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A stochastic model for cell adhesion to the vascular

wall

Christèle Etchegaray∗ Nicolas Meunier†

Abstract

We present here a minimal mathematical model of the interaction
between a cell and the blood vessel wall in shear flow. The bond
dynamics in cell adhesion is modeled as a non-linear discrete stochastic
process. Performing a renormalization in the spirit of [22, 11], we
obtain a continuous model which predicts the existence of a threshold
shear velocity associated with cell rolling and a process of firm adhesion
that follows the initial rolling.

1 Introduction

Leukocytes adhesion to the vascular wall is a major process involved during
inflammation or metastasis invasion [15]. The adhesive interaction between
leukocytes and endothelial cells occurs in the presence of the hemodynamic
forces exerted on the leukocytes by the blood flow. The first step of interac-
tion happens when enough bonds between the cell and the wall are stabilized
so that the cell is slowed down, this is the so called capture phase. Then,
leukocytes roll along the stimulated endothelial cells, as new bonds form in
the direction of motion and bonds at the back disassemble. This step is
mediated by adhesion molecules of the selectin family. During rolling, the
leukocytes may also be stimulated, and consequently another family of cell
adhesion molecules, the integrins, is activated on the leukocyte surface. The
integrins mediate the firm adhesion which slows the cell enough so that it
penetrates the vascular wall allowing for the further development of the phe-
nomenon at play (immune response, invasion of tissues by metastatic cells
e.g, see for example [27]). It is observed that rolling does not always turn
to firm adhesion, and leukocytes may return in the blood flow.

Leukocyte rolling has been studied in vivo and in vitro in flow chambers,
in which isolated leukocytes are rolling on either monolayers of cultured
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Figure 1: Scheme of the multistep cascade of leukocyte extravasation.

endothelial cells or surfaces coated with selectin or other molecules. It has
been observed that the velocities of rolling cells are orders of magnitudes
lower than the velocities of non-adherent cells freely moving close to the
substratum surface. This indicates adhesive interaction between the rolling
cells and the substratum [41].

The rolling motion has been observed to be stochastic both in vivo, [38],
and in vitro, [14]. Variation of the rolling velocities of individual cells in
time has also been observed for experiments in which the leukocytes roll on
a flat surface bearing a uniform layer of ligands, [41]. This suggests that the
fluctuation in leukocyte dynamics in the vicinity of the wall is a reflection
of the stochastic nature of the adhesive interaction.

The aim of the present paper is to build and study a continuous model
to describe the motion of a cell that develops adhesive interaction with the
vascular wall. In particular, the model ought to be able to recover the
different behaviours observed: the cell stopping or its release in the blood
flow. To do so, we start with a minimal discrete stochastic model to describe
the individual bond dynamics and then we derive the continuous model
by performing a scaling limit. More precisely, in the discrete model that
describes the individual bond dynamics, we assume the cell to be a point
particle submitted to blood flow with 1D constant velocity. Units of resistive
force appear/disappear stochastically and discontinuously in time, following
a stochastic jump process. The stochastic character of the dynamics is
due to the large number of molecules interacting to form bonds, while the
discontinuous dynamics results from the choice of scale. We neglect the
growth of an adhesion so that the binding dynamics is discontinuous in
time.

Since the number of bonds involved in cellular adhesion is very high,
in a second step we let the number of bonds go to infinity while the con-
tribution of each bond to the adhesion force goes to zero. In the spirit of
[22, 11] by the renormalization of the population of bonds and its dynamics,
we rigorously derive a continuous limiting model for the cellular adhesion
dynamics. Depending on the renormalization assumptions, we obtain either
a deterministic or a stochastic equation, that we both study. The determin-
istic model successfully predicts the threshold wall shear stress above which
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rolling does not occur and, for some parameter values, it predicts the cell
stationary adhesion. We also study the continuous stochastic model and de-
rive information on the time needed for the cell to stop. To do so, in a first
step we use a Laplace transform approach for the Cox-Ingersoll-Ross (CIR)
process, corresponding to a simplified adhesion dynamics. Then, we derive
the cell mean stopping time for the whole dynamics, using a Fokker-Planck
equation. We believe that this work is a first step in the construction of
a permeability law for leukocytes, characterizing the different regimes that
can arise: cells either slip or grip to the wall.

The plan of this article is the following. In Section 3, we detail the con-
struction of the discrete stochastic model for the individual bond dynamics.
We provide a mathematical analysis of the discrete model in Section 3. In
Section 4, using a renormalization technique we build continuous versions
of the model and we exhibit different behaviours according to the chosen
renormalization: deterministic or stochastic. In section 4 we give the be-
haviour of the solution to the deterministic model. Finally, in Section 5, we
use the continuous stochastic model to compute the mean time needed for
the cell to stop.

2 Previous models - their purpose and structure

There exist several models and approaches for leukocytes adhesion. Each
approach has its own particular focus, both in how the adhesion processes
are represented and in the purpose and results of the modelling.

The simplest approach to leukocyte adhesion modelling is to ignore cell
spatial structure and to assume a step-wise, stop-and-go motion of the leuko-
cyte. In [44] the trajectory of the center of the cell is approximated by a series
of rapid steps in between which the cell velocity is zero. Two random vari-
ables are used to describe the average distance and lifetime of bond clusters
resisting the applied fluid force. Performing some mean field approximation
makes it possible to heuristically obtain a Fokker-Planck equation which
governs the cell velocity evolution. The drift and diffusion coefficients in the
Fokker-Planck equation are heuristically derived from the non smoothed
stepping process of cell displacement and expressed in terms of the step size
and waiting time of this stepping process. The power of this approach was
to be able to predict that the distribution of experimentally derived rolling
velocities is influenced by analysis of the variance or dispersion of rolling
velocity data acquired under different experimental conditions.

In the same spirit, in the absence of fluid flow, macroscopic models have
been developed for cell adhesion force [36]. Bonds are not described indi-
vidually but as a distribution function. This bonds distribution follows a
maturation-rupture equation (also called renewal equation). In the limit of
large ligands binding turnover, friction coefficient can be computed [32, 33].
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In [17, 18], a simulation model was considered to describe the interplay
between hydrodynamic transport and specific adhesion. In these works, the
leukocyte is modeled as a hard sphere covered with receptors moving above
a planar ligand-bearing wall. The ligand-receptor binding follows a chemical
kinetic dynamics according to Bell’s law, [5]. Bonds then exert elastic forces
on the sphere while the linear shear flow exerts both hydrodynamic force
and torque. In [24], the Brownian motion of the sphere is taken into account
in order to model the spatial receptor-ligand encountering in more details.
Algorithms are given that allow to numerically simulate the cell motion as
well as the formation and rupture of bonds between receptors and ligands.
The strength of these models is to numerically study the influence of bonds
which have formed between receptors and ligands, but easily rupture in
response to force, on the motion of the sphere.

The model presented here has some similarities with the model heuris-
tically derived in [44] but takes a more detailed view of the events between
the cell and the endothelium in the spirit of [17]. We model the loop be-
tween the cell velocity and the bond formation dynamics. This leads to a
non-linear stochastic jump process to describe the velocity of the cell center.
For this non-linear jump process we proceed to a rigorous derivation of the
continuous equation satisfied by the cell velocity. This continuous model al-
lows to analytically study the influence of bonds which have formed between
receptors and ligands on the cell motion. In particular, the model predicts
that the cell can either develop no bonds with the vascular wall when the
shear velocity is high and/or the wall is in a lowly inflamed state with low
levels of ligands, or the cell decelerates and rolls on the wall with eventually
sufficient high decelaration so that the zero value is reached. We show that
there is a well-defined region of parameter space where this dichotomy exists
and we provide some quantitative information about the cell dynamics.

3 Construction of the discrete stochastic model

Let us consider a cell (a leukocyte e.g.) carried by the blood flow. We
suppose that the size of the gap between the cell and the blood vessel wall
is small enough so that bonds between the cell and the vascular wall may
continuously form in the contact area. Since the cell is in the vicinity of the
wall, we assume that the blood shear flow is 1D, parallel to the vascular wall
and with a constant velocity, denoted by u ∈ R+.

In previous studies, see [9, 21] e.g., it was shown that approximating
the contact area by a simple geometrical figure (a circle or a rectangle) and
neglecting the increase of the contact area with the flow shear rate due to
cell deformability do not change qualitatively the analysis. Moreover, as
suggested in [7], the cell adhesion is primarily determined by physicochem-
ical properties of adhesion proteins and, thus, to a first approximation, we
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assume the cell to be a point particle whose position at time t ≥ 0 is denoted
by x(t).

3.1 Velocity model

To describe the cell motion in our model, we use a non-inertial approxima-
tion. Indeed, in the limit of low Reynolds number, viscous forces dominate
over inertial forces and the momentum equation reduces to the force balance
principle:

Vt = u− Ft, (1)

where Vt ∈ R is the cell velocity, u is the blood shear flow and the cell is
subjected to a macroscopic resistive force, denoted by Ft ∈ R+, induced
by the bonds that contribute to decelerating the cell, see Figure 1. The
previous equation is valid only for Ft ≤ u, as for a maximal force the cell
stops, and the model is no longer valid.

Depending on the ratio between the adhesion force exerted by the sta-
bilized bonds and the load and torque created by the blood flow, which is
characterized by the shear rate, two situations might occur:

• either the adhesion force is strong enough to first capture and then
slow down the leukocyte (in that case it allows the cell to roll on the
wall),

• or the tension exerted by the blood flow on the bonds is too high and
the bonds rupture immediately without capturing the cell.

Modeling leukocyte dynamics near a vessel wall now amounts to modeling
the time evolution of the adhesive force Ft.

3.2 Discrete stochastic model for the adhesive force

The resistive force arises from the strength of the cell adhesion to the vessel
wall. Cellular adhesion is a macroscopic readout of the forces exerted by the
wall on the cell through each bond. Moreover, the formation of each bond
is based on a highly complex and dynamic set of microscopic (physical and
chemical) reactions [7].

Let us now present the very simple mesoscopic discrete model we will
use to describe the individual bond dynamics. We denote by Nt the number
of stabilized bonds at time t. We assume that each stabilized bond mediates
a unit force in the opposite direction of the moving fluid and we denote by
γ > 0 a global non-dimensionalized friction coefficient. Thus, the total force
exerted by all the stabilized bonds writes

Ft = γNt .
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The quantity Nt is a random variable that we assume to follow a classi-
cal birth and death dynamics with creation rate c, dissociation rate d and
reproduction rate r as follows.

• We assume that the leukocyte is close enough to the arterial wall to
interact so that initialization of adhesion forces occurs. Moreover, in-
teraction arises for a low enough flow velocity, and bonds may appear
spontaneously at rate c. The simplest choice consists in using a step
function of the blood flow velocity u, with a velocity treshold u∗ above
which no bond is created: c(u) = c if u ≤ u∗ and c(u) = 0 other-
wise. In the following, we will always work with a fixed u, but both
configurations will be considered.

Remark 1. The rate for a single bond formation between two pro-
teins is actually mostly determined by the time the two proteins spend
near one another. Therefore, the rate c should depend on the cell ve-
locity when the relative velocity between the cell surface and the wall
is non zero. A more realistic choice for c would be to consider a de-
creasing function of the instantaneous cell velocity Vt. A prototypical
behaviour would be given by c(v) = (u∗ − v)+ where (·)+ denotes the
positive part. Recalling that Vt is related to Nt this would amount
to choose a rate c depending on Nt the number of stabilized bonds:
c(n) = (u∗ − u+ γn)+. For such a choice, and assuming that v ≤ u∗,
the dependence on n corresponds to the individual reproduction of the
bonds in the birth and death process, that we will consider below.

• Bonds are mostly organized in complexes of cellular adhesions, result-
ing in cooperation between proteins located on the cell for the rein-
forcement of the connection to the wall. Indeed, if there is only a single
pair of interacting proteins, when the bond between them breaks, then
chances that they will form the bond again are negligible. Now for an
adhesion formed by a large number of bonds, when one of them breaks,
the unbound proteins do not move apart (as long as this is not the last
bond). Therefore, the ruptured bond can be rapidly restored. This
reinforcement dynamics can also be inputed to cytoskeletal forces or
external stresses [34]. Hence, the natural assumption for the model is
to impose a reproduction dynamics for each bond and we denote by r
the individual reproduction rate.

• Each bond dissociates at rate d. The average lifetime of an adhesion
site changes with the applied tension from the blood flow. Moreover,
for a given number of bonds, the faster the cell goes, the more force
is exerted on each bond and likely existing bonds are to disassemble.
This way, a satisfying choice is to take d as an increasing function of Vt.
We choose this relation to be exponential: d(Vt) = deαVt = deα(u−γNt),
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where d is the unstressed bonds dissociation rate. As the cell velocity
is bounded by u, so is the dissociation rate.

Finally to describe the bonds dynamics we will use a birth and death
process with the following choice for the rates:

c(Nt) = c1u≤u∗ with c > 0 , r(Nt) = r > 0 , and d(Nt) = deα(u−γNt) .
(2)

The key point here is that the bond dynamics depends on the instantaneous
cell velocity. More elaborate dependence could be analyzed (see e.g [32, 33]),
in particular involving age dependences to model the bond elasticity (see
[16]), but we choose to keep a minimal set of parameters, as for simplicity
as for the sake of clarity.

4 Mathematical properties and numerical simula-
tions

In this section we consider general rates and we derive mathematical prop-
erties of the discrete stochastic process. We first study the well-posedness
character and the infinitesimal generator. Then, we introduce a trajecto-
rial representation for this process. This allows to deduce some moment
and martingale properties. Finally we present numerical simulations of the
discrete model.

4.1 A population approach

Let (Ω,F ,P) be a probability space. Denote D(R+,R+) the Skorohod space
of càdàg functions from R+ to R+. We consider the following hypothesis:

Hypothesis 1. There exist positive constants C, R, D such that

∀n ∈ N+, 0 ≤ c(n) ≤ C, 0 ≤ r(n) ≤ R and 0 ≤ d(n) ≤ D.

We are interested in the following dynamics:

n 7→
{
n+ 1 at rate λ(n) = c(n) + r(n)n ,
n− 1 at rate µ(n) = d(n)n ,

together with hypothesis 1, and λ and µ are defined on N. As a consequence,
we can write

0 ≤ λ(n) ≤ C +Rn , and 0 ≤ µ(n) ≤ Dn .

Proposition 2 (Well-posedness, infinitesimal generator). The Markovian
jump process (Nt)t≥0 defined by the transitions above is well defined on R+,
and its infinitesimal generator (Qi,j)(i,j)∈N2 writes

Qi,i+1 = λ(i) , Qi,i−1 = µ(i) , Qi,i = −(λ(i)+µ(i)) , Qi,j = 0 otherwise.
(3)

Proof. This is a classical result that can be found e.g in [11].
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4.2 Trajectorial representation

We introduce here a stochastic differential equation for (Nt)t driven by a
Poisson Point Measure. We will show existence and uniqueness of the solu-
tion, and prove that it follows the dynamics described before.

Let N0 be an integer-valued random variable, and M(ds, dw) an inde-
pendent Poisson Point Measure on R2

+, of intensity measure ds dw. Finally,
(Ft)t≥0 denotes the canonical filtration generated by these objects. Let us
construct the (Ft)t≥0-adapted càdàg process (Nt)t≥0 as the solution of the
following SDE: ∀t ≥ 0,

Nt = N0 +

∫ t

0

∫
R+

(
10≤w≤λ(Ns− ) − 1λ(Ns− )<w≤λ(Ns− )+µ(Ns− )

)
M(ds, dw) .

(4)
This representation is classical (see e.g [13, 8]). The Poisson jumps re-

lated to the measure are accepted or rejected thanks to the indicator func-
tions. The variable w is then used as an acceptance parameter in order to
get the desired rates for each event.

Proposition 3 (Existence, uniqueness, moments propagation). Assume hy-
pothesis 1, and that there exists p ≥ 1 such that E [Np

0 ] < +∞. Then,

1. ∀ T > 0,

E

[
sup
t∈[0,T ]

Np
t

]
< +∞ ,

2. the process (Nt)t exists and is unique in law.

Proof. See annex 8.

Now, the process (Nt)t is classically a Markov process in the Skorohod
space D(R+,R+) of càdlàg R+-valued processes, and its infinitesimal gener-
ator is defined for all Φ : R+ → R measurable bounded by

LΦ(n) = λ(n) [Φ(n+ 1)− Φ(n)] + µ(n) [Φ(n− 1)− Φ(n)] . (5)

In particular, it corresponds to the dynamics described by (3).

4.3 Martingale property

Markov processes are usually associated with a semimartingale structure.
We prove now that for some measurable Φ : R+ → R, there exists a mar-
tingale (Mt)t and a finite variation process (At)t such that for all t ≥ 0,
Φ(Nt) = Φ(N0) +At +Mt.

Theorem 4. Assume that there exists p ≥ 2 such that E[(N0)p] < +∞.
Then,
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1. for all Φ : R+ → R measurable, for which there exists C such that for
all N ∈ R+, |Φ(N)|+ |LΦ(N)| ≤ C(1 +Np),

Φ(Nt)− Φ(N0)−
∫ t

0
LΦ(Ns)ds (6)

is a càdlàg square-integrable (Ft)t≥0-martingale starting from 0.

2. This applies in particular to functions Φ : N 7→ N q, for 0 ≤ q ≤ p.

As a consequence, the R-valued process (Mt)t≥0 defined by

Mt = Nt −N0 −
∫ t

0
(λ(Ns)− µ(Ns))ds (7)

is a càdlàg square-integrable martingale starting from 0 and of quadratic
variation

〈M〉t =

∫ t

0
(λ(Ns) + µ(Ns)) ds . (8)

Proof. See annex 9.

4.4 Moment equation

Let us now investigate the mean path of this process. Using the martingale
formulation, we can write

E [Nt] = E [N0] +

∫ t

0
E [c(Ns) + (r(Ns)− d(Ns))Ns] ds .

It is clear that with the choice of d(Nt) = deα(u−γNt) (with Nt ≤ u/γ
to ensure the model validity), the resulting nonlinearity would prevent the
closure of the previous equation. In the particular case where c(Ns) = c,
r(Ns) = r and d(Ns) = d, we get E [Nt] = E [N0] + ct + (r − d)

∫ t
0 E[Ns]ds,

leading to

E[Nt] =

{
E[N0] + ct if r = d,

E[N0]e(r−d)t + c
r−d

(
e(r−d)t − 1

)
otherwise.

At steady state, one finds

E[N ]∞ :=

{
c

d−r for r < d,

+∞ otherwise.

In the second case, the value n∗ for which the velocity reaches zero is at-
tained. For the velocity,

E[V ]∞ :=

{
u− γ c

d−r for r < d,

−∞ otherwise, that is to say the velocity reaches 0.

These results show that it is already possible to get a mean dichotomy
behaviour based on the bonds dynamics in the discrete case. In order to
get deeper analytical results, we will derive a continuous limiting stochastic
process associated to this dynamics.
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Figure 2: Numerical simulations of the discrete process. Parameters: u =
10, γ = 0.3, c = 4, r = 5, d = 3, α = 0.1.

4.5 Numerical Simulations

4.5.1 Algorithm

The bonds population model being a markovian jump process, it is piecewise
constant, and the evolution of the process depends only on the present state.
Its simulation is therefore straightforward. Consider the population size at
time Tk (NTk). Then,

• the global jump rate is ςk = λ(NTk)+µ(NTk). This means that the time
before the next event is a random variable following an exponential law
of parameter ςk. A realization of this law gives Tk+1.

• Next, we have to determine the type of event occurring: a new bond is

created with probability
λ(NTk )

ςk
, while a bond disassemble with prob-

ability
µ(NTk )

ςk
. Hence, we can compute NTk+1

.

It is now sufficient to reiterate this procedure to get the time evolution of
the process.

4.5.2 Numerical results

Some numerical simulations of the process are displayed in figure 2, for
which we chose to stop as soon as the velocity reached zero (or before). It
is observed that the velocity either shrinks to zero or remains close to u,
depending on the parameter values. Moreover, rolling periods are observed
in both cases.

5 Continuous bonds approximations

In this part we separate the scale of the bond dynamics from the one of
the cell motion, since the number of bonds is very large, and the binding
dynamics very fast compared to the cell displacement. For that purpose, we
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let the number of bonds grow to infinity while the individual contribution
to the adhesion force shrinks to zero, so that the global adhesive force keeps
its range. We also renormalize the dynamics of the bond turnover and this
leads to different limiting continuous models.

5.1 Renormalization

Let K ≥ 1 be a parameter scaling the number of the discrete adhesions we
consider. We assume that 1

K scales the force generated by each one. This
amounts to looking at the adhesion sites at a smaller and smaller scale.
Moreover, we assume that the dynamics gets faster and faster. Hence, we
consider now K-dependent rates cK , rK , and dK as functions of the corre-
sponding process NK

t defined by equation (4). We define the renormalized
process (XK

t )t ∈ D(R+,R+) by

XK
t =

1

K
NK
t ∈

1

K
N. (9)

In this subsection, we work with K fixed, and assume that the rates
satisfy the following boundedness and continuity hypothesis:

Hypothesis 2. For all N ∈ R+, the following inequalities hold true

0 ≤ cK(N) ≤ KC, 0 ≤ rK(N) ≤ R+Ka and 0 ≤ dK(N) ≤ D +Ka,

where C, R, D and a are positive constants. In addition the rates N 7→
cK(N) (resp. rK(N), resp. dK(N)) are continuous. The global demographic
parameters write

λK(N) = cK(N) + rK(N)N , µK(N) = dK(N)N .

Markov property By construction, (XK
t )t≥0 is also a Markov process,

and for Φ : R+ → R measurable bounded, its infinitesimal generator writes

LKΦ(X) = λK(KX)

[
Φ(X +

1

K
)− Φ(X)

]
+µK(KX)

[
Φ(X − 1

K
)− Φ(X)

]
.

(10)
As before, for fixed K, we can prove that (XK

t )t≥0 satisfies the following
proposition.

Proposition 5 (Moment, martingale property). Assume that there exists
p ≥ 2 such that E

[
(XK

0 )p
]
< +∞. Then, under hypothesis 2, one has

1. ∀ T > 0,

E

[
sup
t∈[0,T ]

(XK
t )p

]
< +∞, (11)
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2. for all measurable function Φ : R+ → R for which there exists C such
that ∀X ∈ R+, |Φ(X)|+ |LKΦ(X)| ≤ C(1 +Xp),

Φ(XK
t )− Φ(XK

0 )−
∫ t

0
LKΦ(XK

s )ds (12)

is a càdlàg (Ft)t≥0-martingale starting from 0.

3. This applies in particular to functions Φ : X 7→ Xq, for 0 ≤ q ≤ p.

4. The process

MK
t = XK

t −XK
0 −

∫ t

0

1

K
cK(KXK

s ) +
(
rK(KXK

s )− dK(KXK
s )
)
XK
s ds

(13)

is a càdlàg square-integrable martingale starting from 0 and of quadratic
variation〈
MK

〉
t

=
1

K

∫ t

0

{
1

K
cK(KXK

s ) + (rK(KXK
s ) + dK(KXK

s ))XK
s

}
ds .

(14)

The semimartingale formulation (13) allows us to study the convergence
of (XK

t )t for K → +∞ in D(R+,R+) for different renormalizations of the
adhesive dynamics.

5.2 Deterministic limits

In this section, we study two sets of parameters leading to deterministic
limits. The first one consists in only accelerating the creation rate. In the
second one, the whole dynamics is unchanged. For both cases, we consider
an additional assumption on the Lipschitz-continuity of the rates.

Hypothesis 3. The rates are Lipschitz-continuous and satisfy:

0 ≤ cK(KXK
t ) ≤ KC, rK(KXK

t ) ≤ R and dK(KXK
t ) ≤ D.

In this context, we can prove the following K-uniform moment property:

Proposition 6. Assume hypothesis 3 and that there exists p ≥ 1 such that
supK>0 E

[
(XK

0 )p
]
< +∞, then

∀ T > 0, sup
K>0

E

[
sup
t∈[0,T ]

(XK
t )p

]
< +∞ . (15)

Proof. The proof is similar to the one for proposition 3. Indeed, in equation
(13), the coefficient 1

K in the creation term compensates for the bound on
cK , and the new bound on rK is K-independent. As a consequence, taking
the supremum of the estimate over {K > 0} leads to the result.
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5.2.1 Accelerated creation

Let us consider the following set of parameters:

cK(KXK
t ) = Kc(XK

t ), rK(KXK
t ) = r(XK

t ) and dK(KXK
t ) = d(XK

t ),

where hypothesis 3 is fulfilled. In other words, while we consider an increas-
ing number of smaller adhesions, only their creation is intensified, while their
positive effect on the adhesion and their lifetime stay the same.

From the modeling viewpoint such an assumption amounts to consider
an increasing number of smaller adhesions, each of them involving a few
number of proteins on each side (wall and cell). Note that this corresponds
to an intermediate scale (the cell scale) since the clustering process in the
adhesion sites is not described. This latter process will be described be-
low, see paragraph 5.3, when the individual dynamics of the bonds is also
accelerated.

We prove the following convergence theorem:

Theorem 7. Assume hypothesis 3. If XK
0 −→

K→+∞
n0 ∈ R+ in probability,

and if
sup
K>0

E
[
(XK

0 )2
]
< +∞ , (16)

then, for T > 0, (XK)K>0 converges in law in D ([0, T ],R+) to the unique
continuous function n ∈ C([0, T ],R+) solution to

n(t) = n0 +

∫ t

0
c(n(s)) + (r(n(s))− d(n(s)))n(s)ds . (17)

Remark 8. By the Gronwall lemma, one has

sup
t∈[0,T ]

n(t) ≤ (n0 + cT )erT < +∞ ,

showing that the global density stays finite in finite time.

Proof. The proof is similar to the one in [22, 11]. It is based on a compactness-
uniqueness argument. First, the tightness of the sequence of laws (QK)K of
(XK)K is proved. Then, we establish that for any accumulation point Q,
a process X of law Q is almost surely continuous, and solution to equa-
tion (17). Finally, the convergence is proved by showing uniqueness in
C([0, T ],R+) of the solution to (17). Throughout this proof, C will denote
a constant that may change during computations, and C(T ) a constant de-
pending on T .

Tightness of (QK)K We use the Aldous and Rebolledo criterion [2] as
detailled in [22]. Let us denote (AKt )t≥0 the finite variation process related
to the semimartingale (XK

t )t≥0:

AKt = XK
0 +

1

K

∫ t

0
cK(KXK

s )ds+

∫ t

0

(
rK(KXK

s )− dK(KXK
s )
)
XK
s ds .

13



We need to prove that for all T > 0 the following inequalities hold true:

1.

sup
K>0

E

[
sup
t∈[0,T ]

∣∣XK
t

∣∣] < +∞.

2. ∀ε > 0, ∀η > 0, ∃δ > 0, K0 ∈ N∗ such that for all sequence (σK , τK)K
of stopping times with σK ≤ τK ≤ T,

(a)

sup
K≥K0

P
(∣∣< MK >τK − < MK >σK

∣∣ ≥ η, τK ≤ σK + δ
)
≤ ε,

(b)
sup
K≥K0

P
(∣∣AKτK −AKσK ∣∣ ≥ η, τK ≤ σK + δ

)
≤ ε .

1. The first point is straightforward from proposition 6 together with the
assumption (16) made on the initial condition.

2. Take T > 0, ε > 0, η > 0 and a sequence of pairs of stopping times
(σK , τK)K such that σK ≤ τK ≤ T and τK ≤ σK + δ.

(a) From equation (14) together with the moment proposition 6, we
obtain

E
[∣∣< MK >τK − < MK >σK

∣∣] ≤ C

K

(
δ + E

[∣∣∣∣∫ τK

σK

XK
s ds

∣∣∣∣]) ≤ C(T )

K
δ .

Hence, using the Markov inequality, for all ε > 0, for all η > 0,
there exists δ and K0 such that 2.a) is satisfied.

(b) Similarly, by proposition 6,

E
[∣∣AKτK −AKσK ∣∣] ≤ Cδ

(
1 + E[sup

[0,T ]
XK
t ]

)
≤ C(T )δ .

As before, we conclude by the Markov inequality.

This proves that the sequence (QK)K is uniformly tight in L(D([0, T ],R+)).
Identification of the limit : From the Prokhorov theorem we deduce

the relative compactness of the family of laws (QK)K on D([0, T ],R+). Con-
sider a convergent subsequence, and denote by Q its limit. Next, consider a
corresponding sequence of processes (XK)K in D([0, T ],R+) converging in
distribution to n ∈ D([0, T ],R+) of law Q. First, for all K > 0, by con-
struction, we know that the jumps of (XK

t )t are of the form 1/K. As a
consequence, almost surely, one has

sup
t∈[0,T ]

∣∣XK
t −XK

t−

∣∣ ≤ 1

K
,

14



and as X 7→ supt∈[0,T ] |Xt −Xt− | is continuous from D([0, T ],R+) to R+,
any process of law Q is almost surely strongly continuous.

Now, let us establish that the process n is solution to equation (17).

Using the moment proposition 6, we deduce that E
[
sup[0,T ] nt

]
< +∞,

which almost surely leads to

sup
[0,T ]

nt < +∞ . (18)

For T > 0, take t ≤ T and n ∈ C([0, T ],R+). Denote

Ψt(n) := nt − n0 −
∫ t

0
{c(ns) + (r(ns)− d(ns))ns}ds .

We have to prove that for all t ≤ T , EQ [|Ψt(n)|] = 0. For that purpose, we
argue that

1. Since E
[∣∣Ψt(X

K)
∣∣] = E

[∣∣MK
t

∣∣], we have

E
[∣∣Ψt(X

K)
∣∣]2 ≤ E

[∣∣MK
t

∣∣2] = E
[〈
MK

〉
t

]
≤ C T

K

(
1 + E

[
sup
[0,T ]

XK
t

])
,

and recalling the moment property given in proposition 6, it follows
that for all t ∈ [0, T ], limK→+∞ E

[∣∣Ψt(X
K)
∣∣] = 0.

2. (a) Recalling that n is almost surely continuous and that the param-
eter rates are continuous, it follows that Ψt is continuous in n,
and that limK Ψt(X

K) = Ψt(n) in distribution.

(b) Moreover, the inequality

|Ψt(n)| ≤ C(T )(1 + sup
[0,T ]

ns)

together with proposition 6 yield that
(
Ψt(X

K)
)
K

is uniformly
integrable. Hence,

lim
K→+∞

E
[∣∣Ψt(X

K)
∣∣] = E

[∣∣∣∣ lim
K→+∞

Ψt(X
K)

∣∣∣∣] = E [|Ψt(n)|] = 0.

Finally, uniqueness follows from the Lipschitz-continuous hypothesis 3.

5.2.2 Non accelerated dynamics

As mentioned before, we can also choose not to accelerate any part of the
dynamics. From the modeling viewpoint such an assumption is relevant
when the cell velocity is high. In such a case newly formed bonds are in-
stantaneously broken. Note that this situation was already described in the
previous section when u > u∗. More precisely, consider the following rates:

15



cK(NK
t ) = c(XK

t ) rK(NK
t ) = r(XK

t ) dK(NK
t ) = d(XK

t )

We can prove the following result:

Theorem 9. Under hypothesis 3, if XK
0 −→

K→+∞
n0 in probability on R+ for

some deterministic n0, and

sup
K>0

E
[
(XK

0 )2
]
< +∞, (19)

then (XK)K>0 converges in law in D ([0, T ],R+) to the unique n ∈ C([0, T ],R+)
such that

n(t) = n0 +

∫ t

0
(r(n(s))− d(n(s)))n(s)ds, (20)

The proof is exactly the same as in theorem 5.2.1.

5.2.3 Analysis of the continuous deterministic equation preserv-
ing creation

Let us recall that when creation remains at the limit, the equation writes:

n(t) = n0 +

∫ t

0

(
c(n(s)) + (r(n(s))− d(n(s)))n(s)

)
ds , (21)

where

c(n) = c1u<u∗ with c > 0 , r(n) = r > 0 and d(n) = deα(u−γn) .
(22)

The equation satisfied by the cell velocity is

v(t) = (u− γn(t))+ . (23)

Let us define the function F by: F (n) = c1u≤u∗ +
(
r − deα(u−γn)

)
n.

Proposition 10. Let n0 ∈ [0, n∗], where n∗ corresponds to number of bonds
for which the cell velocity vanishes. Assume that the rates are given by (22),
then the stationary state n∞ of (21) satisfies the following:

1. If u > u∗, then

(a) If u > 1
α ln( rd), then there are two stationary states n1

∞ = 0 and
n2
∞ = u

γ −
1
αγ ln( rd) > 0. The smallest is stable and the largest is

unstable.

(b) Otherwise, then n∞ = 0.

2. If u ≤ u∗, then

(a) If u ≤ 1
α ln

(
r
d

)
, then n∞ = +∞.

16



(b) If u > 1
α ln

(
r
d

)
, then there exists a unique 0 < n̄ < 2

αγ such that

F ′(n̄) = 0 and

i. If F (n̄) > 0, then n∞ = +∞.

ii. If F (n̄) = 0, then n̄ is the unique stationary solution.

iii. If F (n̄) < 0, then there exists two stationary solutions n1
∞

and n2
∞, such that 0 < n1

∞ < n̄ < n2
∞ < +∞, the smallest

being stable and the largest unstable.

Proof. The case u > u∗ follows from a direct computation. Consider the
case where u ≤ u∗, then one has

n′(t) = c+
(
r − deα(u−γn(t))

)
n(t) = F (n(t)) . (24)

A quick computation shows that

F ′(n) = r + d (αγn− 1) eα(u−γn) ,

F ′′(n) = αγd (2− αγn) eα(u−γn) .

We can study the sign of F ′(n) and get the following variation table:

n 0 2
αγ +∞

F ′′(n) + 0 −

F ′(n)

r − deαu

��
�

�

F ′( 2
αγ ) > 0

@
@
@R

r

As a consequence,

• If u ≤ 1
α ln

(
r
d

)
, then ∀n ∈ R+, F (n) ≥ c > 0, hence n∞ = +∞.

• If u > 1
α ln

(
r
d

)
, then there exists a unique n̄ > 0 such that F ′(n̄) = 0.

Since n̄ < 2
αγ , we obtain the following variation table from which the

result follows:

n 0 n̄ < 2
αγ +∞

F ′(n) − 0 +

F (n)

c > 0

@
@
@R
F (n̄)

��
�

�

+∞

Notice that since u > 1
α ln

(
r
d

)
⇔ deαu > r, both behaviours arise according

to the comparison between the reproduction and death rates.
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Let us comment on these results. First of all, not surprisingly, our model
successfully predicts the threshold wall shear stress above which nor capture
nor rolling does occur. This is due to the regulation by shear of the num-
ber of bonds: the number of bonds falls below one. Moreover, the model
predicts existence of cell adhesion bistability, which results from the compe-
tition between the two processes taking place in the cell-wall contact area:
bond formation and rupture. Finally, the model predicts stationary adhesion
which is observed during the leukocytes extravasation.

Remark 11. Note that if u∗ ≥ u > 1
α ln

(
r
d

)
the three cases described in

the proposition above may occur. Indeed, consider the particular case where

d > r and u =
1− r

d
α , then n̄ = u

γ and F (n̄) = c− (d−r)2
αdγ whose sign depends

on the value of c. The dynamics is then dependent on the ability of the cell
to form bonds at primary contact.

5.3 Accelerated demography

In this section, we accelerate also the individual dynamics, so that the
smaller the scale of adhesion we consider, the faster the dynamics is. From
the modeling viewpoint such an assumption amounts to consider an increas-
ing number of smaller adhesions, each of them involving a large number of
proteins on each side (wall and cell), so that the attachment/detachment
dynamics is faster. Note that this corresponds to the description of the
clustering process in the adhesion sites.

For that purpose, let us introduce the parameter 0 < η ≤ 1 related to
the speed of acceleration compared to the scale reduction. Now, for K > 0,
and a > 0, consider

cK(KXK
t ) = Kc(XK

t ),
rK(KXK

t ) = r(XK
t ) +Kηa, dK(KXK

t ) = d(XK
t ) +Kηa.

The same acceleration for reproduction and death events permits to keep
the same bounded individual growth rate rK − dK = r − d. This way, even
if conceptually, each adhesion unity reproduces and dies infinitely faster,
its contribution the the global adhesion growth remains the same. The
martingale property (13) now writes

MK
t = XK

t −XK
0 −

∫ t

0
c(XK

s )ds−
∫ t

0

(
r(XK

s )− d(XK
s )
)
XK
s ds (25)

is a càdlàg square-integrable martingale starting from 0 and of quadratic
variation〈

MK
〉
t

=
1

K

∫ t

0

{
c(XK

s ) + (r(XK
s ) + d(XK

s ) + 2Kηa)XK
s

}
ds. (26)
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For either 0 < η < 1 or η = 1, deterministic or stochastic limiting
equations will be obtained at the limit. In all cases, we will need moment
properties established below. First, we prove a moment estimate uniform
in time and K. The method developped in proposition 6 can’t be used
anymore, as the bound on r is now K-dependent.

Proposition 12. Consider the process (XK
t )t≥0 defined in equation (9).

Under hypothesis 2, for η = 1, and if supK>0 E[(XK
0 )2] < +∞, then for

T < +∞,
sup
K

sup
t∈[0,T ]

E[(XK
t )2] < +∞. (27)

Proof. Let us use equation (12) for Φ(X) = X2. We obtain

LKΦ(XK
s ) = K(c(XK

s ) +XK
s r(X

K
s ))B+ +KXK

s d(XK
s )B− +K2aXK

s (B+ +B−) ,

with B+ =
(
XK
s + 1

K

)2 − (XK
s )2 and B− =

(
(XK

s − 1
K

)2 − (XK
s )2. Now,

as B− ≤ 0, we can neglect the second death terms and study an inequality.
Moreover, we compute

B+ =
2

K
XK
s +

1

K2
, B− = − 2

K
XK
s +

1

K2
, B+ +B− =

2

K2
,

leading to

LKΦ(XK
s ) ≤

(
C +RXK

s

)(
2XK

s +
1

K

)
+ 2aXK

s ≤ C
(
1 +XK

s + (XK
s )2

)
.

Hence, we can deduce from equation (12) that

E[(XK
t )2] = E[(XK

0 )2] +

∫ t

0
E[LKΦ(XK

s )]ds

≤ E[(XK
0 )2] + C

(
t+

∫ t

0
E[XK

s ] + E[(XK
s )2]ds

)
.

Finally, since E[XK
s ] ≤ C(1 + E[(XK

t )2]), by the Gronwall lemma, there
exists a constant C(t) such that E[(XK

t )2] ≤ C(t), hence

sup
K>0

sup
[0,T ]

E[(XK
t )2] < +∞ .

We show now a K-uniform control on E
[
supt∈[0,T ]X

K
t

]
.

Proposition 13. Consider the process (XK
t )t≥0 defined in equation (9) for

all K > 0. Assume that supK>0 E[(XK
0 )2] < +∞. Then, for T < +∞,

sup
K

E

[
sup
t∈[0,T ]

XK
t

]
< +∞ . (28)
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Proof. Recall (13) that rewrites

XK
t = MK

t +XK
0 +

∫ t

0
c(XK

s ) +
(
r(XK

s )− d(XK
s )
)
XK
s ds.

As a consequence,

sup
t∈[0,T ]

XK
t ≤ sup

t∈[0,T ]
|MK

t |+XK
0 + CT +R

∫ t

0
XK
s ds.

Now, by the Burkholder-Davis-Gundy inequality,

E

[
sup
t∈[0,T ]

|MK
t |

]2

≤ E

[
sup
t∈[0,T ]

|MK
t |2
]
≤ 4E

[
|MK

T |2
]

= 4E
[〈
MK

〉
T

]
,

and as E[XK
0 ] < +∞,

E

[
sup
t∈[0,T ]

XK
t

]
≤ 2E

[〈
MK

〉
T

]1/2
+ C(T ) +RE

[∫ t

0
XK
s ds

]
.

We use (14) to get

E[
〈
MK

〉
T

] ≤ CT + (R+D + 2a)

∫ t

0
E[XK

s ]ds ≤ C(T )

thanks to (12). We conclude by using the Gronwall lemma.

The deterministic case: 0 < η < 1 We consider here the case where the
individual dynamics is less accelerated as the scale gets smaller and smaller.
As a consequence, the stochastic fluctuations in the adhesion dynamics are
not important enough to impact the migration dynamics, and get a deter-
ministic limit. We assume the following:

Hypothesis 4 (Deterministic limit). For C, R, D positive constants, con-
sider the positive rates

cK(KXK
t ) = Kc(XK

t ) ≤ KC,
rK(KXK

t ) = r(XK
t ) +Kηa, dK(KXK

t ) = d(XK
t ) +Kηa,

with r(.) ≤ R and d(.) ≤ D. Moreover, c, r and d are Lipschitz-continuous
functions.

Theorem 14. Under hypothesis 4, if for K → +∞ the initial measure XK
0

converges in probability on R+ to a constant n0, and if

sup
K>0

E
[
(XK

0 )2
]
< +∞, (29)
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then (XK)K>0 converges in law in D ([0, T ],R+) to the unique deterministic
function n ∈ C([0, T ],R+) such that

nt = n0 +

∫ t

0
{c(ns)− (r(ns)− d(ns))ns}ds . (30)

Proof. The proof is similar to the one of theorem 7. Indeed, the only dif-
ference is the Kη terms in the reproduction and death terms, but as η < 1,
this doesn’t prevent the quadratic variation from going to 0 as K tends to
infinity.

The stochastic case: η = 1 Now, we study the case where the binding
dynamics is accelerated enough so that stochastic fluctuations remain at the
limit. We consider now the following hypothesis:

Hypothesis 5 (Stochastic limit). For C, R, D positive constants,

cK(KXK
t ) = Kc(XK

t ) ≤ KC, rK(KXK
t ) = r(XK

t ) +Ka ≤ R+Ka,

dK(kxKt ) = d(XK
t ) +Ka ≤ D +Ka

Moreover, c, r and d are Lipschitz-continuous.

Theorem 15. Under hypothesis 5, if for K → +∞ the initial value XK
0

converges in law to a R+-valued random variable N0, with

sup
K>0

E
[
(XK

0 )2
]
< +∞, (31)

then (XK)K>0 converges in law in D ([0, T ],R+) to the continuous process
N = (Nt)t∈[0,T ] ∈ C([0, T ],R+) solution of

dNt = b(Nt)dt+ σ(Nt)dBt (32)

with Bt a Brownian Motion, b(Nt) = c(Nt)+(r(Nt)−d(Nt))Nt and σ(Nt) =√
2aNt.

Proof. The proof is here again based on a compactness-uniqueness argu-
ment: we prove that the sequence of laws (QK)K of the processes (XK)K
is tight. Then, we identify its limiting values as solutions of (32), for which
uniqueness is stated.

Uniform tightness of (QK)K . As in the proof of theorem 7, denote (AKt )t≥0

the finite variation process related to the semimartingale (XK
t )t≥0:

AKt = XK
0 +

1

K

∫ t

0
cK(KXK

s )ds+

∫ t

0

(
rK(KXK

s )− dK(KXK
s )
)
XK
s ds .

We need to prove that for all T > 0 the following inequalities hold
true:
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1.

sup
K>0

E

[
sup
t∈[0,T ]

∣∣XK
t

∣∣] < +∞.

2. ∀ε > 0, ∀η > 0, ∃δ > 0, K0 ∈ N∗ such that for all sequence
(σK , τK)K of stopping times with σK ≤ τK ≤ T,
(a)

sup
K≥K0

P
(∣∣< MK >τK − < MK >σK

∣∣ ≥ η, τK ≤ σK + δ
)
≤ ε,

(b)
sup
K≥K0

P
(∣∣AKτK −AKσK ∣∣ ≥ η, τK ≤ σK + δ

)
≤ ε .

1. The first point is straightforward from proposition 13 together
with the assumption (31) made on the initial condition.

2. Take T > 0, ε > 0, η > 0 and a sequence of pairs of stopping
times (σK , τK)K such that σK ≤ τK ≤ T and τK ≤ σK + δ.

(a) From equation (14) together with the moment proposition
13, we obtain

E
[∣∣< MK >τK − < MK >σK

∣∣] ≤ C

K

(
δ + E

[∣∣∣∣∫ τK

σK

XK
s ds

∣∣∣∣])
≤ C(T )δ .

Hence, using the Markov inequality, for all ε > 0, for all
η > 0, there exists δ and K0 such that 2.a) is satisfied.

(b) Similarly, by proposition 13,

E
[∣∣AKτK −AKσK ∣∣] ≤ Cδ

(
1 + E[sup

[0,T ]
XK
t ]

)
≤ C(T )δ .

As before, we conclude by the Markov inequality.

This proves that the sequence (QK)K is uniformly tight in L(D([0, T ],R+)).

Identification of the limit. Using the Prokhorov theorem, we can con-
sider a convergent subsequence (QK)K , and denote Q its limit. Let
(XK)K be a corresponding sequence of processes in D([0, T ],R+) con-
verging in law to N ∈ D([0, T ],R+). As in the proof of theorem 7, we
can show that N is almost surely strongly continuous.

Now, we show that if for Y = (Yt)t≥0 ∈ D([0, T ],R+), we write

∼
M t (Y ) = Yt − Y0 −

∫ t

0
{c(Ys) + (r(Ys)− d(Ys))Ys} ds , (33)
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then
∼
M t (N) is a twice-integrable continuous martingale with quadratic

variation 〈 ∼
M
〉
t

= 2a

∫ t

0
Ysds. (34)

First, we show that
∼
M (N) is a martingale. Take 0 ≤ s1 < ... <

sn < s < t, and Φ1, ...,Φn continuous bounded functions from R to R.
Define Ψ : D([0, T ],R)→ R by

Ψ(Y ) = Φ1(Ys1)...Φn(Ysn)[Yt−Ys−
∫ t

s
{c(Ys) + (r(Ys)− d(Ys))Ys}du].

We need to show that
E[Ψ(N)] = 0 .

This can be made similarly as in the determinist case, and we refer to
the proof of theorem 7 for the details.

The new argument in this proof consists in showing that the bracket

of
∼
M is given by (34).

1. First, consider the K-dependent semimartingale obtained from
equation (12) with Φ(XK) = (XK)2, that is related to the
generator:

LKΦ(XK
s ) = 2XK

s

(
c(XK

s ) + (r(XK
s )− d(XK

s ))XK
s

)
+

1

K

(
c(XK

s ) + (r(XK
s ) + d(XK

s ) + 2Ka)XK
s

)
.

As in the previous point we can show that we have at the limit
the following martingale:

∼
N t= (Nt)

2−(N0)2−
∫ t

0
{2Ns (c(Ns) + (r(Ns)− d(Ns))Ns) + 2aNs} ds .

2. Moreover, applying the Itô formula to equation (33) shows that

N2
t −N2

0− <
∼
M>t −

∫ t

0
2Ns (c(Ns) + (r(Ns)− d(Ns))Ns) ds

is a martingale. We conclude by the uniqueness of the semi-
martingale decomposition of N2

t .

It remains to show the equivalence between the martingale problem
(33)-(34) and the SDE (32). This is a consequence of the classical
martingale identification

Mt =

∫ t

0

√
2aN(s)dBs ,
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Figure 3: Numerical simulations of the solution of the SDE (32). Parame-
ters: u = 6, γ = 0.3, c = 4 (left) and c = 5 (right), r = 5, d = 4, α = 0.1,
a = 0.55.

see for example [23].

Finally, the pathwise uniqueness of the solution to this SDE is clas-
sical in 1D since the drift is Lipschitz-continuous and the diffusion
coefficient is 1/2-Hölder (see e.g [19]).

Remark 16. The solution is strong and has the strong Markov property.

Numerical simulations We performed numerical simulations of the SDE
(32) with rates as defined in 22, using a symmetrized Euler scheme (taking
the absolute value of the classical Euler scheme) in order to preserve the
positivity of the process (see e.g [6]). More precisely, the scheme is the
following: write (Nk)k for the discretization of (Nt)t, with Nk corresponding
to the time tk = k∆t. Then, define

N0 = n0 (35)

Nk+1 = | Nk + b(Nk)∆t+
√

2a∆tNkZ | for k ≥ 0 , (36)

with Z ∼ N (0, 1). It is proved in [6] that strong L1 convergence holds for
this scheme if

σ2

8

(
2b(0)

σ2
− 1

)2

> 3P ∨ 4σ2 ,

for P ≥ |r − d| and ∆t ≤ 1
2P . This condition allows to deal with the non

lipschitz diffusion coefficient, and rewrites in our case

a

4

( c
a
− 1
)2

> 3P ∨ 8a .

As an example, a
4

(
c
a − 1

)2
> 8a is equivalent to

(
c
a − 1

)2
> 32, that is

verified for c > 7a. The numerical simulations are displayed in figure 3.
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6 Stopping time

The rolling motion of individual cells has been observed to fluctuate ran-
domly both in vivo and in vitro, hence it is natural to study in more details
the stochastic limit continuous model previously obtained (after a renormal-
izaton procedure). In particular we are interested in the probability for a
rolling cell to stop, that is to say for the velocity to reach 0. More precisely,
in this section we will compute the mean time Tn∗ needed for the process
to reach n∗ := u/γ starting from n0 (say 0). Hence, we focus here on the
process (Nt)t≤Tn∗ , for which almost surely, Nt ≤ n∗. We start by general
remarks on the stochastic differential equation (32).

6.1 General remarks

Positivity Even if we obtained a positive solution in the construction of
the last section, we can also show positivity in general if b(n) ≥ 0 for all
n ≥ 0, and for a positive initial state (see the 1D comparison principle in
[23] e.g.).

Change of variable The Itô formula allows us to write SDE (32) on
N -dependent quantities.

• For Yt =
√
Nt ∈ (0,+∞), we can show that

dYt =
b(Y 2

t )− a/2
2Yt

dt+

√
a

2
dBt .

The diffusion coefficient is now non-degenerate, but the 0-state is ex-
cluded.

• For Vt = u− γNt ∈ [0, u] if Nt ∈ [0, n∗], we obtain

dVt = (u(d(Nt)−r(Nt))−γc(Nt)+(r(Nt)−d(Nt))Vt)dt+
√

2aγ(u− Vt)dBt .
(37)

Using this equation is tempting, as we are interested in the time needed
for this quantity to reach 0. However, the diffusion coefficient is now
less simple than the one for (Nt)t, as we will see in the sequel.

6.2 Constant rates: the CIR process

For constant rates, the model given by (32) reduces to a CIR process, see
[12, 40, 19]:

dNt = (c+ (r − d)Nt)dt+
√

2aNtdBt , (38)

with c > 0, a > 0 and r − d ∈ R. It is known for demographical processes
that the diffusion limit of discrete branching processes with immigration
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(a) Subcritical case:
(c, a, r, d) = (0.5, 1.5, 4.45, 4.5).

(b) Supercritical case:
(c, a, r, d) = (2, 1, 4, 4).

Figure 4: Numerical simulations of the CIR process (38).

results in such processes [3]. Simulations of this process are displayed in
figure 4. In this case, the adhesion dynamics is not directly related to the
cell velocity, nor on the proximity with the vessel wall. Different behaviours
may occur only based on the range of the dynamics: if too low compared
to the blood blow, the cell does not stop, and does so for a large enough
adhesive dynamics.

6.2.1 Some generalities

In this paragraph, we give some classical results about the CIR process. For
more details we refer to [12, 40].

Reaching zero: As mentioned in [12], for c > 0 and a positive initial
state, {N = 0} is naturally a reflective barrier for the process (38). We can
also provide information about the probability to hit 0, depending on the
quantity δ := 2c

a , or equivalently on the comparison between a and c: denote
¶0 the probability to hit 0 in finite time, then one has

c < a
c ≥ a

r − d ≤ 0 r − d > 0

¶0 = 1 ¶0 ∈ (0, 1) ¶0 = 0

These results can be intuitively understood following the correspondance
between CIR processes and Orstein-Uhlenbeck processes for r − d < 0. In-
deed, consider D such processes (X1, · · · , XD) such that ∀i = 1, · · · , D,

dXi
t = −1

2
βXi

tdt+
1

2
σdBi

t ,

with (Bi)i ∈ {1, · · · , D} independent Brownian motions and β > 0. Each
process follows a stochastic dynamics that is drifted to zero. Now, similarly
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as for Brownian motion, for D = 1, the process almost surely hits zero
infinitely many times, while for D ≥ 2, it has a null probability of reaching
zero even once.

Using the Itô formula, it is possible to write the SDE that verifies the
squared euclidean norm of (X1, · · · , XD), that is to say R = (X1)2 + · · ·+
(XD)2: we have

dRt =

(
σ2D

4
− βRt

)
dt+ σ

√
R(t)dBt ,

with B a Brownian motion. Then, denoting D = 4c/σ2 > 0, where σ2 = 2a,
it is possible to derive equation (38) with r − d = −β ≤ 0. Therefore, if D
is an integer, the CIR process admits a representation as the squared norm
of D Ornstein-Uhlenbeck processes. More generally, the CIR process relates
rigorously to the Squared Radial Ornstein-Uhlenbeck process, as it will be
precised below.

Remark 17. It is also possible to relate a CIR process to a Squared Bessel
process by a space-time transformation. This process is itself in correspon-
dance with a Squared Radial Ornstein-Uhlenbeck process. Take S a squared
Bessel process of dimension δ ≥ 0 (denoted BESQδ). For a fixed initial
condition, it is the unique strong solution of the SDE

dSt = δdt+ 2
√
StdBt . (39)

Now, for δ = 4c
2a = 2c

a , the correspondance between N and S writes

Nt = e(r−d)tS a
2(r−d) (1−e−(r−d)t) .

For δ ∈ N, a squared Bessel process also admits a representation as the
square norm of a δ-dimensional Brownian motion. Therefore, the previous
result can be deduced by the same reasoning [12].

Distribution: It is known that for δ = 2c
a ∈ N and r − d < 0, we have

Nt|n0 =
(1− e(r−d)t)2a

2(d− r)
Yt,

with Yt following a non-central chi-square distribution with δ degrees of
freedom, and a non-centrality parameter ξt = n0

2(d−r)
(1−e(r−d)t)ae

(r−d)t. This

also results from the representation as the squared euclidean norm of a
δ-dimensional Ornstein-Uhlenbeck process. The integral form of the SDE
(38) allows to compute the mean solution directly, and the variance of the
solution (using additionally the Ito formula). We compute
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E[Nt|n0] = n0e
(r−d)t +

c

d− r

(
1− e(r−d)t

)
,

V ar(Nt|n0) = n0
2a

d− r

(
e(r−d)t − e2(r−d)t

)
+

ac

(d− r)2

(
1− e(r−d)t

)2
.

The corresponding probability density pn0 writes for n ≥ 0, n0 > 0 and
κt = d−r

(1−e(r−d)t)a :

pn0(n; k, ξt) = κt

(
n

n0e(r−d)t

) c
a
−1

e−κt[n0e(r−d)t+n]I c
a
−1

(
2κt
√
n0ne(r−d)t

)
,

where Iα is the modified Bessel function of the first kind whose definition
we recall now:

Iα(x) := Σ∞m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α
,

where Γ is the Gamma function Γ(t) =
∫∞

0 xt−1e−xdx.
A stationary distribution exists if and only if r − d < 0 [19]. In that

case, the previous approach gives a possible stationary probability density.
Then, writing the Fokker-Planck equation associated to equation (38), we
can check that the stationary density writes

p∞(n) =

(
d− r
a

) c
a 1

Γ
(
c
a

)n c
a
−1e

r−d
a
n .

It can be noticed that
p∞(n) = N e−ϕ(n)

for ϕ(n) =
(
1− c

a

)
ln(n) + d−r

a n the corresponding potential, and N a nor-
malization constant. Simulations are displayed in figure 5.

Time to reach n∗: For the CIR process, it is possible to explicit the
Laplace transform of the first hitting time of any value, starting at a given
point [12, 26]. It is not possible to proceed to its inversion analytically.
Numerical inversions procedures exist, and some of them are compared in
[26]. They do not always provide satisfactory results: the integral of the
output may not be equal to one, and negative values may appear. The
procedure proposed by [1] seems satisfactory in this viewpoint. However
in [28], a spectral expansion of the probability density is used, and we will
follow this method.

We start by giving an outline of the ideas leading to the expressions
of the Laplace transform of first hitting times of CIR processes. For more
details we refer to [12].
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(a) Subcritical case: c = 1, a = 2.
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(b) Supercritical case: c = 5, a = 2.

Figure 5: Numerical simulations of the stationary probability density of
the CIR process for u = 6, η = 0.3, α = 0.1, r = 4, and d = 4.5.

We exploit the rigorous link that exists between the CIR process and
the Squared δ-dimensional Radial Ornstein-Uhlenbeck process of parameter
−κ, denoted SROU in the sequel, corresponding to the SDE

dZt = (δ − 2κZt)dt+ 2
√
Zt dBt . (40)

Recalling equation (38), we obtain the SROU using the change of variable
Zt = 2

aNt. Then, we have δ = 2c
a and −2κ = r − d.

Now, the squared root of a δ-SROU process is called a δ-dimensional
Radial Ornstein-Uhlenbeck process (or δ-ROU, denoted by (Rt)t). A Gir-
sanov theorem relates its law and the law of a Bessel process [12]. Briefly,
the Laplace transform of first hitting times for Bessel process are obtained
by exploiting time-reversal arguments. These expressions transfer to ROU
processes, allowing to get explicit Laplace transforms in the case of CIR
processes. Detailed proofs are displayed in [12]. Take x, y ≥ 0, and denote
PTx→y the random variable corresponding to the time needed for a process
P to reach y starting from x. Then,

NTx→y
law
= ZT 2x

a
→ 2y

a

law
= RT√

2x
a
→

√
2y
a

.

Let us introduce now the Whittaker’s functions

Mk,µ(z) := zµ+1/2e−z/2Φ(µ− k + 1/2, 2µ+ 1; z),

and the Kummer confluent hypergeometric function defined for b /∈ Z−,

Φ(a, b; z) :=

∞∑
j=0

(a)j
(b)j

zj

j!
,
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with (r)0 = 1, (r)j = Γ(r+j)
Γ(r) = r(r + 1)...(r + j − 1) for j ≥ 1. Moreover,

Iν(·) is the first modified Bessel function of order ν. Then, the following
expressions are verified [12].

Theorem 18 (0 to x, [12]). Denote Tx = inf{t|Rt = x,R0 = 0} for (Rt)t a
δ-ROU process with parameter −κ (we drop the R superscript for simplicity).
Then, its Laplace Transform writes

E0

[
e−αTx

]
=

2α/κ−ν−1xνΓ(α/(2κ))κα/(2κ)

Γ(ν + 1)
∫ +∞

0 Iν(γx)e−γ2/(4κ)γα/κ−ν−1dγ

=
(
√
κx)ν+1e−κx

2/2

M(−α/κ+ν+1)/2,ν/2(κx2)

=
1

Φ(α/(2κ), ν + 1;κx2)
.

Then, since for 0 < y < x, we have Tx = Ty +Ty→x in law, and as by the
strong Markov property, Ty and Ty→x are independent, we get the following
corollary.

Corollary 1 (0 < y < x to x [12]).

Ey
[
e−αTx

]
=

(
x

y

)ν+1

eκ(y2−x2)/2M(−α/λ+ν+1)/2,ν/2(κy2)

M(−α/λ+ν+1)/2,ν/2(κx2)

=
Φ(α/(2κ), ν + 1;κy2)

Φ(α/(2κ), ν + 1;κx2)
.

Remark 19. Analogous results exist for the case 0 < x < y, but are not
useful for our purpose.

We follow now the work of [28, 29] to compute numerically the first
hitting time density using an eigenfunction decomposition, following an ap-
proach used for diffusions [10, 20, 31]. For the CIR process, it is established
in [30, 29] that the same type of decomposition holds. More precisely, the
infinitesimal generator G associated to the CIR diffusion (38) writes for y > 0

(Gu)(y) =
1

2
σ2yu′′(y) + (c+ (r − d)y)u′(y) ,

with σ2 = 2a. For c/a < 1, the origin is attainable and instantaneously
reflecting. In this case, the state space is I = [0,+∞), and we have the
boundary condition at zero

lim
y↓0

u′(y)

s(y)
= 0 , (41)

where s(y) = y−c/a exp(−(r − d)y/a). For c/a ≥ 1, the origin in unattain-
able, I = (0,+∞), and the previous boundary condition is directly satisfied.
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The infinitesimal generator is thus defined on D(G) := {u ∈ Cb(R) : G(u) ∈
Cb(R) and the condition (41) holds.}. The infinitesimal generator can be
rewritten for x ∈ [0,+∞),

(Gu)(y) = m(y)

(
u′(y)

s(y)

)′
,

where m(y) = 1
ays(y) . Notice that s and m are continuous and strictly

positive on (0,+∞).
Since the CIR process admits a stationary distribution (for r − d < 0),

it is positively recurrent: Py(Ty→x < +∞) = 1 and Ey[Ty→x] < +∞. We
apply now a result proved in [29] and applied in [28] to the CIR process.

Proposition 20. [29] For y < x ∈ I and t > 0, we have

Py(t < Ty→x) =

+∞∑
n=1

one
−λnt , (42)

with 0 < λ1 < λ2 < . . . , λn →n→+∞ +∞. The families {λn}n and {on}n
are defined as follows.

Let us introduce the Sturm-Liouville problem associated to G:

−Gu = λu , (43)

for λ ∈ C. Denote ψ(y, λ) the unique (up to a multiplicative constant) non-
trivial solution of (43), square-integrable with m(y) near {y = 0}, satisfying
the boundary condition (41), and such that (y, λ) 7→ ψ(y, λ), ψy(y, λ) are
continuous in (0, x] × C, and continuous on C as functions of λ for y < x
fixed.

Then, equipping equation (43) of the Dirichlet boundary condition u(y) =
0, the family {λn}n∈N∗ is defined as the set of simple positive zeros of the
solution:

ψ(y, λn) = 0 . (44)

Now, {on}n∈N∗ is defined by

on =
−ψ(x, λn)

λnψλ(y, λn)
. (45)

We state now the result of [28] that gives explicit expressions for {λn}n∈N∗
and {on}n∈N∗ , as well as a series expansion for the first hitting time density
fTy→x . Its uniform convergence is a consequence of estimates given on λn
and on.

Proposition 21. [28] For 0 < x < y ∈ I, and t > 0 we have

fTy→x(t) =
+∞∑
n=1

onλne
−λnt , (46)
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with uniform convergence on [t0,+∞), t0 > 0, and 0 < λ1 < . . . , with
λn →

n→+∞
+∞. More precisely, recall that Φ(w1;w2;w3) denotes the Kum-

mer confluent hypergeometric function. Then, for

y := −r − d
a

y , x := −r − d
a

x , sn :=
λn
r − d

,

with {sn} such that 0 > a1 > . . . , and sn →
n→+∞

−∞, {sn}n are the negative

roots of ϕ(·; c/a;x) = 0. The family {on}n is then defined by

on = − Φ(sn; c/a; y)

sn∂s(Φ(sn; c/a;x))
. (47)

Moreover, the following large-n asymptotics hold:

λn ∼
n→+∞

(d− r)π2

4x

(
n+

c

2a
− 3

4

)2

− (r − d)c

2a
, (48)

as well as

on ∼
n→+∞

(−1)n+12π(n+ c/(2a)− 3/4)

π2(n+ c/(2a)− 3/4)2 − 2c
a x
× e

1
2

(y−x)

(
y

x

) 1
4
− c

2a

cos

(
π

(
n+

c

2a
− 3

4

)√
y

x
− πc

2a
+
π

4

)
.

(49)

Therefore, the proposed numerical method requires to compute the set
of negative roots of ϕ to get approximations of the families {λn}n and {on}n.
The choice of the level of truncation for the approximation of (46) can be
made using the following estimate resulting from the expressions above:∣∣∣onλNe−λN t0∣∣∣ ∼

N→+∞
ANe−BN

2t0 ,

for

A =
2aπ

4x
e
y−x
2

(
x

y

) 1
4
− c

2a

, B =
aπ2

4x
.

Linetsky also remarks that using the large-n estimates (48)-(49) instead
of computating zeros of the Kummer function provides quite satisfactory
results, in particular for c/a small. For a better accuracy, one can also use
the exact expression for the first term, then the estimates. The following
numerical simulation was performed using only the asymptotic expansion of
λn and on even for n small, since it is observed that this approximation does
not change qualitatively the profile (see figure 6). Obviously, in this case,
the obtained function is not a probability density. An inconsistency tends
to appear near {t = 0} due to the approximation, but the overall shape was
conserved.
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Figure 6: Numerical simulation of an asymptotic spectral decomposition of
the probability density of the first hitting time of 1 of a CIR process starting
at 0.01. Parameters: ∆t = 0.01, c = 0.45, a = 0.5, r = 0.2 and d = 1. The
sum is truncated at Ntres = 100.

6.3 General rates

Let us now focus on the general case of equation (32), assuming hypothesis
5. The first result to state consists in using the 1D comparison result that
was already mentioned.

6.3.1 Comparison principle

We assume 0 ≤ n0 < n∗, hence before the hitting time of n∗ we can assume
d(Nt) ≤ D = d (as u− γn∗ = 0).

Using the bounds on the parameters, it is possible to use a 1D comparison
principle (see e.g [37]) to deduce bounds on the hitting time of n∗ for our
process. We have

c+ (r − deαu︸︷︷︸
D

)Nt ≤ b(Nt) ≤ c+ (r − d︸︷︷︸
D

)Nt ,

for Nt ∈ [0, n∗]. Denote N (resp. N) the solution related to the death rate
D (resp. D). Almost surely, for t ∈ [0, Tn∗ ],

nt ≤ nt ≤ nt ,

and for the same initial condition 0 ≤ n0 < n∗, almost surely,

NTn∗ ≤ NTn∗ ≤ NTn∗ .

33



However, these bounds are not precise enough for our study, and we develop
in the following a Fokker-Planck approach.

6.3.2 The Fokker-planck approach

We associate to the SDE (32) the Fokker-Planck equation on p(n, t) :=
p(n, t|n0, t0) the probability density of (Nt)t conditionnally to its initial con-
dition:

∂p(n, t)

∂t
=

∂

∂n
(−b(n)p(n, t) +

1

2

∂

∂n
(σ2(n)p(n, t)))︸ ︷︷ ︸

J(n,t)

, (50)

where we recall that b(n) = c+(r(n)−d(n))n, while σ(n) =
√

2an and J(n, t)
is the associated probability current. The natural boundary conditions are
the following:

J(0, t) = 0 ,

lim
n→+∞

p(n, t) = 0 ,

p(n, 0) = δn=n0 .

We are interested in the time necessary for the process to reach the
value n∗ > 0 if it starts at n0 ∈ (0, n∗), and with 0 a reflecting barrier.
This question can be adressed by considering the Fokker-Planck equation
on (0, n∗) with 0 reflecting and n∗ an absorbing barrier. More precisely,
write G(n0, t) the probability that a particle starting at n0 is still in (0, n∗)
at time t. Then,

G(n0, t) =

∫ n∗

0
p(n, t|n0, 0)dn = P(T ≥ t) ,

where T is the exit time from (0, n∗).
Since the dynamics is homogeneous in time, we deduce that p(n, t|n0, 0) =

p(n, 0|n0,−t) and n0 7→ p(n, t|n0, 0) satisfy the backward Fokker-Planck
equation:

∂p(n, t|n0, 0)

∂t
= b(n0)

∂

∂n0
p(n, t|n0, 0) +

1

2
σ2(n0)

∂

∂n0
2
p(n, t|n0, 0) , (51)

and that (n0, t) 7→ G(n0, t) satisfies

∂G(n0, t)

∂t
= b(n0)

∂

∂n0
G(n0, t) +

1

2
σ2(n0)

∂

∂n0
2
G(n0, t) . (52)
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The initial and boundary conditions are the following:

G(n0, 0) =

∫ n∗

0
δ(n− n0)dn = 1[0,n∗](n0) ,

∂

∂n0
G(0, t) = 0 ,

G(n∗, t) = 0 .

Take f : R 7→ R+ non-decreasing and C1. Then, classically, E[f(T )] =∫ +∞
0 f ′(t)P(T > t)dt =

∫ +∞
0 f ′(t)G(n0, t)dt. Hence, we get for k > 1,

τ(n0) := E[T ] =

∫ +∞

0
G(n0, t)dt ,

τk(n0) := E[T k] = k

∫ +∞

0
tk−1G(n0, t)dt .

Finally, by integration of equation (52) in time, we get ODEs on the
family (τk)k≥1: 

b(n0)τ ′(n0) + 1
2σ

2(n0)τ ′′(n0) = −1 ,

τ ′(0) = 0 ,

τ(n∗) = 0 ,

(53)

and for k > 1,
b(n0)τ ′k(n0) + 1

2σ
2(n0)τ ′′k (n0) = −kτk−1(n0) ,

∂n0τk(0) = 0 ,

τk(n
∗) = 0 .

(54)

By direct integration, we can directly solve equation (53), which allows
then to solve successively the sequence of problems (54). Write

Ψ(n0) = e
∫ n0
0

2b(n′)
σ2(n′)

dn′
. (55)

Then, we have

τ(n0) = 2

∫ n∗

n0

1

Ψ(y)

∫ y

0

Ψ(z)

σ2(z)
dz dy . (56)

In practice, denoting ε > 0 for the below bound instead of zero, we find

Ψ(n0) =
(n0

ε

) c
a

exp

(
r

a
n0 −

d

αγa
eαu(1− e−αγn0)

)
.

Explicit computations lead to
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(a) γ = 0.5. (b) a = 0.4.

Figure 7: Mean first hitting times of a zero velocity as a function of u: de-
pending on the parameters, the time is very large or reachable. Parameters:
γ = 0.5, α = 0.8, c = 1, r = 0.6, d = 0.7, a = 0.1. The figures below depict
the same simulation on different scales.

τ(n0) =
1

a

∫ n∗

n0

∫ y

0

(
z

y

) c
a

z−1e
r
a

(z−y) exp

(
d

aαγ
eαu

(
e−αγz − e−αγy

))
dz dy .

(57)
We perform numerical simulations of τ(0) for varying flow velocity u (see

figure 7).
The simulations show that below a treshold flow velocity, the particle

reaches a zero velocity very fast, while it gets extremely slow above the
treshold. This dichotomy on u can be numerically modulated by γ corre-
sponding to the adhesion force, and a corresponding to the noise. Increasing
adhesion forces allows to stop cells in settings of higher flow, so as increasing
the stochastic fluctuations due to the bonds dynamics.

7 Conclusions and perspectives

In this part, we have presented a discrete model for ligands binding on artery
walls. The model is based on a stochastic description of the formation
of weak bonds between the cell and the adhesive molecules on the wall,
and of the stronger ones arising by self-reinforcement. This phenomenon
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is modelled by a stochastic population model. The bonds dynamics are
affected by the cell displacement by an interaction on their breaking rate:
faster cells have shorter-lived bonds with the wall.

We are interested in the stopping time of the cell, that amounts to the
first hitting time of a treshold value for the bond population. For this pur-
pose, we derive a continuous model by scaling, so that the adhesion dynamics
follows a diffusive stochastic differential equation. For constant parameters,
no interaction or feedback is described, and the model resumes to a CIR
process, for which properties of first hitting times are known. We provide
its Laplace transform, and use a spectral method to make simulations of the
corresponding probability density. Finally, for the model with interaction,
we use a Fokker-Planck approach to have an integral formulation of the
mean time to stop. Numerical simulations of this quantity as a function of
the flow velocity show interesting results. First, a dichotomy appears in re-
lation with the flow velocity: for low flows, the particle is stopped very fast,
while above some treshold, the mean time to stop grows very steeply. Next,
we checked that the simulations were the most sensitive on the adhesion
coefficient γ, and on the stochastic parameter a. Indeed, larger adhesion
forces favors the stopping of the cell. A larger noise also induces stops more
easily, which is in agreement with the observations stated at the beginning.

Further works should emphasize on the comparison with experimental
measures to enlighten conditions of stopping for the cell. Moreover, time-
dependent rates will be considered to illustrate the effect of the heart cycle
on the adhesion dynamics. Finally, this model can be extended to the case of
adhesion to an adhesive surface in 2D. In this case, the position of adhesion
proteins on the cell surface can not be neglected anymore. This situation
will be handled by adding a spatial structure to the population of bonds,
following the framework of [13, 8] and further works on measure-valued
stochastic processes.

Acknowledgements the authors are very grateful to V.C. Tran, R. Voi-
turiez for very helpful discussions and suggestions.

8 Appendice: Proof of proposition 3

Although the proof is similar to proposition 2.7 in [4] we recall it here for
clarity. In the following C will denote a positive constant which value can
change from line to line. The proof is split into three steps.

1. We know that P− a.s, for a positive and measurable test function Φ ,
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Φ(Nt) = Φ(N0) +

∫ t

0

∫
R+

[
(Φ(Ns− + 1)− Φ(Ns−)1w≤λ(Ns− )

+(Φ(Ns− − 1)− Φ(Ns−)1λ(Ns− )≤w≤λ(Ns− )+µ(Ns− )

]
M(ds, dw) ,

so that

Φ(Nt) = Φ(N0) +
∑
s≤t

Φ(Ns− + (Ns −Ns−))− Φ(Ns−) . (58)

Then, for Φ(Nt) = Np
t , using equation (4), and neglecting the negative

death term, we get

Np
t ≤ N

p
0 +

∫ t

0

∫
R+

(
(Ns− + 1)p −Np

s−

)
10≤u≤λ(Ns− )M(ds, dw) .

For n ≥ 0, consider the stopping time τn = inft≥0{Nt ≥ n}. Then,
taking expectations,

E

[
sup

t∈[0,T∧τn]
Np
t

]
≤ E[Np

0 ] + E
[∫ T∧τn

0
λ(Nt−)

(
(Nt− + 1)p −Np

t−

)
dt

]
,

≤ E[Np
0 ] + E

[∫ T∧τn

0
C(1 +Nt−)

[
(Nt− + 1)p −Np

t−

]
dt

]
.

We use now the following lemma, which can be proved by a direct
computation:

Lemma 22. Let x ∈ R+, and p a positive integer. Then, there exists
a positive constant C(p) such that

(1 + x)p − xp ≤ C(p)(1 + xp−1) .

Then,

E

[
sup

t∈[0,T∧τN ]
Np
t

]
≤ E[Np

0 ] + C(p)E
[∫ T∧τN

0
(1 +Nt−)

(
1 +Np−1

t−

)
dt

]

≤ E[Np
0 ] + C(p)

(
T +

∫ T

0
E

[
sup

u∈[0,t∧τN ]
Np
u−

]
dt

)
.

We use now the Gronwall inequality together with the assumption on
the initial term to get a partial result.
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Let us now prove that limn→+∞ τn = +∞ P− a.s: if not, there exists
T ∗ < +∞ such that P (supn τn < T ∗) > 0. Then, by the Markov
inequality, for all n ∈ N, the following inequalities hold true:

E

[
sup

t∈[0,T ∗∧τn]
Np
t

]
≥ P

(
sup

t∈[0,T ∗∧τn]
Np
t ≥ np

)
np

≥ P (τn < T ∗)np

≥ P
(

sup
n
τn < T ∗

)
︸ ︷︷ ︸

>0

np ,

which contradicts the previous inequality since E
[
supt∈[0,T∧τN ]N

p
t

]
was bounded independantly of n. Finally, by the Fatou inequality:

E

[
sup
t∈[0,T ]

Np
t

]
= E

[
lim inf
n→+∞

sup
t∈[0,T∧τn]

Np
t

]

≤ lim inf
n→+∞

E

[
sup

t∈[0,T∧τn]
Np
t

]
≤ C(p, T ) < +∞ .

2. Let T0 = 0 be the first time of event, and t ∈ R+. Then, the global
jump rate of Nt is smaller than C + (R + D)Nt ≤ C(1 + Nt). One
can P− a.s define the sequence (Tk)k∈N∗ of jumping times, as well as
T∞ := limk→+∞ Tk. By definition, the process (Nt)t can be inductively
constructed on [0, T∞[. Showing existence of a solution (Nt)t∈R+ ∈
D(R+,R+) amounts to showing that P − a.s, T∞ = +∞. From the
first step, the population size stays controlled in finite time. As a
consequence, the appearance of events can be compared to a Poisson
variable, leading to the result.

3. Uniqueness is clear by construction. It is possible to derive a rigorous
proof by induction, using the trajectorial representation of the process.
We do not detail this here.

9 Appendice: Proof of proposition 4

1. This is a direct consequence of Dynkin’s theorem combined with the
integrability of each term, and the assumption on the initial condition.

2. Take N ∈ R+ and Φ(N) = N q for 0 ≤ q ≤ p. Then,

|Φ(N)|+ |LΦ(N)| ≤ N q + (C +RN) |(N + 1)q −N q|+DN |(N − 1)q −N q| .

39



Now notice that as |(N + 1)q −N q| ≤ C(1+N q−1) and |(N − 1)q −N q| ≤
C(1 +N q−1),

|Φ(N)|+ |LΦ(N)| ≤ C(1 +N q) .

3. Let us now prove the semimartingale formulation. We first notice that
expression (7) comes from (6) for Φ1(N) := N . Now, let us compute
the quadratic variation of this martingale.

→ As a first step, compute the Doob decomposition of Φ(Nt) := N2
t

using equation (6). We can write

LΦ(N) = [λ(N) + µ(N)] + 2N [λ(N)− µ(N)] .

By point 2, we have that

N2
t −N2

0 −
∫ t

0
λ(Ns) + µ(Ns) + 2Ns [λ(Ns)− µ(Ns)] ds

is a càdlàg martingale starting from 0.

→ Now, applying Itô ’s formula to equation (7) leads to another
decomposition that involves the quadratic variation of (Mt)t:

N2
t −N2

0 −
∫ t

0
2Ns [λ(Ns)− µ(Ns)] ds− < M >t

is a martingale. From uniqueness of such a decomposition, we
find that

< M >t=

∫ t

0
λ(Ns) + µ(Ns)ds ,

that is exactly equation (8).
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tic description of a locally regulated population and macroscopic approxi-
mations, The Annals of Applied Probability, 14, (2004).

[14] Douglas Goetz, Marwan El-Sabban, Bendicht Pauli and
Daniel Hammer, Dynamics of neutrophil rolling over stimulated en-
dothelium in vitro., Biophysical journal, 66, (1994).

[15] Neil Granger and Elena Senchenkova, Inflammation and the
Microcirculation, Colloquium Series on Integrated Systems Physiology:
From Molecule to Function, 2, 1–87, (2010).

[16] Bérénice Grec, Bertrand Maury, Nicolas Meunier and Lau-
rent Navoret, The role of ligands binding in shear induced leukocyte
rolling (2012).

[17] Daniel Hammer and S. Apte, Simulation of cell rolling and adhesion
on surfaces in shear flow: general results and analysis of selectin-mediated
neutrophil adhesion, Biophys. J., 63(1):3357, 1992.

41



[18] D. Hammer and D. Lauffenburger, A dynamical model for
receptor-mediated cell adhesion to surfaces, Biophys. J., 52:475487, 1987.

[19] N Ikeda and S Watanabe, Stochastic differential equations and dif-
fusion processes, Kodansha scientific books, North-Holland, (1989).
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