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Background In renal transplantation, serum creatinine (SCr) is the main biomarker routinely measured to assess patient's health, with chronic increases being strongly associated with longterm graft failure risk (death with a functioning graft or return to dialysis). Joint modeling may be useful to identify the specific role of risk factors on chronic evolution of kidney transplant recipients: some can be related to the SCr evolution, finally leading to graft failure, whereas others can be associated with graft failure without any modification of SCr.

Methods Sample data for 2749 patients transplanted between 2000 and 2013 with a functioning kidney at 1-year post-transplantation were obtained from the DIVAT cohort. A shared random effect joint model for longitudinal SCr values and time to graft failure was performed.

Results

We show that graft failure risk depended on both the current value and slope of the SCr.

Deceased donor graft patient seemed to have a higher SCr increase, similar to patient with diabetes history, while no significant association of these two features with graft failure risk was found. Patient with a second graft was at higher risk of graft failure, independent of changes in SCr values. Anti-HLA immunization was associated with both processes simultaneously.

Conclusion Joint models for repeated and time-to-event data bring new opportunities to improve the epidemiological knowledge of chronic diseases. For instance in renal transplantation, several features should receive additional attention as we demonstrated their correlation with graft failure risk was independent of the SCr evolution.

INTRODUCTION

Recently, Asar et al. [START_REF] Asar | Joint modelling of repeated measurement and time-to-event data: an introductory tutorial[END_REF] pointed out that joint models for repeated and time-to-event data should be used to correctly consider longitudinal and survival processes and their relationship when they are strongly dependent [START_REF] Rizopoulos | Joint Models for Longitudinal and Time-to-Event Data: With Applications in R[END_REF][START_REF] Wulfsohn | A joint model for survival and longitudinal data measured with error[END_REF]. Joint models could allow identification of specific associations for each risk factor: 1) association with an event risk, 2) association with an event risk throughout a previous marker evolution modification, and 3) associations on both longitudinal and survival processes. With this type of suitable model, the precise description of specific associations could provide new insights in the knowledge of a disease pathway mechanism. Indeed, from a methodological standpoint, longitudinal measurements and time-to-event data are typically analyzed separately, using a mixed model and survival model respectively, without considering their possible relationship [START_REF] Rizopoulos | Joint Models for Longitudinal and Time-to-Event Data: With Applications in R[END_REF]. However, it is known that these two processes are often mutually dependent in a chronic disease context. Inferences from mixed models may be biased in cases of an informative censoring process [START_REF] Leffondre | Analysis of risk factors associated with renal function trajectory over time: a comparison of different statistical approaches[END_REF][START_REF] Ibrahim | Missing data methods in longitudinal studies: a review[END_REF][START_REF] Tsiatis | joint modeling of longitudinal and time-to-event data: an overview[END_REF]. Similarly, the time-dependent Cox model fails to correctly handle a time-dependent endogenous variable, which is a variable generated by the patient themselves (e.g. creatinine) in contrast to an exogenous variable which is not (e.g. air pollution level) [START_REF] Rizopoulos | Tools & techniques--statistics: Dealing with time-varying covariates in survival analysis--joint models versus Cox models[END_REF][START_REF] Andrinopoulou | An introduction to mixed models and joint modeling: analysis of valve function over time[END_REF][START_REF] Kalbfleisch | The Statistical Analysis of Failure Time Data[END_REF]. It also often fails to correctly account for measurement error.

In many chronic diseases, the occurrence of major events and the assessment of corresponding risk factors guide physicians in implementing the most beneficial care for patients. In renal transplantation, serum creatinine (SCr) is a well-known longitudinal marker used to assess the health of kidney transplant recipients especially after the first year post-transplantation, i.e. in the chronic phase of the disease evolution [START_REF] Levey | National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification[END_REF]. In the chronic phase, graft failure, defined as return to dialysis or death with a functioning graft, is often preceded by a continuous deterioration in renal function and is associated with an irreversible increase in SCr levels. In contrast, during the first year post-transplantation, patients are submitted to a risk of early graft failure due to acute clinical events such as delayed graft function, acute rejection episode, and infections or complications. Therefore the disease evolution mechanism is very different between the acute and chronic phases [START_REF] Galichon | Clinical and histological predictors of long-term kidney graft survival[END_REF][START_REF] Foucher | A clinical scoring system highly predictive of long-term kidney graft survival[END_REF]. Few authors have studied the association of risk factors on renal function evolution [START_REF] Ferro | Bayesian analysis of glomerular filtration rate trajectories in kidney transplant recipients: a pilot study[END_REF][START_REF] Marcén | Long-term graft function changes in kidney transplant recipients[END_REF] while the risk factors associated with long-term graft failure have been well described [START_REF] Foucher | A clinical scoring system highly predictive of long-term kidney graft survival[END_REF][START_REF] Pascual | Strategies to improve long-term outcomes after renal transplantation[END_REF][START_REF] Debout | Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation[END_REF]. Renal function has been shown to be one of the most important risk factors [START_REF] De Bruijne | Predicting kidney graft failure using time-dependent renal function covariates[END_REF][START_REF] Kasiske | A thirty percent chronic decline in inverse serum creatinine is an excellent predictor of late renal allograft failure[END_REF]. However, the precise mechanism is not well known: the majority of risk factors leading to graft failure may be associated with chronic SCr changes, finally leading to graft failure, but one can also hypothesize that some features may be related to graft failure risk independently from their association on SCr evolution.

Whilst several authors have used joint models for longitudinal and time-to-event data in renal transplantation [START_REF] Abdi | Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach[END_REF][START_REF] Moranne | Rate of renal graft function decline after one year is a strong predictor of all-cause mortality[END_REF][START_REF] Rizopoulos | A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event[END_REF][START_REF] Garre | A joint latent class changepoint model to improve the prediction of time to graft failure[END_REF], none have precisely studied the specific association of each baseline explicative variable. The precise study of such associations would be of primary importance for physicians in order to improve their appraisal of kidney transplant recipients' health. Therefore, we present for the first time a shared random effect multivariable joint model to study the baseline characteristics that could be related to long-term kidney graft outcomes. By studying SCr evolution and graft failure from one year post-transplantation, it brings an epidemiological approach to understand the risk factors associated with the disease evolution in its chronic phase.

MATERIALS AND METHODS

Study population

Data were extracted from the French observational and prospective DIVAT cohort 

Available data

Most classical risk factors susceptible to influence SCr evolution and/or graft failure risk were extracted from the database. Donor features included: age, gender, last SCr level, deceased (from cardiovascular cause vs other) / living donation. Recipient characteristics were: age, gender, Body Mass Index (BMI), history of comorbidities (diabetes, hypertension, dyslipidemia, neoplasia, cardiovascular), duration of dialysis before transplantation, preemptive graft, hemodialysis or peritoneal dialysis, pre-transplant anti-class I or class II Human Leucocyte Antigen (HLA) immunization and cause of initial renal disease (recurrent nephropathy or not).

Transplantation parameters were: cold ischemia time and number of HLA-A-B-DR incompatibilities. The following variables were collected within the first year posttransplantation: occurrence of delayed graft function (defined as the need for dialysis after transplantation), occurrence of acute rejection episodes and SCr levels at 3 and 6 months posttransplantation.

Outcomes

The baseline was the 1-year post-transplantation anniversary. The best marker of renal function should be the measured GFR (mGFR) [START_REF] Stevens | Assessing kidney function--measured and estimated glomerular filtration rate[END_REF]. Unfortunately, this measurement is costly and is not performed in practice for routine patient follow-up. Different equations to estimate GFR (eGFR) have been proposed [START_REF] Levey | A new equation to estimate glomerular filtration rate[END_REF][START_REF] Levey | A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group[END_REF][START_REF] Nankivell | Predicting glomerular filtration rate after kidney transplantation[END_REF][START_REF] Cockcroft | Prediction of creatinine clearance from serum creatinine[END_REF], and are principally based on SCr values adjusted on recipient age, gender and ethnicity. A major limitation lies in the fact that these eGFR formulae have been developed from general population data or from patients with chronic kidney disease and thus may not be applicable to kidney transplant patients [START_REF] Buron | Estimating glomerular filtration rate in kidney transplant recipients: performance over time of four creatinine-based formulas[END_REF][START_REF] White | Estimating Glomerular Filtration Rate in Kidney Transplantation: Is the New Chronic Kidney Disease Epidemiology Collaboration Equation Any Better?[END_REF][START_REF] Gaspari | Performance of different prediction equations for estimating renal function in kidney transplantation[END_REF]. Despite this, SCr or eGFR are equivalent in terms of relative evolution, the second resulting from a transformation of the first parameter. We decided to study the SCr (µmol/L), which was the longitudinal marker routinely recorded yearly until patient death with a functioning graft or return to dialysis. The time-toevent (graft failure) was defined as the delay between 1-year post-transplantation and the first event between return to dialysis or death with a functioning graft.

Statistical analysis

We used a shared random effect model. It combines a mixed model for the longitudinal process and a parametric survival model for the time-to-event process, for which underlying hypotheses were checked in an independent manner. For the longitudinal assessment, we used a logarithmic transformation of SCr values in order to respect both assumptions related to residual's homoscedasticity and linear relationship over time. Two random effects were considered for the baseline value and the slope. For survival, hazard proportionality and log-linearity were assessed.

In a joint shared random effect framework, longitudinal and survival processes are linked through common random effects. Rizopoulos has previously described the possible parameterizations to model this dependence [START_REF] Rizopoulos | Joint Models for Longitudinal and Time-to-Event Data: With Applications in R[END_REF]. For instance, the survival process can be modeled as dependent on the current level of the marker, on the intensity of marker evolution (i.e. the slope), on both current level and slope, on cumulative effects or on lagged effects.

In the first step of model building, we defined a baseline risk function and the dependence between the two processes from a joint model without baseline explicative variables. We graphically retained a Weibull distribution for the baseline risk function. According to the Bayesian Information Criteria (BIC), the dependence between the two processes was characterized by the instantaneous hazard of graft failure depending on both the level and the slope of the longitudinal marker at the current time. As recommended by Rizopoulos to solve optimization difficulties, all quantitative variables were standardized in order to scale the coefficients (2).

In the second step, we performed the selection of baseline explicative variables. Univariable models were composed using three effects of each variable: on baseline value, on the slope (interaction with time) and on the graft failure risk. Among these parameters, those which were not significant (p>0.05) were removed in a hierarchical manner: if the association on the slope was significant, the corresponding association on baseline value was also considered. Finally, a multivariable joint model was generated by including effects retained in the univariable models, and a forward stepwise selection was performed (always using a 5% type-I error rate).

In order to study the relevance of the joint modeling, we also performed separate analyses: i) a linear mixed model to study the SCr evolution and ii) a time-dependent Cox model to study the graft failure risk. We used the same variables selection procedure.

As sensitivity analyses, we performed two joint models in a cause specific approach: i) time-toreturn to dialysis by censoring death, and in contrast ii) time-to-death with a functioning graft by censoring return to dialysis.

Joint model parameters were estimated by likelihood maximization. The complete mathematical formulation of the joint model is shown in appendix 1. Due to the logarithmic transformation of SCr, coefficients for the longitudinal process have an interpretation as relative change rather than absolute change. Details related to interpretations are presented in appendix 2. Confidence intervals for relative change were obtained using parametric simulations (5 000 iterations) [START_REF] Aalen | A Markov model for HIV disease progression including the effect of HIV diagnosis and treatment: application to AIDS prediction in England and Wales[END_REF].

All analyses were performed using the 3.0.1 version of the R software (32) with the 1.3-0 version of the JM package [START_REF] Rizopoulos | An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data[END_REF].

RESULTS

Baseline characteristics

Baseline characteristics are presented in Table 1. Sixty percent of the recipients were male, with a mean age of 49.7 ± 13.6 years. Histories of cardiovascular disease or dyslipidemia were observed in one third of recipients, 11.6% had history of diabetes, 82.6% had hypertension, and 8.3% had a cancer before the transplantation. Second transplantations were realized in 17.2% of studied patients. Immunologic characteristics included: 12.8% of patients presented more than 4 HLA-A-B-DR incompatibilities, and around one third were immunized against class I or class II HLA prior to transplantation. Donors were mainly deceased (84.8%) with a mean age of 50.7 ± 15.5 years and 56.4% were male. Delayed graft function occurred for 714 patients (26.1%). SCr at 3 and 6 months were on average 138.3 ± 53.4 and 136.6 ± 53.2 µmol/L respectively. Finally, 21.5% of recipients presented at least one episode of acute rejection before the first anniversary of the graft.

Follow-up description

During follow-up, 278 patients returned to dialysis and 203 died with a functioning graft. The median event-free follow-up time was 3.99 years. The patient-graft survival curve and its corresponding 95% confidence interval (95%CI) are presented in Figure 1. Patient-graft survival rates at 10 years after the first anniversary of the graft was 58.4% [95%CI: 54.8% ; 62.3%].

Additionally, 12 843 SCr measurements were collected, with a median of 4 measurements per patient (ranging from 1 to 14). The median time between two measurements was 11.7 months (interquartile range: 9.2, 12.5).

Joint modeling

Table 2 presents the estimations related to the final multivariable joint model.

Dependence between SCr dynamic and graft failure risk

For any time one year after transplantation (t>1), the graft failure risk depended on both the current value and the current slope of the SCr. If a patient had a 25% higher SCr, graft failure risk was twice as high (HR=1.92, 95%CI: [1.75 ; 2.11]). Moreover, for a given SCr value, where a patient had a steeper increase in SCr graft failure risk was significantly worse (HR=1.89, 95%CI: [1.17 ; 3.06] for an increase of 25% in SCr value in one year).

Factors associated with 1-year post-transplantation SCr

Several factors appeared significantly correlated with a higher 1-year SCr without significant association with the SCr evolution or with graft failure risk. An increase of 50 µmol/L in the 6month SCr level was associated with a 1-year SCr increase of 17.99% (95%CI: [16.62% ; 19.34%]). Patient with a graft provided from a donor ten years older compared to other donor had a 3.68% higher SCr at 1 year (95%CI: [2.97% ; 4.39%]).

Factors associated with SCr evolution during follow-up

A history of diabetes was associated with a higher SCr increase. After 5 years, the presence of this comorbidity for a patient was associated with a SCr 14.45% higher (95%CI: [7.76% ; 21.46%]) compared to its absence, while we did not observe any significant difference at 1 year. For a given patient, a graft from a deceased donor due to a cerebrovascular cause was associated with a relative increase of 12.52% in expected 5-year SCr (95%CI: [6.50% ; 18.89%]), compared to a graft from a living donor, but only a 7.14% increase when compared to a deceased donor due to another cause (95%CI: [1.48% ; 13.00%]).

Factors associated with both 1-year post-transplantation SCr and SCr evolution during the follow-up

Male recipient had a 7.68% higher 1-year SCr (95%CI: [5.83% ; 9.51%]). Nevertheless, he was likely to have a slower increase: after 5 years follow-up the gap reduced to 3.98% (95%CI: [0.18% ; 7.81%]).

Factors associated with the graft failure risk

Two factors were significantly associated with graft failure risk. Without significant correlation with the SCr, a patient transplanted for the second time had a higher graft failure risk compared to his first transplantation (HR=1.32, 95%CI: [1.02 ; 1.73]). On the contrary, for a given patient, graft from male tended to be associated with a smaller risk of graft failure compared to graft from female donor (HR=0.83, 95%CI: [0.69 ; 1.01]).

Factors associated with both SCr and the graft failure processes

A 10-year older patient was associated with a 2.04% lower 1-year SCr (95%CI: [1.31% ; 2.77%]). Moreover, this difference increased during the follow-up, ie 5.57% lower at 5years post-transplantation (95%CI: [4.20% ; 6.95%]). This could be explained by lower creatinine production in the elderly population due to a smaller muscle mass. However, for a given SCr evolution during the follow-up, the situation where the recipient is older was associated with a higher graft failure risk (HR=1.35 for a 10-year older patient, 95%CI: [1.25 ; 1.46]). For a given patient, higher 3-month SCr was associated with a significantly higher 1-year SCr level. For instance, for a 50 µmol/L difference at 3-months, the 1-year SCr level increased by 8.08% (95%CI: [6.83 ; 9.32]). Additionally, for a given evolution of SCr from 1-year posttransplantation, a higher 3-month SCr was associated with a lower graft failure risk (HR=0.85 for an increase of 50 µmol/L in 3-month SCr level, 95%CI: [0.75 ; 0.95]).

Major risk factors included acute rejection in the first year post-transplantation, immunization, and cardiovascular history. When a patient had an acute rejection episode during the first year post-transplantation, a 5.65% higher 1-year SCr was observed compared to cases where no acute rejection occurred (95%CI: [3.65 ; 7.71]). Nevertheless, independently of the current value and the slope of SCr, the situation where acute rejection has occurred appeared with a higher risk of graft failure (HR=1.46, 95%CI: [1.17 ; 1.83]). A patient with cardiovascular history was more likely to have an increased SCr compared to the same patient without this history, and a higher graft failure risk independently from this increase (HR=1.39, 95%CI: [1.14 ; 1.69]). Similarly, a significant SCr increase was demonstrated for pre-transplant immunized patient, with an additional graft failure risk not related to this SCr increase, compared to the same patient nonimmunized.

Separate models

The linear mixed model estimations and those of the time-dependent Cox model are presented in tables 3 and 4 respectively. One can note differences in the retained variables. An acute rejection episode in the first year post-transplantation was significantly associated with the SCr evolution by using a linear mixed model, in opposition to the results obtained by using joint models. No relationship between cardiovascular history or donor type with SCr evolution were retained by using the linear mixed model, while we concluded from the final joint model that patients with cardiovascular history may have a significantly higher SCr increase during the follow-up (p= 0.0371) and SCr evolution could be different given the donor type status (p=0.0022). Slight underestimations of hazard ratios were obtained from the time-dependent Cox model compared to the joint model. For example, the hazard ratio related to the recipient age was 1.25 (95%CI [1.19 -1.38]) for 10 years older by using the time-dependent Cox model against 1.35 (95%CI [1.25 ; 1.46]) by using the joint model. Additionally, diabetes was retained as a risk factor for graft failure by using the Cox model, while it does not by using the joint model. In contrast, acute rejection episode was not retained as a risk factor for graft failure by using the time-dependent Cox model, while it was by using the joint model.

Cause specific approach

Using a cause specific approach (tables S1 and S2 in supplementary materials), we observed that current SCr level was more importantly associated with return to dialysis (HR=2.51, 95%CI [2.22 ; 2.84]) compared to death with a functioning graft (HR=1.47, 95%CI [1.24 ; 1.74]). As expected, this higher association was also observed for acute rejection episode (HR=1.63, 95%CI [1.20 ; 2.20] 

DISCUSSION

Our results show that during the chronic phase of renal transplantation, elevated SCr levels as well as the magnitude of SCr increases are associated with a higher risk of graft failure.

Accordingly, physicians routinely supervise both the current SCr level and its increase. The large majority of baseline explicative variables are firstly associated with the baseline SCr level or its evolution, finally leading to graft failure. Interestingly, we demonstrated that besides the association of cardiovascular history with increased SCr, this risk factor was additionally associated with an increase in the risk of graft failure. Therefore, at a given time for a given SCr level and slope, the presence of cardiovascular history should be considered as a risk factor for graft failure. Similarly, patient transplanted for a second time seemed at higher risk of graft failure, regardless of the SCr level or its slope, compared to its first graft. Other factors independent of SCr leading to increased graft failure risk may result from stronger immunosuppression or undetected immunization against donor specific antigens. In addition to retransplantation or the presence of cardiovascular history, particular attention should also be paid to patients with a high 3-month SCr level, transplantation in older patients or when an acute rejection episode during the first year has occurred. These patients may be more susceptible to graft failure without having previously displayed aberrant SCr levels. On the contrary, if a patient received a deceased donor graft but had a SCr evolution analogous to those which would be observed if the graft had come from a living donor, the monitoring of this patient should be the same regardless of the donor status.

In renal transplantation, numerous studies have focused on only one or two measurements of renal function to study their association with graft failure [START_REF] Kasiske | A simple tool to predict outcomes after kidney transplant[END_REF][START_REF] Lenihan | MDRD-estimated GFR at one year post-renal transplant is a predictor of long-term graft function[END_REF][START_REF] Hariharan | Posttransplant renal function in the first year predicts long-term kidney transplant survival[END_REF]. However, the joint modeling approach allows the whole trajectory of longitudinal SCr measurements to be taken into account.

In this paper, we used for the first time a shared random effect joint modeling to more precisely specify the association between chronic SCr evolution and graft failure risk. Different types of dependence can be considered such as the current marker level, the evolution intensity during the follow-up, cumulative effects or lagged effects [START_REF] Rizopoulos | Joint Models for Longitudinal and Time-to-Event Data: With Applications in R[END_REF].

More generally, our approach illustrates that joint modeling constitutes a powerful approach for time-to-event analysis with endogenous time-dependent variable [START_REF] Asar | Joint modelling of repeated measurement and time-to-event data: an introductory tutorial[END_REF], which supports a real mechanistic evolution for many chronic diseases. However, their use in observational studies is still uncommon. As previously acknowledged by Asar et al. [START_REF] Asar | Joint modelling of repeated measurement and time-to-event data: an introductory tutorial[END_REF], differing results and interpretations between the joint modeling and the separate approaches reinforce the necessity to use joint modeling in the presence of endogenous variable. We also highlighted the differences in our application in kidney transplantation. In other diseases, the informative censoring or the endogenous nature for the longitudinal variable can result in even higher differences.

One limitation in our study may be the graft failure definition: the first event between the return to dialysis and death with a functioning graft. Because it is very difficult to distinguish the cause of death related or not to the disease, we performed a sensitivity analyses. The results illustrated the overall robustness of the results but with a probable underestimation of the association between the SCr and the acute rejection episode on the risk of graft failure.

In conclusion, our results illustrate the importance of joint models and their potential usefulness in improving chronic disease research. It brings a more complete epidemiological view of the risk factors and the related natural disease history mechanisms. The use of this novel statistical model on a large cohort of kidney transplant recipients highlights that several risk factors were associated with SCr evolution while others were associated with graft failure risk independently of the initial SCr value or its subsequent evolution. These included elderly or immunized recipients, second transplantations, grafts coming from female donors, patients experiencing an acute rejection episode in the first year post-transplantation, patients with cardiovascular history or with a high gap between 3 and 12 month SCr measurements, features that should receive additional attention. = exp (β 2 Δ/ sd W1 )exp(β 3 t ij Δ/ sd W1 ))
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2.2/ Hazard ratio for the longitudinal marker

As we have seen in appendix 1, the instantaneous risk function is written as follows: hi(t) = h0(t) exp(γ T X3i + α1mi(t) + α2mi'(t))

= h0(t) exp(γ T X3i + α1 mi(t) + α2 As we use a log transformation of SCr measurement (Y(t) = log(SCr(t))), the hazard ratio which quantifies the association between the longitudinal marker and the risk of event was expressed for a clinically relevant difference.

-For the current level of the marker, we can rewrite the HR for a difference of 25% in SCr values at the same time for the same patient and the same slope: HR 1.25SCr(t)vs SCr(t) = h 0 (t)exp (γ T X 3i + α 1 log(1.25SCr(t)) + α 2 m i '(t)) h 0 (t)exp (γ T X 3i + α 1 log(SCr(t)) + α 2 m i '(t))

= exp (α 1 (log(1.25SCr(t)) -log(SCr(t))))

= 1.25 α 1

(

  www.divat.fr) of kidney transplant recipients from 6 University hospitals (French Research Ministry: RC12_0452, last agreement No 13 334, No CNIL for the cohort: 891735, No CNIL for the study: 914226). According to the following inclusion criteria, 2749 patients were studied: adult recipients who received a first or second renal transplant between January 2000 and August 2013 from a living or heart beating deceased donor, alive with a functioning graft at 1year post-transplantation and maintained under Tacrolimus and Mycofenolic acid. All study participants gave informed consent.

Fig. 1 :

 1 Fig. 1: Patient and graft survival according to the time since the first anniversary of the transplantation (n = 2749) from Kaplan-Meier estimator and their corresponding 95% confidence interval

Table 1 : Description of recipients, donors, and transplantation characteristics of the studied population (n = 2749)

 1 

	sd: standard deviation ; BMI: Body Mass Index; SCr: Serum Creatinine; HLA Human Leukocyte Antigen
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Table 2: Multivariable joint model for longitudinal evolution of logarithmic transformation of serum creatinine (SCr) and risk of graft failure (return to dialysis or death with a functioning graft) in kidney transplant patients (n=2584 patients, 165 patients excluded due to missing data)

Coef: coefficient; HR: Hazard Ratio; CI: confidence interval. Referential value for 1-year SCr was 4.024, 95%CI: [3.982 ; 4.065]. Referential value for SCr evolution was 0.034 95%CI: [0.018 ; 0.050]. This model is adjusted on a time effect with a threshold at 2008 (before 2008 vs after): coefficient for the relation to the SCr at 1-year: 0.018 95%CI: [0.002 ; 0.034] and to the SCr evolution: 0.013 95%CI: [0.005 ; 0.020] and HR = 0.73 [0.57 ; 0.94]. Parameters of the Weibull baseline risk function were: intercept -20.247 ± 0.982 ; log(shape): 0.337 ± 0.046. α= 2.93 ; α2 = 3. [START_REF] White | Estimating Glomerular Filtration Rate in Kidney Transplantation: Is the New Chronic Kidney Disease Epidemiology Collaboration Equation Any Better?[END_REF] Longitudinal process Association with the Association with the Survival process log ( 

Appendix 1: Mathematical formulation of the shared random effect joint model

Let Y be the longitudinal marker and tij the time of measurement of the j th (j = 1, …, ni) measure for the patient i (i = 1, …, N). Let h(.) denotes the instantaneous risk function of graft failure. The joint model combines a linear mixed model (equation 1) with a parametric regression model (equation 2). They share the random effects

with (b0i ; b1i) T ~MVN(0,B), B an unstructured variance-covariance matrix, X1i a vector of baseline covariates influencing the baseline value of longitudinal marker, X2i another vector of baseline covariates that may change marker evolution over time and β0, β1 two scalars defining the referential value of the baseline level and the slope of the longitudinal biomarker Y (.) respectively, and β2, β3 two p-vectors of the same dimension as X1 and X2 respectively. The evolution of the measurements Yij(tij) are defined by the sum of a subject specific trend mi(tij) plus an error term εij~N(0,σε 2 ). For the instantaneous risk function of graft failure, h0(t) denotes the baseline risk function, and X3i is a vector of baseline covariates that could influence the graft failure risk, with a corresponding vector of fixed regression coefficients γ. g is a function of the true level of the marker mi, which specifies the type of dependence between the longitudinal and the survival processes. Classically, it may be the current level of the marker (g(mi(t)) = αmi(t)), the intensity of marker deterioration during the follow-up i.e. the slope (g(mi(t)) = α2mi'(t)), or both (g(mi(t)) = α1mi(t) + α2mi'(t)) (2). This latter is the retained association of the model presented in table 2. Let Z be a qualitative variable associated with:

-the 1-year SCr only (Z ⊆ X1 ; Z ⊆ X2). The excess of SCr for a patient with Z = 1 as compared to the case where Z = 0 for the same patient is:

This gap of SCr is constant beyond 1-year post-transplantation.

-both the 1-year SCr and the SCr increase during the follow-up (Z ⊆ X1 ; Z ⊆ X2)

This gap of SCr value is increasing or decreasing during the follow-up according to the sign of β3. For clinical purposes, in the interpretations, we used the time t = 5 to quantify a relative change at 5 years after the first year post-transplantation.

2.1.2/ Quantitative variables:

Let W1 be a quantitative variable with sdW1 its standard deviation, w a value of W1 and Δ a relevant clinical increase.

-For the intensity of the marker, the HR which compares the situation in which )

This leads to: HR = exp(α 2 (log(1 + x/100) -log(1 + y/100))) which is the HR which compares an increase of x% between t-1 and t to an increase of y %. In our paper, we choose to compare an increase of 25% compare to the mean evolution (a growth of 3% each year).

2.3/ Hazard ratio for the quantitative variables

Because the quantitative variables have been standardized, the HR for these factors were expressed for an increase of one standard deviation. In order to calculate them for an increase of relevant threshold in the variable unit, we can proceed as follows:

Let X1 be the standardization of W1 with sd1 its standard deviation. HRX is the HR obtained for the standardized variable and HRW is the one for an increase of Δ unit of W1.

𝑊 = HR X ( Δ sd 1 )