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Incorporating boundary conditions at infinity into simulations on bounded computational domains is a repeatedly occurring problem in scientific computing. The combination of finite element methods (FEM) and boundary element methods (BEM) is the obvious instrument, and we adapt here for the first time the two standard FEM-BEM coupling approaches to the free-boundary equilibrium problem: the Johnson-Nédélec coupling and the Bielak-MacCamy coupling. We recall also the classical approach for fusion applications, dubbed according to its first appearance von-Hagenow-Lackner coupling and present the less used alternative introduced in [AlbaneseEtAL1986]. These methods are compared through numerical experiments. We show that the von-Hagenow-Lackner coupling su↵ers from non-optimal approximations properties, and, moreover, that such coupling methods require Newton-like iteration schemes, for solving the corresponding non-linear discrete algebraic systems.

Résumé : La prise en compte des conditions aux limites à l'infini dans les simulations sur des domaines de calcul bornés est un problème récurrent en calcul scientifique. Pour ce faire le couplage de la méthode des éléments finis (FEM) avec celle des éléments de frontière (BEM) est l'outil naturel. Nous adaptons ici pour la première fois les deux approches standards de couplage FEM-BEM pour le problème de l'équilibre du plasma: le couplage de Johnson-Nédélec et celui de Bielak-MacCamy. Nous rappelons également l'approche classique dans les codes de fusion, baptisée selon sa première apparition couplage de von-Hagenow-Lackner et présentons l'alternative moins utilisée introduite dans [AlbaneseE-tAL1986]. Ces méthodes sont comparées au travers d'expériences numériques. Nous montrons que le couplage von-Hagenow-Lackner sou↵re d'une convergence non-optimale et, en outre, que de telles méthodes de couplage nécessitent l'utilisation de schémas itératifs de type Newton, pour résoudre les systèmes algébriques discrets non linéaires correspondants.

Mots-clés : couplage FEM-BEM; d'équilibres axisymétriques à frontière libre d'un plasma de tokamak

Introduction

Numerical equilibrium computation is undoubtedly of first importance in Tokamak fusion science [START_REF] Wesson | Tokamaks. The International Series of Monographs in Physics[END_REF] and has been studied for a long time with already a review article in 1991 [START_REF] Takeda | Computation of MHD equilibrium of tokamak plasma[END_REF]. From a Tokamak operation point of view equilibrium codes are essential to design the geometry of new machines, to set up discharge scenarios and to check their feasibility, or to design and validate plasma feedback controllers. To this end these 2D equilibrium codes can also be coupled to 1D transport codes in order to simulate the evolution of the plasma equilibrium Email addresses: blaise.faugeras@unice.fr (Blaise Faugeras), holger.heumann@inria.fr (Holger Heumann) 1 Corresponding author.

1 at the di↵usion timescale through out the discharge [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF]. More detailed magnetohydrodynamic simulations modeling the plasma on very short timescales also rely on a given initial equilibrium which is the output of these equilibrium codes. As a last example let us mention that equilibrium computation methods are also used in equilibrium reconstruction codes which aim at identifying the toroidal current density in the plasma from experimental measurements (e.g. [START_REF] Lao | Equilibrium analysis of current profiles in Tokamaks[END_REF][START_REF] Mc Carthy | The CLISTE Interpretive Equilibrium Code[END_REF][START_REF] Blum | Real-time plasma equilibrium reconstruction in a tokamak[END_REF][START_REF] Blum | Reconstruction of the equilibrium of the plasma in a tokamak and identification of the current density profile in real time[END_REF][START_REF] Moret | Tokamak equilibrium reconstruction code LIUQE and its real time implementation[END_REF]).

A code which treats the quasi-static free-boundary equilibrium problem needs to solve nonlinear elliptic or parabolic problems with nonlinear source terms representing the current density profile vanishing outside the unknown free boundary of the plasma. The computational challenges in the design of such a code are: a problem setting in an unbounded domain with a nonlinearity due to the current density profile in the unknown plasma domain and the nonlinear magnetic permeability if the machine has ferromagnetic structures.

In this paper we focus on how the simulation on the unbounded domain can be reduced to computations on an interior bounded domain thanks to analytical Green's functions [START_REF] Lackner | Computation of ideal MHD equilibria[END_REF]. The numerical solution on the interior domain is coupled through boundary conditions to the Green's function representation of the solution in the unbounded exterior domain. This approach is today fairly standard in many other application areas such as electromagnetics [START_REF] Hiptmair | Coupling of finite elements and boundary elements in electromagnetic scattering[END_REF][START_REF] Zhao | Solving electromagnetic problems using a novel symmetric fem-bem approach[END_REF][START_REF] Bermudez | A FEM/BEM for axisymmetric electromagnetic and thermal modelling of induction furnaces[END_REF] or elasticity [START_REF] Costabel | Coupling of finite and boundary element methods for an elastoplastic interface problem[END_REF][START_REF] Bielak | An exterior interface problem in twodimensional elastodynamics[END_REF][START_REF] Stephan | Coupling of finite elements and boundary elements for some nonlinear interface problems[END_REF] and falls in the framework of boundary integral equations. The boundary integrals equations enable to reduce problems on unbounded domains to problems on boundaries which can then be coupled to any numerical method for the interior bounded domain. Most authors in the fusion literature deal with this question using a method introduced by von Hagenow and Lackner [START_REF] Hagenow | Computation of axisymmetric MHD equilibria[END_REF][START_REF] Lackner | Computation of ideal MHD equilibria[END_REF], whereas the coupling could be also conceived in other ways. In this paper our goal is to compare four di↵erent schemes in order to assess their performance.

As aforementioned, certainly the most famous coupling in the fusion community is called in this paper the von Hagenow-Lackner coupling HLC [START_REF] Hagenow | Computation of axisymmetric MHD equilibria[END_REF][START_REF] Lackner | Computation of ideal MHD equilibria[END_REF]. A method implementing this coupling is present in many equilibrium codes which usually make use of a finite di↵erence discretization method and of fixed-point iterations to solve the nonlinearities. Here we propose a variational framework for this coupling which enables the use of a finite element method (FEM) combined with a boundary element method (BEM) and Newton method for the nonlinearities. Surprisingly this method does not seem to be known in the applied mathematics or scientific computing literature.

Much less known and used but nevertheless existing in the fusion literature is the analytic uncoupling on a semi-circular domain AUC introduced in Albanese, Blum and Barbieri [START_REF] Albanese | On the solution of the magnetic flux equation in an infinite domain[END_REF]. It is the method implemented in the codes Proteus [START_REF] Albanese | Numerical studies of the Next European Torus via the PROTEUS code[END_REF], and the more recent CREATE-NL+ [START_REF] Albanese | CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver[END_REF] or CEDRES++ and FEEQS.M [START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF][START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF]. Such an uncoupling method was also analysed for the case of the Laplacian operator in [START_REF] Hsiao | Optimal order multigrid methods for solving exterior boundary value problems[END_REF] and [START_REF] Gatica | The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems[END_REF].

The two other methods we will discuss in this work are very well known in the applied mathematics literature and often referred to as the Johnson-Nédélec coupling JNC [START_REF] Zienkiewicz | Marriage à la mode -the best of both worlds (finite elements and boundary integrals)[END_REF][START_REF] Johnson | On the coupling of boundary integral and finite element methods[END_REF][START_REF] Sayas | The validity of Johnson-Nedelec BEM-FEM coupling on polygonal interfaces[END_REF] and the Bielak-MacCamy coupling BMC [START_REF] Bielak | An exterior interface problem in twodimensional elastodynamics[END_REF]. From our point of view JNC might be the most natural way to deal with the unbounded domain problem in the framework of a finite element method. However, neither JNC nor BMC have never been tested before in a fusion equilibrium code.

The outline of the paper is the following. In Section 2 we recall the plasma equilibrium equations in a Tokamak and present afterwards in Section 3 the boundary integral equations and the di↵erent coupling methods. Section 4 deals with the Galerkin formulations leading to the FEM-BEM discretizations of the four di↵erent coupling methods. Numerical experiments are conducted in Section 5 and we conclude with a short summary and outlook in Section 6.

Equilibrium equation

We consider the magnetostatic problem curl

✓ 1 µ curl A ◆ = J
of the electromagnetic vector potential A for some given current density J with µ the permeability. Under the axisymmetry assumption it is rewritten in cylin-

drical coordinates x = (x r , x z ) r • ✓ 1 µ 0 x r r (x) ◆ = J(x) • e ' ; (0, x z ) = 0 ; lim kxk!+1 (x) = 0 ; (1)
where r is the gradient in the two dimensions (x r , x z ). The primal unknown is the poloidal magnetic flux (x) := x r A(x)•e ' , the scaled toroidal component of the vector potential A, i.e. B = curl A and e ' the unit vector in toroidal direction. We consider air transformer tokamaks only, that is to say that the permeability is the constant µ 0 everywhere and the non-linearities are only due to the plasma domain and current density. In the here considered free boundary equilibrium problem the toroidal component of the current density is given by

J(x) • e ' = 8 > < > : j(x r , (x)) in P ( ) ; j ci in C i ; 0 e l s e w h e r e , (2) 
with

j ci = I i /|C i | is the given constant current density in the i-th poloidal field coil C i ⇢ ⌦ 1 = [0, 1] ⇥ [ 1, 1]
and j(x r , (x)) the prescribed toroidal component of the plasma current density, generally a non-linear function of , in the plasma domain P ( ) ⇢ ⌦ L ⇢ ⌦ 1 with ⌦ L the limiter domain accessible to the plasma. The plasma domain P ( ) is the domain bounded by the last closed poloidal flux line inside the limiter domain. Hence the axisymmetric magnetostatic problem is a non-linear problem, which, due to the unknown plasma domain P ( ) is called the free-boundary equilibrium problem. We refer to standard text books (e.g. [START_REF] Freidberg | Ideal Magnetohydrodynamics[END_REF][START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF][START_REF] Wesson | Tokamaks. The International Series of Monographs in Physics[END_REF][START_REF] Goedbloed | Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas[END_REF][START_REF] Jardin | Computational methods in plasma physics[END_REF]) for further details on the derivation of this modelization.

Boundary integral coupling methods

To solve problem (1) numerically we need to find a reformulation on a bounded domain ⌦ b , the computational domain, containing the plasma domain P ( ), where the coupling with the solution on the complement ⌦ e = ⌦ 1 \ ⌦ b is ensured by appropriate boundary conditions. The boundary conditions are given by boundary integral equations that follow from Green's identities.

If not stated di↵erently, we are not assuming that the computational domain ⌦ b contains all the coils and hence we introduce the two index subsets 

I b = {i / C i ⇢ ⌦ b } and I e = {i / C i ⇢ ⌦ e } to distinguish
Z D ( (y) ⇤ ⇠(y) ⇠(y) ⇤ (y))dy+ Z @D (@ ⇤ n(y) (y)⇠(y) @ ⇤ n(y) ⇠(y) (y))ds(y) = 0 , (3) 
where y = (y r , y z ), n is the outward normal vector on @D and

@ ⇤ n ⇠(x) = 1 µ0xr r⇠(x) • n.
Let us also introduce the fundamental solution of ⇤ [START_REF] Jackson | Classical electrodynamics[END_REF] which writes explicitly as

G(x, y) = µ 0 p x r y r 2⇡k(x, y) (2 k 2 (x, y))K(k(x, y)) 2E(k(x, y)) , with k 2 (x, y) = 4x r y r (x r + y r ) 2 + (x z y z ) 2
, and K(k) and E(k) are the complete elliptic integrals of the first and second kind respectively. Hence, taking in (3) (y) = G(x, y) we have the integral identity (see e.g. [35, page 89, eq. 5.2] or [24, eq. 9]) in D:

⇠(x) + Z @D @ ⇤ n(y) G(x, y)⇠(y)ds(y) Z @D @ ⇤ n(y) ⇠(y)G(x, y)ds(y) = Z D G(x, y) ⇤ ⇠(y)dy 8x 2 D (4)
for all regular enough ⇠. Further, it can be shown (see e.g. [35, page 137, eq. 6.20,] or [24, eq. 11]) that in the limit x 2 @D the following integral identity holds:

1 2 ⇠(x) + Z @D @ ⇤ n(y) G(x, y)⇠(y)ds(y) Z @D @ ⇤ n(y) ⇠(y)G(x, y)ds(y) = Z D G(x, y) ⇤ ⇠(y)dy x 2 @D . ( 5 
)
von Hagenow-Lackner coupling HLC [START_REF] Hagenow | Computation of axisymmetric MHD equilibria[END_REF][START_REF] Lackner | Computation of ideal MHD equilibria[END_REF]. No specific shape is assumed for ⌦ b which is not necessarily connected. Green's second identity [START_REF] Albanese | Numerical studies of the Next European Torus via the PROTEUS code[END_REF] for D = ⌦ 1 with = G and ⇠ = the solution of (1) leads to a non-linear integral equation for :

(x) = Z P ( ) j(y r , (y))G(x, y)dy + X i2I b [Ie Z Ci j ci G(x, y)dy 8x 2 ⌦ 1 . (6) 
In particular this provides a formula for the Dirichlet conditions of on the boundary @⌦ b of the computational domain. Hence it is possible to reformulate the free-boundary equilibrium problem in the unbounded domain (1) as a Dirichlet boundary value problem in the bounded domain ⌦ b using expression [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF] as the Dirichlet boundary condition.

In order to avoid the computation of the integral over the possible large domain P ( ) when evaluating [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF], one then introduces a new auxiliary unknown u satisfying the homogeneous Dirichlet boundary value problem

⇤ u(x) = j(x r , ) P ( ) (x) + X i2I b j ci Ci (x) in ⌦ b , u = 0 on @⌦ b , (7) 
where is the domain indicator function. Green's third identity [START_REF] Bielak | An exterior interface problem in twodimensional elastodynamics[END_REF] for

D = ⌦ b with ⇠ = u leads to Z P ( ) j(y r , (y))G(x, y)dy + X i2I Z Ci j ci G(x, y)dy = Z @⌦ b @ ⇤ n(y) u(y)G(x, y)ds(y) 8x 2 @⌦ b , (8) 
with n(y) the inward pointing normal of ⌦ b , showing that the integral over plasma domain and coils in ⌦ in equation ( 6) can be replaced by an integral over the boundary @⌦ b using the Neumann data of u, the solution to problem [START_REF] Blum | Real-time plasma equilibrium reconstruction in a tokamak[END_REF]. Hence the Dirichlet boundary condition on @⌦ b is expressed as the sum of the boundary integral in [START_REF] Blum | Reconstruction of the equilibrium of the plasma in a tokamak and identification of the current density profile in real time[END_REF] involving the new unknown u and the Green function convolutions term of the currents flowing in ⌦ e .

Johnson-Nédéléc coupling JNC, direct method [START_REF] Zienkiewicz | Marriage à la mode -the best of both worlds (finite elements and boundary integrals)[END_REF][START_REF] Johnson | On the coupling of boundary integral and finite element methods[END_REF]. As for HLC here no specific shape is assumed for ⌦ b which is not necessarily connected. One introduces a supplementary unknown q ⇡ @ ⇤ n for the Neumann boundary condition on @⌦ b , where n is the inward pointing normal of ⌦ b . Green's third identity [START_REF] Bielak | An exterior interface problem in twodimensional elastodynamics[END_REF] for in ⌦ e gives a supplementary boundary integral equation:

1 2 (x) + Z @⌦ b (@ ⇤ n(y) G(x, y) (y) q(y)G(x, y))ds(y) = X i2Ie Z Ci j ci G(x, y)dy 8x 2 @⌦ b . (9)
So, JNC amounts to couple the Neumann problem for in ⌦ b with the integral equation ( 9) that involves as well and the Neumann data q.

Bielak-MacCamy coupling BMC, indirect method [START_REF] Bielak | An exterior interface problem in twodimensional elastodynamics[END_REF]. As for HLC and JNC here no specific shape is assumed for ⌦ b which is not necessarily connected.

One introduces a supplementary unknown potential q on @⌦ b , and defines an auxiliary unknown ⇠(x) for x 2 ⌦ e , based on a boundary integral over the potential q

⇠(x) := Z @⌦ b G(x, y)q(y)ds(y) + X i2Ie Z Ci j ci G(x, y)dy , (10) 
and finds, again by Green's theorem, that

⇤ ⇠(x) = X i2Ie Z Ci j ci G(x, y)dy in ⌦ e ,
meaning that ⇠(x) is a representation of the solution (x) of ( 1) when x 2 ⌦ e .

In the limit cases x 2 @⌦ b we get integral representation formulas for the Dirichlet trace of ⇠

⇠(x) = Z @⌦ b G(x, y)q(y)ds(y) + X i2Ie Z Ci j ci G(x, y)dy , (11) 
and the Neumann trace of

⇠ @ ⇤ n ⇠(x) = 1 2 q(x) + Z @⌦ b @ ⇤ n(x) G(x, y)q(y)ds(y) + X i2Ie Z Ci j ci @ ⇤ n(x) G(x, y)dy x 2 @⌦ b , (12) 
which are forced to be equal to the Dirichlet and Neumann trace of . Here again n is the inward pointing normal of ⌦ b . Hence, BMC amounts to combine the Neumann problem for in ⌦ b , based on q-parametrized Neumann data given by the right hand side of ( 12), with the integral equation ( 11) that involves as well (through its Dirichlet trace) and the potential q.

Analytic uncoupling on a semi-circular domain AUC [2] [15]. Let us choose ⌦ b to be a semi-circular domain containing ⌦ L and all the coils C i . Its boundary is @⌦ b = [ 0 where is the semi-circle of radius ⇢ and

0 = {(0, z) / ⇢  z  ⇢ }.
This particular choice enables to find analytically, thanks to the method of images, a special Green function G ⇤ (x, y) which vanishes on the semi-circle . Then using Green's theorem (3) with D = ⌦ e and = G ⇤ one obtains

(x) = Z (y)@ ⇤ n(y) G ⇤ (x, y)ds(y) 8x 2 . ( 13 
)
The normal derivative @ ⇤ n (x) can then also be analytically computed as a boundary integral depending on and reinjected in the boundary condition term of the variational formulation for the inner problem on ⌦ b . We refer to [START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF] for an detailed exposition of this approach.

Galerkin formulation

In most of the computational tools for computing axisymmetric plasma equilibria the finite di↵erence method for the strong formulation (1) of the equilibrium problem is combined with the HLC. We follow here the more general Galerkin method, and recall that for appropriately chosen triangulations the Galerkin method leads to the same stencils as the finite di↵erence approach. Moreover the Galerkin method allows more flexibility for approximating the realistic geometry of a tokamak.

We consider problem (1) restricted to the bounded computational domain ⌦ b , multiply by a test function ⇠ and do integration by parts:

Z ⌦ b 1 µ 0 x r r (x) • r⇠(x) dx + Z @⌦ b @ ⇤ n (x) ⇠(x) ds(x) = Z ⌦ b J(x) • e ' ⇠(x) dx , ( 14 
)
where n is the inward pointing normal.

We use a triangular mesh to cover the computational domain ⌦ b and introduce a basis of piecewise linear functions { i }, where each i vanish at all mesh vertices except one. Basis functions associated to vertices at x r = 0 are excluded from this finite element space X(⌦ b ), as, due to axisymmetry (0, x z ) = 0. The finite element space X(⌦ b ), is the linear Lagrangian finite element space and has the direct decomposition

X(⌦ b ) = X (⌦ b ) X @ (⌦ b )
, where X (⌦ b ) is the space of all finite element functions in X(⌦ b ) that have zero Dirichlet trace. The degrees of freedom of elements of X (⌦ b ) are the values at the vertices of the mesh, that are not on the boundary @⌦ b and the degrees of freedom of elements of X @ (⌦ b ) are the values at the vertices on the boundary @⌦ b . Additionally we will make use of the finite element space Q(⌦ b ) being the span of piecewise constant functions { i }, where each i vanishes everywhere except for one edge of the boundary @⌦ b .

To define the di↵erent Galerkin formulations of HLC, JNC, BMC and AUC let us introduce the following notations for operators related to the Galerkin method on ⌦ b :

a( , ⇠) := Z ⌦ b 1 µ 0 x r r (x) • r⇠(x)dx , j p ( , ⇠) := Z P ( ) j(x r , (x))⇠(x)dx (15) and `(⇠) := X i2I b j ci Z Ci ⇠(x)dx . ( 16 
)
The implementation of these operators relies on quadrature rules for integrals over the triangular elements of the mesh. The approximation of the non-linear j p ( , ⇠) is non-standard due to the integration domain depending on and details can be found in [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF].

Moreover we will make also use of boundary integral operators and introduce

V (q)(x) := Z @⌦ b G(x, y)q(y)ds(y) , x 2 @⌦ b , K( )(x) := Z @⌦ b @ ⇤ n(y) G(x, y) (y)ds(y) , x 2 @⌦ b , K 0 ( )(x) := Z @⌦ b @ ⇤ n(x) G(x, y) (y)ds(y) , x 2 @⌦ b , (17) 
and domain integral operators

L(x) := X i2Ie j ci Z Ci G(x, y)dy , x 2 ⌦ b , L 0 (x) = X i2Ie j ci Z Ci @ ⇤ n(x) G(x, y)dy , x 2 ⌦ b . (18) 
In the subsequent Galerkin formulations we will frequently integrate products of integral operators and test functions over the boundary, hence it is convenient to introduce also h , ⇠i

@⌦ b := Z @⌦ b (x) ⇠(x)ds(x) . (19) 
In the case where is one of the boundary integral operator in [START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF] the approximation of such inner products is non-trivial and goes beyond the standard quadrature formulas. Nevertheless, this task is well understood, and we refer to [START_REF] Costabel | Experimental convergence rates for various couplings of boundary and finite elements[END_REF] for the technical details recalling also the asymptotic formulas for the fundamental solution G(x, y) when kx yk ! 0 derived in [START_REF] Itagaki | Boundary element modelling to solve the Grad-Shafranov equation as an axisymmetric problem[END_REF].

In the subsequent text we will distinguish between the computational domain ⌦ b = ⌦ that verifies the assumptions for HLC, JNC, BMC and the computational domain ⌦ b = ⌦ H # that verifies the assumptions for AUC. While ⌦ H # is a semi-circular domain containing ⌦ L and all the coils C i , the domain ⌦ only requires to contain ⌦ L , the domain that is accessible by the plasma. In particular it is not required that ⌦ is a connected domain.

HLC, ⌦ b = ⌦. Dirichlet boundary conditions g are imposed in [START_REF] Freidberg | Ideal Magnetohydrodynamics[END_REF] and computed using equations ( 6), [START_REF] Blum | Real-time plasma equilibrium reconstruction in a tokamak[END_REF] and [START_REF] Blum | Reconstruction of the equilibrium of the plasma in a tokamak and identification of the current density profile in real time[END_REF]. This leads to the introduction of the following Galerkin formulation: find ( , g, u)

2 X (⌦) ⇥ X @ (⌦) ⇥ X (⌦), such that a( , ⇠) + a(g, ⇠) j p ( , ⇠) = `(⇠) , 8⇠ 2 X (⌦) , hg, f i @⌦ hV (@ ⇤ n u), fi @⌦ = hL, f i @⌦ , 8f 2 X @ (⌦) , a(u, v) j p ( , v) = `(v) , 8v 2 X (⌦) . (20) 
JNC, ⌦ b = ⌦. We supplement equation ( 14) for on ⌦ with boundary integral equation ( 9) for q, the auxiliary variable for the Neumann data, and obtain the following variational formulation: find ( , q) 2 X(⌦) ⇥ Q(⌦), such that

a( , ⇠) j p ( , ⇠) + hq, ⇠i @⌦ = `(⇠) , 8⇠ 2 X(⌦) , h 1 2 + K( ), pi @⌦ hV (q), pi @⌦ = hL, pi @⌦ , 8p 2 Q(⌦) . (21) 
BMC, ⌦ b = ⌦. We supplement equation ( 14) for on ⌦ with boundary integral equation [START_REF] Costabel | Experimental convergence rates for various couplings of boundary and finite elements[END_REF], use [START_REF] Costabel | Coupling of finite and boundary element methods for an elastoplastic interface problem[END_REF] for the Neumann data and obtain the following variational formulation: find ( , q) 2 X(⌦) ⇥ Q(⌦), such that a( , ⇠) j p ( , ⇠) + h

1 2 q + K 0 (q), ⇠i @⌦ = `(⇠) hL 0 , ⇠i @⌦ , 8⇠ 2 X(⌦) , h , pi @⌦ hV (q), pi @⌦ = hL, pi @⌦ , 8p 2 Q(⌦) . (22) 
AUC, ⌦ b = ⌦ H # . The variational formulation for this method is given in [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF].

We briefly recall it here for completeness:

Find 2 X(⌦ H # ) such that a( , ⇠) j p ( , ⇠) + c( , ⇠) = `(⇠) 8⇠ 2 X(⌦ H # ) . ( 23 
)
The bilinear form c(•, •) derives from (13) as detailed in [START_REF] Grandgirard | Modélisation de l'équilibre d'un plasma de tokamak[END_REF]. It is defined as follows c( ,

⇠) := 1 µ 0 Z (x)N (x)⇠(x)ds(x) + 1 2µ 0 Z Z ( (x) (y))M (x, y)(⇠(x) ⇠(y))ds(x)ds(y) , (24) 
with

M (x, y) = k(x, y) 2⇡(x r y r ) 3 2 ✓ 2 k(x, y) 2 2 2k(x, y) 2 E(k(x, y)) K(k(x, y)) ◆ , N (x) = 1 x r ✓ 1 + + 1 1 ⇢ ◆ and ± = p x 2 r + (⇢ ± x z ) 2 ,
where ⇢ is the radius of the circle defining ⌦ H # .

Each of the four Galerkin formulations corresponds to a finite dimensional non-linear system F(U) = 0, where we provide the di↵erent dimensions in Table 1. In general we can say that N = dim(X (⌦)), the number of vertices not on the boundary, is orders of magnitude larger than N @ = dim(X @ (⌦)) the number of vertices on the boundary and N edges = dim(Q(⌦)) the number of edges on the boundary. Hence, in summary the non-linear algebraic system for HLC will be roughly twice as large as the non-linear algebraic system for JNC and BMC. Moreover, comparing HLC, JNC and BMC with AUC, the requirement of AUC of ⌦ H # to be a half circle seems to lead to an undesirable increase of unknowns for AUC.

On the other hand, the ultimate performance of all the four methods is only indirectly linked to the dimension. Due to the non-linearity, we need to employ iteration schemes, and so the performance is more linked to the number of iterations needed to achieve convergence and also to the computational time that is required to update from iteration n to iteration n + 1.

To keep the number of iterations small Newton type methods with their fast superlinear or even quadratic convergence are highly recommended. Newton type methods for AUC are advocated in the numerous contributions, starting with [START_REF] Blum | The self-consistent equilibrium and di↵usion code SCED[END_REF], since the early eighties. Without any additional technicality it is also possible to use Newton's method for the other three di↵erent formulations. The only non-trivial term in the derivative of each F, corresponds to the derivative of j p ( , ⇠), that can be found in [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF] where it was introduced for the coupling approach AUC. All the codes that implement HLC so far are using Picard type iterations that avoid the derivative of j p ( , ⇠). The original approach [START_REF] Lackner | Computation of ideal MHD equilibria[END_REF] reads as:

Given ( n , g n ) 2 X (⌦)⇥X @ (⌦) find ( n+1 , g n+1 , u n+1 ) 2 X (⌦)⇥X @ (⌦)⇥ X (⌦) such that a( n+1 , ⇠) + a(g n , ⇠) j p ( n , ⇠) = `(⇠) , 8⇠ 2 X (⌦) , hg n+1 , fi @⌦ hV (@ ⇤ n u n+1 ), fi @⌦ = hL, f i @⌦ , 8f 2 X @ (⌦) , a(u n+1 , v) j p ( n+1 , v) = `(v) , 8v 2 
X (⌦) , (25) 
which has the advantage that one needs to solve in each iteration only two Dirichlet problems for the linear operator ⇤ . It is possible to derive highly e cent algorithms for this task combining finite di↵erences and fast Fourier transform. Nevertheless, it is reported that such iteration schemes su↵er from serious convergence problems [START_REF] Lackner | Computation of ideal MHD equilibria[END_REF][START_REF] Jardin | Computational methods in plasma physics[END_REF] and in [START_REF] Blum | Numerical simulation and optimal control in plasma physics[END_REF] it was shown that Picard type iterations for AUC can lead to non-converging schemes.

In e cient implementations of either Newton or Picard type schemes for HLC, JNC, BMC or AUC the most time consuming part of each update will be the inversion of large linear systems. Here it is a priori not clear whether a Newton type scheme for JNC and BMC is superior to a Newton type scheme for AUC: the linear systems of JNC and BMC are considerable smaller than the linear systems for AUC, but the integral equations in JNC and BMC lead to dense entries in the linear system, which can demand large resources for the inversion.

Newton-type iterations are known to converge super-linearly, once the iterate is su ciently close to the solution. But as it is not easy to quantify "su ciently close", one generally needs to invokes so called globalization strategies. For the moment, we exclude such globalization strategies from our discussions, but assume that we have a su ciently good initial guess. This is indeed the case in many applications, e.g. equilibrium reconstructions, where the equilibrium at the previous timestep is a good initial guess, or scenario development, where the formulation of inverse problems allows to find coil current that correspond to a prescribed equilibrium.

Numerical experiments

All the subsequent simulations and numerical experiments were performed on a MacBook Pro with the 2,8 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. The implementation is basically an extension of FEEQS.M 2 , which is a MATLAB implementation of the methods for axisymmetric free method dimension leading order

HLC 2N + N @ O(2N ) JNC N + N @ + N edges O(N ) BMC N + N @ + N edges O(N ) AUC N H # + N H # @ O(N H # )
Table 1: The dimensions of the finite dimensional non-linear system F(U) = 0 for the four di↵erent methods. N = dim(X (⌦)) and N H # = dim(X (⌦ H # )) is the number of vertices not on the boundary, N @ = dim(X @ (⌦)) and N H # @ = dim(X @ (⌦ H # )) is the number of vertices on the boundary and N edges = dim(Q) is the number of edges on the boundary. We use the superscript H # to recall that AUC requires the computational domain to be a half circle ⌦ H # . In general N ⌧ N @ . boundary plasma equilibria that are described in [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF]. Concerning, the details of the implementation, e.g. quadrature rules and the accurate linearizations of various terms in the Galerkin formulations ( 20), ( 21), ( 22) and ( 23), we refer to [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF] and [START_REF] Costabel | Experimental convergence rates for various couplings of boundary and finite elements[END_REF]. The code utilizes in large parts vectorization, and therefore, the running time is comparable to C/C++ implementations (see [START_REF] Koko | Vectorized Matlab codes for linear two-dimensional elasticity[END_REF][START_REF] Chen | Programming of finite element methods in Matlab[END_REF] and [START_REF] Cuvelier | An e cient way to assemble finite element matrices in vector languages[END_REF] for a review and earlier references). FEEQS.M is publicly available and a forthcoming release will contain the here introduced coupling methods for plasma equilibrium calculations.

Convergence

We solve a simple magnetostatic problem in axial symmetry, which corresponds to a constant current carrying coil with poloidal section C = [0.5, 1.5] ⇥ [ 1.5, 0.5]:

r • ✓ 1 µ 0 r r ◆ = ( 1 in C ; 0 elsewhere, (0, z) = 0 ; lim k(r,z)k!+1 (r, z) = 0 . (26) 
With this simple linear test problem we can easily assess numerically the approximation quality of the four di↵erent approaches. The solution of ( 26) and its gradient r in

⌦ 1 \ C are (x) = Z C G(x, y)dy , r (x) = Z C r x G(x, y)dy . ( 27 
)
To study the convergence behavior of the di↵erent coupling approaches we in- corresponds to the case when source terms, such as the plasma are in the computational domain ⌦. For AUC we always choose ⌦ b = ⌦ H # to be the half circle of radius 3 centered at (0, 0) that contains both D and C (see Figure 1 of an illustration). As we consider here the linear problem the term j p ( , •) vanishes in all four Galerkin formulations ( 20), ( 21), ( 22) and [START_REF] Itagaki | Boundary element modelling to solve the Grad-Shafranov equation as an axisymmetric problem[END_REF]. Moreover, in the case of no sources in the computational domain, ⌦ = D, we have that `(•) vanishes while in the case of ⌦ = D \ C both L(x) and L 0 (x) vanish.

Then we compute the numerical solutions HLC 

err M 0 = s Z D ( M h (x) (x)) 2 dx , err M 1 = s Z D |r M h (x) r (x)| 2 dx ,
where M runs through JNC, HLC, BMC and AUC and we use high precision quadrature for the convolution formulas in [START_REF] Johnson | On the coupling of boundary integral and finite element methods[END_REF] to approximate (x) and r (x).

The results are shown in Figures 2 and3. First (see Figure 2, left), we look at the case when there are no sources in the computational domain. The numerical experiments confirm theoretical convergence assertions [START_REF] Johnson | On the coupling of boundary integral and finite element methods[END_REF][START_REF] Costabel | Experimental convergence rates for various couplings of boundary and finite elements[END_REF] for the coupling methods JNC and BMC: as we are using piecewise a ne finite elements we observe second and first order convergence in the L 2 -norm and the H 1 semi-norm respectively. We are loosing one order of convergence for BMC in L 2 , which is due to a loss of regularity of the auxiliary variable q due to the corners of ⌦. This is a known [33, p. 149] disadvantage of indirect boundary integral methods such as BMC and we therefore exclude BMC from the subsequent discussion.

To our knowledge there is no theoretical convergence analysis available for HLC. While we see (see Figure 2, left) with ⌦ b = ⌦ = D as well first order convergence in the H 1 -semi-norm, and second order convergence in the L 2norm, we observe a loss of convergence for the case that sources are in the FEM domain (see Figure 2, right). This is inherent in the method and a sever disadvantage of HLC. A closer inspection of the last line of [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF] shows, that we basically approximate the missing Dirichlet data for by a convolution with the Neumann data of the auxiliary variable u. Since the Neumann data involves the gradient of u, this approximation is of lower order than required in the standard numerical analysis of Dirichlet problems with approximated Dirichlet data. To cure this defect we would have to discretize the auxiliary variable u with at least quadratic finite elements (see Figure 3), which then leads to an increase in the number of unknowns.

In the relevant case of sources in the computational domain, we observe a very similar convergence behavior of AUC and JNC (see Figure 2, left).

In the following subsection we monitor the characteristic running times for each of the three approaches for a realistic equilibrium problem.

Running time

In the following we consider an example for ITER geometry (see Figure 4, center) with the coil currents indicated in the table in Figure 5. The current profile is the parametric profile

j(x r , (x)) = ( x r r 0 + (1 ) r 0 x r )(1 N (x) ↵ )
with r 0 = 6.2m the major radius of the vacuum chamber and ↵ = 2.0, = 0.5978, = 1.395 and = 1.365461e + 6. N the normalized poloidal flux

N (x) = (x) ax ( ) bd ( ) ax ( ) ,
where ax and bd are the flux values at the magnetic axis and the boundary. Exemplary meshes for AUC and HLC/JNC are shown in Figure 4. HLC and JNC are based on a mesh that covers the domain bounded by the outer vacuum vessel wall. The initial guesses are solutions to equilibrium problems with fixed, prescribed plasma current, and then the Newton iterations converge to a residual smaller then 10 12 in less then 10 iterations. The di↵erence between the numerical solutions of AUC, HLC and JNC is negligible (see Figure 5 left and right), so we can focus on the runtime. As all the three methods are implemented in the same environment, this is a fair test to assess the performance of each approach. A more sophisticated implementation that allows to improve the performance of one method, will also improve the performance of the two other methods. The pseudo-code for Newton-type schemes can be found in Figure 6. In our first test, we look at the timing of the pre-processing, the line 1 in the pseudocode, and time per Newton iteration, the update step in the lines 3 and 4 in the pseudo-code (see Figure 6). The pre-processing steps consists mainly of the assembling of all sti↵ness matrices that do not change during the Newton iterations. This involves in particular the assembling of all boundary integral terms, that has in general quadratic complexity due to the convolution terms. Set U U DF(U) 1 F(U);

4:

Update F(U), DF(U); 5: end while Figure 6: Timing of the pre-processing (preproc.), the line 1 in Newton's method, and time per Newton Iteration (update step), the lines 3 and 4 in Newton's method, for the di↵erent coupling methods.

The main e↵ort in the update step is due to the inversion of the Newton matrix and due to the update of the plasma domain and its corresponding terms, e.g j p ( , ⇠) in the Galerkin formulations. We show in Figure 6 characteristic timings of the pre-processing step and the update step as functions of the number triangles that cover the domain accessible by the plasma (orange in Figure 4), as this number is identical for both type of meshes. Saying this, it is obvious that the pre-processing time for JNC is the largest, as it contains more boundary integral terms with convolutions than AUC and HLC. It is a bit surprising that there is not a huge di↵erence in the timing of the update step itself, even though the total number of unknowns for JNC, AUC and HLC are quite di↵erent (see Table 2). The total number of unknowns of HLC is roughly twice as large as the total number of unknowns of JNC, which is also obvious from the Galerkin formulations [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF] and [START_REF] Hiptmair | Coupling of finite elements and boundary elements in electromagnetic scattering[END_REF]. And the number of unknowns of AUC is considerably larger than the number of unknowns of HLC. Updating the plasma domain and the corresponding terms (line 4 in the pseudo-algorithm) is very similar in all three methods. A closer inspection of the timings of lines 3 and 4 in the pseudo-code (see column 4-9 in Table 2) uncovers that the inversion of the Newton matrix DF(U) is the most time consuming part of the update steps. Moreover the timing of the solution step for HLC and AUC is comparable to the timing for JNC even though the number of unknowns are much larger. After all this is not very surprising, if one looks at the structure, e.g. the sparsity pattern (see Figure 7), of the di↵erent Newton matrices. Due to the integral equations the matrices for HLC and JNC contain relatively large dense blocks, while AUC overall remains a sparse matrix. This di↵erence explains the observed timings.

It might be possible to design problem adapted linear solvers that speed up the inversion of the Newton matrix for HLC or JNC, but as we are relying here on high-performance software (MATLAB's proprietary interface to UMFPACK ), it will be di cult to do better. 

number

Fixed point vs Newton Iteration

It is well known [START_REF] Lackner | Computation of ideal MHD equilibria[END_REF][START_REF] Jardin | Computational methods in plasma physics[END_REF] that plain fixed point iterations for solving the non-linear Galerkin formulatons (20), ( 21), ( 22) and ( 23) su↵er from sever convergence problems. It is also known, but far less widespread, that Newton-type methods avoid such convergence problems. In [? , Section IV 1.5.1] for example it was shown, in the simplified setting of the TFR tokamak, that one can find solutions of the equilibrium problem using Newton type methods, that can not be found with fixed point iterations. The subsequent numerical experiments underpin this observation.

Additionally to the equilibrium from the previous section (see Figure 5) we consider two equilibria with circular boundary that have a contact point with the left, respectively the right side of the limiter (see Figures 8 and9). We used an inverse problem formulation with prescribed desired boundary [19, Section 2.2] to identify currents (see the tables in Figures 8 and9). Again as in the case A, the Newton methods for AUC and HLC converge also for the case B and C in less than 10 iterations, where here we took for simplicity random perturbations of the numerical solution as initial guess. As we do not focus on global convergence this is reasonable. But it is important to understand the behavior of fixed point iterations for such random perturbation. In figure 10 we present the convergence history of fixed-point iterations for AUC and HLC for the three di↵erent test cases. We observe that the fixed point iterations for AUC and HLC do not converge for the test cases A and B and that the convergence for the test case C is extremely slow. Fixed point iterations can fail both for elongated as well as circular equilibria. To show that this observation it not related to our choice of perturbation, we recall that the convergence of fixed point iterations is determined by the spectral radius ⇢ DG(U) (maximum among the absolute values of the eigenvalues of DG(U)), where DG(U) is the Jacobian of the function G(U) that defines the fixed point iteration:

U k+1 = G(U k ) .
We have convergence of the sequence (U k ) to the fixed point U ⇤ , with U ⇤ = G(U ⇤ ) if the spectral radius ⇢ DG is smaller than one. Since we are able to compute the derivatives required for Newton-type iterations, we are also able to compute the derivatives of the functions G that define the fixed point iterations for AUC and HLC. The power iteration method in turn allows to compute the spectral radius. Computing the spectral radius, the convergence indicator, for the example from Figure 10, we find that indeed its value is larger than one in the cases where we observe no convergence (see legend of Figure 10 for the numbers). Moreover, in case C where we see convergence, the spectral radius is smaller than one. Nevertheless, its values are still fairly large, which explains the extremely slow speed of convergence.

Ultimately, we would like to stress that the size of the spectral radius, hence the success of fixed point iterations is not related to the discretization parameter. In table 3 we show the values of the spectral radius for AUC and HLC for the three di↵erent test cases for sequence of finer and finer meshes. Newton method converges to the same equilibrium as indicated by the numbers in the columns with header vol. giving the total plasma volume, but the values of the spectral radius remain almost constant.

Conclusion

We presented a systematic discussion of four di↵erent approaches to the approximation of free-boundary equilibrium problems which are consistent with the boundary condition at infinity. All four methods utilize boundary integral equations. HLC, the most common method for such kind of applications, basically uses a boundary integral equation to derive non-local Dirichlet conditions on the boundary of the computational domain, while the other three approaches are rather based on non-local Neumann conditions. AUC, introduced in [START_REF] Albanese | On the solution of the magnetic flux equation in an infinite domain[END_REF], requires the computational domain to be a semi-circle, which can lead to a relatively large number of unknowns. The two standard methods JNC and BMC were never used before in free-boundary equilibrium problems.

We showed that HLC su↵ers from non-optimal convergence, compared to AUC and JNC. This problem can be cured, which in turn increases further the computational time. Moreover, our experiments show that it is inevitable to use Newton-type iterations in order to solve the non-linear discrete problems. This second observation that Newton-type method perform better than fixed point iterations is not new. However, knowing that most of today's equilibrium codes follow the spirit and ideas of von Hagenow and Lackner [START_REF] Hagenow | Computation of axisymmetric MHD equilibria[END_REF][START_REF] Lackner | Computation of ideal MHD equilibria[END_REF], and employ some sort of HLC combined with fixed point iterations, we want to stress the limits of this method. Augmenting an existing code based on a fixed-point solver with a Newton-type solver is, at first glance, fairly technical. But then a closer look shows that this is only slightly more complicated than the computation of the plasma domain itself and details can be found in the existing literature [START_REF] Heumann | Quasi-static freeboundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications[END_REF].

The last important result of the present work is the fact that the computation time of AUC is comparable to HLC or JNC even though the number of degrees of freedom is much larger. This observation makes perfectly sense, once you highlight that the boundary integral equations in HLC and JNC lead to dense blocks in the otherwise sparse matrix that needs to be inverted at each Newton iteration.
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 1 Figure 1: Center: The domain C (green) and the domain D (yellow). Left: Example of the meshes used in the coupling methods HLC, JNC and BMC. Right: Example of the meshes used for the coupling method AUC.

  the four methods on a sequence of refined meshes and monitor the error in the domain D measured in the L 2 -norm and the H 1 -semi-norm:

Figure 2 :

 2 Figure 2: Left: Without sources in the computational domain, ⌦ b = ⌦ = D (not possible for (AUC)). Right: With sources in the computational domain, ⌦ b = ⌦ = D [ C for (HLC) and (JNC) and ⌦ b = ⌦ ⇤ a half circle for (AUC).

Figure 3 :

 3 Figure 3: Left: The suboptimal convergence rate for HLC in L 2 can be improved if we use quadratic finite elements (LFE-QFE) instead the linear finite elements (LFE-LFE) in (20) for the auxiliary variable u. Right: The computational domain ⌦ and the coarsest mesh, with the subdomains D (yellow), the domain where we evaluate the error and the domain C (green) the support of the source term.

Figure 4 :

 4 Figure 4: The ITER geometry (center) and the mesh for the domain ⌦ H # and the domain ⌦. The coils are not included in ⌦.

Figure 5 :

 5 Figure 5: Case A: The currents in the coils (center) and contour plots of numerical solutions using AUC (left) and HLC (right).
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 1 Compute F(U), DF(U); 2: while not converged do 3:

Figure 7 :

 7 Figure 7: The sparsity pattern for DF for HLC, JNC and AUC (from left to right). The matrix DF for AUC is the largest but has the least number of nonzero entries.

Figure 9 :

 9 Figure 9: Case C: The currents in the coils (center) and contour plots of numerical solutions using AUC (left) and HLC (right).

  , ⇢ DG = 1.23 HLC Case A, ⇢ DG = 1.23 AUC Case B, ⇢ DG = 1.43 HLC Case B, ⇢ DG = 1.43 AUC Case C, ⇢ DG = 0.96 HLC Case C, ⇢ DG = 0.96

Figure 10 :

 10 Figure 10: Convergence history of fixed point iterations for AUC and HLC for the three di↵erent test cases A, B and C.

  coils in ⌦ b and coils in ⌦ e .

	Boundary integral equations. The methods investigated in this work rely on Green's theorem for the di↵erential operator r• ⇣ ⌘ 1 noted ⇤ . Namely µ0xr r• for any domain D ⇢ ⌦ 1 and all regular enough and ⇠ it holds that (see e.g. [35, page 1-3, eq. 1.8] or [24, page 428])

Table 2 :

 2 Timing results for the coupling methods HLC, JNC and AUC. One "iteration" corresponds to line 3 and 4 from Newton's method in Fig.6, whereas "solve" corresponds to line 3 alone.

  Figure 8: Case B: The currents in the coils (center) and contour plots of numerical solutions using AUC (left) and HLC (right).
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			Case A		Case B			Case C
	h	vol. [m 3 ]	⇢							DG
				AUC HLC		AUC HLC		AUC HLC
	0.22	845.13	1.29	1.25	490.88	1.47	1.47	489.84	0.95	0.95
	0.16	834.72	1.24	1.24	486.81	1.46	1.45	486.34	0.96	0.96
	0.11	832.26	1.23	1.23	484.56	1.43	1.43	486.22	0.96	0.96
	0.08	831.04	1.25	1.24	484.88	1.45	1.45	485.75	0.96	0.96
	0.06	830.24	1.25	1.24	484.62	1.45	1.46	485.41	0.96	0.96
	0.04	830.52	1.24	1.24	484.38	1.45	1.46	485.07	0.96	0.96

DG vol. [m 3 ] ⇢ DG vol. [m 3 ] ⇢

Table 3 :

 3 The spectral radius on a sequence of refined meshes,
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