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Abstract. In plasma physics domain, the electrons transport can be described
from kinetic and hydrodynamical models. Both methods present disadvantages
and thus cannot be considered in practical computations for Inertial Confine-
ment Fusion (ICF). That is why we propose in this paper a new model which is
intermediate between these two descriptions. More precisely, the derivation of
such models is based on an angular closure in the phase space and retains only
the energy of particles as a kinetic variable. The closure of the moment system
is obtained from a minimum entropy principle. The resulting continuous model
is proved to satisfy fundamental properties. Moreover the model is discretized
w.r.t the energy variable and the semi-discretized scheme is shown to satisfy
conservation properties and entropy decay.

1. Introduction. A variety of classical problems in kinetic theory leads to use
the Fokker-Planck-Landau equation to describe the evolution of different species
of charged particles undergoing binary collisions ([9, 14]). For these collisions, the
interaction potential is the long-range Coulomb interactions. More precisely the
solutions of the kinetic equations are non-negative distribution functions fα(t, x, v)
specifying the density of each species α with velocity v at time t and position x.
Here the plasma consists of electrons and ion species (see [35]). In this paper, the
plasma is studied during the time scale corresponding to the electron frequency.
This time scale being small compared to the characteristic time of ions motion, the

2000 Mathematics Subject Classification. 35Q84, 35Q83, 65Z05.
Key words and phrases. entropy minimization, Landau-Fokker-Planck equation, N moment

system, entropic scheme, moment closure, entropic average .
The first author is supported by NSF grant xx-xxxx.

1



2 J. MALLET, S. BRULL AND B. DUBROCA

ions can be considered as immobile. To approximate the solution of such problems,
many computational methods have been developed up to now.

In [6, 7, 13], deterministic schemes have been developed to approximate the so-
lution of the Fokker-Planck-Landau equation by using a phase space grid. Then in
[19], the evolution of electromagnetic fields was inserted in the scheme to describe
exactly the electrons transport. This scheme presents many fundamental proper-
ties such as conservation laws and positivity of the distribution function. However
kinetic models for electrons transport are too much expensive to be used for In-
ertial Confinement Fusion (ICF). To reduce the computational time, plasmas can
be described by fluid models. For example in [10, 11, 12], the authors consider
a bi-fluid compressible Euler model coupled with the Poisson equation. Moreover
for ITER application, the isothermal two-fluid Euler-Lorentz system coupled with
a quasi-neutrality constraint has been studied in [4] by introducing an asymptotic
preserving scheme. However, for the new high energy target drivers, the kinetic
effects are too important to neglect them.

In the present paper, we propose an alternative approach by considering an
intermediate description between fluid and kinetic level like in [31]. The velocity
variable is written in spherical coordinates and the model is written by considering
moment systems with respect to the angular variable. But the electron/electron
collision operator being non linear, the moments extraction is complicated. That is
why physicists approximate this operator by assuming that the main contribution of
the distribution function comes from its isotropic part ([36]). But this approached
model does not conserve the realizability domain defined as the set of vectors that
are the moments of positive distribution functions.

There exists many moment models whose difference comes from the choice of the
closure which approximates the full distribution function. This closure is essential
to get a closed moment system and to assure some physics properties. Indeed, a
well-known moment model called PN (briefly reviewed in [8]) leads to solutions
that are inconsistent with a positive concentration of particles. For example, the
PN model used in [29] does not satisfy positivity of the underlying distribution
function of electrons and entropy dissipation. This comes from the definition of the
closure that is based on a truncation of the spherical harmonic expansion w.r.t the
angular variable. For the PN model, modifications are proposed in ([22]) to obtain a
non-negative distribution function. For example, in [26, 27], the authors propose an
asymptotic limit approximation to prescribe boundary conditions for the neutronic
transport equation.

In this context, the motivation of our current work is to use a moments closure
based on an entropy minimization principle which inherits many of the fundamental
properties such as the conservation laws and entropy dissipation. This closure
leads to a new moment model called MN model. This model has been firstly
introduced in [18] in a reduced form to find an approximation of radiative transfer
and energy evolution equation. The subsequent system of conservation laws is
closed by minimizing the radiative entropy (see also [20] for extension). Moreover, a
moment modelM1 has been proposed in [31] by considering the three first moments.
The benefit of the M1 model lies in that it satisfies fundamental properties. Indeed
mass and energy are conserved, the distribution function stays positive and the
entropy decreases. Nevertheless proofs presented in [31] are very specific to the M1

model. Indeed theorems and proofs are based on the knowledge of known coefficients
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to define the distribution function f . Here these coefficients are unknown which
implies to use a different approach.

In kinetic theory, the idea of using minimization problem under moments con-
straints has been analyzed by Levermore in the framework of gas dynamics ([28]).
The main motivation was to construct BGK models ([2]) leading to the correct
Prantl number at the Navier-Stokes level. Moreover the well-posedness of such
problems has been clarified later by Junk and Schneider ([25, 33]). In the present
case, the aim is different. Here the energy of particles is a free parameter. Then we
integrate only the kinetic equation expressed in spherical coordinate with respect
to the angle variable and we return only the energy of particles as a kinetic variable
in the frame of ions considered completely frozen.

At the numerical point of view, the entropic average used to define the distri-
bution function on interfaces allows to show that the semi-discretized scheme is
entropic.

The remainder of the paper is organized as follows. In section 2, we briefly
review some backgrounds about the collision operator properties and present the
kinetic equation considered. In section 4, we introduce a new electron/electron
collision operator that is devoted to approach the full Landau collision operator.
This new model is based on a linearization of the Landau operator around the
equilibrium state of the electron/ion collision operator. Next, this new operator is
proved to preserve the realizability domain. Section 5 deals with the derivation of
a semi-discrete scheme, where the time is kept as a continuous variable whereas the
energy variable is discrete. The definition of the approximated solution on the dual
mesh through an entropic average allows to get the entropic dissipation property of
collision operator. Next, the N-moment model is derived from the continuous kinetic
equation in section 6 and is shown to preserve previous property. In section 7, the
semi-discrete scheme for the moment system is proved to be entropic. Moreover we
present at the end of this part by a test case, showing the interest of theM2 andM3

models compared to the M1 model. Comparisons with PN models are also given.
Finally we finish in the last section by conclusions to this work.

2. Presentation of the kinetic model. In this section we recall some back-
grounds about classical kinetic models for plasma physics where the ions are con-
sidered as frozen. Firstly, the general kinetic model is presented. Then some fun-
damental properties of collision operators are explained.

2.1. Classical kinetic models. In this paper, the time evolution of the electrons
is describded by a distribution function f(t, x, v), x ∈ R3, v ∈ R3 solution of a
kinetic equation.

2.1.1. hydrodynamic quantities. From the distribution function, we define the den-
sity, the macroscopic velocity and the temperature of the electrons as follows

n =

∫

R3

f(t, x, v)dv, nu =

∫

R3

vf(t, x, v)dv, T =
2

3

∫

R3

(v − u)2f(t, x, v)dv.

2.1.2. Classical kinetic equations. In the present paper, the distribution function f
satisfies the kinetic equation

∂tf + v∂xf = C(f, f) , (2.1)

where the collision operator C(f, f) introduced in [9] is defined by

C(f, f) = Cee(f, f) + Cei(f) .
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The operator Cee stands for the electron-electron collision operator

Cee(f, f) = ∇v.

(∫

R3

Φ(V )[f(v′)∇vf(v)− f(v)∇v′f(v′)]dv′
)
, (2.2)

where V = v− v′ is the relative velocity of electrons and Φ is an operator acting on
the relative velocity V

Φ(V ) =
1

|V |3 (|V |2Id− V ⊗ V ) , (2.3)

where Id is the unit tensor.
The electron-ion collision operator Cei(f) is defined by

Cei(f) = ∇v · [Φ(V )∇vf(v)] . (2.4)

2.2. Properties of the collision operator. Next we present the conservation
laws and entropy dissipation property of the collision operators Cee and Cei. The
electron-electron collision operator satisfies mass, momentum and energy conserva-
tion properties

∫

R3

Cee(f, f)




1
v

|v|2



 dv = 0, t ≥ 0 ,

while the electron-ion collision operator satisfies only mass and energy conservation
∫

R3

Cei(f)

(
1

|v|2
)
dv = 0, t ≥ 0 .

They both dissipate the entropy i.e.
∫

R3

Cei(f) log f dv ≤ 0 and

∫

R3

Cee(f, f) log f dv ≤ 0 , (2.5)

which implies that the Boltzmann entropy

H(f) =

∫

R3

(f log f − f) dv

is a Lyapounov function for (2.1).

Property 1. [(i)]
1. The equilibrium state of the electron-ion collision operator Cei (i.e.
Cei(f) = 0) is given by the set of isotropic functions f = f(|v|) .

2. The equilibrium state of the electron-electron collision operator Cee

(i.e. Cee(f, f) = 0) is given by the Maxwellian distribution function such that

∃(n, me, T, u) ∈ R
3
+ × R

3/ f(v) = n

(
me

2πkBT

) 3
2

exp

(
−me(v − u)2

2kBT

)
,

where kB is the Boltzmann constant, n is the density, T is the temperature
and ue represents the mean velocity.

3. The equilibrium state considered by both collision operators is given
by the isotropic Maxwellian distribution function such that

∃(me, n, T ) ∈ R
3
+/f(v) = n

(
me

2πkBT

) 3
2

exp

(
−mev

2

2kBT

)
.



GENERAL MOMENT SYSTEM FOR PLASMA PHYSICS 5

3. Setting of the problem. In this section, we explain the construction of the
MN model and the definition of the realizability domain. Next in subsection 3.3 we
show that the classical approximation of electron/electron collision operator does
not conserve the realizability domain. This is one of the main motivation of this
paper.

3.1. Notations. If S2 is the unit sphere, Ω = v/|v| represents the direction of
propagation of the particles and µ = Ωx = cos θ, θ ∈ [0, π]. In this paper, we chose
a one dimensional direction of propagation, i.e. we take µ ∈ [−1, 1] as the direction
of propagation instead of Ω. By setting ζ = |v|, the distribution function f writes
in spherical coordinates: f(x, ζ, µ). Hence the N first moments with respect to µ
are defined by

f i = 2πζ2
∫ 1

−1

f(ζ, µ)µidµ = ζ2〈fµi〉 ∀i ∈ {0, N}, (3.1)

where 〈 . 〉 is defined for any function Ψ by

〈Ψ〉 = 2π

∫ 1

−1

Ψ(µ)dµ .

We use also the following notation

F i(ζ) =
f i(ζ)

ζ2
. (3.2)

This means that F 0 represents the isotropic part of the distribution function f
(F 0 = 〈f〉).

In this paper, moment systems will be constructed from kinetic equations. One
fundamental property for these systems is the preservation of the realizability do-
main

A =




g =



g0

...
gN


 ∈ R

N / ∃ g ≥ 0 ∈ L1([−1, 1]) and gi = ζ2〈µig(µ)〉∀i ∈ {0, N}





.

(3.3)

3.3 garantees that the moments can be recovered from a nonnegative distribution
function.

3.2. The MN closure. One important step of the present work, is the construction
of a moment system from a kinetic equation. But the extraction of these moments
leads to system of equations having more unknowns than equations because a sup-
plementary moment appears. That is why, a closure must be defined such that the
highest moment writes in function of the previous ones. The closure chosen is the
MN closure that is based on an entropy minimization principle. The advantage
of such a closure compared to the classical PN closure is the nonnegativity of the
underlying distribution function.

More precisely, the MN closure is obtained by solving the following entropy
minimization problem: f i(ζ), i ∈ {0, N} being given

min
g≥0

{H(g), ζ ∈ R+, /

∫ 1

−1

µi g(µ, ζ)dµ = f i(ζ), i ∈ {0;N}}. (3.4)



6 J. MALLET, S. BRULL AND B. DUBROCA

Therefore according to [28, 32], if (f i(ζ))i∈{0;N} ∈ A, then f solution to (3.4) reads

f(t, x, ζ, µ) = exp (α(t, x, ζ)µ) , (3.5)

with α =



α0

...
αN


 and µ =



µ0

...
µN


.

3.3. Conservation of the realizability domain. Consider here the case of a
space homogeneous situation with one species of particle, i.e. the plasma consists
only of electrons. In this case, equation (2.1) is reduced to

∂tf = Cee(f, f) . (3.6)

The moments extraction for the electron-electron collision operator Cee(f, f) is very
complicated because of its nonlinearity. That is why in Plasma physics, classical
approximations for the operator lead to consider that the main contribution for the
electron-electron collision operator comes from the isotropic part of the distribution
function. This means that the collision operator Cee(f, f) is approached by

Q0
ee =

1

ζ2
∂ζ

(
ζ

∫ ∞

0

J̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζ(F

0(ζ)) − F 0(ζ)
1

ζ′
∂ζ′F 0(ζ′)

]
ζ′2dζ′

)
,

(3.7)
with

J̃(ζ, ζ′) =
2

3
inf

(
1

ζ3
,
1

ζ′3

)
ζ′2ζ2 . (3.8)

This approximation (3.7) denoted by Q0
ee has been presented in [36] and used in

[5, 15, 16] to study the homogeneous Fokker-Planck-Landau equation for isotropic
distribution functions. However, the following example 1 shows that this model
does not preserve the realizability domain A.

Indeed, consider the distribution function as in (3.5) and extract the two first
moments of (3.6) with respect to µ, where Cee(f, f) has been replaced by Q0

ee.
Hence, we get






∂tf
0 = Q0

ee ,

∂tf
1 = 0 .

(3.9)

For more details, the expression (3.7) and the derivation of the system (3.9) are
explained in Appendix A.

In the particular case of the N = 1, the realizability domain A is shown to be
equal to

B =

{
g =

(
g0

g1

)
∈ R

2, g0 > 0 and |g1| < g0
}
∪ {(0, 0)} .

Example 1. Let us chose the following initial data for f0 and f1

f0(t = 0) =
1

3
χ[0,3](ζ) and f1(t = 0) =

1

4
χ[0,3](ζ) .

Because of the electron-electron collision operator effect, f0 converges to a cen-
tered Maxwellian. Moreover, the M1 model preserves mass and energy. So the
obtained Maxwellian presents the same mass (

∫∞

0 f0dζ = 1) and the same energy
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(
∫∞

0 f0ζ2dζ = 3) as the initial distribution function. So the asymptotic steady state

for f0 reads

f0 =

√
2

π
exp

(−ζ2
2

)
ζ2 .

Therefore figure 1 shows that the realizability domain is not preserved anymore.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

Energy of particles ζ

f0
f1

Figure 1. Representation of the moments f0 and f1 with respect
to the energy ζ at the steady state.

4. New Kinetic continuous model.

4.1. Approximation of the collision operator Cee. In order to preserve the
realizability domain (proof in section 6.2), we consider a new collision operator
based on a linearisation of Cee around the equilibrium state of Cei. The expression
of this new collision operator is given by equation (4.1).

Approximation of Cee The electron-electron collision operator Qee(f) and the
electron-ion collision operator Qei(f) are given by

Qee(f) =
1

ζ2
∂ζ

(
ζ

∫ ∞

0

J̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ′
∂ζ′F 0(ζ′)

]
ζ′2dζ′

)
,

(4.1)

where J̃(ζ, ζ′) is given in (3.8).
For Cei, we do not use any approximation, since this operator is already linear. To
be consistent with the notation Qee(f), we use the notation Qei instead of Cei. Its
expression can be rewritten

Qei(f) =
1

ζ3
∂

∂µ

(
(1− µ2)

∂f

∂µ

)
. (4.2)

The computation of (4.2) in spherical coordinate is established in Appendix B. So
equation (2.1) can be approached in spherical coordinates by

∂tf + ζµ∂xf = Q(f) , (4.3)

where Q(f) = Qee(f) +Qei(f) and Qee, Qei are defined by (4.1, 4.2).

Remark 1. If f is isotropic, i.e. f = F 0, we obtain

Q(f) = Q(F 0) =

∫ 1

−1

Cee(F
0, F 0)dµ =

∫ 1

−1

Cee(f, f)dµ .

Now, let us check that the new model conserves fundamental properties.
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4.2. Properties of the model. In this subsection, we present the fundamental
properties satisfied by the new model, that is the conservation laws and a H-theorem.

Proposition 1. The operator Q(f) satisfies mass and energy conservation proper-
ties and the entropy dissipation property, i.e.

〈
∫ ∞

0

ζ2Q(f)

(
1
ζ2

)
dζ〉 = 0 and 〈

∫ ∞

0

ζ2Q(f) log fdζ〉 ≤ 0 .

Proof. Firstly, in order to recover the conservations property, consider the quantity

〈
∫ ∞

0

ζ2Q(f)

(
1
ζ2

)
dζ〉 =

∫ ∞

0

ζ2〈Qee(f)〉
(
1
ζ2

)
dζ +

∫ ∞

0

ζ2〈Qei(f)〉
(
1
ζ2

)
dζ .

(4.4)
For the sake of clarity, we introduce the notation

Q0
ee = ζ2〈Qee(f)〉 .

The first term of the right hand side of equation (4.4) can be rewritten as
∫ ∞

0

Q0
ee

(
1
ζ2

)
dζ =

∫ ∞

0

∂ζ

(
ζ

∫ ∞

0

J̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζF

0(ζ)− F 0(ζ)
1

ζ′
∂ζ′F 0(ζ′)

]
ζ′2dζ′

)

(
1
ζ2

)
dζ .

So,
∫∞

0 Q0
eedζ = 0. Moreover, since

∫ ∞

0

Q0
eeζ

2dζ = −2

∫ ∞

0

∫ ∞

0

ζ2ζ′2J̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζF

0(ζ)

]
dζ′dζ

+ 2

∫ ∞

0

∫ ∞

0

ζ2ζ′2J̃(ζ, ζ′)

[
F 0(ζ)

1

ζ′
∂ζ′F 0(ζ′)

]
dζ′dζ ,

we get from Fubini theorem
∫ ∞

0

Q0
eeζ

2dζ = 0 .

Besides, we have 〈Qei(f)〉 = 0. Therefore the conservation properties follow.
Now we prove the entropy dissipation property of the whole collision operator Q.

By using a Green formula we obtain easily that Qei dissipates entropy. Moreover

〈
∫ ∞

0

ζ2Qee(f) log fdζ〉 = −〈
∫ ∞

0

∫ ∞

0

ζ′ 2ζJ̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ′
∂ζ′F 0(ζ′)

]

1

f
∂ζfdζdζ

′〉 . (4.5)

Equation (4.5) can be rewritten in terms of f as

〈
∫ ∞

0

ζ2Qee(f) log fdζ〉 = −
∫ 1

−1

∫ 1

−1

∫ ∞

0

∫ ∞

0

ζ′ 2ζJ̃(ζ, ζ′)

[
f(ζ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ′
∂ζ′f(ζ′)

]

1

f
∂ζfdζdζ

′dµdµ′

= −
∫ 1

−1

∫ 1

−1

∫ ∞

0

∫ ∞

0

ζ′ 2ζ2J̃(ζ, ζ′)f(ζ)f(ζ′)

[
1

ζ
∂ζ(log f(ζ))−

1

ζ′
∂ζ′(log f(ζ′))

]

1

ζ
∂ζ log f(ζ)dζdζ

′dµdµ′ .



GENERAL MOMENT SYSTEM FOR PLASMA PHYSICS 9

Moreover the changing of variables (ζ, ζ′) 7→ (ζ′, ζ) leads to

〈
∫ ∞

0

ζ2Qee(f) log fdζ〉 = −1

2

∫ 1

−1

∫ 1

−1

∫ ∞

0

∫ ∞

0

ζ′ 2ζ2J̃(ζ, ζ′)f(ζ)f(ζ′)

[
1

ζ
∂ζ(log f(ζ))−

1

ζ′
∂ζ′(log f(ζ′))

]2
dζdζ′dµdµ′ , (4.6)

and the entropy dissipation property follows.

Remark 2. The collision operator Qee does not preserve the impulsion. However,
as the whole collision operator C does not preserve also the impulsion, the conser-
vation properties of C are not affected.

5. Semi-discretized kinetic equation. In this section we propose an energy
discretization for the new continuous model defined in section 4 such that the fun-
damental properties of collision operator are conserved. We firstly discretize the
kinetic equation and then take moments in section 7. The key point of the follow-
ing scheme is the approximation of the distribution function f on the dual mesh,
through an entropic average. This average leads to the entropy dissipation property
for the discretized collision operator.

5.1. Energy discretisation. Let us define the primal mesh M, for the energy
variable ζ, decomposed into a family of rectangles

Mj− 1
2
=]ζj−1, ζj [, j ∈ {1,m},

andm ∈ N corresponds to the number of points which discretize the energy domain.
∆ζj = ζj − ζj−1 represents the discretization step, which can be variable.

We denote by D its associated dual mesh consisting of cells

Dj =]ζj− 1
2
, ζj+ 1

2
[, ζj− 1

2
= (j − 1

2
)∆ζj , j ∈ {1;m}, ζ− 1

2
= 0.

The step ∆ζj+ 1
2
of Dj writes ∆ζj+ 1

2
= ζj+ 1

2
− ζj− 1

2
.

Let hj be an approximation of h(ζj) for all distribution function h and hj+ 1
2
an

approximation of h(ζj+ 1
2
).

The discrete form of (4.3) reads for any j ∈ {1;m},
∂tfj + ζjµ∂xfj = Qj , Qj = Qee,j +Qei,j , (5.1)

where the expressions of Qee,j and Qei,j are given in Definition 1.

Definition 1. The collision operators (Qee,j)j∈{1;m} and (Qei,j)j∈{1;m} are respec-
tively defined by






Qee,j =
Gj+ 1

2
−Gj− 1

2

ζ2j∆ζj
,

Qei,j =
1

ζ3j

∂

∂µ

(
(1− µ2)

∂fj
∂µ

)
,

(5.2)

with

Gj+ 1
2
= ζj+ 1

2

m∑

k=0

J̃(ζj+ 1
2
, ζk+ 1

2
)

[
F 0
k+ 1

2

1

ζj+ 1
2

fj+1 − fj
∆ζj+ 1

2

− 1

ζk+ 1
2

fj+ 1
2

F 0
k+1 − F 0

k

∆ζk+ 1
2

]

ζ2k+ 1
2
∆ζk+ 1

2
, (5.3)
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where J̃ has been defined in (3.8) and fj+ 1
2
is defined by the following entropic

average




fj+ 1
2
=

fj+1−fj
log |fj+1|−log |fj |

if fj+1 6= fj ,

fj+ 1
2
= fj+1 else .

(5.4)

Remark 3. This entropic average has already been considered for an isotropic
distribution function by Dellacherie ([15]) to construct an entropic scheme. Next,
in [31], this approach has been generalized to the M1 model.

Remark 4. Gj+ 1
2
can be simplified as

Gj+ 1
2
= Aj+ 1

2

fj+1 − fj
∆ζj+ 1

2

+Bj+ 1
2
fj+ 1

2

where

Aj+ 1
2
= ζ2j+ 1

2

m∑

k=0

min

(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)
F 0
k+ 1

2
ζ4k+ 1

2
∆ζk+ 1

2
, (5.5)

Bj+ 1
2
= −ζ3j+ 1

2

m∑

k=0

min

(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)
ζ3k+ 1

2
(F 0

k+1 − F 0
k ) . (5.6)

Lemma 1. Bj+ 1
2
defined in (5.6) can be simplified into

Bj+ 1
2
= ζ3j+ 1

2

j∑

k=0

(ζ3k+ 1
2
− ζ3k− 1

2
)F 0

k .

The property is left to appendix D.

5.2. Properties of the semi-discretized scheme.

Proposition 2. (Qj)j∈{1;m} satisfies the following fundamental properties.
1) The operator (Qj)j∈{1;m} satisfies mass and energy conservations property i.e.

〈
m∑

j=0

ζ2jQj

(
1
ζ2

)
∆ζj〉 = 0 .

2) By defining fj+ 1
2
through the entropic average given by (5.4), the operator (Qj)j∈{1;m}

satisfies the entropy dissipation property

〈
m∑

j=0

ζ2jQj log fj∆ζj〉 ≤ 0 .

Proof. First we aim to prove the mass conservation. A simple computation gives

〈
m∑

j=0

ζ2jQj∆ζj〉 = Gm+ 1
2
−G− 1

2
.

We suppose G as a compact support function, so Gm+ 1
2
= 0. Besides G− 1

2
= 0

because ζ− 1
2
= 0. Therefore we get

〈
m∑

j=0

ζ2jQj∆ζj〉 = 0 .
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Then we will show the conservation of energy which can be rewritten into

〈
m∑

j=0

ζ2jQjζ
2
j∆ζj〉 = 〈−

m−1∑

j=0

Gj+ 1
2

(
ζ2j+1 − ζ2j

)
〉 . (5.7)

By using the expression of Gj+ 1
2
given in (5.3), equation (5.7) can be simplified into

〈
m∑

j=0

ζ2jQjζ
2
j∆ζj〉 = 〈−

m−1∑

j=0

ζj+ 1
2

m∑

k=0

J̃(ζj+ 1
2
, ζk+ 1

2
)

[
F 0
k+ 1

2

1

ζj+ 1
2

fj+1 − fj
∆ζj+ 1

2

− 1

ζk+ 1
2

fj+ 1
2

F 0
k+1 − F 0

k

∆ζk+ 1
2

]
ζ2k+ 1

2
∆ζk+ 1

2

(
ζ2j+1 − ζ2j

)
〉 . (5.8)

Since ζ2j+1 − ζ2j = 2ζj+ 1
2
∆ζj+ 1

2
, equation (5.8) can be rewritten into

〈
m∑

j=0

ζ2jQjζ
2
j∆ζj〉 = −

∫ 1

−1

∫ 1

−1

m∑

j,k=0

ζ2j+ 1
2
ζ2k+ 1

2
∆ζj+ 1

2
∆ζk+ 1

2
J̃(ζj+ 1

2
, ζk+ 1

2
)fk+ 1

2

1

ζj+ 1
2

fj+1 − fj
∆ζj+ 1

2

dµdµ′

+

∫ 1

−1

∫ 1

−1

m∑

j,k=0

ζ2j+ 1
2
ζ2k+ 1

2
∆ζj+ 1

2
∆ζk+ 1

2
J̃(ζj+ 1

2
, ζk+ 1

2
)fj+ 1

2

1

ζk+ 1
2

fk+1 − fk
∆ζk+ 1

2

dµdµ′ ,

and the conservation of energy follows by exchanging indexes k and j.
Next, we prove that the numerical operator Qj is entropic. Firstly, by arguing like
for the continous case, we get that Qei,j dissipates the entropy. Moreover

〈
m∑

j=0

ζ2jQee,j log fj∆ζj〉 = 〈−
m−1∑

j=0

log

(
fj+1

fj

)
Gj+ 1

2
〉 . (5.9)

From the definition of Gj+ 1
2
, equation (5.9) can be written as

〈
m∑

j=0

ζ2jQee,j log fj∆ζj〉 = −
∫ 1

−1

∫ 1

−1

m∑

j,k=0

ζ2j+ 1
2
ζ2k+ 1

2
∆ζj+ 1

2
∆ζk+ 1

2
J̃(ζj+ 1

2
, ζk+ 1

2
)fk+ 1

2
fj+ 1

2

[
1

ζj+ 1
2

fj+1 − fj
fj+ 1

2
∆ζj+ 1

2

− 1

ζk+ 1
2

fk+1 − fk
fk+ 1

2
∆ζk+ 1

2

]
log fj+1 − log fj
ζj+ 1

2
∆ζj+ 1

2

dµdµ′ . (5.10)

By using the change of variables (µ, µ′) 7→ (µ′, µ), the change of index (j, k) 7→ (k, j)
and the entropic average (5.4) defining fj+ 1

2
, equation (5.10) can be rewritten as

〈
m∑

j=0

ζ2jQee,j log fj∆ζj〉 = −1

2

∫ 1

−1

∫ 1

−1

m∑

j,k=0

ζ2j+ 1
2
ζ2k+ 1

2
∆ζj+ 1

2
∆ζk+ 1

2
J̃(ζj+ 1

2
, ζk+ 1

2
)

fk+ 1
2
fj+ 1

2

[
1

ζj+ 1
2

log fj+1 − log fj
∆ζj+ 1

2

− 1

ζk+ 1
2

log fk+1 − log fk
∆ζk+ 1

2

]2
dµdµ′ ,

and the entropic dissipation property follows.
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6. Continuous moment model. In this section, we explain the construction of
the MN model obtained from the kinetic model given in section 4. Besides collision
operator properties are shown to be still preserved by the moments extraction.

6.1. N-moment model for the new kinetic equation. Firstly the MN model
constructed from the previous kinetic equation (4.3) is presented. This system is
established by using a minimum entropy principle for the angle variable, keeping
the energy of particles as a kinetic variable and a moments extraction.

The expression Qi
ee and Qi

ei are computed in the following property.

Property 2. The moments of Qee are given by

Qi
ee(f) = ∂ζ

(
ζ

∫ ∞

0

J̃(ζ, ζ′)

[
F 0(ζ′)

1

ζ
∂ζF

i(ζ)− F i(ζ)
1

ζ′
∂ζ′F 0(ζ′)

]
ζ′2dζ′

)
,

(6.1)
whereas the moments of Qei are expressed as

Qi
ei(f) =

i

ζ3
(
(i − 1)f i−2 − (i + 1)f i

)
, i ≥ 1, Q0

ei = 0. (6.2)

The expression of Qi
ee comes from the linearity of Qee whereas the moment

extraction Qi
ei for the electron-ion collision is computed in Appendix C.

By setting

f =



f0

...
fN


 , f̃ =




f1

...
fN+1


 and Q =



Q0

...
QN


 , (6.3)

the moments extraction of 4.3 leads to the system

∂tf + ζ∂xf̃ = Q . (6.4)

6.2. Conservation of the realizability domain. We show that the collision
operator Q(f) = Qee(f) + Qei(f) conserves the realizability domain A. That is
why we prove in Proposition 3 that the space homogeneous version of (6.1, 6.3, 6.2,
6.4) preserves A.

Proposition 3. The continuous problem (6.1, 6.3, 6.2, 6.4) considered in the space
homogeneous case preserves the realizability domain A i.e if f(t = 0, ζ) ∈ A then

f(t, ζ) ∈ A for any t ≥ 0.

The proof of Proposition 3 is shown by using the following lemma.

Lemma 2. The kinetic equation (4.1, 4.2, 4.3) in the space homogeneous setting
preserves the nonnegativity of the solution ie if g(0, ζ, µ) ≥ 0 then g(t, ζ, µ) ≥ 0 for
any t ≥ 0.

Proof. For any quantity α, define by α+ (resp. α−) its positive part (resp. negative).
Let g be solution to

∂g

∂t
= Q̃ee(g) +Qei(g) , (6.5)

with

Q̃ee(g) =
2

3ζ2
∂ζ

(
Ã(G0+, ζ)∂ζg + B̃(G0+, ζ)g

)
. (6.6)
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Here Ã and B̃ are given by

Ã(G0+, ζ) = ζ2
∫ ∞

0

min(
1

ζ3
,
1

w3
)w4G0(w)+dw ,

B̃(G0+, ζ) = −ζ3
∫ ∞

0

min(
1

ζ3
,
1

w3
)w3∂w

(
g0(w)+

w2

)
dw = 3

∫ ζ

0

w2G0(w)+dw ,

where G0 = g0/ζ2 as usual.

For more details on the last relation concerning B̃ we refer ([31]).
We proceed like in ([3], [31]). Let H be a convex positive function such as H ′ ≤ 0

and defined by

H(x) =

{
−Cx if x < 0
0 if x ≥ 0

, C > 0 . (6.7)

By multiplying equation (6.5) by ζ2H ′(g) and integrating over [0, +∞[, we get
∫ +∞

0

ζ2∂tH(g)dζ =

∫ +∞

0

ζ2Qee(g)H
′(g) dζ +

∫ +∞

0

ζ2Qei(g)H
′(g) dζ . (6.8)

We show firstly the dissipation property
∫ +∞

0

∫ 1

−1

ζ2Qee(g)H
′(g)dµ dζ ≤ 0. (6.9)

The first right-hand side term of (6.8) writes

4π

∫ +∞

0

∫ 1

−1

ζ2Qee(g)H
′(g)dµ dζ = 4π

(∫ ∞

0

∫ 1

−1

2

3
∂ζ

(
Ã(F 0+, ζ)∂ζg

)
H ′(g)dµ dζ

+

∫ +∞

0

∫ 1

−1

2

3
∂ζ

(
B̃(F 0+, ζ)g

)
H ′(g)dµ dζ

)
.

(6.10)

Firstly, remark that H can be regularized into a C2 function satisfying
H ′(0) = H ′′(0) = 0. In this way, the second derivative of H can be considered.
Hence an integration by parts on the first right-hand side term of (6.10) and the
convexity of H lead to

∫ ∞

0

∫ 1

−1

2

3
∂ζ

(
Ã(F 0+, ζ)∂ζg

)
H ′(g)dµ dζ ≤ 0.

Moreover the second term of (6.10) can be simplified as
∫ ∞

0

∫ 1

−1

2

3
∂ζ

(
B̃(F 0+, ζ)g

)
H ′(g)dµ dζ =

∫ ∞

0

2H ′(g)∂ζg

∫ ζ

0

w2F 0+(w)dwdζ

+

∫ ∞

0

2H ′(g)ζ2gF 0+dµ dζ .

An integration by part leads to
∫ +∞

0

∫ 1

−1

2

3
∂ζ

(
B̃(F 0+, ζ)g

)
H ′(g)dµ dζ =

∫ +∞

0

∫ 1

−1

2ζ2F 0+
(
−H(g) +H ′(g)g

)
dµ dζ.

Moreover, by construction of H , ∀x, (−H(x) +H ′(x)x) x = 0. So, (6.9) is satisfied.
Next we show the same inequality as (6.9) for Qei. By using an integration by parts
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we get
∫ +∞

0

∫ 1

−1

ζ2Qei(g)H
′(g) dµ dζ = −

∫ +∞

0

∫ 1

−1

ζ2(1− µ2)

(
∂g

∂µ

)2

H ′′(g)dµdζ .

By convexity of H , Qei satisfies the inequality (6.9). So
∫ +∞

0

∫ 1

−1

ζ2∂tH(g) dµ dζ ≤ 0 .

After integrating the previous inequality, we get
∫ +∞

0

∫ 1

−1

ζ2H(g(t, ζ)) dµ dζ ≤
∫ +∞

0

∫ 1

−1

ζ2H(g(0, ζ)) dµ dζ .

As g(0, ζ) ≥ 0, the definition of H gives H(g(0, ζ)) = 0. Then by nonnegativity

of H , it comes that

∫ +∞

0

∫ 1

−1

ζ2H(g)dµ dζ = 0. So H(g) = 0 a.e. i.e. g ≥ 0. So

G0+ = G0 and by uniqueness of the solution of (4.1, 4.2, 4.3) we get the result.

Proof. (Proposition 3). Let us choose f(0, ζ) ∈ A. Hence

f(0, ζ) = 2πζ2
∫ 1

−1

f(0, ζ, µ)µdµ, f(0, ζ, µ) ≥ 0.

Moreover the solution of (4.1, 4.2, 4.3) for initial condition f(0, ζ, µ) is nonnegative.
Next the moment system has a solution belonging to A. Therefore by uniqueness
of the solution to (6.4), we get that A is conserved.

6.3. H-theorem. One of the main result of this paper is the following theorem
which proves that the system (6.3, 6.4) is entropic.

Theorem 6.1. E = 〈f ln f − f〉ζ2 is an entropy for the system (6.3, 6.4). More
precisely, we have ∂tE + ∂xF ≤ 0 , where F is the entropic flux given by F =
ζ〈(f ln f − f)µ〉ζ2.

The proof is performed in the same spirit as in ([28]). So we refer to this reference
for more details.

7. Discretization of the N-moment model. In this section, the moments pro-
cedure is applied on the semi-discrete scheme proposed in section 5 when the dis-
tribution function is obtained from the minimization entropy principle. So, in the
present section we denote for any j ∈ {1;m}, fj by

fj = exp(αj .µ) , αj =



α0,j

...
αn,j


 and αi,j = αi(ζj) . (7.1)

7.1. N-moment system for the semi-discretized kinetic equation. By ex-
tracting moments on equation (5.1), we obtain the N-moment discretized system

∀j ∈ {1,m} ∂tfj + ζj∂xf̃j = Qj , (7.2)

where

f i
j = ζ2〈µifj〉 fj =



f0
j
...
fn
j


 , f̃j =




f1
j
...

fn+1
j


 , Qj =



Q0

j
...
Qn

j


 = 〈µQj〉 .
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Definition 2. The discrete collision operators (Qi
ee,j)j∈{1;m} and (Qi

ei,j)j∈{1;m}

involved in (7.2) are given by




Qi
ee,j =

Gi

j+1
2
−Gi

j− 1
2

∆ζj
,

Qi
ei,j =

i
ζ3
j

((i − 1)f i−2
j − (i + 1)f i

j),

(7.3)

where

Gi
j+ 1

2
= ζj+ 1

2

m∑

k=0

J̃(ζj+ 1
2
, ζk+ 1

2
)

[
F 0
k+ 1

2

1

ζj+ 1
2

F i
j+1 − F i

j

∆ζj+ 1
2

− 1

ζk+ 1
2

F i
j+ 1

2

F 0
k+1 − F 0

k

∆ζk+ 1
2

]

ζ2k+ 1
2
∆ζk+ 1

2
, (7.4)

and

F i
j+ 1

2
=

∫ 1

−1

fj+ 1
2
µidµ . (7.5)

Recall that fj+ 1
2
is defined in (5.4).

Remark 5. From a computational point of view, an approximation of (7.5) can be
obtained through a usual quadrature formula.

7.2. Realizability domain. In this section, we prove that the discretized collision
operator defined in section 5 preserves the realizability domain A. That is why
we consider the moment system (7.1, 7.2, 7.3, 7.4, 7.5) in the space homogeneous
context.

Proposition 4. The space homogeneous version of the semi-discretized problem
(7.1, 7.2, 7.3, 7.4, 7.5) preserves the realizability domain A i.e. if fj(t = 0) ∈ A,

then fj(t) ∈ A for any t ≥ 0.

Lemma 3. The semi-discretized kinetic problem (5.1, 5.2) preserves the nonnega-
tivity of the solution ie if fj(0, µ) ≥ 0 then fj(t, µ) ≥ 0.

Proof. For any j ∈ {1;m}, let gj be solution to

∂gj
∂t

=
Gj+ 1

2
−Gj− 1

2

ζ2j∆ζj
+Qei,j , (7.6)

where

Gj+ 1
2
= Ãj+ 1

2

gj − gj+1

∆ζj+ 1
2

+ B̃j+ 1
2
gj+1 , B̃j+ 1

2
=
(
Bj+ 1

2

)+ g+
j+ 1

2

g+j+1

,

Ãj+ 1
2
= ζ2j+ 1

2

m∑

k=0

min

(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)(
F 0
k+ 1

2

)+
ζ4k+ 1

2
∆ζk+ 1

2
.

(7.7)

Let H be a convex positive function defined as in 6.7. Multiplying equation (7.6)
by ζ2jH

′(gj) summing on j and integrating over µ leads to
∫ 1

−1

∑

j

ζj+ 1
2
∂tH(gj)∆ζj dµ =

∫ 1

−1

∑

j

(Gj+ 1
2
−Gj− 1

2
)H ′(gj)dµ

+

∫ 1

−1

∑

j

ζ2j+ 1
2
Qei,j H

′(gj)∆ζj+ 1
2
dµ .

(7.8)
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From (7.7) together to a shift of index, it comes that the first term of the right-hand
side of equation (7.8) can be simplified into
∫ 1

−1

∑

j

(Gj+ 1
2
−Gj− 1

2
)H ′(gj)∆ζj dµ =

∫ 1

−1

∑

j

Ãj+ 1
2

gj − gj+1

∆ζj+ 1
2

(
H ′(gj+1)−H ′(gj)

)
dµ

+

∫ 1

−1

∑

j

(
B̃j+ 1

2
gj+1 − B̃j− 1

2
gj
)
H ′(gj) dµ. (7.9)

The second term of the right hand side of (7.9) can be rewritten as
∑

j

(
B̃j+ 1

2
gj+1 − B̃j− 1

2
gj
)
H ′(gj) =

∑

j

[(
B̃j+ 1

2
− B̃j− 1

2

)
gjH

′(gj)

+ B̃j+ 1
2
(gj+1 − gj)H

′(gj)
]
. (7.10)

Moreover by convexity H , it holds that

H(gj+1) ≥ H(gj) + (gj+1 − gj)H
′(gj) .

Then by non-negativity of B̃j+ 1
2
, equation (7.10) gives

∑

j

(
B̃j+ 1

2
gj+1 − B̃j− 1

2
gj
)
H ′(gj) ≤

∑

j

[(
B̃j+ 1

2
− B̃j− 1

2

)
gjH

′(gj)

+ B̃j+ 1
2
(H(gj+1)−H(gj))

]
.

By using a shift of index, we get
∑

j

(
B̃j+ 1

2
gj+ 1

2
− B̃j− 1

2
gj
)
H ′(gj) ≤

∑

j

(
B̃j+ 1

2
− B̃j− 1

2

)
(−H(gj) + gjH

′(gj)) .

By construction of H , we get (−H(gj) + gjH
′(gj)) = 0 and thus from the previous

inequality it comes that
∑

j

(
B̃j+ 1

2
gj+ 1

2
− B̃j− 1

2
gj
)
H ′(gj) ≤ 0 . (7.11)

Moreover since H ′ is a non-decreasing function, the first right hand term side of
(7.9) is negative. Therefore, from (7.11), we obtain the following inequality

∫ 1

−1

∑

j

(Gj+ 1
2
−Gj− 1

2
)H ′(gj)∆ζj dµ ≤ 0 .

Besides by arguing like for proof of lemma 2, the second term of the right-hand side
of equation (7.8) is negative. Then by using definition of H , lemma 3 follows.

Proof. (Proposition 4). We proceed like for the proof of Proposition 3. Consider

fj(t = 0) ∈ A. Then

fj(0) =

∫ 1

−1

fj(0, µ)µdµ, fj(0, µ) ≥ 0.

From lemma 3, the solution of (5.1, 5.2) for the initial condition fj(0, µ) is nonneg-
ative. So the solution of the moment system belongs to A and we conclude like for
the proof of Proposition 3.
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7.3. Entropic property of the scheme. Finally, this subsection is devoted to
demonstrate the entropic property of the scheme.

Theorem 7.1. E =

m∑

j=0

〈fj ln fj − fj〉ζ2j is an entropy for the system (7.1, 7.2, 7.3,

7.4, 7.5). More precisely, we have ∂tE + ∂xF ≤ 0 , where

F =

m∑

j=0

ζj〈(fj ln fj − fj)µ〉ζ2j

is the entropic flux.

Proof. First, after multiplying equation (7.2) by α, we get

αj .∂tfj + ζjαj .∂xf̃j = αj .Qj .

Hence, by using the expression fj ,

αj .∂t〈µfj〉ζ2j + ζjαj .∂x〈µµfj〉ζ2j = 〈αj .µQjζ
2
j 〉 . (7.12)

The first term of the left hand side term of (7.12) can be expressed as

αj .∂t〈µfj〉 = ∂t〈αj .µfj〉 − ∂t(αj .µ)fj ,

and simplified into

αj .∂t〈µfj〉 = ∂t〈log fj fj〉 − 〈∂tfj〉 . (7.13)

In the same way, the second term of the right hand side can be rewritten into

ζjαj .∂x〈µµfj〉 = ζj∂x (〈log fj fjµ〉)− 〈ζjµ∂xfj〉 . (7.14)

Then, from equations (7.13) and (7.14) and the definition of fj, it comes

∂t

m∑

j=0

〈fj ln fj − fj〉ζ2j∆ζj + ∂x

m∑

j=0

ζj〈(fj ln fj − fj)µ〉ζ2j∆ζj = 〈log fjQjζ
2
j 〉 .

From the dissipative property of Qj given in Proposition 2, Theorem 7.1 follows.

7.4. Numerical results. We present in this section a test case, where the use of
the M2 model is relevant compared to the M1 model.

However, using the M2 model is not so easy than using the M1 model. Indeed,
the computation needs the knowledge of the third order moment f3 depending of the
lower order moments. This relation cannot be computed explicitly and needs some
numerical approximations. The Lagrange multipliers (αi)i=0,2 can be obtained from
the moments fi as follows

f(µ) = exp(Σ2
i=0αiµ

i) where fi =
1

2

∫ 1

µ=−1

µif(µ)dµ.

In fact, (αi)i=0,2 are found by solving the following convex minimization problem:

α = (αi)i=0,2 = min
β

∫ 1

µ=−1

exp(Σ2
i=0βiµ

i)dµ− Σ2
i=0βifi, β = (βi)i=0,2. (7.15)

Once the (αi)i=0,2 have been computed, the moment f3 can be obtained directly
from the undelying distribution function f . Generally, (7.15) is solved by computing
the integrals numerically and minimizing the integral by some convex optimization
solver (see [23]). In a first approach, we have used QUADPACK, an adaptative
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numerical solver from netlib repository (www.netlib.org) and an unconstrained op-
timization solver HUMSL coming also from netlib. This method will be denoted by
Mopt

N .
This method can be very expensive compared to a kinetic computation. Hence

we have chosen another approach. Fortunately in the case of M2 the moments can
be computed from the α variables defined in (7.15):

f0 = 1/2 erf

(
1/2

−2α2 + α1√−α2

)√
πe

1/4
4 α0 α2−α1

2

α2

1√−α2

− 1/2 erf

(
1/2

2α2 + α1√−α2

)√
πe1/4

4α0 α2−α1
2

α2

1√−α2

,

f1 = 1/4 eα0−α1α1

√
πe

−1/4
α1 (α1−4 α2 )

α2 erf

(
1/2

−2α2 + α1√−α2

)
(−α2 )

−3/2

− 1/4 eα0−α1α1

√
πe−1/4

α1 (α1−4 α2 )

α2 erf

(
1/2

2α2 + α1√−α2

)
(−α2 )

−3/2

− 1/2
eα0−α1

(
eα2 − e2α1+α2

)

α2

,

f2 = 1/8 eα0−α1

√
πe−1/4

α1 (α1−4α2 )

α2

(
−2α2 + α1

2
)
erf

(
1/2

−2α2 + α1√−α2

)
(−α2 )

−5/2

− 1/8 eα0−α1

√
πe

−1/4
α1 (α1−4α2 )

α2

(
−2α2 + α1

2
)
erf

(
1/2

2α2 + α1√−α2

)
(−α2 )

−5/2

+ 1/4
eα0−α1

(
2 eα2α2 + α1 eα2 + 2 e2α1+α2α2 − α1 e2α1+α2

)

α2
2

.

In fact f1/f0, f2/f0 are function of α1, α2 variables on the domain of definition
of M2. The quantities α1, α2 can be computed on some grids points in the f1/f0,
f2/f0 phase space and then the third reduced moment f3/f0 can be deduced.
Solving the problem at grid points is done by using a two-dimensional dichotomy.
The process is rather expensive but used only once. The closure can be obtained by
interpolating f3/f0 on the f1/f0, f2/f0 grid space. This method is called Mapp

2 .
A grid of about 100 points by direction was generated on f1/f0, f2/f0 phase space.

On the other hand, a same kind of process can be applied for M3, leading to
f4/f0 interpolation over a 1003 grid points in the f1/f0, f2/f0, f3/f0 phase space.
We called this method Mapp

3 .
For the test case, we considered only elastic electon-ion collisions, so we take

αee = 0, αei = 1. In this case, the model has no ζ derivative. Hence for the sake
of simplicity we only consider one point in ζ, ζ = 1. The space interval of study is
[0, 5] and we set at x=0, the given incoming boundary conditions

f = 500 exp(−200(1− µ)), µ ∈ [0, 1].

We have also consider PN approximations which are based on polynomials underly-
ing distribution functions for comparison. These kinds of approximations are very
popular in plasma physic. In that case, the P1 closure is given by f1 = 1/3f0, the
P2 closure by f3 = 2/5f1, and the P3 closure by f4 = −3/35f0 + 6/7f2.

For the implementation, we perform a classical Euler scheme in time and we com-
pute the steady state solution of the different equations. The kinetic computation
need 180s on a single CPU of i7 Intel Mac computer with GFORTRAN compiler.
The moments model MN are rather expensive: 60s for M1, 181s for M2, and 310s
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for M3. On the other hand, the models Mapp
N are very cheap in comparison (0.7s

forMapp
1 , 1s forMapp

2 , and 2s for Mapp
3 ) without loss of accuracy. For example, Fig

3 shows the relative error between the two M2 approaches.
Remark that the most important differences are near the boundaries. To illus-

trate this fact, the parameters f1/f0 and f2/f0 computed from the kinetic reference
solution are plotted on figure 4. We can note that more the solution is far from
isotropy (f1/f0 ≈ 0 and f2/f0 ≈ 1/3), more the difference is important. In fact close
to the isotropy area, theM2 closure is a relatively flat function and the interpolation
is more accurate than the furthest isotropy area.
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Figure 2. Representation of the steady state for the first moment
f1 computed with the MN model, the PN model, for N = 1, 3 and
the kinetic one for the space interval [0, 5] and one group in energy,
ζ = 1 with 500 points in space and 256 points in µ for the kinetic
model.

The distribution function converges to an isotropic distribution function, steady
state of the electron-ion collision operator. So the first moment f1 should be close
to 0. However, due to the anisotropic boundary conditions, we observed boundary
layer which are represented by both moment models. However, Fig 2 shows that
the result given by the M2 and M3 model is closer to the kinetic solution than the
result given by the M1 model.

8. Conclusion. Firstly, we have proposed a model for plasma electrons transport
with a new consistent collision operator for the electron-electron interactions. Its
definition allows mainly to conserve fundamental properties such as the mass and
energy conservation and entropy dissipation. Next we have motivated the devel-
opment of a semi-discretized scheme in the energy variable for the new continuous
model. This model still preserves fundamental properties by using a specify en-
tropic average. This MN model is based on an entropy minimization principle and
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Figure 3. Representation of relative error between M2 and Mapp
2

about of the steady state for the moment f1.
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Figure 4. Representation of f1/f0 and f2/f0 parameters about
the steady state for the kinetic computation.

an integration of the kinetic model w.r.t. the angle variable. Finally the discretized
moment model constructed from the the semi-discretized kinetic model is proved to
be entropic.
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Remark that for concrete applications, we prefer low order approachMN models,
because they do not use minimization problems which can be too costly.

To extend this model, the forthcoming work should be to consider the model
with mobile ions.

9. Acknowledgments. We are thankful with Vladimir Tikhonchuk for fruitful
discussions about the pertinence of the physical model.
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Appendix A. Equation (3.7). To establish this closure we consider 2.1 in the
homogeneous case with the collision operator C = Cee. For the sake of simplicity,
the distribution function f is assumed to be isotropic, i.e. f = f(|v|) = f(ζ). Hence
we have to deal with

∂tf = Cee(f, f) = ∇v · Γ(v)

Γ(v) =

∫

R3

Φ(u) [f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′.
(A.16)

Moreover if the distribution function f is isotropic, Γ(v)v is also isotropic. In
order to perform a weak formulation of A.16, consider ϕ some regular test function.
Hence, by setting ζ = |v|, it comes that

∫ ∞

0

∂t

(
ζ2
∫

S2

fdΩ

)
ϕ(ζ)dζ +

∫ ∞

0

1

ζ
ϕ′(ζ)

∫

S2

Γ(v) · vdΩ ζ2dζ = 0.

Moreover by isotropy of Γ(v) · v, it holds that
∫ ∞

0

∂tf
0ϕ(ζ)dζ +

∫ ∞

0

1

ζ
ϕ′(ζ)4πΓ(v) · vζ2dζ = 0.

Hence ∂tf
0 = 4π∂ζ (ζΓ(v) · v) . Now to compute Γ(v) · v, we introduce the notation

ζ′ = |v′|, v′ = ζ′Ω′. For V = v′ − v, Φ(V ) has the following expression

Φ(V ) =
(v − Ω′ζ′)2I − (v − Ω′ζ′)⊗ (v − Ω′ζ′)

(v − Ω′ζ′)3
,

=
(ζ2 + ζ′2 − 2ζ′v · Ω′)I − (v ⊗ v + ζ′2Ω′ ⊗ Ω′ − ζ′(Ω′ ⊗ v + v ⊗ Ω′))

(ζ2 + ζ′2 − 2ζ′v · Ω′)
3
2

.

(A.17)
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Hence from (A.17) we get

Φ(V )v =
(ζ2 + ζ′2 − 2ζ′v · Ω′)v − (ζ2v + ζ′2(Ω′ · v)Ω′ − ζ2ζ′Ω′ − ζ′(Ω′ · v)v)

(ζ2 + ζ′2 − 2ζ′v · Ω′)
3
2

,

=
(ζ′2 − ζ′v · Ω′)v − (ζ′2(Ω′ · v)− ζ2ζ′)Ω′

(ζ2 + ζ′2 − 2ζ′v · Ω′)
3
2

·

To achieve the computation of Γ(v) · v, Av = Φ(V )v · v and AΩ′ = Φ(V )v · Ω′ have
to be computed. We introduce µ the cosine of that angle between the vector Ω′ and
v, such that Ω′ · v = ζµ, and we obtain

Av = Φ(V )v · v =
(ζ′2 − ζ′v · Ω′)ζ2 + ζ′(ζ2 − ζ′(Ω′ · v))(Ω′ · v)

(ζ2 + ζ′2 − 2ζ′v · Ω′)
3
2

,

=
ζ′(ζ′ − ζµ)ζ2 + ζζ′µ(ζ2 − ζζ′µ)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

=
ζ2ζ′2(1 − µ2)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

, (A.18)

AΩ′ = Φ(V )v · Ω′ =
ζ′(ζ′ − v · Ω′)(Ω′ · v) + ζ′(ζ2 − ζ′(Ω′ · v))

(ζ2 + ζ′2 − 2ζ′v · Ω′)
3
2

,

=
ζ′(ζ′ − ζµ)ζµ + ζ′(ζ2 − ζζ′µ)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

=
ζ2ζ′(1− µ2)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

· (A.19)

Hence by symmetry of Φ(V ) and dΩ′ = 2πdµ, Γ(v) · v writes

Γ(v) · v =

∫ ∞

0

∫

S2

Φ(V )v ·
[
f(ζ′)

v

ζ
∂ζf(ζ)− f(ζ)Ω′∂ζ′f(ζ′)

]
dΩ′ζ′2dζ′,

=

∫ ∞

0

∫

S2

[
f(ζ′)

1

ζ
∂ζf(ζ)Av − f(ζ)∂ζ′f(ζ′)AΩ′

]
dΩ′ζ′2dζ′,

=

∫ ∞

0

∫ +1

−1

ζ2ζ′2(1− µ2)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

[
f(ζ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ′
∂ζ′f(ζ′)

]
2πdµζ′2dζ′.

As, ∫ +1

−1

ζ2ζ′2(1− µ2)

(ζ2 + ζ′2 − 2ζζ′µ)
3
2

dµ =
4

3
inf

(
1

ζ3
,
1

ζ′3

)
,

Γ(v) · v can be rewritten as

Γ(v) · v =

∫ ∞

0

4π J̃(ζ, ζ′)

[
f(ζ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ′
∂ζ′f(ζ′)

]
ζ′2dζ′. (A.20)

As f is isotropic, f0(ζ) = ζ2
∫
S2
f(ζ) dΩ = 4πζ2f(ζ). So

∂tf
0 = ∂ζ

(
ζ

∫ ∞

0

J̃(ζ, ζ′)

[
f0(ζ′)

ζ′2
1

ζ
∂ζ

(
f0(ζ)

ζ2

)
− f0(ζ)

ζ2
1

ζ′
∂ζ′

(
f0(ζ′)

ζ′2

)]
ζ′2dζ′

)
.

We retrieve exactly the formula for the collision operator involved by the equation
on f0. We neglect the operator Qee for the equation on f1 because we retain only
the isotropic part of this operator.

Appendix B. Expression (4.2) of Qei in spherical coordinate (ζ, µ, ϕ). Con-
sider 2.1 in the homogeneous case with C = Cei. The direction of propagation Ω
and the velocity v write

Ω =




µ√
1− µ2 cosϕ√
1− µ2 sinϕ


 , v =



vx
vy
vz


 = ζΩ =




ζµ

ζ
√
1− µ2 cosϕ

ζ
√

1− µ2 sinϕ


 .
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The gradient ∇vf can be rewritten as

∇vf =
∂f

∂ζ
∇vζ +

∂f

∂µ
∇vµ+

∂f

∂ϕ
∇vϕ . (B.21)

Since we have



∇vζ
∇vµ
∇vϕ


 =

D(ζ, µ, ϕ)

D(vx, vy, vz)
=

(
D(vx, vy, vz)

D(ζ, µ, ϕ)

)−1

=




µ
√
1− µ2 cosϕ

√
1− µ2 sinϕ

1−µ2

ζ

−µ
√

1−µ2 cosϕ

ζ

−µ
√

1−µ2 sinϕ

ζ

0 − sinϕ√
1−µ2ζ

cosϕ√
1−µ2ζ




,

the gradient vector can be simplified as

∇vζ =
−→
Ω , ∇vµ =

√
1− µ2

ζ
−→eµ and ∇vϕ =

1√
1− µ2ζ

−→eϕ . (B.22)

By using (B.22), (B.21) writes

∇vf =
∂f

∂ζ

−→
Ω +

∂f

∂µ

√
1− µ2

ζ
−→eµ +

∂f

∂ϕ

1√
1− µ2ζ

−→eϕ . (B.23)

Next we determine the expression of the eletron/ion operator in its weak form.
Consider a test function Ψ. Hence, by using the expression of the divergence term
(B.23) and a Green formula, we obtain

∫

R3

∇v.(Φ(v)∇vf)Ψ(v)dv = −
∫

R3

Φ(v)

(
∂f

∂ζ

−→
Ω +

∂f

∂µ

√
1− µ2

ζ
−→eµ +

∂f

∂ϕ

1√
1− µ2ζ

−→eϕ
)
.

(
∂Ψ

∂ζ

−→
Ω +

∂Ψ

∂µ

√
1− µ2

ζ
−→eµ +

∂Ψ

∂ϕ

1√
1− µ2ζ

−→eϕ
)
dv ,

which can be rewritten as
∫

R3

∇v.(Φ(v)∇vf)Ψ(v)dv = −
∫

R3

(
∂f

∂µ

√
1− µ2

ζ2
−→eµ +

∂f

∂ϕ

1√
1− µ2ζ2

−→eϕ
)
.

(
∂Ψ

∂µ

√
1− µ2

ζ2
−→eµ +

∂Ψ

∂ϕ

1√
1− µ2ζ2

−→eϕ
)
dv ,

(B.24)

because Φ is an orthogonal projection on
−→
Ω (Φ(v)

−→
Ω = 0, Φ(v)−→eµ = 1

ζ
−→eµ and

Φ(v)−→eϕ = 1
ζ
−→eϕ). Besides (−→eζ ,−→eµ,−→eϕ) is an orthonormal basis, so (B.24) writes

∫

R3

∇v.(Φ(v)∇vf)Ψ(v)dv = −
∫

R3

(
∂f

∂µ

∂Ψ

∂µ

1− µ2

ζ3
+
∂f

∂ϕ

∂Ψ

∂ϕ

1

(1 − µ2)ζ3

)
dv .

(B.25)
As dv = ζ2dζdµdϕ and by using integration by parts, (B.25) writes
∫

R3

∇v.(Φ(v)∇vf)Ψ(v)dv =

∫

R3

1

ζ3

[
∂

∂µ

(
(1− µ2)

∂f

∂µ

)
+

∂

∂ϕ

(
1

1− µ2

∂f

∂ϕ

)]
Ψ(v)dv .

Therefore we obtain (4.2) when ∂
∂ϕf = 0.
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Appendix C. Moment extraction for the electron-ion collision operator.
In this appendix, we show formula 6.2 from (4.2) by using its weak formulation. By
considering the ith moment of Qei and by using successively two Green formula, we
get
∫ ∞

0

〈Qei(f)µ
iζ2〉ψ(ζ)dζ =

∫ ∞

0

i

ζ3

[
(i− 1)ζ2

∫ 1

−1

fµi−2dµ− (i + 1)ζ2
∫ 1

−1

fµidµ

]

ψ(ζ)dζ ,

where ψ denotes some test function.

Appendix D. Proof of Lemma 1. By using the definition (5.6) of Bj+ 1
2
, it holds

that

Bj+ 1
2

= −ζ3j+ 1
2

m∑

k=0

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k )

= −ζ3j+ 1
2

j∑

k=0

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k )

− ζ3j+ 1
2

m∑

k=j+1

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k ).

But, as min( 1
ζ3

j+ 1
2

, 1
ζ3

k+1
2

) = 1
ζ3

j+ 1
2

for k ∈ {0; j}, it holds that

−ζ3j+ 1
2

j∑

k=0

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k ) = −

j∑

k=0

ζ3k+ 1
2
(F 0

k+1 − F 0
k ).

Hence

−ζ3j+ 1
2

j∑

k=0

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k )

= − 1

ζj+ 1
2

(
ζ3j 1

2
F 0
j+1 +

j−1∑

k=0

ζ3k+ 1
2
F 0
k+1 −

j∑

k=0

ζ3k+ 1
2
F 0
k

)

= −F 0
j+1 +

j∑

k=0

(ζ3k+ 1
2
− ζ3k− 1

2
)F 0

k .

Moreover
m∑

k=j+1

min(
1

ζ3
j+ 1

2

,
1

ζ3
k+ 1

2

)ζ3k+ 1
2
(F 0

k+1 − F 0
k ) = −

m∑

k=j+ 1
2

(F 0
k+1 − F 0

k ) = F 0
j+1.

So the expression of Bj+ 1
2
follows.
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