
HAL Id: hal-01443244
https://hal.science/hal-01443244

Submitted on 22 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nanoscale roughness effect on Maxwell-like boundary
conditions for the Boltzmann equation

Stéphane Brull, Pierre Charrier, L Mieussens

To cite this version:
Stéphane Brull, Pierre Charrier, L Mieussens. Nanoscale roughness effect on Maxwell-like boundary
conditions for the Boltzmann equation. Physics of Fluids, 2016, 28. �hal-01443244�

https://hal.science/hal-01443244
https://hal.archives-ouvertes.fr


Nanoscale roughness effect on Maxwell-like boundary conditions
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It is well known that the roughness of the wall has an effect on microscale

gas flows. This effect can be shown for large Knudsen numbers by using a

numerical solution of the Boltzmann equation. However, when the wall is

rough at a nanometric scale, it is necessary to use a very small mesh size

which is much too expansive. An alternative approach is to incorporate the

roughness effect in the scattering kernel of the boundary condition, such as

the Maxwell-like kernel introduced by the authors in a previous paper. Here,

we explain how this boundary condition can be implemented in a Discrete

Velocity approximation of the Boltzmann equation. Moreover, the influence

of the roughness is shown by computing the structure scattering pattern of

mono-energetic beams of the incident gas molecules. The effect of the angle

of incidence of these molecules, of their mass, and of the morphology of the

wall is investigated and discussed in a simplified two-dimensional configura-

tion. The effect of the azimuthal angle of the incident beams is shown for

a three-dimensional configuration. Finally, the case of non-elastic scattering

is considered. All these results suggest that our approach is a promising

way to incorporate enough physics of gas-surface interaction, at a reasonable

computing cost, to improve kinetic simulations of micro and nano-flows.
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I. INTRODUCTION

In some applications we have to consider flows at high Knudsen number on do-

mains bounded by walls. Examples of such situations are external flows at high

altitude around re-entry bodies or internal flows in micro or nano devices (MEMS

or NEMS) and in sub-micrometer porous media. In such configurations the flow is

well described by a kinetic equation (the Boltzmann equation or the BGK model),

together with boundary conditions imposed on the wall. With more and more pow-

erful computers such models are now currently used for numerical simulations. A

boundary condition for the Boltzmann equation is a way to take into account, at the

kinetic scale, the complex gas-surface interaction which takes place at a very small

scale (typically on less than one nanometer). The most used boundary conditions

are the Maxwell and the Cercignani-Lampis conditions (see1 for a detailed review

on boundary conditions and2 3 for recent works). However none of them take into

account some small or medium scale roughness of the wall, though it is well-known

that such roughness may notably affect the flow near the wall. As a result, those

standard boundary conditions may turn out to be unable to describe with enough

accuracy the transport properties of the flow near the surface.

To overcome this difficulty for the Maxwell condition, a mathematical framework,

recently introduced by the authors4, allows to derive boundary conditions for a

periodic rough wall by using a rigorous upscaling method. In the simplest case,

corresponding to a flat wall, this condition looks like a Maxwell condition but with

accommodation coefficients that depend on the velocity of the impinging molecules

and on the temperature and morphology of the wall (see another recent approach2

that also leads to variable accommodation coefficients). At the small scale the gas-

surface interactions are assumed to be governed by a potential energy surface (PES)

which was not specified in4.

In the present paper we propose a simple but physically reasonable PES and a

way to incorporate it in this mathematical framework, in order to get an improved

boundary condition for the Boltzmann equation easy to implement for numerical
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simulations with a discrete velocity method (DVM). Many contributions on the

gas-surface interaction have been published in past years either using very simple

models, like the ”hard cube” model5 or the washboard model6 or much more elab-

orate ones7 8. Here we suggest to use an intermediate model, simple enough to be

tractable, but precise enough to include at the kinetic scale the effect of van der

Waals forces and of roughness at atomic scales. The PES is defined by a lattice of

Lennard-Jones atoms. In an auxiliary problem, for given incident velocities of im-

pinging molecules, we compute the trajectories of a nanoscopic sample of gas atoms

in a periodic cell of the surface layer, in which gas molecules interact with surface

atoms by the simplified PES. From those data computed once and for all, we get

an approximation of the reflection kernel of the new boundary condition suitable

for DVM numerical simulations of the Boltzmann equation. At the same time we

obtain the scattering pattern of mono-energetic beams of incident gas atoms by the

wall and we can visualize and analyze the ability of our approach to incorporate at

the kinetic level information from the atomic scale.

The paper is organized as follows: Section II reminds the modified Maxwell-like

boundary condition4(MLBC) and its derivation for elastic scattering and non-elastic

scattering as well. In section III we describe how to implement this MLBC in a DVM

context. Section IV is devoted to the numerical computation of scattering patterns

to analyze the effect of nanoscale roughness. The impact of the key parameters

(incident angle and energy of the impinging gas atoms, parameters of the Lennard-

Jones potentials) on the so-called structure scattering pattern (elastic scattering) is

shown (for 2D and 3D configurations) and some indications are given for non-elastic

scattering. The paper closes with some comments and conclusions in section V.
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II. NEW BOUNDARY CONDITIONS FOR THE BOLTZMANN

EQUATION

A. A nanoscale gas-surface interaction model

We start from a nanoscale model describing the gas-surface interaction which

generalizes to rough walls the model introduced in9 and used in10. In this model

the interaction between the wall and the single atom gas molecules through van

der Waals forces are taken into account in a thin surface layer (with thickness

L typically smaller than one nanometer). In all the following (except at the end

of section IV A), for the sake of simplicity, we assume that the atoms move in a

2D half-plane and we consider the following configuration: the solid occupies the

half-space z > L, the gas phase is constituted by the gas atoms in the half-space

z < 0, outside of the range of the surface forces, and we consider separately the

surface layer 0 < z < L, where the gas atoms move within the range of the surface

potential. The gas flow in this surface layer is modeled by the Boltzmann equation

(or a BGK-type model equation), with a Vlasov term to take into account the part

of the interaction that depends on the frozen position of the atoms of the solid wall

(the long range interactions), and a collision term between gas atoms and phonons

to take into account the thermal fluctuations of the atoms of the solid (short range

interactions) (see9 for a physical justification of this approach). We consider (as in4)

the following general configuration for the wall: the interaction potential V(x, z) is

such that

V(x, z) = V#(
x

L∗
, z), (1)

where L∗ = L
λ∗

and λ∗ is a positive constant that characterizes the roughness of the

wall, and V#(y, z) is a periodic function of the nanoscopic variable y with period

1. This nanoscopic variable y allows us to describe how a gas atom impinging the

surface layer at a microscopic coordinate x sees the nanoscopic roughness of the

wall. Moreover we assume that there exists a 1-periodic function z = ζ∞(y) with
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0 ≤ ζ∞(y) < L such that

lim
z<ζ∞(y),z→ζ∞(y)

V#(y, z) = +∞. (2)

V#(y, z) = Vm, for z ≤ 0. (3)

Condition (2) is a mathematical way to ensure that no gas atom can penetrate the

wall, i.e. that it is a non porous wall and condition (3) means that the potential is

constant outside the surface layer (see Figure 1). With these assumptions, the flow

z

0 < y < 1

V#(y, ζ∞(y)) = +∞
Surface layer

z = L

z = 0

V#(y, z) = Vm

z = ζ∞(y)

Solid

FIG. 1. Parametrization of the surface layer

of gas atoms is described by the following system of kinetic equations

∂tf + v.∇x,zf = Qm,m[f, f ], z < 0,

∂tf + v.∇x,zf −
1

m
∇x,zV(x, z).∇vf = Qm,m[f, f ] +Qm,p[f ], 0 < z,

(4)

where Qm,m is the Boltzmann collision operator (or a BGK like relaxation operator)

and where the gas atom-phonon collision term reads (see for instance11)

Qm,p[f ] =

∫
K(E(x, z,v), E(x, z,v′);Tw)(Mw(E(x, z,v))f(v′)

−Mw(E(x, z,v))f(v))dv′,

(5)

with

Mw(E(x, z,v)) = exp

(
−m|v|

2

2kTw
− V(x, z)

kTw

)
, (6)
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and K(E,E ′;Tw) is the probability of transition per unit time from the state E ′

to the state E in a ”collision” with a phonon. Moreover Qm,p satisfies the usual

property of conservation of mass, an H-theorem and a symmetry property, and it

has a Maxwellian equilibrium. Since we assume in all the following that the wall

temperature Tw is known and fixed, we will drop the dependence of K on Tw.

Finally we introduce two times, τms and τfl, that will play a key role in the following

and that are defined as follows: τms is the time of relaxation of gas atoms by the

phonons and is defined by

τms = τms(E(x, z,v)) =

(∫
K(E,E ′)Mw(E ′)dv′

)−1
, (7)

where E ′ = E(x, z,v′), while τfl(v) is the time of flight of a gas atom across the

surface layer (without collision with a phonon): it depends on the incident velocity

of the gas atom at the entrance of the surface layer, on the potential, and on the

morphology of the wall.

B. Derivation of boundary conditions for elastic scattering on a rough

wall

The derivation of boundary conditions for the Boltzmann equation on a wall with

nanoscale roughness relies on a two scale asymptotic analysis from the above gas-

surface interaction model. In this section we only indicate the main ideas of this

approach, skipping the technical mathematical details. The reader interested in a

more rigorous presentation can refer to (4).

In many applications we have to consider rarefied flows on microtubes with a typical

length of 1 to 10 cm (see for instance12). In such configurations a reasonable mesh

size l∗ for a simulation based on the Boltzmann equation would be around 10 µm,

so that L∗ � l∗. Associated with those two space scales are two time scales t∗B,

the reference time of evolution of the Boltzmann equation defined by t∗B = l∗/v∗

and τ ∗fl, the reference time of flight of a gas atom across the surface layer defined
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by τ ∗fl = L∗/v∗ where v∗ is a typical velocity of atoms of the gas flow (for instance

v∗ =
√
kTw/m). Then we have τ ∗fl/t

∗
B = L∗/l∗ � 1. In most applications we

can also consider that the reference relaxation time τ ∗ms (that can be defined as

τms(E(x, 0, v∗))), is such that τ ∗ms � t∗B , but the interaction between the wall

and the gas atoms depends mainly on the respective order of magnitude of the

characteristic time scales τ ∗fl and τ ∗ms. In this subsection we assume that τ ∗fl � τ ∗ms,

that is to say that the time of flight of a gas atom across the surface layer is small

enough so that the probability to have a collision with a phonon can be neglected.

This is a limit regime but it can be relevant for low wall temperature or for light

gas molecules.

Since the potential V is rapidly oscillating in the x-direction at the nanoscale, so is

the solution of the system (4), at least near the surface layer. Thus a usual technique

in the homogenization method is to look for a solution of (4) in the form (see13 14)

f(t, x, z,v) = F (t, x, x/L∗, z,v), (8)

where the function F (t, x, y, z,v) is periodic with respect to y with period 1. Note

that with such a definition, we have

∂xf = ∂xF +
1

L∗
∂yF, ∂xV = ∂xV# +

1

L∗
∂yV#. (9)

In the surface layer (for z > 0), the variations of the function F with respect to the

variables y and z are significant while we can neglect the (much slower) variations of

F with respect to t and x. And the right-hand side can also be neglected because we

neglected the probability of collision between gas atoms and phonons (and even more

the probability of collision between gas atoms). In the bulk flow we are interested

in describing the variation of F at the microscale (i.e. l∗) and the fast variation at

the nanoscale (L∗) can be taken into account only in average so that the bulk flow

is described by the following distribution function

g(t, x, z,v) =

∫ 1

0

F (t, x, y, z,v) dy, for z < 0. (10)
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Thus, in the limit regime we consider in this section, the gas flow can be described

by the following simplified sytem

∂tg + vx∂xg + vz∂zg = Qm,m[g, g], z < 0, (11)

g(t, x, 0, vx, vz)vz<0 =

∫ 1

0

F (t, x, y, 0, vx, vz)dy, (12)

vx∂yF + vz∂zF −
1

2
∂yV#(y, z)∂vxF −

1

2
∂zV#(y, z)∂vzF = 0, 0 < z, (13)

F (t, x, y, 0, vx, vz)|vz>0 = g(t, x, 0, vx, vz), ∀y ∈ [0, 1]. (14)

This coupled system must be understood as follows. Equation (13) defines the

distribution F of gas atoms in a periodic cell of the surface layer: it depends on the

distribution g(t, x, 0, vx, vz)|vz>0 of gas atoms coming from the bulk flow that enter

into the surface layer with vz > 0. Then the distribution F (t, x, 0, vx, vz)|vz<0 of gas

atoms that leave the surface layer (with vz < 0) can be, in principle, computed by

solving (13)-(14). Finally, the distribution g of gas atoms in the bulk flow is defined

through (11)-(12). Relation (12) means that the distribution of gas atoms that come

into the bulk flow from the surface layer is the average on one periodic cell of the

distribution F (t, x, 0, vx, vz)|vz<0 of gas atoms that leave the surface layer. In other

words, relation (12) can be viewed as an implicit boundary condition for the bulk

flow governed by (11), which requires to solve the boundary layer problem (13)-(14).

This is summarized in Figure 2.

Now, we explain how a boundary condition for the bulk flow can be con-

structed. In fact, (13) can be written d
ds
F (t, x, y(s), z(s),v(s)) = 0 ( where

s → (y(s), z(s),v(s)) is the trajectory of a gas atom across the surface layer,

see equations (24)-(25) in section III). Then (13)-(14) can be integrated exactly,

and the outgoing value F (t, x, y, 0, vx, vz)|vz<0 can be written as a function of the

incoming value (14). This outgoing value can be used in the implicit boundary

condition (12), that can now be written explicitly as

g(t, x, 0,v)|vz<0 =

∫ 1

0

g(t, x, 0,−Λ2(y,−v)) dy, (15)

where Λ(y′,v′) = (y = Λ1(y
′,v′), v = Λ2(y

′,v′)) is the mapping that gives the

position and velocity (y,v) of a gas atom that leaves the surface layer (i.e. with
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z

z = 0

z = L

eq. (11) for g(t, x, z, vx, vz)

g(t, x, 0, vx, vz)|vz>0 g(t, x, 0, vx, vz)|vz<0

eq. (13) for F (t, x, y, z, vx, vz)

F (t, x, y, 0, vx, vz)|vz>0

periodic cell

Surface layer

Solid

eq. (14)

F (t, x, y, 0, vx, vz)|vz<0

eq. (12)

FIG. 2. Links between the bulk flow equation (11) and the boundary layer problem (13)-

(14)

vz < 0 at z = 0) as a function of its position and velocity (y′,v′) when it enters

into the surface layer (i.e. with v′z > 0 at z = 0), see figure 3. This mapping is

defined through the equations of the trajectory of a gas atom (see section III and

equations (24)-(25)).

z = L

z = 0
(y′, v′) = (Λ1(y,−v),−Λ2(y,−v))

with v′z > 0 with v′z > 0

(y′,−v′) (y,−v)

(y, v) = (Λ1(y
′, v′),Λ2(y

′, v′))

y = 1y = 0

Bulk flow

Surface layer

Solid

FIG. 3. One trajectory (and its corresponding reversed trajectory in blue) and the mapping

Λ.

In other words, with a probabilistic interpretation, the incoming condition (14)
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means that a gas atom impinging the surface layer at point (x, z = 0) (at microscale),

sees the nanoscale roughness from point (x, y, z = 0), y ∈ [0, 1] with uniform proba-

bility in y. Equation (13) gives the deterministic trajectories of the gas atoms inside

the surface layer under the action of the interaction potential. Finally the outgoing

distribution function at microscale is defined as the mean (in y) of the outgoing

nanoscale distribution functions at point (x, y, z = 0) (14). After some algebra the

reflection kernel of condition (15) is found to be

g(t, x, 0, v)|vz||vz<0 =

∫
v′z>0

R(v′ → v)g(t, x, 0,v′)|v′z| dv′, (16)

where

R(v′ → v) =
|vz|
|v′z|

∫ 1

0

δ(v′ + Λ2(y,−v))dy, (17)

and δ(y) is the Dirac delta function. This condition satisfies the properties of non-

negativeness, normalization and reciprocity and also a H-theorem, with an entropy

production vanishing only for a flat wall (see1 for a definition of these notions).

Formula (17) clearly shows that the scattering kernel R(v′ → v) essentially depends

on the trajectories of the gas atoms inside the surface layer (through the mapping Λ).

See section III for an application of this reflection kernel with a given interaction

potential. Note that it can be easily checked that, for a flat wall (i.e. for an

interaction potential V(x, z) = V(z)), the boundary conditions (16) reduces to the

classical specular reflection.

C. Derivation of boundary conditions for ”non-elastic” scattering on a

rough wall

We consider non-elastic scattering and in a first step we assume that

τ ∗ms ' τ ∗fl � t∗B. (18)

This means that during their flight in the surface layer, some gas atoms have time

to have a collision with a phonon. The same arguments as we used in the previous

section lead to a system very similar to (11–14), except that equation (13) now

10
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contains a collision term in the right-hand side since gas atom-phonon collisions can

occur:

vx∂yF + vz∂zF −
1

2
∂yV#(y, z)∂vxF −

1

2
∂zV#(y, z)∂vzF =

1

λ∗
Qm,p[F ], 0 < z. (19)

Again the left-hand side of (19) is nothing but the derivative of F along the trajec-

tories of gas atoms, and (19 ) can be written as

d

ds
F (t, x, y(s), z(s),v(s)) =

1

λ∗
Q+
m,p[F (t, x, y(s), z(s),v(s))]

− F (t, x, y(s), z(s),v(s))

τm,s(E)
.

(20)

But because of the gain term Q+
m,p[F ], it is not possible to get an explicit form for

the solution of this equation. However, if we replace this term by Q+
m,p[α(t, x)M]

where α(t, x) is a constant (with respect to the variables y and z) to be defined

later, it is easy to obtain the explicit solution (since Q+
m,p[α(t, x)M] and τms(E) are

constant along the characteristic):

F (t, x, y, 0,v) = exp(−r(y,v))g(t, x, 0,−Λ2(y,−v))

+ (1− exp(r(y,v)))α(t, x) exp(−Vm)Mw(v),
(21)

where Mw(v) = exp(−m|v|2/(2kTw) and r(y,v) = τfl(y,−v)/λ∗τms(E(y, 0,−v)).

With such a choice of the gain term we relax the (local) property of mass conservation

of the collision term but we choose α so that the mass flux through the boundary

vanishes (which is a global property of mass conservation) (see details in4). Finally,

after some algebra we obtain the following boundary equation

g(t, x, 0,v)|vz||vz<0 =

∫
v′z>0

R(v′ → v)|v′z|g(t, x, 0,v′)dv′

+ a(v)σ[g(t, x, 0,v′)|v′z>0]|vz|Mw(v),

(22)

with

R(v′ → v) =

∫ 1

0

exp(−r(y,v))
|vz|
|v′z|

δ(v′ + Λ2(y,−v)) dy,

a(v) = 1−
∫ 1

0

exp(−r(y,v)) dy,

σ[g(t, x, 0,v′)|v′z>0] =

∫
v′z>0

v′z

(
1−

∫ 1

0
exp(−r(y′,−v′))dy′

)
g(t, x, 0,v′)dv′

−
∫
vz<0

vz

(
1−

∫ 1

0
exp(−r(y,v))dy

)
Mw(v)dv

.

11
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Note that the above coefficients have the following physical interpretations. First,

exp(−r(y,v)) is the fraction of incident gas atoms re-emitted with velocity v which

impinged the wall with velocity v′ = −Λ2(y,−v) and that had no collision with

phonons, and moreover this term does not depend on the approximation of the

gain term. Then
∫ 1

0
exp(−r(y,v)) dy = 1 − a(v) is the fraction of all the incident

gas atoms re-emitted with velocity v (whatever incident velocity) and that had no

collision with phonons. Finally, a(v) is the fraction of incident gas atoms re-emitted

with velocity v and that had a collision with phonons. Moreover, note that for a

flat wall (i.e. if we assume that V(x, z) = V(z)), relation (22) yields

g(t, x, 0,v)|vz||vz<0 = (1− a(v))|vz|g(t, x, 0,v) + a(v)σ(t, x)|vz|Mw(v),

where a(v) is the fraction of incident gas atoms that have been thermalized . This

relation is very similar to the classical Maxwell boundary condition but with a

coefficient a which depends–as in (22)–explicitly on the velocity v but also on the

temperature Tw (through τms, see (7)) and on the wall morphology (through τfl).

The last regime to be studied is when we assume that τ ∗ms � τ ∗fl, that is to say that

the relaxation time is much smaller than the time of flight which implies that all gas

atoms entering the surface layer have a collision with a phonon and are thermalized.

Then we get as it is expected the usual boundary condition of diffuse reflection (or

total accommodation). This can be obtained either by an asymptotic analysis as in

the previous regime studied above or by noting that

lim
τms/τfl→0

a(v) = 1. (23)

III. IMPLEMENTATION OF MLBC IN A DVM CONTEXT

In order to use the boundary conditions proposed in the previous sections, the

potential energy surface V# has to be specified. Now we consider that the wall is

a solid made up of atoms organized in a periodic structure which is assumed to be

defect free. The potential V# is generated by the interaction potentials of these

12
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atoms (see19), i.e. V#(y, z) =
∑

i Vi(y, z) where each potential Vi is assumed to

be a Lennard-Jones potential, with mixed-interaction parameters (in dimensionless

form) σ̃ and ε̃, centered at the position of an atom of the lattice

Vi(y, z) = V (ri) = 4ε̃

(
(
σ̃

r̃i
)
12

− (
σ̃

r̃i
)
6
)
,

where r̃i =
√

(y − yi)2 + (z̃ − z̃i)2, ε̃ = 2ε/kT and σ̃ = σ/L∗. For the computations

we will take only into account the atoms located in the periodic cell or in neighboring

cells (see Fig. 4). With this definition of the potential energy surface, condition (2),

which implies that the wall is non porous, is not satisfied, but this is not a problem

for practical applications where the energy of incident gas atoms is not large enough

to allow them to penetrate the wall. Note that in this configuration the roughness

of the wall is of the order of the lattice period , i.e. at a very small scale (typically

a nanometer or less). It is in the order of a standard experimental roughness for

silicon channels or tubes of fused silica12 15 16.

We first consider the simplest situation of elastic scattering where no atom is ther-

malized during the gas-surface interaction (see section II B). Then, as we indicated

above, for a flat wall the boundary condition is the usual specular reflection. For a

periodic rough wall the boundary condition introduced in4 is given by (16-17).

To make the boundary condition (16) explicit, we have to compute R(v′ → v), or∫ 1

0
δ(v′ + Λ2(y,−v)) dy ( for v′z > 0 and vz < 0) which is the probability that an

impinging gas atom with velocity v′ is re-emitted with velocity v. At the same

time, for a given v′, we obtain the scattering pattern of a mono-energetic beam

of incident gas atoms by the wall and we can observe the effect of the roughness

induced by our model. In the context of a numerical approximation of the Boltzmann

(or BGK) equation by a discrete velocity method (DVM)17 18 we have to compute∫ 1

0
δ(v′p + Λ2(y,−vq)) dy, for each pair (v′p,vq) in the set of discrete velocities. Since

we are in a regime where the gas atom-phonon collisions are neglected (structure

scattering), R(v′ → v) is obtained by computing the trajectories of incident gas

13
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FIG. 4. Periodic cell of the surface layer (2D case). The interaction potential of the colored

atoms are taken into account

atoms with a given velocity v′ through the surface layer, which are the solutions

of the system of ordinary differential equations describing the characteristic curves

of (13-14)

ẏ = vx, v̇x = −∂yV(y, z), (24)

ż = vz, v̇z = −∂zV(y, z). (25)

It is a Hamiltonian system in which the total energy E(y, z,v) = 1
2
(v2x+v2z)+V(y, z)

remains constant along the trajectories. It is numerically solved by using the velocity

Verlet method which is a classical symplectic integrator. As a consequence of the

energy conservation, the norm of the velocity of a gas atom leaving the surface layer

is the same as when the gas atom entered the surface layer (since V(y, z = 0) is

independent of y), but of course the re-emission angle has no simple relation with

the incident angle. More precisely, if the velocity space is discretized by the following

grid in polar coordinates:

V = {vk,i = rk(cos θi, sin θi), 1 ≤ k ≤ kmax, 1 ≤ i ≤ imax},

14
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then R(vk′,i′ → vk,i) = 0 if k 6= k′. On this grid, the distribution function is approx-

imated by fk,i ≈ f(vk,i). For a given incident velocity vinc = rinc(cos θinc, sin θinc),

several trajectories are computed for various equi-distributed initial condition s

(ym, v
inc
y , vincz ), with ym = m∆y, 0 ≤ m ≤ mmax, ∆y = 1/mmax. For each tra-

jectory we obtain the angle of reflection θref of the gas atom in the flow (vref =

rinc(cos θref , sin θref )). The interval [−180◦, 0] of reflected angles is divided into

imax/2 angular sectors (like the interval of incident angles). The ith angular sec-

tor is [−θi − π/(2imax),−θi + π/(2imax)], which is centered around −θi (where θi is

the ith discrete incident angle used to define the discrete velocity set). Boundary

condition (16) is then discretized by

| sin θi|fk,i =
imax∑
i′=1

| sin θi′|R(vk′,i′ → vk,i)fk,i′ rk∆r∆θ,

where ∆r = rk+1− rk and ∆θ = π/imax are the (constant) steps of the velocity grid

in the r and θ directions. Note that in this relation, we used the fact that the terms

in which k 6= k′ are zero.

Note that for a practical use of this boundary condition, for a same wall material,

the scattering kernel R(vk′,i′ → vk,i) can be computed and stored once for all.

IV. RESULTS AND DISCUSSION

A. Scattering pattern for elastic scattering on a rough wall

As indicated above, when we compute R(v′ → v) we obtain at the same time

the scattering pattern of a mono-energetic beam of incident gas atoms by the

wall and we can observe the effect of the roughness induced by our model. In

our simulations the atoms of the wall are located in the periodic cell at points

(y = 0, z = 2), (y = 1, z = 2). The interaction potential of the wall is made up of

the interaction potentials of these two atoms and of the adjacent atoms in the lattice

(see Fig. 4). The temperature Tw was set to 296 K, L∗ to 0.4 nm, the molecular

mass m = 123 amu ' 2.04 × 10−25kg, so that the reference velocity is v∗ = 200
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m/s and the dimensionless parameters of the LJ potential are set to σ̃ = 1, ε̃ = 1

(corresponding to σ = 0.4 nm and ε = 2.04 10−21 J ), and L = 2 σ = 0.8 nm.

In the following, we plot for each ith angular sector the probability pi that an inci-

dent atom with velocity vinc is re-emitted in this sector. It is computed as follows:

we count the number ni of gas atoms re-emitted in the ith angular sector, and

then we set pi = ni/mmax, where mmax is the number of trajectories. The results

presented below are computed with mmax = 8001 trajectories, since the results were

not significantly modified when we used more trajectories. All trajectories were

computed using a velocity Verlet method with a time step ∆t = 2 × 10−2 fs. For

the visualization we take imax = 41 so that each angular sector has an angle of 4.30◦

and there is an average of 195.15 re-emitted atoms per angular sector.

Influence of the angle of incidence

In this simulation we take |vinc| = 300 m/s, and θinc takes the values (in degrees)

22.5◦, 45◦, 67.5◦, 90◦.

Figure 5 shows very clearly that the scattering pattern is quite different from the

usual specular reflection for any incident angle. For θinc = 90◦ the diagram is sym-

metric and shows several peaks with a concentration of re-remitted particles near

the specular reflection angle (90◦). For the other values of θinc, the diagram shows a

lobal distribution of backward scattered gas atoms with a peak more or less close to

the specular reflection angle and a high but narrow peak of backward scattered gas

atoms. More precisely, for θinc = 22.5◦, the lobe shows several local peaks between

−45◦ and −75◦ (for a specular angle of reflection equal to −22, 5◦), and the peak

of backward scattered gas atoms is around −107◦. For θinc = 45◦, the lobe shows

two local peaks around −40◦ and −50◦ for a specular reflection angle equal to −45◦

and the peak of backward scattered gas atoms is between −121◦ and −125◦. For

θinc = 67.5◦, the lobe shows a peak at −70◦, for a specular reflection angle equal to

67.5◦ and the peak of backward scattered gas atoms is at −147◦.
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(a) θinc = 22.5◦
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FIG. 5. Polar diagrams of the scattering pattern for impinging gas atoms with velocity

|vinc| = 300 m/s and with incident angles 22.5◦ (upper left), 45◦ (upper right), 67.5◦

(down left) and 90◦ (down right). The incident and scattering angles are shown by dashed

black line and the solid blue line respectively.

Influence of the energy (or mass) of the incident gas atoms

The trajectory of an incident gas atom through the surface layer depends on the

position (y, 0) where it enters the surface layer and on its incident kinetic energy

(since V(y, 0) is independent of y). So changing the incident kinetic energy can be

interpreted as keeping the same incident velocity but changing the mass of the gas

atoms (i.e. changing the gas). The results given below are obtained by setting the

angle of incidence to 45◦ and setting the norm of the velocity to |vinc| = 6v∗ = 1200

m/s. Figure 6 shows the computed polar diagrams of the scattering patterns for

gas atoms with masses 123, 60, 16 and 2 amu. For heavy atoms (m = 123 amu)

we observe a small peak in the polar diagram for θ = −20◦ and a larger one for

θ = −85.6◦. For m = 60 amu the larger peak is for θ = −90◦ and a smaller
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one for θ = −37.3◦. The polar diagram corresponding to m = 16 amu shows a

backward scattering with a large peak at θ = −103.1◦ and a forward scattering

with a smaller peak at θ = −46◦. Finally for the lightest atoms (m = 2 amu) the

diagrams shows also a backward scattering with a small peak at θ = −103.1◦ and a

forward scattering with larger peak at θ = −46◦. Note that for light atoms (m = 16

amu or m = 2 amu), the largest peak is obtained for forward scattered gas atoms

with a reflection angle very close to the specular reflection angle θ = −45◦. Finally

we note that the scattering patterns depend significantly on the mass of the gas

atom. This should be taken into account for simulating flows of mixtures of gas

with different molecular masses, for instance when considering separation processes

through micro-porous materials. Let us recall that the influence of the mass of

the gas atom on the gas-surface interaction was shown by experiments in previous

papers12 15. More precisely experiments suggest that the wall/gas interaction tends

to be more diffuse with decreasing molecule mass and that the wall asperities can

manage and scatter more easily the light incoming molecules. We note that the

results of Fig. 6 are quite in agreement with those remarks .

Influence of of the interaction potential

The role of the parameters of the Lennard-Jones interaction potential is investigaded

in Fig. 8. We compare the scattering pattern for an incident beam with θinc = 45◦,

|vinc| = 1200 m/s with an interaction potential V 1 of parameters σ = 0.4 nm and

ε = 4.08 10−21 J and for an interaction potential V 2 with parameters σ = 0.6 nm

and ε = 8.16 10−22 J (see Fig. 7 (a)).

Both polar diagrams show two peaks but at very different angles: −20◦ and −85◦

for the first and −35◦ and −55◦ (closer to the specular reflection angle) for the other

one. Those results indicates that the scattering pattern also strongly depends on

the material of the wall.
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(a) m = 123 amu
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FIG. 6. Polar diagrams of the scattering pattern for impinging gas atoms with an incident

angle 45◦, a velocity |vinc| = 1200 m/s and for gas atom masses 123 (a), 60 (b), 16 (c),

and 2 amu (d).

(a) Lennard-Jones potentials V 1,V 2
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FIG. 7. Lennard-Jones potentials V 1 with σ = 0.4 nm and ε = 2.04 10−21 J and V 2 with

σ = 0.6 nm and ε = 1.63 10−21 J (a) and lattice of wall atoms in 3D (b).
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(a) σ = 0.4 nm, ǫ = 2.04 10−21J
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FIG. 8. Polar diagrams of the scattering pattern for impinging molecules with an incident

angle 45◦ , a velocity |vinc| = 1200 m/s, for a potential V 1 with σ = 0.4 nm and ε =

2.04 10−21 J (a) and for a potential V 2 with σ = 0.6 nm and ε = 1.63 10−21 J (b).

Polar diagram of the scattering pattern in three dimensions

The previous study can be extended to 3D. In this paragraph, scattering patterns

are computed in a 3D configuration which is detailed below. The wall is described

by a fcc lattice. The atoms in the periodic cell are located at points (y1 = 0, y2 =

0, z = 2), (y1 = 1, y2 = 0, z = 2), (y1 = 0, y2 = 1, z = 2), (y1 = 1, y2 = 1, z = 2). The

incident velocity is vinc = (vincy1
, vincy2

, vincz ) with vincy1
= |vinc| cos θinc cosφinc, vincy2

=

|vinc| sin θinc cosφinc and vz = |vinc| sinφinc, where φinc is the incident angle with

the surface and θinc is the azimuthal angle (i.e. for θinc = kπ/2 the scattering plane

is aligned with the lattice) (see Fig. 7 (b)). The simulations were performed with

|vinc| = 6000 m/s, m = 123 amu, φinc = 45◦ and for two values of the azimuthal angle

θinc = 90◦, and θinc = 60◦ and 10.000 equidistributed trajectories were computed.

On Fig. 8, the projections of the polar diagram of the scattering pattern on the

plane (vy1 , vz) and on the plane (vy2 , vz) are shown for the two simulations with

θinc = 90◦ and θinc = 60◦. For θinc = 90◦, the scattering plane is aligned with the

lattice while it is not aligned with the lattice for θinc = 60◦. The influence of the

azimuthal angle is noticeable. As expected the projection on the (vy1 , vz) plane is

symmetric when the scattering plane is aligned with respect to the symmetry axis

of the surface lattice, while it is not at all symmetric when the scattering plane is

misaligned (d). Moreover the projections on the (vy2 , vz) plane are quite different,
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(a) θ = 90◦ projection on (vy1 , vz)
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FIG. 9. Projection of the polar diagram of the scattering pattern on (vy1 , vz) for θ = 90◦

(a), on (vy2 , vz) for θ = 90◦ (b), on (vy1 , vz) for θ = 60◦ (c), and on (vy2 , vz) for θ = 60◦

(d).

showing a large peak of backward scattered gas atoms (around −98◦) for θinc = 60◦.

B. Non-elastic scattering on a rough wall

As shown in II C, the fraction of gas atoms that are thermalized during the

interaction with the surface is given in our model by

a(v) = 1−
∫ 1

0

exp(−τfl(y,−v)/(λ∗τms(E(y, 0,−v))) dy,

and so depends on v, ε̃, and σ̃, through τfl, and also on Tw, the temperature of

the wall, through τms. The time of flight τfl is easily obtained when computing the

trajectory of the gas molecules in the surface layer by solving (24-25). The time

τms is a decreasing function of the wall temperature Tw, but is unfortunately more

difficult to evaluate. Until now we lack experiments, but approximations could be

21



Nanoscale roughness effect on Maxwell-like boundary conditions

obtained through molecular dynamics simulations. This is a difficult problem by

itself and will be treated in forthcoming publications. Here, we follow a simplified

approach9 that consists in approximating a by

a(v) = 1−
∫ 1

0

exp(−τfl(y,−v)/(λ∗τ
mean
ms (Tw)) dy, (26)

where τmeanms (Tw) is an average relaxation time due to gas atom-phonon collisions. In

order to investigate the effects of the temperature of the solid, we simulate a(v) as

a function of τmeanms . Since τmeanms ≥ 10−13s (the characteristic period of the thermal

vibration of atoms in a solid9), and takes values roughly in the range 10−13− 10−12s

(see9 11 20), we studied the variation of a(v) for 0.25 10−12s ≤ τmeanms ≤ 1.4 10−11s

(Fig. 10a), for a beam of impinging gas atoms with m = 123 amu, θinc = 45◦ and

λ∗ = 2. We use a simple numerical approximation of the integral of (26) to get:

a(v) ≈ 1−
mmax∑
m=1

exp(−τfl(ym,−v)/(λ∗τ
mean
ms (Tw)) ∆y,

where τfl(ym,−v) is the time for a particle that enters into the surface layer in

ym = m∆y with a velocity −v to leave this surface: it was computed exactly when

trajectories equations (24-25) were solved in section IV A.

As expected, the fraction of incident gas atoms that have been thermalized de-

creases. For τmeanms = 0.25 10−12s, the fraction is very closed to 1, which means

that we are in the regime of total accommodation, while for τmeanms = 1.4 10−11s

this fraction is very small so that the scattering pattern is mainly governed by the

morphology of the wall (”structure scattering”). Figure 10b shows the dependence

of the fraction a(v) on the the velocity. We simulate |vinc| from 200 m/s up to 10000

m/s for τmeanms = 0.525 10−12s and m = 123 amu. It appears that for small velocities,

the coefficient a ≈ 0.8 while for |vinc| = 2400 m/s a ≈ 0.13, and we are close to an

elastic scattering, which is a consequence of the smaller times of flight τfl(y) of each

trajectory.

Finally the influence of the incident angle on the coefficient a is shown in Table I

where the simulations were performed with λ∗ = 2 and τmeanms = 0.525 10−12s . It is
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(a) a(v) versus relaxation time
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(b) a(v) versus incident velocity
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FIG. 10. Fraction a(v) of thermalized molecules, for (a) |vinc| = 1200 m/s, θinc = 45◦,

λ∗ = 2, as a function of τmeanms , and for (b) θinc = 45◦, τmeanms = 5.25 10−12s, λ∗ = 2, as a

function of |vinc|.

TABLE I. Fraction of thermalized gas atoms as a function of the incident angle

incident angle. fraction of thermalized gas atoms.

22.5◦ 0.3736

45◦ 0.23

67.5◦ 0.1999

90◦ 0.1906

clear that the smaller the incident angle, the larger the fraction of thermalized gas

atoms, as a consequence of larger times of flight.

V. CONCLUSION

We have proposed new boundary conditions allowing to take into account at the

kinetic level the effect of the van der Waals forces and of the periodic roughness of

the wall at the atomic scale. This model relies on a two scale theoretical approach

whose mathematical framework has been introduced in a previous paper. We have

proposed a way to include some physics of gas-surface interaction by computing the
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trajectories of the impinging gas atoms through a periodic cell of the surface layer

in which gas molecules interact with surface atoms by a simplified PES. Then it

is possible to get an approximation of the scattering kernel of the new boundary

condition suitable for a DVM numerical approach of the Boltzmann equation. We

have shown the scattering pattern of a mono-energetic beam of impinging gas atoms

reflected by a wall with nanoscale roughness. Several simulations on a simplified 2D

configuration or on a 3D configuration prove that the model brings at the kinetic

scale information on the roughness of the wall at the atomic scale which are not

present in usual boundary conditions. 2D simulations of elastic scattering show

that the scattering pattern is strongly dependent on several parameters such as the

incident angle of the impinging gas atoms, their energy or the mixed-interaction

parameters of the Lennard-Jones potential. Moreover 3D computations prove the

influence of the azimuthal angle of the scattering plane. For non-elastic scattering a

simplified form of the new boundary condition shows that the temperature of the wall

and the incident angle of the impinging gas atoms have a noticeable influence on the

fraction of thermalized gas atoms. But further investigations are necessary to obtain

a more precise evaluation of the relaxation time of gas atoms by the phonons. This

needs some more experiments and/or numerical Molecular Dynamics simulations

and will be treated in forthcoming publications. All those simulations are promising

and prove that our approach is simple enough to be numerically tractable, while it

is able to include enough physics of gas-surface interaction so as to improve kinetic

simulations of micro or nano-flows in narrow channels, and hence could be a useful

tool in this context.
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