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Olivier Sobrie1,2,3 , Vincent Mousseau2
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Abstract. MR-Sort (Majority Rule Sorting) is a multiple
criteria sorting method which assigns an alternative a to cat-
egory Ch when a is better than the lower limit of Ch on a
majority of criteria, and this is not true with the upper limit
of Ch. We enrich the descriptive ability of MR-Sort by the
addition of coalitional vetoes which operate in a symmetric
way as compared to the MR-Sort rule w.r.t. to category lim-
its, using specific veto profiles and veto weights. We describe a
heuristic algorithm to learn such an MR-Sort model enriched
with coalitional veto from a set of assignment examples, and
show how it performs on real datasets.

1 Introduction

Multiple Criteria Sorting Problems aim at assigning al-
ternatives to one of the predefined ordered categories
C1, C2, ..., Cp, C1 and Cp being the worst and the best cat-
egory, respectively. Many multiple criteria sorting methods
have been proposed in the literature (see e.g., [9], [25]). MR-
Sort (Majority Rule Sorting, see [10]) is an outranking-based
multiple criteria sorting method which corresponds to a sim-
plified version of ELECTRE TRI where the discrimination
and veto thresholds are omitted.
In the pessimistic version of ELECTRE TRI, veto effects

make it possible to worsen the category to which an alter-
native is assigned when this alternative has very bad perfor-
mances on one/several criteria. We consider a variant of MR-
Sort which introduces possible veto effects. While in ELEC-
TRE TRI, a veto involves a single criterion, we consider a
more general formulation of veto (see [21]) which can involve
a coalition of criteria (such a coalition can be reduced to a
singleton).
The definition of such a “coalitional veto” exhibits a note-

worthy symmetry between veto and concordance. To put it
simple, in a two-category context (Bad/Good), an alternative
is classified as Good when its performances are above the con-
cordance profile on a sufficient majority of criteria, and when
its performances are not below the veto profile for a sufficient
majority of criteria. Hence, the veto condition can be viewed
as the negation of a majority rule using a specific veto profile,
and specific veto weights.
Algorithms to learn the parameters of an MR-Sort model

without veto (category limits and criteria weights) have been
proposed, either using linear programming involving integer
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variables (see [10]) or using a specific heuristic (see [20, 19]).
When the size of the learning set exceeds 100, only heuristic
algorithms are able to provide a solution within a limited
computing time.
Olteanu and Meyer [14] have developed a simulated anneal-

ing based algorithm to learn a MR-Sort model with classical
veto (not coalitional ones).
In this paper, we propose a new heuristic algorithm to

learn the parameters of a MR-Sort model with coalitional
veto (called MR-Sort-CV) which makes use of the symmetry
between the concordance and the coalitional veto conditions.
We describe preliminary results obtained by experimenting
with this algorithm on real data sets.
The paper is organized as follows. In Section 2, we recall

MR-Sort and define its extension when considering monocri-
terion veto and coalitional veto. After a brief reminder of the
heuristic algorithm to learn an MR-Sort model, Section 3 is
devoted to the presentation of the algorithm to learn an MR-
Sort model with coalitional veto. Section 4 presents experi-
mentations of this algorithm and Section 5 groups conclusions
and directions for further research.

2 Considering vetoes in MR-Sort

2.1 MR-Sort model

MR-Sort is a method for assigning objects to ordered cate-
gories. It is a simplified version of ELECTRE TRI, another
MCDA method [23, 16].
The MR-Sort rule works as follows. Formally, let X be a

set of objects evaluated on n ordered attributes (or criteria),
F = {1, ..., n}. We assume that X is the Cartesian product of
the criteria scales, X =

∏n

j=1 Xj , each scale Xj being com-
pletely ordered by the relation ≥j . An object a ∈ X is a vec-
tor (a1, . . . , aj , . . . , an), where aj ∈ Xj for all j. The ordered
categories which the objects are assigned to by the MR-Sort
model are denoted by Ch, with h = 1, . . . , p. Category Ch is
delimited by its lower limit profile bh−1 and its upper limit
profile bh, which is also the lower limit profile of category
Ch+1 (provided 0 < h < p). The profile bh is the vector of
criterion values (bh1 , . . . , b

h
j , . . . , b

h
n), with bhj ∈ Xj for all j. We

denote by P = {1, ...., p} the list of category indices. By con-
vention, the best category, Cp, is delimited by a fictive upper
profile, bp, and the worst one, C1, by a fictive lower profile,
b0. It is assumed that the profiles dominate one another, i.e.:
bhj ≥j bh−1

j , for h = {1, . . . , p} and j = {1, . . . , n}.
Using the MR-Sort procedure, an object is assigned to a

category if its criterion values are at least as good as the
category lower profile values on a weighted majority of criteria
while this condition is not fulfilled when the object’s criterion
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the former case, we say that the object is preferred to the
profile, while, in the latter, it is not. Formally, if an object
a ∈ X is preferred to a profile bh, we denote this by a <

bh. Object a is preferred to profile bh whenever the following
condition is met:

a < bh ⇔
∑

j:aj≥jb
h
j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion
j, for all j and λ sets a majority level. The weights satisfy the
normalization condition

∑

j∈F wj = 1; λ is called the majority
threshold.
The preference relation < defined by (1) is called an out-

ranking relation without veto or a concordance relation ([16];
see also [3, 4] for an axiomatic description of such relations).
Consequently, the condition for an object a ∈ X to be as-
signed to category Ch reads:

∑

j:aj≥jb
h−1

j

wj ≥ λ and
∑

j:aj≥jb
h
j

wj < λ. (2)

The MR-Sort assignment rule described above involves pn+
1 parameters, i.e. n weights, (p− 1)n profiles evaluations and
one majority threshold.
A learning set A is a subset of objects A ⊆ X for which

an assignment is known. For h ∈ P , Ah denotes the subset of
objects a ∈ A which are assigned to category Ch. The subsets
Ah are disjoint; some of them may be empty.

2.2 MR-Sort-MV

In this section, we recall the traditional monocriterion veto
rule as defined by [1, 2]. In a MR-Sort model with monocri-
terion veto, an alternative a is “at least as good as” a profile
bh if it has at least equal to or better performances than bh

on a weighted majority of criteria and if it is not strongly
worse than the profile on any criterion. In the sequel, we call
bh a concordance profile and we define “strongly worse than
the profile” bh by means of a veto profile vh = (vh1 , v

h
2 , ..., v

h
n),

with vhj ≤j bhj . It represents a vector of performances such
that any alternative having a performance worse than or equal
to this profile on any criterion would be excluded from cate-
gory Ch+1. Formally, the assignment rule is described by the
following condition:

a < bh ⇐⇒
∑

j:aj≥jb
h
j

wj ≥ λ and not aV bh,

with aV bh ⇐⇒ ∃j ∈ F : aj ≤j vhj . Note that non-veto
condition is frequently presented in the literature using a veto
threshold (see e.g. [15]), i.e. a maximal difference w.r.t. the
concordance profile in order to be assigned to the category
above the profile. Using veto profiles instead of veto thresholds
better suits the context of multicriteria sorting. We recall that
a profile bh delimits the category Ch from Ch+1, with Ch+1 ≻
Ch ; with monocriterion veto, the MR-Sort assignment rule

reads as follows:

a ∈ Ch ⇐⇒







∑

j:aj≥jb
h−1

j

wj ≥ λ and ∄j ∈ F : aj < vh−1
j







and







∑

j:aj≥jb
h
j

wj < λ or ∃j ∈ F : aj ≤ vhj






.

(3)

We remark that a MR-Sort model with more than 2 cate-
gories remains consistent only if veto profiles vhj do not over-

lap, i.e, are chosen such that vhj ≥ vh
′

j for all {h, h′} s.t. h > h′.
Otherwise, an alternative might be on the one hand in veto
against a profile bh, which prevents it to be assigned to Ch+1

and, on the other hand, not in veto against bh+1, which does
not prevent it to be assigned to Ch+2.

2.3 MR-Sort-CV

We introduce here a new veto rule considering vetoes w.r.t.
coalitions of criteria, which we call “coalitional veto”. With
this rule, the veto applies and forbids an alternative a to be
assigned to category Ch+1 when the performance of an al-
ternative a is not better than vhj on a weighted majority of
criteria.
As for the monocriterion veto, the veto profiles are vectors

of performances vh = (vh1 , v
h
2 , ..., v

h
n), for all h = {1, .., p}.

Coalitional veto also involves a set of veto weights denoted zj ,
for all j ∈ F . Without loss of generality, the sum of zj is set
to 1. Furthermore, a veto cutting threshold Λ is also involved
and determines whether a coalition of criteria is sufficient to
impose a veto. Formally, we express the coalitional veto rule
aV bh, as follows:

aV bh ⇐⇒
∑

j:aj≤jv
h
j

zj ≥ Λ. (4)

Using coalitional veto, the outranking relation of MR-Sort
(2.2) is modified as follows:

a < bh ⇐⇒
∑

j:aj≥jb
h
j

wj ≥ λ and
∑

j:aj≤jv
h
j

zj < Λ. (5)

Using coalitional veto with MR-Sort modifies the assignment
rule as follows:

a ∈ Ch ⇐⇒







∑

j:aj≥jb
h−1

j

wj ≥ λ and
∑

j:aj≤jv
h−1

j

zj < Λ







and







∑

j:aj≥jb
h
j

wj < λ or
∑

j:aj≤jv
h
j

zj ≥ Λ






(6)

In MR-Sort, the coalitional veto can be interpreted as a com-
bination of performances preventing the assignment of an al-
ternative to a category. We call this new model, MR-Sort-CV.
The coalitional veto rule given in Equation (5) is a gen-

eralization of the monocriterion rule. Indeed, if the veto cut
threshold Λ is equal to 1

n
(n being the number of criteria),

and each veto weight zj is set to
1
n
, then the veto rule defined

in Equation (4) corresponds to a monocriterion veto for each
criterion.



2&' The Non Compensatory Sorting (NCS)
model

In this subsection, we recall the non compensatory sorting
(NCS) rule as defined by [1, 2], which will be used in the ex-
perimental part (Section 4) for comparison purposes. These
rules allow to model criteria interactions. MR-Sort is a par-
ticular case of these, in which criteria do not interact.
In order to take criteria interactions into account, it has

been proposed to modify the definition of the global outrank-
ing relation, a < bh, given in (1). We introduce the notion of
capacity. A capacity is a function µ : 2F → [0, 1] such that:

• µ(B) ≥ µ(A), for all A ⊆ B ⊆ F (monotonicity) ;
• µ(∅) = 0 and µ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in an-
other form:

µ(A) =
∑

B⊆A

m(B), (7)

for all A ⊆ F , with m(B) defined as:

m(B) =
∑

C⊆B

(−1)|B|−|C|µ(C) (8)

The value m(B) can be interpreted as the weight that is ex-
clusively allocated to B as a whole. A capacity can be defined
directly by its Möbius transform also called “interaction”. An
interaction m is a set function m : 2F → [−1, 1] satisfying the
following conditions:

∑

j∈K⊆J∪{j}

m(K) ≥ 0, ∀j ∈ F, J ⊆ F\{i} (9)

and
∑

K⊆F

m(K) = 1.

If m is an interaction, the set function defined by µ(A) =
∑

B⊆A m(B) is a capacity. Conditions (9) guarantee that µ is
monotone [6].
Using a capacity to express the weight of the coalition in

favor of an object, we transform the outranking rule as follows:

a < bh ⇔ µ(A) ≥ λ with A = {j : aj ≥j bhj }

and µ(A) =
∑

B⊆A

m(B) (10)

Computing the value of µ(A) with the Möbius transform in-
duces the evaluation of 2|A| parameters. In a model composed
of n criteria, it implies the elicitation of 2n parameters, with
µ(∅) = 0 and µ(F ) = 1. To reduce the number of parame-
ters to elicit, we use a 2-additive capacity in which all the
interactions involving more than 2 criteria are equal to zero.
Inferring a 2-additive capacity for a model having n criteria
requires the determination of n(n+1)

2
− 1 parameters.

Finally, the condition for an object a ∈ X to be assigned
to category Ch can be expressed as follows:

µ(Fa,h−1) ≥ λ and µ(Fa,h) < λ (11)

with Fa,h−1 = {j : aj ≥j bh−1
j } and Fa,h = {j : aj ≥j bhj }.

3 Learning MR-Sort

Learning the parameters of MR-Sort and ELECTRE TRI
models has been already studied in several articles [10, 17,
12, 11, 13, 7, 8, 5, 24]. In this section, we recall how to learn
the parameters of an MR-Sort model using respectively an
exact method [10] and a heuristic algorithm [17]. We then
extend the heuristic algorithm to MR-Sort-CV.

3.1 Learning a simple MR-Sort

It is possible to learn a MR-Sort model from a learning set us-
ing Mixed Integer Programming (MIP), see [10]. Such a MIP
formulation is not suitable for large data sets because of the
high computing time required to infer the MR-Sort param-
eters. In view of learning MR-Sort models in the context of
large data sets, a heuristic algorithm has been proposed in
[17]. As for the MIP, the heuristic algorithm takes as input a
set of assignment examples and their vectors of performances.
The algorithm returns the parameters of a MR-Sort model.
The heuristic algorithm proposed in [17] works as follows.

First a population of Nmod MR-Sort models is initialized.
Thereafter, the following two steps are repeated iteratively
on each model in the population:

1. A linear program optimizes the weights and the majority
threshold on the basis of assignment examples and fixed
profiles.

2. Given the inferred weights and the majority threshold, a
heuristic adjusts the profiles of the model on the basis of
the assignment examples.

After applying these two steps to all the models in the pop-

ulation, the
⌊

Nmod

2

⌋

models restoring the least numbers of

examples are reinitialized. These steps are repeated until the
heuristic finds a model that fully restores all the examples or
after a number of iterations specified a priori.
The linear program designed to learn the weights and the

majority threshold is given by (12). It minimizes a sum of
slack variables, x′a and y′a, that is equal to 0 when all the
objects are correctly assigned, i.e. assigned to the category
defined in the input data set. We remark that the objective
function of the linear program does not explicitly minimize
the 0/1 loss but a sum of slacks. This implies that compen-
satory effects might appear, with undesirable consequences
on the 0/1 loss. However in this heuristic, we consider that
these effects are acceptable. The linear program doesn’t in-
volve binary variables. Therefore, the computing time remains
reasonable when the size of the problem increases.
The objective function of the heuristic varying the pro-

files maximizes the number of examples compatible with the
model. To do so, it iterates over each profile bh and each
criterion j and identifies a set of candidate moves for the pro-
file, which correspond to the performances of the examples on
criterion j located between profiles bh−1 and bh+1. Each can-
didate move is evaluated as a function of the probability to
improve the classification accuracy of the model. To evaluate
if a candidate move is likely or unlikely to improve the classi-
fication of one or several objects, the examples which have an
evaluation on criterion j located between the current value of
the profile, bhj , and the candidate move, bhj + δ (resp. bhj − δ),
are grouped in different subsets:



m()∑

a∈A(x
′
a + y′a)

s.t.
∑

j:aj≥jb
h−1

j

wj − xa + x′a = λ ∀a ∈ Ah, h = {2, ..., p}
∑

j:aj≥jb
h
j
wj + ya − y′a = λ− ǫ ∀a ∈ Ah, h = {1, ..., p− 1}

∑n

j=1 wj = 1

wj ∈ [0; 1] ∀j ∈ F
λ ∈ [0; 1]

xa, ya, x
′
a, y

′
a ∈ R+

0

ε a small positive number.

(12)

V +δ
h,j (resp. V −δ

h,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j results in a correct
assignment.

W+δ
h,j (resp. W−δ

h,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j strengthens the criteria
coalition in favor of the correct classification but will not
by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δ

h,j) : the sets of objects correctly classified in

Ch+1 (resp. Ch+1) for which moving the profile bh by +δ
(resp. −δ) on j results in a misclassification.

R+δ
h,j (resp. R−δ

h,j) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j weakens the criteria
coalition in favor of the correct classification but does not
induce misclassification by itself.

T+δ
h,j (resp. T−δ

h,j ) : the sets of objects misclassified in a cate-

gory higher than Ch (resp. in a category lower than Ch+1)
for which the current profile evaluation weakens the criteria
coalition in favor of the correct classification.

A formal definition of these sets can be found in [17]. The
evaluation of the candidate moves is done by aggregating the
number of elements in each subset. Finally, the choice to move
or not the profile on the criterion is determined by comparing
the candidate move evaluation to a random number drawn
uniformly. These operations are repeated multiple times on
each profile and each criterion.

3.2 Learning MR-Sort-CV

In (2), the MR-Sort condition
∑

j:aj≥jb
h−1

j

wj ≥ λ is a neces-

sary condition for an alternative to be assigned to a category
at least as good as Ch. Basically a coalitional veto rule can
be viewed as a dual version of the majority rule. It provides
a sufficient condition for being assigned to a category worse
than Ch. An alternative will be assigned to such a category
as soon as

∑

j:aj≤jv
h−1

j

zj ≥ Λ. This condition has essentially

the same form as the MR-Sort rule except that the sum is
over the criteria on which the alternative’s performance is at
most as good as the profile (instead of at least as good, in
the MR-Sort rule). Therefore, a straightforward way of im-
plementing an algorithm to learn a MR-Sort-CV model is by
using the MR-Sort learning heuristic twice, the second time,
looking at each criterion in the reversed order of preference.
In the first step, we learn concordance profiles bh, a weight

vector w and a threshold λ using the MR-Sort learning heuris-
tic [18]. We tune the parameters of this algorithm in order to

penalize more the false negative than the false positive as-
signments. In a second step, we apply essentially the same
algorithm to learn veto profiles vh, a weight vector z and a
threshold Λ. The direction of optimization is reversed on each
criterion, the veto profiles are constrained to lie below their
corresponding concordance profile (i.e. vhj ≤j bhj , for all j and
h), which was determined in the first step. In the second step,
the learning algorithm is applied to all assignment examples.
We now give more detail on the way we tuned the param-

eters of the algorithm used in the first step. Let us call the
model obtained in the first step, for category Ch, the concor-
dance rule, and the model in the second step, the veto rule.
The main point is that the false positive and the false neg-
ative assignments produced by the concordance rule are not
treated equally. False positive assignments can be corrected
by the veto rule, while false negatives cannot. Moreover, the
second step leading to a veto rule will have little impact on
classification accuracy in case the proportion of false positives
is small in the set of wrongly assigned alternatives. For these
reasons, we had to penalize more severely false negatives than
false positives in the first step. There are basically three sim-
ple actions on the algorithm’s parameter that can result in
favoring false positive assignments.

1. Model selection process. After having iterated the two steps
of the algorithm (weights optimization and profiles adjust-
ment) described in Section 3.1, [Nmod/2] models are dis-
carded and replaced. This is done, in the MR-Sort learning
algorithm, by selecting the models that make the more as-
signment errors. We adapt this selection criterion by adding
0.3 times the number of false positive assignments to the
total number of correct assignments. The discarded models
are thus those for which the number of true positive plus
the number of true negative plus 0.3 times the number of
false positive is below the median of that quantity on the
models’ population.

2. Weights optimization. The concordance profiles being
given, the weights are optimized using the linear program
(12). The sum of the error variables x′a + y′a was the ob-
jective to be minimized. In the linear program, x′a is set to
a positive value whenever it is not possible to satisfy the
condition which assigns a to a category at least as good as
Ch, while a actually belongs to Ch. Impeding the assign-
ment of positive values to x′a amounts to favor false positive
assignments. Hence, positive values of x′a should be heav-
ily penalized. In contrast, positive values of y′a correspond
to the case in which the conditions for assigning a to the
categories above the profile are met while a belongs to the
category below the profile. Positive values of y′a need not
be discouraged as much as those of x′a and therefore we
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min

∑

a∈A 10x′a + y′a.
3. Adjustment of profile. In order to select moves in the profile

level on a criterion by a quantity ±δ, we compute a prob-
ability which takes into account the sizes of the sets listed
at the end of section 3.1. In all cases, the movements which
lower the profile (−δ) are more favorable to false positive
than the opposite movements. Therefore, all other things
being equal (i.e. the sizes of the sets), the probability of
choosing a downward move −δ should be larger than that
of an upward move +δ. The probability of an upward move
is thus computed by the following formula

P (bhj + δ) =
2|V −δ

h,j |+ 1|W−δ
h,j + 0.1|T−δ

h,j |

|V −δ
h,j |+ |W

−δ
h,j |+ |T

−δ
h,j |+ 5|Q−δ

h,j |+ |R
−δ
h,j |

.

while that of a downward move is

P (bhj − δ) =
4|V +δ

h,j |+ 2|W+δ
h,j + 0.1|T+δ

h,j |

|V +δ
h,j |+ |W

+δ
h,j |+ |T

+δ
h,j |+ 5|Q+δ

h,j |+ |R
+δ
h,j |

Remarks The learning algorithm described above is a pre-
liminary version. Many different strategies for learning appro-
priate concordance and veto profiles as well as their associ-
ated weight vectors and thresholds are possible, even with the
present option consisting of using successively two variants of
the MR-Sort heuristic. In order to assess the latter idea, we
report the results of both the first step (concordance part) and
the second step (adding the veto) in the experiments done in
Section 4. The results of the first part are reported as MR-
Sort-FP.

4 Experiments

4.1 Datasets

In view of assessing the performance of the heuristic algo-
rithm designed for learning the parameters of a MR-Sort-
CV model, we use it to learn MR-Sort-CV models from sev-
eral real data sets available at http://www.uni-marburg.de/
fb12/kebi/research/repository/monodata, which serve as
benchmarks to assess monotone classification algorithms [22].
They involve from 120 to 1728 instances, from 4 to 8 mono-
tone attributes and from 2 to 36 categories. In our experi-
ments, categories have been binarized by thresholding at the
median. We split the datasets in a twofold 50/50 partition:
a learning set and a test set. Models are learned on the first
set and evaluated on the test set; this is done 100 times on
learning sets drawn at random.

Data set #instances #attributes #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4

Table 1: Data sets

4.2 Results obtained with MR-Sort and
NCS

A similar experimental study [20] compares the results ob-
tained with MR-Sort and NCS. The classification accuracy of
both methods are provided in Table 2. No significant improve-
ment in classification accuracy was observed when comparing
NCS to MR-Sort.

Data set Heuristic MR-Sort Heuristic NCS

DBS 0.8377± 0.0469 0.8312± 0.0502

CPU 0.9325± 0.0237 0.9313± 0.0272

BCC 0.7250± 0.0379 0.7328± 0.0345

MPG 0.8219± 0.0237 0.8180± 0.0247

ESL 0.8996± 0.0185 0.8970± 0.0173

MMG 0.8268± 0.0151 0.8335± 0.0138

ERA 0.7944± 0.0173 0.7944± 0.0156

LEV 0.8408± 0.0122 0.8508± 0.0188

CEV 0.8516± 0.0091 0.8662± 0.0095

Table 2: Average and standard deviation of the classification
accuracy on the datasets

4.3 Comparing MR-Sort-CV to MR-Sort

In this section, we investigate empirically the benefit obtained
by adding “coalitional veto” to MR-Sort, i.e, we compare MR-
Sort-CV to MR-Sort. Table 3 provides, for each binarized
dataset, the confusion matrices; values provided are mean val-
ues of the proportion of alternatives. C1 and C2 are the true
classes in the dataset, and Ĉ1 and Ĉ2 are the computed clas-
sifications. The first confusion table contains the proportions
obtained with the MR-Sort heuristic. The second confusion
table contains the proportions obtained with the MR-Sort-FP
heuristic which favors false positives. Finally, the last confu-
sion table contains the proportions obtained with MR-Sort-
CV, i.e, when coalitional veto is added to MR-Sort-FP.
These first results show that MR-Sort and MR-Sort-CV

provide similar results in terms of classification accuracy and
that no benefit is induced from the introduction of coalitional
veto. However, it should be noted that MR-Sort-FP obtains
only a limited proportion of false positives (C2 − Ĉ1). As
coalitional veto is able to “correct” alternatives which are over-
classified by MR-Sort-FP, we performed a second set of ex-
periments in order to increase the proportion of false positives
obtained by MR-Sort-FP (to do so we modify the model selec-
tion criterion so that the discarded models are those for which
the number of true positive plus 0.9 times the number of false
positives plus 0.1 times the number of true negatives is below
the median of that quantity on the models’ population). The
results are provided in Table 4.
These results show that MR-Sort-FP provided higher pro-

portions of false positives, even if this results in a lower over-
all classification accuracy. MR-Sort-CV is able to significantly
improve these results, but the values of classification accuracy
for MR-Sort-CV are still, after these changes, similar to the
ones of MR-Sort.
These results tend to show that there is no significative

improvement in classification accuracy when comparing the
results of the standard MR-Sort to the results obtained with
MR-Sort-CV. Although MR-Sort-CV is formally a generaliza-
tion of MR-Sort which brings additional descriptive ability,



D-.-/0. MR-Sort MR-Sort-FP MR-Sort-CV

Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2

DBS
C1 42.1 8.5 40.5 10.2 41.8 8.8
C2 7.7 41.7 6.0 43.3 7.2 42.2

CPU
C1 46.7 2.6 46.0 3.2 46.6 2.7
C2 4.2 46.6 2.9 47.9 3.3 47.4

BCC
C1 60.5 10.3 58.1 12.7 63.2 7.6
C2 17.2 12.0 17.2 11.9 19.9 9.4

MPG
C1 44.3 9.2 41.9 11.5 44.5 8.9
C2 8.6 37.9 7.9 38.7 9.1 37.4

ESL
C1 48.6 6.0 46.9 7.6 49.3 5.2
C2 4.1 41.4 2.5 42.9 3.8 41.6

MMG
C1 43.8 7.7 42.4 9.2 44.0 7.5
C2 9.6 38.8 8.4 40.0 9.8 38.7

ERA
C1 69.3 5.1 68.0 6.4 71.8 2.5
C2 15.5 10.2 16.9 8.7 18.4 7.3

LEV
C1 71.1 6.6 69.4 8.4 72.4 5.3
C2 9.3 12.9 9.2 13.1 10.9 11.4

CEV
C1 59.2 10.9 59.2 10.8 61.5 8.5
C2 4.1 25.9 4.0 26.0 5.1 24.9

Table 3: Confusion matrices on the datasets for MR-Sort,
MR-Sort-FP, and MR-Sort-CV

Dataset MR-Sort MR-Sort-FP MR-Sort-CV

Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2

DBS
C1 42.1 8.5 35.4 15.2 39.5 11.2
C2 7.7 41.7 2.8 46.6 5.3 44.0

CPU
C1 46.7 2.6 37.7 11.5 43.9 5.3
C2 4.2 46.6 1.4 49.4 4.8 46.0

BCC
C1 60.5 10.3 6.6 64.3 59.5 11.3
C2 17.2 12.0 1.1 28.1 18.8 11.2

MPG
C1 44.3 9.2 7.7 45.8 44.7 8.8
C2 8.6 37.9 0.8 45.8 13.2 33.3

ESL
C1 48.6 6.0 31.1 23.4 38.7 15.9
C2 4.1 41.4 0.7 44.7 3.2 42.3

MMG
C1 43.8 7.7 8.9 42.6 38.2 13.3
C2 9.6 38.8 1.0 47.5 7.8 40.7

ERA
C1 69.3 5.1 22.2 52.1 56.8 17.5
C2 15.5 10.2 3.2 22.5 13.1 12.6

LEV
C1 71.1 6.6 40.6 37.1 68.2 9.5
C2 9.3 12.9 2.3 20.0 13.0 9.3

CEV
C1 59.2 10.9 56.6 13.5 59.9 10.1
C2 4.1 25.9 3.0 27.0 3.4 26.6

Table 4: Confusion matrices for MR-Sort, MR-SortFP, and
MR-Sort-CV when strengthening the bias in favor of false
positives

the experiments fail to show an improvement on the ability of
MR-Sort-CV to classify the benchmark datasets better than
MR-Sort.
These results seem to us preliminary as it is not straight-

forward to state whether the inability to improve the result
by the addition of coalitional veto comes from an insufficient
performance of the algorithm, or from the limited additional
descriptive ability induced by the introduction of coalitional
veto to MR-Sort. Further analysis should be conducted.

5 Conclusion

We have presented MR-Sort-CV a new original extension of
the MR-Sort ordered classification model. This model intro-
duces a new and more general form of veto condition which
applies on coalitions of criteria rather than a single criterion.
This coalitional veto condition can be expressed as a reversed
MR-Sort rule. Such a symmetry enables us to design a heuris-
tic model to learn an MR-Sort-CV model, based on the use of
an algorithm to learn MR-Sort. Preliminary results are inter-
esting, but further investigations are needed to take benefit
of this new ordered classification model.
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