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Abstract This paper analyzes, in the context of cell dynamics in the vicinity
of the vascular wall, the stochastic variability of the number of bonds existing
between a circulating cell and the wall when there is a negative feedback loop
between the cell instantaneous velocity and the bond dynamics: the faster the
cell goes, the more likely existing bonds are to disassemble. The goal of this
work is to describe the dynamics of the cell according to the blood flow velocity.
With a classical birth and death-like dynamics, in the spirit of [?,?], we prove
that, under different scaling regimes, the number of bonds, or equivalently
the cell velocity, follows either an ordinary differential equation or a stochastic
differential equation, whose analysis allow to identify a threshold shear velocity
associated with the transition from cell rolling and firm adhesion. Simulations
are used to study other aspects of adhesion such as the the mean stopping
time of the cell resulting from this dynamics.
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Fig. 1: Scheme of the multistep cascade of leukocyte extravasation. Reprinted
by permission from Macmillan Publishers Ltd: Nature Reviews Immunology
[?], copyright (2007).

1 Introduction

1.1 Biological context

Cell adhesion to the vascular wall is a major process involved during inflamma-
tion or metastasis invasion [?]. The adhesive interaction between circulating
cells and endothelial cells forming the wall occurs in the presence of hemo-
dynamic forces exerted by the blood flow, and is depicted in Figure 1 for
leukocytes. Adhesion bonds can form between cell transmembrane proteins
called ligands and adhesion receptors at the vascular wall surface. The first
step of interaction happens when enough bonds between the cell and the wall
are stabilized so that the cell is slowed down, this is the so called capture
phase. Then, cells roll along the stimulated endothelium, as new bonds form
in the direction of motion and bonds at the back disassemble. This step is me-
diated by receptor molecules of the selectin family. During rolling, endothelial
cells may also be stimulated, and consequently another family of cell recep-
tor molecules, the integrins, is activated on the circulating cell surface. The
integrins mediate the firm adhesion which slows the cell enough so that it
can penetrate the vascular wall allowing for the further development of the
phenomenon at play (immune response, invasion of tissues by metastatic cells
e.g, see for example [?]). It is observed that rolling does not always turn to
firm adhesion, and cells may return in the blood flow. This shows that cell ad-
hesion to the vascular wall is a complex phenomenon for which mathematical
modelling can help understanding its key features.

Cell rolling has been studied in vivo and in vitro in flow chambers, in which
isolated cells are rolling on either monolayers of cultured endothelial cells or
surfaces coated with selectin or other molecules. It has been observed that the
velocities of rolling cells are orders of magnitudes lower than the velocities of
non-adherent cells freely moving close to the substratum surface. This indicates
adhesive interaction between the rolling cells and the substratum [?].

The rolling motion has been observed to be stochastic both in vivo [?],
and in vitro [?]. Variation of the rolling velocities of individual cells in time
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has also been observed for experiments in which they roll on a flat surface
bearing a uniform layer of ligands [?]. This suggests that the fluctuations in
cells dynamics in the vicinity of the wall is a reflection of the stochastic nature
of the cells bond formation. Our work aims at investigating its effect on the
cell dynamics in a blood vessel.

1.2 Existing Models

There already exists several models and approaches to study cell adhesion on
the vascular wall. The simplest approach consists in ignoring the cell spatial
structure and to assume a step-wise, stop-and-go motion. In [?] the trajectory
of the center of the cell is approximated by a series of rapid steps in between
which the cell velocity is zero. Two random variables are used to describe the
average distance and lifetime of bond clusters resisting the applied fluid force.
Performing some mean field approximation makes it possible to heuristically
obtain a Fokker-Planck equation which governs the cell velocity evolution. The
drift and diffusion coefficients in the Fokker-Planck equation are heuristically
derived from the non smoothed stepping process of cell displacement and ex-
pressed in terms of the step size and waiting time of this stepping process.
This approach was able to predict that the distribution of rolling velocities is
influenced by the analysis of the variance or dispersion of rolling velocity data
acquired under different experimental conditions.

In the same spirit, in the absence of fluid flow, macroscopic models have
been developed for cell adhesion force [?], where bonds are described as a
distribution function. Its dynamics follows a maturation-rupture equation (also
called renewal equation). In the limit of large bonds turnover, a macroscopic
friction coefficient can be computed [?,?].

In [?], the cell is described as a point carried by the fluid flow and in-
teracting with the endothelium, which is assimilated to a straight line. At
the level of the individual receptor molecule, ligand binding and dissociation
are stochastic processes (Poisson processes). The bond forces are described
by linear elastic forces. In the case where binding and dissociation rates are
constant, averaging leads to a deterministic linear Volterra integro-differential
equation similar to the one considered in [?,?], that provides information on
the cell location. Linear continuous models are not satisfactory as they can
not describe the strong dependency of cells arrest on shear flow. In [?] force-
dependent bond rates and/or nonlinear elastic laws were also considered. For
these nonlinear models a threshold on the blood velocity, under which the cell
velocity vanishes, was numerically observed. Furthermore the link between the
stochastic nonlinear processes and the deterministic nonlinear equations was
only done numerically.

In [?,?], a numerical model was considered to describe the interplay be-
tween hydrodynamic transport and specific adhesion. In these works, the cell
is modeled as a hard sphere covered with receptors moving above a planar
ligand-bearing wall. The ligand-receptor binding follows a chemical kinetic
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dynamics according to Bell’s law, [?]. Bonds then exert elastic forces on the
sphere while the linear shear flow exerts both hydrodynamic force and torque.
In [?], the Brownian motion of the sphere is taken into account in order to
model the spatial receptor-ligand encountering more precisely. Algorithms that
allow to simulate the cell motion as well as the formation and rupture of bonds
between receptors and ligands are given. The strength of these models is to
allow for a numerical study of the influence of bonds that easily rupture in
response to force on the motion of the sphere.

1.3 Results of the paper

The main goal of this paper is to estimate the effects of the adhesion activity
and the blood flow on the dynamics of a circulating cell located in the vicinity
of the arterial wall. To do so we build some 1D stochastic models, of birth
and death types, for a cell developping adhesive interaction with the vascular
wall. The difference in these models lies in the creation, reproduction and
dissasembly rates. In the linear case and in the case where there is a nonlinear
coupling between at least one of the rates and the instantaneous cell velocity,
we study the efficiency of adhesion. For a given blood flow velocity the main
characteristics used for the study are the mean number of bonds the cell has
created with the wall and the mean time to reach the critical number of bonds
that will stop the cell. In particular, we look for a model that is able to capture
the transition from cell rolling to either its stopping or its release in the blood
flow. For this purpose, we perform and justify some scaling limits to provide
key quantities on the effect of the cell adhesion activity on the dynamics of
the cell.

Following [?], we consider a minimal discrete stochastic model where the
cell is a point particle submitted to blood flow with 1D constant velocity. The
adhesion dynamics consists in a Markovian Jump process for the formation
and disassembly of closed bonds related to units of resistive force. The choice
of a stochastic model follows biological observations of e.g [?]. This model has
some similarities with the model heuristically derived in [?] but takes a more
detailed view of the events between the cell and the endothelium in the spirit
of [?]. Moreover, the main difference with the model studied in [?] is that the
bond force is constant instead of elastic. We model the loop between the cell
velocity and the bond formation dynamics. This leads to a nonlinear stochastic
jump process to describe the velocity of the cell.

Since the number of bonds involved in cellular adhesion is high enough so
that the adhesion dynamics can be considered continuous in time, in a second
step we let the number of bonds go to infinity while the contribution of each
bond to the adhesion force goes to zero. In the spirit of [?,?], we rigorously
derive continuous limiting models for the cellular adhesion dynamics. Depend-
ing on the renormalization assumptions, we obtain either a deterministic or
a stochastic model, that we both study. The deterministic model successfully
predicts the threshold wall shear stress above which rolling does not occur and,
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for some parameter values, it predicts the cell stationary adhesion. We also
study the continuous stochastic model and derive information on the mean
time needed for the cell to stop. To do so, in a first step we show that in a sim-
plified setting, we obtain the Cox-Ingersoll-Ross (CIR) process, for which the
probability density of the arrest time is explicitly given and shows a transition
between the stopping of the cell and its release in the blood flow. Then, using
a Fokker-Planck approach, we derive the mean stopping time of a circulating
cell for the model that includes a feedback of the fluid on the bond dynam-
ics. We believe that this work can have strong implications for the immune
response, drug delivery systems, as well as tumor invasion. More precisely, our
model could be used as a first step in the construction of a permeability law
for the vascular wall. In a further work, it will be compared with experimental
in vivo data obtained in [?] in the study of metastatic invasion.

The plan of this article is the following. In Section 2, we detail the con-
struction of the discrete stochastic model for the individual bond dynamics,
and we perform its analysis together with numerical simulations. In section 3,
we proceed to rigorous derivations of the continuous equations, either deter-
ministic or stochastic, satisfied by the cell velocity. It allows to analytically
study the influence of bonds which have formed between receptors and ligands
on the cell motion. In particular, the continuous deterministic model predicts
that the cell can either develop no bonds with the vascular wall when the shear
velocity is high and/or the wall is in a lowly inflamed state with a low density
of adhesion proteins, or the cell decelerates and rolls on the wall with eventu-
ally sufficient high decelaration so that the zero velocity is reached. We show
that there is a well-defined region of the parameter space where this dichotomy
exists and we provide some quantitative information about the cell dynamics.
In addition we study the stochastic model and we derive the cell mean stop-
ping time. In section 4 we discuss our results and show that it provides key
quantities to characterize the cell’s long term motion.

2 A Markovian Jump process for the cell adhesion dynamics

We first present the stochastic model used to investigate the adhesion process
outlined in the introduction. We will use a classical birth and death model
for bonds turnover. Like in most of the literature, see [?], it is assumed that
the bond has a duration with an exponential distribution. Then, we study its
mathematical properties and we perform some numerical simulations.

2.1 Modelling approach

Let us consider a cell carried by the blood flow. We suppose that the size of the
gap between the cell and the blood vessel wall is small enough so that bonds
between the cell and the vascular wall may always form in the contact area.
Since the cell is in the vicinity of the wall, we assume that the blood shear
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flow is 1D, parallel to the vascular wall and with a constant velocity, denoted
by u ∈ R+.

Deformability may play a role in the cell dynamics inside the blood flow and
in interaction with the vessel wall. However, some large cells like Circulating
Tumor Cells can be very stiff [?], and still show the behaviour under study
in this paper. Therefore, we choose here to neglect cell deformability and to
focus on the intracellular adhesion dynamics with the vessel wall.

In previous studies, see [?,?] e.g., it was shown that approximating the
contact area by a simple geometrical figure (a circle or a rectangle) and ne-
glecting the increase of the contact area with the flow shear rate due to cell
deformability do not change qualitatively the analysis. Moreover, as suggested
in [?], the cell adhesion is primarily determined by physicochemical properties
of adhesion proteins and, thus, to a first approximation, we assume the cell to
be a point particle whose position at time t ≥ 0 is denoted by Xt.

Velocity model

To describe the cell motion, we use a non-inertial approximation. Indeed, in
the limit of low Reynolds number, viscous forces dominate over inertial forces
and the momentum equation reduces to the force balance principle:

Vt = u− γFt,

where Vt ∈ R is the cell velocity, u is the blood shear flow and the cell is
subjected to a macroscopic resistive force, denoted by Ft ∈ R+, induced by
the bonds that contribute to decelerating the cell, see Figure 1. The parameter
γ is such that γ−1 is a friction coefficient, following a linear force-velocity
relation. The previous equation is valid only for γFt ≤ u, as for a maximal
force the cell stops, and the model is no longer valid. The resistive force arises
from the strength of the cell adhesion to the vessel wall. Cellular adhesion is a
macroscopic readout of the forces exerted by the wall on the cell through each
bond [?]. As a consequence, we assume that

Ft = fNt ,

where f ≥ 0 is the typical force generated by a stabilized bond, and Nt is the
number of stabilized bonds at time t. Note that f ranges in pN [?], but its
precise value depends on the experimental conditions.

Non-dimensionalization

We introduce now typical quantities for our problem: we use the typical force
related to a bond, the corresponding velocity, and the typical range of lifetime
of a bond [?]. We obtain the following table:

F V = γF T
f γf 1s
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Therefore, keeping the same notations for simplicity, the nondimensionalized
problem writes

Vt = u−Nt .
We now construct the process (Nt)t of the number of stabilized bonds over
time.

Stochastic model for the adhesive force

Let us now present the simple discrete model we use to describe the individual
bonds dynamics. We write (Nt)t the Markovian processes for the number of
stabilized bonds at time t, that follows a classical birth and death-like dynamics
in the state space N.

• New bonds form spontaneously at rate c(u) = c1u≤u∗ , for a velocity tresh-
old u∗ above which no new bonds can be created, due to the high blood
velocity.

• Each existing bond can reproduce at constant rate r. This phenomenon
captures the local reinforcement of the connection to the vessel wall by
implication of integrins in adhesion growth, that can be imputed to cy-
toskeletal forces or external stresses [?]. Moreover, intuitively, if an ad-
hesion complex is composed of a large number of bonds, the unbounded
molecules can find an attachment more easily compared to a less stable
adhesion formed of fewer molecules.

• Each bond dissociates at the velocity-dependent rate d(Vt) = deαVt =
deα(u−Nt). We choose here an exponential relation, where d is the un-
stressed bonds dissociation rate, and α is a sensitivity parameter. This
choice accounts for the fact that the average lifetime of an adhesion site
changes with the applied tension from the blood flow so that the faster the
cell goes, the more likely existing bonds are to disassemble. Note that since
the cell velocity is bounded by u in our study, so is the dissociation rate.
In the following, we will write indifferently d(Vt) or d(Nt).

Remark 1 The rate for a single bond formation between two proteins is actu-
ally mostly determined by the time the two proteins spend near one another.
Therefore, the rate c should depend on the cell velocity when the relative
velocity between the cell surface and the wall is non zero. A more realistic
choice for c would be to consider a decreasing function of the instantaneous
cell velocity Vt. A prototypical behaviour would be given by c(v) = (u∗ − v)+
where ( · )+ denotes the positive part function. Recalling that Vt is related to
Nt this rewrites c(n) = (u∗ − u+ n)+ for n the number of stabilized bonds.
For such a choice, and assuming that v ≤ u∗, the dependence on n then only
provides an additional contribution to the reproduction rate.

Note that these rates are also representative of the adhesive properties of the
endothelial cells forming the vessel wall. The key point here is that there is a
feedback loop between the instantaneous cell velocity and the bonds dynamics.
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More elaborate dependency could be considered (see e.g [?,?]), in particular
involving age dependences to model the bond elasticity (see [?]), but we choose
to keep a minimal set of parameters, as for simplicity as for the sake of clarity.

The balance between the adhesion force on the one hand, and the load
and torque created by the blood flow on the other hand then determines the
outcome of the dynamics: cell rolling and arrest or its release in the blood flow.

2.2 Mathematical properties of the discrete model

In this section we derive some mathematical properties and we perform numer-
ical simulations on the process (Nt)t. The dissociation rate being nonlinear,
classical tools do not apply. Since we are interested in the dynamics while
Vt ≥ 0, that is to say while Nt ≤ u, we define the stopping time

τu := inf
t≥0
{Nt ≥ u} .

We are interested in the Markovian jump process (Nt)t∈[0,τu] defined by the
following transitions:

n 7→
{
n+ 1 at rate λ(n) = c(u) + rn ,
n− 1 at rate µ(n) = d(n)n ,

(1)

where λ and µ are defined on N, and are bounded. It is classical that such a
process is well-defined (see e.g [?]). We also control the mean number of bonds
in finite time.

Proposition 1 (Moments propagation) Assume that there exists p ≥ 1
such that E [Np

0 ] < +∞. Then,

E

[
sup

t∈[0,T∧τu]
Np
t

]
< +∞∀ T > 0 .

Proof This Proposition is proved in a more general framework in Appendix
A.

The mean path of this process can not be fully studied in the general case.
Indeed, for E [N0] < +∞, we classically write the mean equation

E [Nt∧τu ] = E [N0] + c(u)R[t ∧ τu] + E
[∫ t∧τu

0

(
r − deα(u−Ns)

)
Ns ds

]
(2)

where even assuming t ≤ τu, the nonlinearity would prevent any analysis.
In a simpler case, namely when there is no feedback of the cell velocity

on the adhesion dynamics, and without considering the stopping time τu, we
obtain a classical immigration-birth-death process, that was already studied
in [?,?]. More precisely, (Nt)t then follows a negative binomial distribution of

parameters
(
c(u)
r , rd

)
. It follows that
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E[Nt] =

{
E[N0] + c(u)t if r = d ,

E[N0]e(r−d)t + c(u)
r−d

(
e(r−d)t − 1

)
otherwise.

(3)

At steady state, one finds

E[N ]∞ :=

{
c(u)
d−r for r < d ,

+∞ otherwise,
⇔ E[V ]∞ :=

{
u− c(u)

d−r for r < d ,

−∞ otherwise,

with

Var(N∞) =
c(u)

d
(
1− r

d

)2 .
In the case of a circulating cell, we are only interested in the situation where
v ≤ u. As a consequence, assuming E[N0] = 0 and u > 0, we obtain the
following mean asymptotic behaviours:

u > u∗
v = u Cell release

c(u) = 0

u ≤ u∗
r < d

0 <
c

d− r
< u Cell rolling

c(u) = c > 0
0 < u ≤ c

d− r Cell arrest

r ≥ d Cell arrest

These results show that the birth and death dynamics without feedback in-
trinsiquely carries a dichotomic asymptotic behaviour. However, such a model
is not fully satisfactory, since no shear treshold effect appears further from the
one ensuring the initiation of the adhesive interaction.

2.3 Numerical Simulations

The process (Nt)t being Markovian, it can be simulated directly events after
events. Consider the population size NTk at time Tk. Then,

• the global jump rate writes ςk = λ(NTk) + µ(NTk). This means that the
time before the next event is a random variable distributed following an
exponential law of parameter ςk. A realization of this law provides Tk+1.

• a new bond is created with probability
λ(NTk )

ςk
, while with probability

µ(NTk )

ςk
a randomly chosen bond disassembles, and NTk+1

follows.

This procedure can be iterated to give the time evolution of the process. Nu-
merical simulations of the process are displayed in Figure 2. It is observed
that the velocity may either shrink to zero or remain close to u for the same
parameter values. Note also that rolling phases are observed in both cases.
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(a) The stochasticity induces a large rolling
phase that ends up in the cell arrest.

(b) The cell only experiences a small rolling
phase that does not prevent its release in the

blood flow.

Fig. 2: Numerical simulations of the discrete process defined by (1). Parame-
ters: (u, c, r, d, α) = (33, 4, 5, 3, 0.1).

3 Continuous limiting models and characterization of the dynamics

It has been seen in the previous section that, for the nonlinear model, the
mean path of this process can not be fully studied in the general case. In this
section we separate the scale of the adhesion dynamics from the one of the
cell motion. Such scale separation is justified by the large number of bonds,
and by the very fast binding dynamics, compared to the cell displacement.
This is illustrated by the fact that the lifetime of a bond is of the order of 1 s,
the ligands association rate is about 103 s−1 whereas the cell rolling velocity
is around 30µm s−1, see [?] and the references therein. As will be seen, this
assumption allows to use a scaling approach to derive two continuous limiting
models, for which deeper analysis can be pursued.

More precisely, we let the number of bonds grow to infinity while the
individual contribution to the adhesion force shrinks to zero, so that the global
adhesive force keeps a constant range. We also accelerate the dynamics of
bonds turnover using two scalings, that lead to different types of limiting
continuous models.

Let K ≥ 1 be a parameter scaling the number of the discrete adhesions
we consider. We assume that 1

K scales the force generated by each one. This
amounts to looking at adhesion sites at a smaller and smaller scale. Moreover,
we assume that the dynamics gets faster and faster. Hence, we consider now
K-dependent rates cK , rK , and dK , related to the process (NK

t )t. We define
the renormalized process (ZKt )t by

ZKt =
1

K
NK
t ∈

1

K
N. (4)
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3.1 Deterministic continuous limiting model

We consider the following rates:

cK(u) = Kc(u) , rK = r and dK(KZKt ) = d(ZKt ) . (5)

In other words, while we consider an increasing number of smaller adhesions,
only their spontaneous formation is intensified, while the self-enhancement of
the adhesion dynamics and their lifetime stay the same. From the modelling
viewpoint such an assumption amounts to considering an increasing number of
smaller adhesions, each of them involving a small number of proteins on each
side (wall and cell). Note that since the reproduction is not accelerated, the
clustering leading to adhesion growth is not large enough to induce stochastic
fluctuations at the cell level. The case where it does is considered hereafter, see
paragraph 3.2, when the individual dynamics of the bonds is also accelerated.
In this context, we obtain the following convergence result.

Theorem 1 If ZK0 −→
K→+∞

n0 ∈ R+ in probability, and if

sup
K>0

E
[
(ZK0 )2

]
< +∞ ,

then, for T > 0, (ZK)K>0 converges in law in D ([0, T ],R+) to the unique
continuous function n ∈ C([0, T ],R+) solution to

n(t) = n0 +

∫ t

0

c(u) + (r − d(n(s)))n(s) ds . (6)

Remark 2 By the Gronwall lemma, one has for T <∞,

sup
t∈[0,T ]

n(t) ≤ (n0 + cT )erT < +∞ ,

showing that the global density stays finite in finite time.

Proof The proof is displayed in Appendix B.

We perform now the analysis of the limiting problem. Let us define the function
F by: F (n) = c1u≤u∗ +

(
r − deα(u−n)

)
n. We prove the following result.

Proposition 2 Assume that the rates are given by (5). Then the stationary
state(s) n∞ of (6) are as follows.

1. If u > u∗, then the system admits two stationary states n∞1 = 0 and
n∞2 = u− 1

α ln( rd ). The smallest is stable and the largest is unstable.
2. If u ≤ u∗,

(a) for u ≤ 1
α ln

(
r
d

)
, then n∞ = +∞.

(b) for u > 1
α ln

(
r
d

)
, then there exists a unique 0 < n̄ < 1

α such that
F ′(n̄) = 0 and

i. If F (n̄) > 0, then n∞ = +∞.
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ii. If F (n̄) = 0, then n̄ is the unique stationary solution.
iii. If F (n̄) < 0, then there exists two stationary solutions n∞1 and n∞2 ,

such that 0 < n∞1 < n̄ < n∞2 < +∞, the smallest being stable and
the largest unstable.

Proof The case u > u∗ follows from a direct computation. Consider the case
where u ≤ u∗, then one has

n′(t) = c+
(
r − deα(u−n(t))

)
n(t) = F (n(t)) .

A quick computation shows that

F ′(n) = r + d (αn− 1) eα(u−n) ,

F ′′(n) = αd (2− αn) eα(u−n) .

We can study the sign of F ′(n) and get the following variation table:

n 0 2
α +∞

F ′′(n) + 0 −

F ′(n)

r − deαu

��
�

�

F ′( 2
α ) > 0

@
@
@R

r

As a consequence,

– If u ≤ 1
α ln

(
r
d

)
, then ∀n ∈ R+, F (n) ≥ c > 0, hence n∞ = +∞.

– If u > 1
α ln

(
r
d

)
, then there exists a unique n̄ > 0 such that F ′(n̄) = 0.

Since n̄ < 2
α , we obtain the following variation table from which the result

follows:

n 0 n̄ < 2
α +∞

F ′(n) − 0 +

F (n)

c > 0
@
@
@R
F (n̄)

��
�

�

+∞

Notice that since u > 1
α ln

(
r
d

)
⇔ deαu > r, both behaviours arise according

to the comparison between the reproduction and death rates. Note also that
since F ′ is strictly increasing on

(
0, 2

α

)
and that F ′(1/α) = r > 0, we have

that n < 1/α.

Let us comment on these results. First of all, not surprisingly, our model suc-
cessfully predicts the threshold wall shear stress above which nor capture nor
rolling does occur. This is due to the regulation by shear of the number of
bonds: the number of bonds falls below one. Moreover, the model predicts ex-
istence of cell adhesion bistability, which results from the competition between
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the two processes taking place in the cell-wall contact area: bond formation
and rupture. Finally, the model predicts stationary adhesion which is observed
experimentally.

Remark 3 Note that if u∗ ≥ u > 1
α ln

(
r
d

)
the three cases described in the

proposition above may occur. Indeed, consider the particular case where d > r

and u =
1− rd
α , then n̄ = u and F (n̄) = c − (d−r)2

αd whose sign depends on the
value of c. The dynamics is then dependent on the ability of the cell to form
bonds at primary contact.

We are now interested in the consequences of this study for our model of cell
adhesion to the vessel wall. Therefore we consider that the problem (6) is valid
up until the adhesion density reaches u, in which case the cell velocity reaches
0. The following Corollary locates u with respect to the stationary state(s) of
the system. This allows us to assess the cell fate depending on the parameter
values. For α > 0, denote the key parameters

Uα :=
1

α
ln(r/d) Uα :=

1

α
(1− r/d) Uc :=

c

d− r
C :=

1

αd
(r − d)2 .

Corollary 1 Let n0 ∈ [0, u] with u > 0. Then, the problem (6) admits either
one stationary state denoted by n∞, or two stationary states n∞1,2 such that
0 < n∞1 < n∞2 , the smaller one being stable and the larger unstable.

1. If u > u∗:
(a) for r ≤ d, then n∞1 = 0 and n∞2 = u− Uα ≥ u.
(b) for r > d, if u ≤ Uα, n∞ = 0 ; if u > Uα, one has n∞1 = 0 < n∞2 =

u− Uα < u.
2. If u ≤ u∗, then

(a) for r < d, ∃!0 < n̄ < 1
α such that F ′(n̄) = 0.

i. For u > Uα, F ′(u) > 0, so that u > n.
A. If u > Uc, then we have 0 < n∞1 < n < u < n∞2 .
B. If u = Uc, then 0 < n∞1 < n∞2 = u.
C. If u < Uc, then if F (n̄) < 0, one has 0 < n∞1 < n < n∞2 < u ;

if F (n̄) = 0, then n∞ = n < u ; if F (n̄) > 0, then n∞ = +∞.
ii. For u = Uα, then u = n.

A. If c > C, then n∞ = +∞.
B. If c = C, then n∞ = u.
C. If c < C, then 0 < n∞1 < u < n∞2 .

iii. For u < Uα, then 0 < u < n.
A. If u = Uc, then n∞1 = u < n∞2 .
B. Otherwise, if F (n̄) = 0, then u < n∞ = n ; if F (n̄) > 0, then

n∞ = +∞. Finally, if F (n̄) < 0, then u < n∞1 < n∞2 when
u < Uc, and n∞1 < u < n when u > Uc.

(b) For r = d, there exists a unique 0 < n̄ < 1
α such that F ′(n̄) = 0 and

u > n. If F (n̄) < 0, we have 0 < n∞1 < n < n∞2 < u. If F (n̄) = 0,
n∞ = n < u. If F (n̄) > 0, n∞ = +∞.

(c) For r > d, F (u) > 0.
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i. if u ≤ Uα, then n∞ = +∞.
ii. if u > Uα, then ∃!0 < n̄ < 1

α such that F ′(n̄) = 0 and u > n.
Then, if F (n̄) < 0, we have 0 < n∞1 < n < n∞2 < u. If F (n̄) = 0,
n∞ = n < u. If F (n̄) > 0, n∞ = +∞.

Proof The corollary results from Proposition 2 combined with the sign analysis
of F (u) and F ′(u) that depend on parameters values.

Let us give an interpretation of these situations. Table 3a gives the outcome
of the cell dynamics in the case when u > u∗. In this case, the blood flow is so
fast that the cell does not initiate any new adhesion. However, the dynamics
may still be interesting in the case where some bonds already exist and may
be stabilized by the self-enhancement of the activity of formation of bonds.
Then, if r ≤ d, dissociation is always more frequent than enhancement of
existing adhesions, so that starting with n0 ≤ u, the cell tends to be released
in the blood flow. When r > d, then depending on α, the sensitivity of the
dissociation rate on the cell velocity, the cell is either released in the blood
flow, or may experience rolling when α is small.

Table 3b shows the cell possible outcomes in the case when u ≤ u∗. In
this situation, the whole adhesion formation dynamics is active. Then, the
conditions discriminating between different cell fates are based on the balance
between the formation of adhesion bonds (related to r and c), and their disso-
lution (related to d and α). This study shows how Equation (6) carries more
complex behaviours in comparison with the mean linear ODE (3).

r > d u ≤ Uα n∞ = 0 Cell release
u > Uα n∞1 = 0 < n∞2 = u− Uα < u Cell release and Cell rolling

r ≤ d n∞1 = 0 < u < n∞2 = u− Uα Cell release and Cell arrest

(a) Case u > u∗

r > d u ≤ Uα n∞ = +∞ Cell arrest
u > Uα

u > n
Cell arrest

r = d or Cell rolling
r < d

u > Uα

u < Uc or Two rolling regimes
u = Uc 0 < n∞1 < n∞2 < u Two rolling regimes
u > Uc 0 < n∞1 < u < n∞2 Cell rolling and Cell arrest

u = Uα

c < C

c = C n∞ = u
Cell arrestc > C n∞ = +∞

u < Uα

u = Uc 0 < n∞1 = u < n∞2

u 6= Uc 0 < u < n
Cell rolling and Cell arrest

or Cell arrest

(b) Case u ≤ u∗

Fig. 3: Table of stationary solutions of (6) and corresponding situations. Sta-
tionary solutions are in red if unstable, blue if stable.
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3.2 Stochastic continuous limiting model

In this section, we consider the following rates:

cK(u) = Kc(u) rK = r +Ka dK(KZKt ) = d(ZKt ) +Ka,

with K > 0 and a > 0. The whole adhesion dynamics is therefore accelerated.
Note that the same acceleration for reproduction and death permits to keep
the same bounded individual growth rate rK − dK = r − d. This way, even
if each adhesion bond reproduces and dies infinitely faster, its contribution to
the global adhesion growth remains the same.

Theorem 2 If for K → +∞ the initial value ZK0 converges in law to a R+-
valued random variable N0, with

sup
K>0

E
[
(ZK0 )2

]
< +∞,

then (ZK)K>0 converges in law in D ([0, T ],R+) to the continuous process
N = (Nt)t∈[0,T ] ∈ C([0, T ],R+) solution of

dNt = b(Nt) dt+ σ(Nt) dBt (7)

with Bt a Brownian Motion, b(Nt) = c(u)+(r−d(Nt))Nt and σ(Nt) =
√

2aNt.

Proof The proof is displayed in Appendix C.

Remark 4 The solution to the SDE (7) is almost surely positive if b(n) ≥ 0
for all n ≥ 0, and for a positive initial state (see the 1D comparison principle
in [?] e.g.).

Numerical simulations We performed numerical simulations of the SDE (7),
using a symmetrized Euler scheme in order to preserve the positivity of the
process. It consists in taking the absolute value of the classical Euler scheme
(see e.g [?]). More precisely, the scheme is the following: write (Nk)k for the
discretization of (Nt)t, where Nk corresponding to the time tk = k∆t. Then,
define N0 = n0 and for k ≥ 0,

Nk+1 =| Nk + b(Nk)∆t+
√

2a∆tNkW | ,

with W ∼ N (0, 1). It is proved in [?] that strong L1 convergence holds for this
scheme if

σ2

8

(
2b(0)

σ2
− 1

)2

> 3P ∨ 4σ2 ,

for P ≥ |r − d| and ∆t ≤ 1
2P . This condition allows to deal with the non

Lipschitz diffusion coefficient, and rewrites in our case

a

4

( c
a
− 1
)2

> (3P ∨ 8a) .

As an example, a4
(
c
a − 1

)2
> 8a is equivalent to

(
c
a − 1

)2
> 32, that is verified

for c > 7a. The numerical simulations are displayed in Figure 4, and show two
typical arrest and release situations.
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(a) Example of cell arrest, c = 4. (b) Example of cell rolling, c = 5.

Fig. 4: Numerical simulations of the solution of the SDE (7). Parameters:
(u, r, d, α, a) = (20, 5, 4, 0.1, 0.55).

Stopping time

The rolling motion of individual cells has been observed to fluctuate randomly
both in vivo and in vitro, hence it is natural to study the stochastic model
obtained in Theorem 2 to understand the effect of these fluctuations. In par-
ticular we are interested in the probability for a rolling cell to stop, that is to
say for the velocity to reach 0. More precisely, in this section we compute the
mean time τu needed for the process to reach u starting from n0.

The case without feedback: the CIR process When we assume that the cell
velocity exerts no feedback on the disassembly of bonds, the model given by
(7) reduces to the CIR process, see [?,?,?]:

dNt = (c+ (r − d)Nt) dt+
√

2aNt dBt , (8)

with c > 0, a > 0 and r− d ∈ R. It is known for demographical processes that
the diffusion limit of discrete branching processes with immigration results
in such processes [?], and show a dichotomy behaviour. Depending on the
parameters, the density either almost surely has values close to 0, or almost
surely reaches large values, leading to the almost sure arrest of the cell in our
model. Simulations of this process are displayed in Figure 5. Some general
properties of the CIR process are displayed in Appendix D. In particular,
its stationary probability density is represented in Figure 5 and shows the
transition between both behaviours.

Time to reach u: It is also possible to obtain information on the time to
reach a given value. More precisely, one can get the Laplace transform of the
first hitting time of any value, starting at a given point [?,?]. It is not possible
to proceed to its inversion analytically. Numerical inversions procedures exist,
and some of them are compared in [?]. They do not always provide satisfactory
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(a) Subcritical case with
(c, a, r, d) = (0.5, 1.5, 4.45, 4.5).

(b) Supercritical case with
(c, a, r, d) = (2, 1, 4, 4).

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1
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0.25

0.3

0.35

0.4

0.45

n

p
∞
(n
)

(c) Subcritical case with (c, a) = (1, 2).
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0
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0.08

n

p
∞
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)

(d) Supercritical case with (c, a) = (5, 2).

Fig. 5: Up: numerical simulations of the CIR process (8). In the subcritical
case, the adhesion density almost surely reaches zero, while in the supercrit-
ical case, an adhesive interaction is almost surely sustained. Down: numeri-
cal simulations of the stationary probability density of the CIR process for
(u, α, r, d) = (20, 0.1, 4, 4.5).

results: the integral of the output may not be equal to one, and negative
values may appear. The procedure proposed by [?] seems satisfactory in this
viewpoint.

In this paper, we follow the work of [?,?] to compute numerically the first
hitting time density using an eigenfunction decomposition, following an ap-
proach used for diffusions [?,?,?]. For the CIR process, it is established in [?,?]
that the same type of decomposition holds. We give now the result of [?] that
provides a series expansion for the density fTx→y of the first hitting time of y
starting from x.

Proposition 3 [?]
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i) For 0 < x < y ∈ I, and t > 0 we have

fTx→y (t) =

+∞∑
n=1

onλne
−λnt , (9)

with uniform convergence on [t0,+∞), t0 > 0, and (λn)n a strictly posi-
tive and strictly increasing sequence with λn growing to +∞ as n goes to
infinity. More precisely, we have that

λn = (r − d)sn ,

with (sn)n the strictly decreasing sequence of strictly negative roots of
Φ( · ; c/a; y) = 0, with Φ(w1;w2;w3) denotes the Kummer confluent hy-
pergeometric function. The sequence (on)n is defined by

on = − Φ(sn; c/a;x)

sn∂s(Φ(sn; c/a; y))
,

for y := − r−da y and x := − r−da x.
ii) Moreover, the following asymptotics hold:

λn ∼
n→+∞

(d− r)π2

4y

(
n+

c

2a
− 3

4

)2

− (r − d)c

2a
, (10)

as well as

on ∼
n→+∞

(−1)n+12π(n+ c/(2a)− 3/4)

π2(n+ c/(2a)− 3/4)2 − 2c
a y
× e 1

2 (x−y)
(
x

y

) 1
4−

c
2a

cos

(
π

(
n+

c

2a
− 3

4

)√
x

y
− πc

2a
+
π

4

)
.

(11)

Therefore, the proposed numerical method requires to compute the set of
negative roots of Φ to get approximations of the families {λn}n and {on}n.
The choice of the level of truncation for the approximation of (9) can be made
using the following estimate:∣∣onλNe−λN t0∣∣ ∼

N→+∞
ANe−BN

2t0 ,

for

A =
2aπ

4y
e
x−y
2

(
x

y

) 1
4−

c
2a

, B =
aπ2

4y
.

Linetsky also notices that using (10)-(11) instead of computating zeros of
the Kummer function provides quite satisfactory results, in particular for c/a
small. For a better accuracy, one can also use the exact expression for the first
term of the decomposition, then the estimates for the others. The following
numerical simulation was performed using only the asymptotic expansion of
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Fig. 6: Numerical simulation of an approximation of the asymptotic spectral
decomposition of (9), the probability density of the first hitting time of 1 of
a CIR process starting at 0.01. Parameters: ∆t = 0.01, c = 0.45, a = 0.5,
r = 0.2 and d = 1. The sum is truncated at Ntres = 100.

λn and on even for n small, since it is observed that this approximation does
not change qualitatively the profile (see Figure 6). Obviously, in this case,
the obtained function is not a probability density, and an inconsistency tends
to appear near t = 0 due to the approximation, but the overall shape was
conserved.

The general case Let us now focus on the general case of Equation (7). As a
first approach we can use the 1D comparison principle (see e.g [?]) to com-
pare the process with CIR processes. In this work, we follow another method
and derive from (7) a Fokker-Planck equation on p(n, t) := p(n, t|n0, t0) the
probability density of (Nt)t conditionally to its initial condition. We obtain
the following equation:

∂p(n, t)

∂t
=

∂

∂n
(−b(n)p(n, t) +

1

2

∂

∂n
(σ2(n)p(n, t)))︸ ︷︷ ︸

J(n,t)

,

where we recall that b(n) = c+ (r(n)−d(n))n, while σ(n) =
√

2an and J(n, t)
is the associated probability current. The natural boundary conditions are the
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following:

J(0, t) = 0 ,

lim
n→+∞

p(n, t) = 0 ,

p(n, 0) = δn=n0 .

We are interested in the mean time necessary for the process to reach the
value u starting from n0 ∈ (0, u), that we denote by τu(n0). This question
can be adressed by considering the Fokker-Planck equation on (0, u) with 0 a
reflecting and u an absorbing barrier. We show the following proposition.

Proposition 4 The mean time τu(n0) necessary for the process to reach the
value u starting from n0 ∈ (0, u) writes

τu(n0) =
1

a

∫ u

n0

∫ y

0

(
z

y

) c
a

z−1e
r
a (z−y) exp

(
d

aα
eαu

(
e−αz − e−αy

))
dz dy .

(12)

Proof Write G(n0, t) the probability that a particle starting at n0 is still in
(0, u) at time t. Then,

G(n0, t) =

∫ u

0

p(n, t|n0, 0) dn = P(τu ≥ t) .

Since the dynamics is homogeneous in time, we deduce that p(n, t|n0, 0) =
p(n, 0|n0,−t) and n0 7→ p(n, t|n0, 0) satisfy the backward Fokker-Planck equa-
tion:

∂p(n, t|n0, 0)

∂t
= b(n0)

∂

∂n0
p(n, t|n0, 0) +

1

2
σ2(n0)

∂

∂n02
p(n, t|n0, 0) ,

and (n0, t) 7→ G(n0, t) satisfies

∂G(n0, t)

∂t
= b(n0)

∂

∂n0
G(n0, t) +

1

2
σ2(n0)

∂

∂n02
G(n0, t) . (13)

The initial and boundary conditions are the following:

G(n0, 0) =

∫ u

0

δn−n0
dn = 1[0,u](n0) ,

∂

∂n0
G(0, t) = 0 ,

G(u, t) = 0 .

Take f ∈ C1(R,R+) non-decreasing. Then, classically, E[f(τu)] =
∫ +∞
0

f ′(t)P(τu >

t) dt =
∫ +∞
0

f ′(t)G(n0, t) dt. Hence, we get for k > 1,

τu(n0) = E[τu] =

∫ +∞

0

G(n0, t) dt ,

τku (n0) = E[τku ] = k

∫ +∞

0

tk−1G(n0, t) dt .
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By integration of (13) in time, we get the following ODEs on the family
(τk)k≥1: 

b(n0)τ ′u(n0) + 1
2σ

2(n0)τ ′′u (n0) = −1 ,

τ ′u(0) = 0 ,

τu(u) = 0 ,

(14)

and for k > 1,
b(n0)τku

′
(n0) + 1

2σ
2(n0)τku

′′
(n0) = −kτk−1u (n0) ,

∂n0
τku (0) = 0 ,

τku (u) = 0 .

(15)

By direct integration, we can directly solve (14), allowing then to solve suc-
cessively the problems (15). Write

Ψ(n0) = e
∫ n0
0

2b(n′)
σ2(n′)

dn′

.

Then, we have

τu(n0) = 2

∫ u

n0

1

Ψ(y)

∫ y

0

Ψ(z)

σ2(z)
dz dy .

In practice, denoting ε > 0 for the lower bound in the integral instead of zero,
we find that

Ψ(n0) =
(n0
ε

) c
a

exp

(
r

a
n0 −

d

αγa
eαu(1− e−αγn0)

)
.

Explicit computations lead to the result.

We perform numerical simulations of τu(0) for varying values of the blood
flow velocity u (see Figure 7). Below a treshold flow velocity, the particle stops
very fast, while it gets extremely slow above the treshold. The numerical phase
plane shows a natural dependency on the adhesion creation rate c. The value
of a, quantifying the noise intensity, has a direct effect on the range of the
time of arrest, but do not change qualitatively the phase plane.

4 Discussion

In this work, we have presented a discrete model for ligands binding on artery
walls. The model is based on a stochastic description of the formation of weak
bonds between the cell and the adhesive molecules on the wall, and of the
stronger ones arising by self-reinforcement. This phenomenon is modelled by
a stochastic birth-and-death-type model. The binding dynamics is affected by
the cell velocity by an interaction on their breaking rate: faster cells have
shorter-lived bonds with the wall.
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(a) Mean first stopping time τu(0) as a
function of u.

(b) Phase plane with respect to u and
the spontaneous binding rate c.

Fig. 7: Numerical simulations of the mean stopping time τu(0) defined by (12)
as a function of u (left), and phase plane depending on the blood velocity u
and the spontaneous binding rate c. Parameters: α = 0.8, r = 0.6, d = 0.7,
a = 0.1.

4.1 Arrest and extravasation of circulating cells: interpreting the results of
the model

The purpose of this model is to explore the events which follow the first wall
contact and may determine whether the cell stops or goes back into the blood
stream. More precisely, we are interested in the stopping time of the cell, that
amounts to the first hitting time of a treshold value for the density of bonds.
For this purpose, we derive continuous deterministic and stochastic models by
performing some scaling limits.

In this framework, the growth in the number of bonds corresponds to cell
deceleration. Eventually, in real vessels, the number of bonds becomes suffi-
ciently large that circulating cells undergo firm arrest and extravasation. Once
this happens, our model ceases to be valid; a different model is required to cap-
ture the fundamental processes involved in extravasation. Cell firm adhesion
on the vessel wall have different implications depending on the cell type. In the
context of Circulating Tumor Cells (CTCs), cell firm adhesion to the vessel
wall is a step made towards the growth and formation of secondary tumors [?].
During the immune response, leukocytes carried by the blood flow experience
arrest and possible firm adhesion to the vessel wall at sites related to inflam-
mation and infection. Their extravasation then allows them to pursue their
immune function. Let us also mention that researches are currently led on the
development of drug delivery systems mimicking this phenomena. Overall, cell
adhesion to vessel walls is a phenomenon showing major applications in biol-
ogy and medecine. It is now clear that understanding the processes involved
in the determination of the location of cell arrest is of prime importance. This
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justifies the development of new mathematical models able to explain the ex-
perimental observations.

4.2 Linear mean ODE model (3) does not agree with known observations

Our first finding concerns the mean linear ODE model in which there is no
feedback of the cell velocity on the bond lifetime, namely ligand binding and
dissociation rates are constant. In such a case, as expected, in the long-time
limit, the mean number of bonds is independent of the shear velocity u. Such a
result does not agree with in vitro and in vivo experiments, [?,?], which show
that preferential regions where cells stop are those with a low flow velocity.
Hence modelling this phenomenon requires a nonlinear model as the one we
further studied.

4.3 The nonlinear model agrees qualitatively with known observations:
hemodynamic forces affect the adhesion dynamics of circulating cells [?]

The study of the nonlinear model was done using a renormalization procedure
based on the biological observation that the orders of magnitude between
the adhesion dynamics and the cell motion are different. This allows us to
rigorously build continuous models either deterministic or stochastic satisfied
by the continuous number of bonds (or equivalently cell velocity).

The deterministic limit was obtained by considering a larger number of
smaller links, and by accelerating also the rate of formation or encounter of
these links (creation). In such a case, the reproduction, that accounts for the
local reinforcement of the adhesion (the clustering), is not accelerated. Roughly
speaking this means that the adhesion process is more ”continuous” at the
beginning, but the adhesion remains relatively weak. This could correspond
to the description of rapid and reversible interactions of selectins with their
carbohydrate ligands. In this case, we obtain a nonlinear ODE, for which
the stationary states and their stability are given. It allows to outline the
existence of a dichotomy behaviour in which the stability of the cell arrest
is explicitly related to the balance between the blood flow velocity and the
adhesion dynamics. It leads to the identification of a wall shear stress value
that separates arrest from moving state. This is due to the fact that in this
nonlinear model, the number of bonds is regulated by shear and may fall below
one. This agrees with the known correlation between cell arrest location and
blood flow [?].

In the case of the stochastic limit, the local reinforcement is also accelerated
by the scaling, yielding a stronger adhesion with a nontrivial effect of the clus-
tering on the stochastic fluctuations of the cell dynamics. As a consequence,
at the limit, we obtain a diffusive SDE on the adhesion density that carries a
nontrivial noise term. In the linear case where no interaction or feedback is de-
scribed, the model resumes to a CIR process, for which some properties of first
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hitting times are known. We use a spectral method to perform numerical sim-
ulations of the corresponding probability density. Finally, for the full nonlinear
model with interaction, we use a Fokker-Planck approach to derive an integral
formulation of the mean arrest time of a cell. Numerical simulations of this
quantity as a function of the flow velocity and the bonds creation rate show
interesting results. First, a dichotomy appears in relation with the flow veloc-
ity: for low flows, the particle is stopped very fast, while above some treshold,
the mean time to stop grows very steeply. Next, we checked that the range of
the arrest time was mostly sensitive to the stochastic fluctuations intensity.
This is in agreement with the observations stated in the introduction.

A second outcome is the ability of the nonlinear model to predict cell adhe-
sion bistability. This follows from the competition between the two processes
taking place in the cell-wall contact area: bond formation and rupture. This
bistability could explain the variability of cells that stop in areas where the
shear is neither too weak nor too strong.

Finally, this model gather key components involved in circulating cells
behaviours in blood vessels. It allows to study how the blood flow affect the
ability of cells to initiate an adhesive interaction with endothelial cells and to
further form clusters of bonds. All in all, these phenomena mediate either the
stable adhesion to the wall or the release of cells in the blood flow.

4.4 Perspectives

Further improvements would consist in extending the modelling framework in
several directions. First, the model could take into account time-dependent
rates, in order to consider a variable blood flow velocity, illustrating the effect
of the heart cycle on the adhesion dynamics. Moreover, it is natural to extend
the model to a 2D setting, where the vessel wall is a surface. For that purpose,
adhesion proteins need to be described with respect to their location of the
cell surafce. This situation could be handled by adding a spatial structure to
the population of bonds, following the framework of [?,?] and further works
on measure-valued stochastic processes.

Finally, further works should emphasize on the comparison with experimen-
tal measures to enlighten conditions of cell stopping. In particular, in [?], the
authors study Circulating Tumor Cells (CTCs) in vivo, and keep track of the
site of arrest of cells with respect to a tuned hemodynamic flow velocity. They
show that cells arrest in blood vessels occurs at sites with permissive flow
profiles. Since CTCs are large and quite rigid cells, our assumption of point-
particle cells is particularly relevant in this setting. Moreover, the adhesion
molecules density on the vessel wall is also controlled experimentally, so that
each feature of the model is characterized by experimental data. In this per-
spective, confronting the model to these data is of great interest, and could
be complemented with the theoretical study of the distribution of positions of
arrest.
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Appendices
A Mathematical properties of the rescaled processes

We consider here the rescaled process (ZKt )t in a general case, where K is
fixed. The two sets of rates considered satisfy the following hypothesis:

Hypothesis 1 For all z ∈ R+,

0 ≤ cK(u) ≤ Kc(u) ≤ Kc, 0 ≤ rK ≤ r +Ka,

0 ≤ dK(z) ≤ d(z) +Ka ≤ deαu +Ka,

where a is a positive constant. In addition the disassembly rate z 7→ dK(z) is
continuous. The total formation and dissociation rate write

λK(z) = cK(u) + rKz , µK(z) = dK(z)z .

By construction, (ZKt )t≥0 is also a Markov process, and for Φ : R+ → R
measurable bounded, its infinitesimal generator writes

LKΦ(Z) = λK(KZ)

[
Φ(Z +

1

K
)− Φ(Z)

]
+ µK(KZ)

[
Φ(Z − 1

K
)− Φ(Z)

]
.

We show the following proposition.

Proposition 5 (Moment, martingale property) Assume that there exists
p ≥ 2 such that E

[
(ZK0 )p

]
< +∞, and that the rates satisfy Assumption 1.

Then, one has

1. ∀ T > 0,

E

[
sup
t∈[0,T ]

(ZKt )p

]
< +∞,

2. for all measurable function Φ : R+ → R for which there exists C such that
∀z ∈ R+, |Φ(z)|+ |LKΦ(z)| ≤ C(1 + zp),

Φ(ZKt )− Φ(ZK0 )−
∫ t

0

LKΦ(ZKs ) ds (16)

is a càdlàg (Ft)t≥0-martingale starting from 0.
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3. The process

MK
t = ZKt − ZK0 −

∫ t

0

1

K
cK(KZKs ) +

(
rK(KZKs )− dK(KZKs )

)
ZKs ds

(17)

is a càdlàg square-integrable martingale starting from 0 and of quadratic
variation〈

MK
〉
t

=
1

K

∫ t

0

{
1

K
cK(KZKs ) + (rK(KZKs ) + dK(KZKs ))ZKs

}
ds .

(18)

Proof Although the proof is similar to proposition 2.7 in [?] we recall it here
for clarity. In the following C will denote a positive constant which value can
change from line to line. Let (Ω,F ,P) be a probability space, Z0 an integer-
valued random variable, and M( ds, dw) an independent Poisson Point Mea-
sure on R2

+, of intensity measure dsdw. Denote by (Ft)t≥0 the canonical filtra-
tion generated by these objects. Then, we define the (Ft)t≥0-adapted càdlàg
process (ZKt )t≥0 as the solution of the following SDE: ∀t ≥ 0,

ZKt = ZK0 +

∫ t

0

∫
R+

(
10≤w≤λK(ZK

s−
) − 1λ(ZK

s−
)<w≤λK(ZK

s−
)+µK(ZK

s−
)

)
M( ds, dw) .

This representation is classical (see e.g [?,?]). The Poisson jumps related to
the measure are accepted or rejected thanks to the indicator functions. The
variable w is then used as an acceptance parameter in order to get the desired
rates for each event. Now, writing that P− a.s, for a positive and measurable
test function Φ,

Φ(ZKt ) = Φ(ZK0 ) +

∫ t

0

∫
R+

[
(Φ(ZKs− + 1)− Φ(ZKs−)10≤w≤λK(ZK

s−
)

+(Φ(ZKs− − 1)− Φ(ZKs−)1λK(ZK
s−

)≤w≤λK(ZK
s−

)+µK(ZK
s−

)

]
M( ds, dw) ,

so that for Φ(ZKt ) =
(
ZKt
)p

and neglecting the negative death term, we get

(
ZKt
)p ≤ (ZK0 )p +

∫ t

0

∫
R+

(
(ZKs− + 1)p −

(
ZKs−

)p)
10≤w≤λK(ZK

s−
)M( ds, dw) .

Taking expectations, and using that for p ∈ N, (1 + z)p− zp ≤ C(p)(1 + zp−1),
we obtain that

E

[
sup

t∈[0,T∧τu]

(
ZKt
)p] ≤ E[

(
ZK0
)p

] + C(p)E

[∫ T∧τu

0

(
1 + ZKt−

) (
1 +

(
ZKt−

)p−1)
dt

]

≤ E[
(
ZK0
)p

] + C(p)

(
T +

∫ T

0

E

[
sup

u∈[0,t∧τu]

(
ZKu−

)p]
dt

)
.
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We conclude with the Gronwall Lemma together with the assumption on the
initial condition. Point 2. of the proposition is a classical property of such
Markov processes, and is used to obtain the other points. The quadratic vari-
ation is obtained by considering the semi-martingale structure for Φ(z) = z2

and Φ(z) = z, and applying the Ito formula to the latter to obtain another

semi-martingale structure for
(
ZKt
)2

. The uniqueness of the decomposition
leads to the result.

B Proof of the deterministic convergence

The proof is similar to the one in [?,?]. It is based on a compactness-uniqueness
argument. First, note that the uniform estimate

∀ T > 0, sup
K>0

E

[
sup

t∈[0,T∧τu]
(ZKt )p

]
< +∞ .

holds, following the same framework as in Proposition 5 in Appendix A, since
we have K-uniform bounds. This allows to show the uniform tightness of the
sequence of laws (QK)K of (ZK)K .

Then, from the Prokhorov theorem we deduce the relative compactness of
the family of laws (QK)K on D([0, T ],R+). Consider a convergent subsequence
of limit Q, and consider a corresponding sequence of processes converging in
distribution to n ∈ D([0, T ],R+) of law Q. We need to identify this limit.
Firstly, since the jumps of (ZKt )t are of the form 1/K, we know that any
process of law Q is almost surely strongly continuous. For t ≤ T ∧ τu, denote

Ψt(n) := nt − n0 −
∫ t

0

{c(u) + (r − d(ns))ns} ds .

We can prove easily that for all t ≤ T , EQ [|Ψt(n)|] = 0. Finally, the conver-
gence follows from the uniqueness in C([0, T ],R+) of the solution to (6), which
comes from the Lipschitz-continuity of the disassembly rate.

C Proof of the stochastic convergence

C.1 Uniform estimates on the processes

We first prove two propositions that give uniform estimates on the process.
They will be used to show that any sequence of laws associated with the
sequence of processes (ZKt )K is tight.

Proposition 6 Consider the process (ZKt )t≥0 defined in (4). If

sup
K>0

E[(ZK0 )2] < +∞,

then for T < +∞,
sup
K

sup
t∈[0,T ]

E[(ZKt )2] < +∞.
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Proof The infinitesimal generator associated with Φ(x) = x2 easily yields that

LKΦ(ZKs ) ≤
(
c+ rZKs

)(
2ZKs +

1

K

)
+ 2aZKs ≤ C

(
1 + ZKs + (ZKs )2

)
.

Hence, we can deduce using (16) that

E[(ZKt )2] ≤ E[(ZK0 )2] + C

(
t+

∫ t

0

E[ZKs ] + E[(ZKs )2] ds

)
.

Finally, since E[ZKs ] ≤ C(1 + E[(ZKt )2]), by the Gronwall lemma, there exists
a constant C(T ) such that E[(XK

t )2] ≤ C(T ), hence the result.

Proposition 7 Consider the process (ZKt )t≥0 defined in (4) for all K > 0.
Assume that supK>0 E[(ZK0 )2] < +∞. Then, for T < +∞,

sup
K

E

[
sup
t∈[0,T ]

ZKt

]
< +∞ .

Proof From (17), we write that

sup
t∈[0,T ]

ZKt ≤ sup
t∈[0,T ]

|MK
t |+ ZK0 + cT + r

∫ t

0

ZKs ds.

Now, by the Burkholder-Davis-Gundy inequality,

E

[
sup
t∈[0,T ]

|MK
t |

]2
≤ E

[
sup
t∈[0,T ]

|MK
t |2

]
≤ 4E

[
|MK

T |2
]

= 4E
[〈
MK

〉
T

]
,

and as E[ZK0 ] < +∞,

E

[
sup
t∈[0,T ]

ZKt

]
≤ 2E

[〈
MK

〉
T

]1/2
+ C(T ) + rE

[∫ t

0

ZKs ds

]
.

We use (18) to get

E[
〈
MK

〉
T

] ≤ cT + (r + deαu + 2a)

∫ t

0

E[ZKs ] ds ≤ C(T )

thanks to Proposition 6. We conclude using the Gronwall lemma.
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C.2 Convergence

The proof follows the same outline as in the deterministic case. First, we can
prove similarly that the sequence of laws (QK)K of the processes (ZK)K is
uniformly tight in L(D([0, T ],R+)). Indeed, denote (AKt )t≥0 the finite variation
process associated to (ZKt )t. The Aldous and Rebolledo criterion [?] states that
we need to prove that for all T > 0 the following inequalities hold true:

1.

sup
K>0

E

[
sup
t∈[0,T ]

∣∣ZKt ∣∣
]
< +∞.

2. ∀ε > 0, ∀η > 0, ∃δ > 0, K0 ∈ N∗ such that for all sequence (σK , τK)K of
stopping times with σK ≤ τK ≤ T,
(a)

sup
K≥K0

P
(∣∣< MK >τK − < MK >σK

∣∣ ≥ η, τK ≤ σK + δ
)
≤ ε,

(b)
sup
K≥K0

P
(∣∣AKτK −AKσK ∣∣ ≥ η, τK ≤ σK + δ

)
≤ ε .

It follows from direct computations, Proposition 7, and the Markov inequality.
Here we aim at identifying the limiting values. For Y = (Yt)t≥0 ∈ D([0, T ],R+),
define

M̃t(Y ) = Yt − Y0 −
∫ t

0

{c(u) + (r − d(Ys))Ys} ds . (19)

We need to show that M̃t(N) is a twice-integrable continuous martingale with
quadratic variation process defined by〈

M̃
〉
t

= 2a

∫ t

0

Ys ds. (20)

First, we show that M̃(N) is a martingale. Take 0 ≤ s1 < ... < sn < s < t, and
Φ1, ..., Φn continuous bounded functions from R to R. Define Ψ : D([0, T ],R)→
R by

Ψ(Y ) = Φ1(Ys1)...Φn(Ysn)

[
Yt − Ys −

∫ t

s

{c(u) + (r − d(Ys))Ys} du

]
.

We can show that E[Ψ(N)] = 0, as in the proof of Theorem 1. The new

argument in this proof consists in showing that the bracket of M̃ is given by
(20).

1. First, consider the K-dependent semimartingale obtained from (16) with
Φ(ZK) = (ZK)2, that is related to the generator:

LKΦ(ZKs ) = 2ZKs
(
c(u) + (r − d(ZKs ))ZKs

)
+

1

K

(
c(u) + (r + d(ZKs ) + 2Ka)ZKs

)
.
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We can show that we have at the limit the following martingale:

∼
N t= (Nt)

2 − (N0)2 −
∫ t

0

{2Ns (c(u) + (r − d(Ns))Ns) + 2aNs} ds .

2. Moreover, applying the Itô formula to (19) shows that

N2
t −N2

0− < M̃ >t −
∫ t

0

2Ns (c(u) + (r − d(Ns))Ns) ds

is a martingale. We conclude by the uniqueness of the semimartingale de-
composition of N2

t .

The equivalence between the obtained martingale problem and the SDE (7) is
a consequence of the classical martingale identification

Mt =

∫ t

0

√
2aNs dBs ,

see for example [?]. Finally, the pathwise uniqueness of the solution to this
SDE is classical in 1D since the drift is Lipschitz-continuous and the diffusion
coefficient is 1/2-Hölder (see e.g [?]).

Remark 5 The solution is strong and has the strong Markov property.

D The CIR process

In this paragraph, we give some classical results about the CIR process. For
more details we refer to [?,?].

Reaching zero

As mentioned in [?], for c > 0 and a positive initial state, {N = 0} is naturally
a reflective barrier for the process (8). We can also provide information about
the probability to hit 0, depending on the quantity δ := 2c

a , or equivalently on
the comparison between a and c: denote P0 the probability to hit 0 in finite
time, then one has

c < a
c ≥ a

r − d ≤ 0 r − d > 0

P0 = 1 P0 ∈ (0, 1) P0 = 0

These results can be intuitively understood following the correspondance
between CIR processes and Orstein-Uhlenbeck processes for r−d < 0. Indeed,
consider D such processes (X1, · · · , XD) such that ∀i = 1, · · · , D,

dXi
t = −1

2
βXi

t dt+
1

2
σ dBit ,
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with (Bi)i ∈ {1, · · · , D} independent Brownian motions and β > 0. Each
process follows a stochastic dynamics that is drifted to zero. Now, similarly as
for Brownian motion, for D = 1, the process almost surely hits zero infinitely
many times, while for D ≥ 2, it has a null probability of reaching zero even
once.

Using the Itô formula, it is possible to write the SDE that verifies the
squared euclidean norm of (X1, · · · , XD), that is to say R = (X1)2 + · · · +
(XD)2: we have

dRt =

(
σ2D

4
− βRt

)
dt+ σ

√
R(t) dBt ,

with B a Brownian motion. Then, denoting D = 4c/σ2 > 0, where σ2 = 2a,
it is possible to derive equation (8) with r − d = −β ≤ 0. Therefore, if D
is an integer, the CIR process admits a representation as the squared norm
of D Ornstein-Uhlenbeck processes. More generally, the CIR process relates
rigorously to the Squared Radial Ornstein-Uhlenbeck process, as it will be
precised below.

Distribution

It is known that for δ = 2c
a ∈ N and r − d < 0, we have

Nt|n0 =
(1− e(r−d)t)2a

2(d− r)
Yt,

with Yt following a non-central chi-square distribution with δ degrees of free-

dom, and a non-centrality parameter ξt = n0
2(d−r)

(1−e(r−d)t)ae
(r−d)t. This also re-

sults from the representation as the squared euclidean norm of a δ-dimensional
Ornstein-Uhlenbeck process. The integral form of the SDE (8) allows to com-
pute the mean solution directly, and the variance of the solution (using addi-
tionally the Ito formula). We compute

E[Nt|n0] = n0e
(r−d)t +

c

d− r

(
1− e(r−d)t

)
,

V ar(Nt|n0) = n0
2a

d− r

(
e(r−d)t − e2(r−d)t

)
+

ac

(d− r)2
(

1− e(r−d)t
)2

.

The corresponding probability density pn0
writes for n ≥ 0, n0 > 0 and

κt = d−r
(1−e(r−d)t)a :

pn0(n; k, ξt) = κt

(
n

n0e(r−d)t

) c
a−1

e−κt[n0e
(r−d)t+n]I c

a−1

(
2κt
√
n0ne(r−d)t

)
,

where Iα is the modified Bessel function of the first kind whose definition we
recall now:

Iα(x) := Σ∞m=0

1

m!Γ (m+ α+ 1)

(x
2

)2m+α

,
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where Γ is the Gamma function Γ (t) =
∫∞
0
xt−1e−x dx.

A stationary distribution exists if and only if r − d < 0 [?]. In that case,
the previous approach gives a possible stationary probability density. Then,
writing the Fokker-Planck equation associated to Equation (8), we can check
that the stationary density writes

p∞(n) =

(
d− r
a

) c
a 1

Γ
(
c
a

)n c
a−1e

r−d
a n .

It can be noticed that
p∞(n) = N e−φ(n)

for φ(n) =
(
1− c

a

)
ln(n) + d−r

a n the corresponding potential, and N a nor-
malization constant.
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