃(t1) . . . λ̃(tn)(∫ t
0 λ̃(s)ds

)n 1(t1,...,tn)∈[0,t]n (8)

Equation (8) gives an explicit formula of the conditional density of the vector (T̃1, . . . , T̃n|Ñt = n).
Note that we do not consider any ordering in points (T̃k)0≤k≤n and that conditionally to Ñt = n,
the points T̃1, . . . , T̃n are independent with density

(
λ̃(s)/

∫ t
0 λ̃(u)du

)
1s∈[0,t].

With (8) one is able to determine that

L(Nt|Ñt = n) = B(n, p) (9)

with p =
∫ t

0 λ(s)ds/
∫ t

0 λ̃(s)ds by noting that for k ≤ n

{Nt = k|Ñt = n} =
⋃

1≤i1<...<ik≤n

[ ⋂
i∈{i1,...,ik}

{Ui ≤
λ

λ̃
(T̃i)|Ñt = n}

⋂
i∈{i1,...,ik}c

{Ui >
λ

λ̃
(T̃i)|Ñt = n}

]
and then

P(Nt = k|Ñt = n) =
(
n
k

)
P
(
Ui ≤

λ

λ̃
(T̃i)|Ñt = n

)k
P
(
Ui >

λ

λ̃
(T̃i)|Ñt = n

)n−k
where (Ui) are independent variables uniformly distributed in [0, 1], independent of (T̃i). Thus,
the law of the number of accepted points is binomial conditionally on the number of proposed
points. Then, we find (7) by noting that

E[Nt
Ñt
|Ñt ≥ 1] = 1

P(Ñt ≥ 1)

∑
n≥1

1
n
E[Nt|Ñt = n]P(Ñt = n)

We should note that to find the explicit formula (3), we work almost exclusively on the process
(Ñt). The only characteristic of N that we use is its jump rate λ and we use it to evaluate the
thinning probabilities

(
λ/λ̃

)
(.).
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