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Abstract

The quality of glass depends upon the removal of dissolved gases and bubbles. A quanti-
tative understanding of these processes is essential for glass production today, where quality
requirements are becoming increasingly stringent. Classical fining involves adding an element
or compound to the melt which will, through oxidation-reduction reactions at high temper-
atures, produce gases that diffuse into the bubbles present in the melt. The growth of these
bubbles then enhances the rate of bubble removal from the melt. The modelling of oxidation-
reduction reactions and that of fining are generally treated independently from one another.
However, due to the large number of bubbles present, a significant amount of dissolved gases
are consumed and chemical equilibrium in the melt is changed. We present, in this paper, a
theoretical model where redox equilibrium is coupled with bubble generator and growth. Our
approach is similar to that proposed by Nemec and his co-workers [7, 14], but differs in the
numerical method. After a description of the model, we present the evolution of a bubble
population with time and also apply the numerical method to an experimental tool where
bubbling is used to equilibrate the partial pressures between the bubbles and between the
melt. We find, with the model, an equilibrium time longer than seen experimentally. The
possible origins of the disagreement are investigated and discussed.

Introduction

Molten soda-lime-silica glass is obtained from, among other things, carbonaceous raw materials
such as CaCO3 and Na2CO3. These release CO2 gas which is then found in the molten glass
partly in bubble form and partly dissolved in the melt. Nemec and Klouzek [10] indicate that
the bubble concentration can approach 109 bubbles per cubic meter. Since the final product must
have the fewest bubbles possible, the goal of the fining process is to eliminate a large number of
the bubbles present in the glass.

Bubble evacuation is a difficult task in a viscous fluid such as molten glass due to the low rise
velocity especially for small bubbles with diameters less than 0.5 mm. This velocity increases with
temperature due to decreasing viscosity and with increasing bubble size. Moreover, though the
addition of “fining” agents, the bubble size can be increased due to the migration of “fining” gases
dissolved in the molten glass towards the bubbles. Finding good fining agents is the art of a glass
maker. Optimization of these agents can be achieved through the use of experimental devices and
by modelling the fining process.

As previously mentioned, most fining processes are governed by the oxidation-reduction re-
actions of fining agents. In many investigations [1] these two phenomena are treated separately
with, in the first stage, redox behavior in the glass being determined and, secondly, the evolution
of the bubbles being studied. But due to the large number of bubbles, the consumption of dis-
solved gases can significantly change the redox state. Only a few publications by Nemec and his
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co-workers [7, 14] try to take into account the coupling of redox and fining. This article carries out
the coupled modelling of these two processes in a system assumed to be spatially homogeneous.

After the presentation of the basic equations of the model in section 1, the results are given in
section 2 followed by a discussion and conclusion.

1 Modelling of redox and fining processes

In a glass melt at high temperatures, chemical reactions play an important role in the fining
process [5]. Many gas species, such as water, oxygen, carbon dioxide and sulphur, react with glass
and as indicated in the introduction, the fining of gas bubbles is supported by the addition of
fining agents which react as the temperature increases. The chemical agents classically used are:
sulphate, arsenic(V) oxide, antimony(V) oxide.

1.1 Redox model

Knowledge of the concentrations of dissolved gases is necessary in order to describe the evolution of
bubbles. These concentrations depend on reduction-oxidation reactions. We assume that locally
these reactions are in a state of chemical equilibrium, an assumptionthat has been justified by
Russel [12]. Consider a polyvalent chemical element, M . The reduction reaction of the polyvalent
ion M is given by [13]

M (n+k)+ +
k

2
O2−

⇋ Mn+ +
k

4
O2. (1)

Mn+ and M (n+k)+ represent, respectively the reduced and oxidized states of M . The equilibrium
constant of this reaction is given by the following equation [2]

KM =
CMn+C

k/4
O2

CM(n+k)+

. (2)

CMn+ , CO2 and CM(n+k)+ are molar concentrations.
The modelling of reduction-oxidation reactions is presented here under a general form where

we assume that R reactions take place in the glass melt. The number of ionic species is NI and
the number of fining gas species is Nfg. The generic reaction r is thus written

NI
∑

i=1

ν′riAi +

Nfg
∑

j=1

β′

rjGj ⇋

NI
∑

i=1

ν′′riAi +

Nfg
∑

j=1

β′′

rjGj . (3)

Ai is the ion i where i varies from 1 to NI and Gj corresponds to the gas j where j varies from 1
to Nfg. The stoichiometric coefficients for ionic and gas species taken into account in reaction r
are defined by the following relations [11]

νri = ν′′ri − ν′ri, for i = 1 to NI . (4a)

βrj = β′′

rj − β′

rj , for j = 1 to Nfg. (4b)

The equilibrium constant of reaction r is given by [11]

Kr =

NI
∏

i=1

Cνri
Ai

Nfg
∏

j=1

C
βrj

Gj
= exp

(

−∆Gr

RT

)

, (5)

where ∆Gr is the Gibbs free energy of reaction r defined by

∆Gr = ∆Hr − T∆Sr. (6)

∆Hr and ∆Sr are, respectively, the enthalpy and entropy of reaction r, R is the universal gas
constant and T the temperature.

The determination of ionic and gaseous concentrations is carried out by setting the chemical
affinity equal to zero for each of the R reactions due to the assumption of chemical equilibrium.
Before presenting how this is achieved, the fining model will be described.
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1.2 Fining model

Gas bubbles contained in the glass melt must be removed. As noted by Beerkens [1], primary fining
is the removal of bubbles through the action of fining agents releasing gases in order to enhance
bubble growth. Since the rise velocity of a bubble is proportional to its radius squared, the time
required for a bubble to reach the glass melt surface decreases with bubble growth. Primary fining
is relevant at high temperature while secondary fining is the re-absorption of bubbles during cooling
of the melt. As temperature decreases, the chemical solubility of species like O2, SO2 increases.
This effect leads to a reduction in bubble size.

Both bubble growth and shrinkage are controlled by mass transfer between bubble and melt.
This process also takes into account multispecies diffusion. A detailed model can be found in
reference [1]. Here, we begin by outlining the mass transfer laws of gases diffusing into bubbles
moving in a melt. Afterwards, the equations describing the dynamic variation of bubble position,
radius and partial pressures will be specified.

1.2.1 Mass transfer

Assuming that bubbles are composed of Ng gases (where Ng = Nfg +Nnfg and Nnfg corresponds
to the number of non-fining gases such N2 or H2O), the number of moles of gas species Gj can be
determined by

dnGj

dt
= 4πa2kGj

(CGj
− Cs

Gj
), (7)

where nGj
is the number of moles of gas species Gj , a the bubble radius, kGj

the mass transfer
coefficient, CGj

the bulk molar concentration, Cs
Gj

the molar concentration at the bubble surface.
The mass transfer coefficient is derived from the Sherwood number.

ShGj
=

2akGj

DGj

. (8)

DGj
is the diffusion coefficient of species Gj . Mass transfer is also influenced by the velocity of

the bubble relative to the molten glass. The importance of this motion is quantified by the Péclet
number

PeGj
=

2aub

DGj

. (9)

ub is the bubble velocity relative to the molten glass. If we assume that the bubble interface is
rigid, the Sherwood number must be proportional to the Peclet number to the power of one-third.
Here we use the law given in the textbook of Clift et al [4]:

ShGj
= 1 + (1 + PeGj

)1/3. (10)

This equation agrees with the numerical solution within 2% over a large range of Péclet numbers.
This is established for Stokes flow in an infinite domain however equation (10) can only be used
for Re ≤ 1 (see for details [4]) where Re is the Reynolds number given by

Re =
2aubρ

µ
. (11)

ρ is glass density and µ dynamical viscosity.
The surface concentration, Cs

Gj
, is determined using Henry’s law:

Cs
Gj

= LGj
P

αGj

Gj
, (12)

where LGj
is the solubility coefficient, PGj

is the partial pressure of the species Gj in the bubble
and αGj

is a stoichiometric coefficient equal to unity for most species but is equal to 1/2 for water
[1].
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1.2.2 Bubble growth and shrinkage

To describe the evolution of radius and partial pressure in a bubble, we use the ideal gas law:

PV = RT

Ng
∑

j=1

nGj
, (13)

where P is the total pressure in the bubble and V bubble volume. For each species Gj , we have

PGj
V = nGj

RT. (14)

The total pressure and partial pressures are linked by Dalton’s law:

P =

Ng
∑

j=1

PGj
, (15)

and the total pressure is defined by the following expression

P = P0 + ρg(h− z) +
2σ

a
, (16)

where P0 is the atmospheric pressure above the melt; h glass height; z the vertical position and σ
the surface tension.

The equations describing the change of radius and partial pressure over time are obtained by
the derivation, with respect to time, of the relations (13) and (14) and by inserting the expressions
(7) and (16) (see [1]). The rise velocity, growth/skrinkage rate and change in partial pressure are
given by

dz

dt
=

2ρga2

9µ
, (17a)

da

dt
=

2ρ2g2a3

27µ(P − 2σ/3a)
+

RT

P − 2σ/3a

Ng
∑

j=1

kGj

(

CGj
− LGj

P
αGj

Gj

)

+

aP

3(P − 2σ/3a)

(

1

T

dT

dt
−

1

P

dP0

dt

)

, (17b)

dPGj

dt
=

3RT

a
kGj

(

CGj
− LGj

P
αGj

Gj

)

+
PGj

T

dT

dt
−

3PGj

a

da

dt
, for j = 1 to Ng − 1. (17c)

In these equations, we have taken into account the possibility of varying atmospheric pressure
and temperature.

1.3 Coupled models

In the two preceding subsections, the reduction-oxidation and fining processes have been presented
independently. Due to the large quantity of bubbles, the consumption of dissolved gases changes
the redox state of glass. Here, we present a coupled model similar to that previously presented
by Klouzek and Nemec [7] and Matyas and Nemec [9]. The domain is assumed to be spatially
homogeneous which means that spatial derivatives of all quantities are equal to zero. In other
words, only time is taken into account as a parameter.

In order to describe both the reduction-oxidation state and the fining process, we must first
determine the behavior of ionic and gas species in molten glass with respect to time. The temporal
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evolution of ionic and dissolved gases can be written as (see [7, 9, 11])

dCAi

dt
=

R
∑

r=1

νri
dζr
dt

, for i = 1 to NI . (18a)

dCGj

dt
=

R
∑

r=1

βrj
dζr
dt

+ Sb,Gj
, for j = 1 to Nfg (fining gases), (18b)

dCGj

dt
= Sb,Gj

, for j = Nfg + 1 to Ng (non-fining gases). (18c)

dζr/dt is the rate of reaction r - given in mol/(m3·s) - and Sb,Gj
is the sink term due to the

consumption of dissolved gas Gj . If the gas Gj goes from bubble to bulk, Sb,Gj
becomes a source

term.
Sb,Gj

is determined using the evolution of the number of moles nGj
given by equation (7). If

the number of bubbles with radius a is noted Nb, Sb,Gj
is given by [7, 9]

Sb,Gj
= −4πa2kGj

(

CGj
− LGj

P
αGj

Gj

)

Nb. (19)

To determine the evolution of CAi
and CGj

, we must know the rate of reaction, dζr/dt. In
order to find these values, we use the equilibrium constants for each reaction r defined by the
equation (5). By taking the logarithmic derivate of (5), we have :

NI
∑

i=1

νri
CAi

dCAi

dt
+

Nfg
∑

j=1

βrj

CGj

dCGj

dt
=

d lnKr

dT

dT

dt
, for r = 1 to R. (20)

Finally, using (18a) and (18b), we obtain a linear system of R equations:

R
∑

k=1

Mrk
dζk
dt

=
d lnKr

dT

dT

dt
−

Nfg
∑

j=1

βrj

CGj

Sb,Gj
, for r = 1 to R. (21)

The coefficients of the symmetric matrix M, Mrk, are given by

Mrk =

NI
∑

i=1

νriνki
CAi

+

Nfg
∑

j=1

βrjβkj

CGj

. (22)

Thus, the rates of reaction are not equal to zero if the temperature varies or if there is a consump-
tion of the dissolved gases is present.

At this stage, it is possible to numerically couple the redox behavior and fining process. The
method is based on the numerical solution of the two systems (17) and (18) with (21) and the
integration of the differential systems is carried out using the fourth order Runge-Kutta method.

2 Results

2.1 Fining evolution with coupled model

We consider a glass where the following two reduction-oxidation reactions take place

Fe3+ +
O2−

2
⇋ Fe2+ +

O2

4
, (23a)

SO2−
4 ⇋ SO2 +

O2

2
+O2−. (23b)
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The enthalpy ∆Hr and entropy ∆Sr for these reactions are given in Table 3. These values
come from reference [1]. The assumed concentrations of ionic and gaseous species at T = 1200 ◦C
are given in Table 4.

The coupled model has been tested on bubble behavior in a soda-lime-silica glass melt. The
height of the glass bath is taken to be 1 meter and the atmospheric pressure equal to 1 bar. The
bubbles are composed of five gas species, two fining gases: O2 and SO2 and three non-fining gases:
CO2, N2 and H2O. Initially, we assume that the bubble contains only CO2 and that the radius is
equal to 100 µm with the solubilities and diffusion coefficients for these elements taken from the
data of Beerkens [1]. The concentrations of CO2, N2 and H2O in the glass are given in Table 5.
We carried out two computations at T = 1400 ◦C: the first one with Nb = 0 and the second with
Nb = 108 bubbles/m3.

In Figure 1, we present the evolution of bubble radius as a function of the time for the two
cases. The calculation is stopped when the bubble reaches the free surface. As can be seen, due
to consumption of dissolved gases, the growth rate of the bubble decreases with an increasing
concentration of bubbles. Indeed, the quantity of dissolved gas decreases with time, therefore, the
gradient between the bulk and the bubble also decreases. We see also that the time needed by the
bubble to reach the upper boundary is greater when Nb = 108 bubbles/m3. For Nb = 0, this time
is equal to 2.69 h and for Nb = 108 bubbles/m3, it is equal to 3.21 h (i.e. a 20% of increase).

The influence of bubble concentration can also be observed on the evolution of molar fractions
in the bubble presented in Figure 2 for the five gas species. Table 6 and Table 7 give the final
molar fraction in each of the two cases. The molar fraction of O2 in the bubble at the end of
evolution is more important when Nb = 108 bubbles/m3.

2.2 Equilibrium of gases in glass by bubbling

In this last subsection, we used the coupled method in order to find the time needed in order to
equilibrate the glass with bubbles at certain initial concentrations. This is important if we wish to
experimentally determine the equilibrium constants of reduction-oxidation reactions. The question
is : how much time is necessary to reach a state of equilibrium? It is possible to use the coupled
model presented in this article to realize this “numerical” experiment. We inject bubbles at a
fixed gas flow rate into a crucible filled with one kilogram of glass. In order to reproduce bubbling
flow, when a given bubble reaches the surface of the melt it is re-injected through the crucible
bottom with its initial concentrations. The size and the concentration of bubbles are determined
using bubbling laws previously detailed by Chavanne et al [3]. Computational tests have been
performed at four temperatures: 1200, 1300, 1400 and 1500 ◦C. The radius and concentration of
the bubbles are given in Table 8. The gas flow rate is fixed at 2 l/min under standard conditions
(T = 25 ◦C and P = 101325 Pa) and we use the physical properties of a flat glass composition with
the solubilities and diffusion coefficients being taken from Beerkens [1]. We assume air bubbles to
mean that the molar fraction of O2 is fixed at 0.21 and N2 at 0.79. It should be specified that
only the gases O2, SO2 and N2 are taken into account in this computation.

Figure 3 presents the evolution of O2 activity in the glass as a function of time for the four
temperatures. The evolution of PO2 has three stages: in the first, the activity does not change;
after that, we observe increasing PO2 followed by a decrease and in the last stage, the PO2 tends
to the partial pressure fixed by the bubble. The equilibrium time reduces as the temperature
increase. All these facts are physically intuitive, nevertheless, the equilibrium times found in this
calculation are too large. Indeed, at T = 1500 ◦C, we find that the time to obtain equilibrium is
approximatively equal to 16.7 days! A value which reaches 83 days at T = 1400 ◦C. In the “real”
laboratory experiments, the order of magnitude is a few hours.

In order to improve these results, we have modified the Sherwood law. In fact, due to the large
bubbles, the Reynolds number can be greater than one. With the sizes given in Table 8, Re is in
the range of 9 to 120. We therfore use a different Sherwood law given by Clift et al [4] :

Sh = 0.991Pe1/3
(

1 +
Re

4

)0.27

. (24)
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This equation is an extension of Levich’s law [8] for Reynolds numbers greater than one. However,
even with this modification, the equilibrium times are not significantly changed. At 1600 ◦C, for
example, equilibrium time is only reduced to 16 days, which is the same order of magnitude.

As presented by Beerkens and Waal [2] and by Beerkens [1], we have used an effective diffusion
coefficient of O2 in order to take into account the reaction of oxygen in the melt. This effective
diffusion is evaluated using the same method proposed by Beerkens and Waal [2]. We find that
the effective diffusivity is 6 times smaller than diffusion coefficient of O2 on its own. However, the
Sherwood number is proportional to the Péclet number to the power of one-third which means
that decreasing the diffusivity by a factor 6 leeds to only a factor 1.8 on the Sherwood number.
Consequently, the disagreement between numerical results and experimental data presented here
cannot explained by this effect. We need to take into account the effect of sulphate reaction and
in that way couple the O2 and SO2 diffusivities.

Moreover, to describe bubble ascension, we have used Stokes’s law. However, the size of the
bubble is not negligible compared to the crucible and therefore hydrodynamic interactions might
impose a drag force on the bubbles (see reference [6]). Bubble velocity can thus, be decreased and
this will affect also mass transfer. This improvement is outside of the scope of this article and will
be addressed in the future.

The disagreement between model and experiment could also be due to the fact that, in the
present method, the domain is spatially homogeneous and the mass transfer might be in fact
controlled to local phenomena. This kind of description must take into account local advection
and diffusion processes.

Conclusion

The objective of this investigation was the modelling of fining and redox processes. Due to the
large quantity of bubbles present in glass during the first stage of melting, the consumption of
dissolved gases can modify the redox state. In order to take this into consideration, we have
presented a coupled model of redox reactions and fining processes. The method is based on the
sequential solution of sets of differential equations, describing redox reaction and fining evolution.

The present model has been applied to observe the influence of the concentration of small
bubbles present in the glass melt on growth rate. We have shown that a large density of bubbles
changes the bubble growth rate and that the rise time increases when bubble population is large.
Moreover, the average composition of the bubble also changes with bubble concentration.

Finally, we have tried to apply our model to describe the gas concentration in a glass melt
due to bubbling. The model predicts the transient evolution of redox state which tends to reach
an equilibrium between the two phases; however, the equilibrium time is very large compared to
experimental reality. The calculations have been also performed taking into account the effect of
redox reactions on the diffusion process of O2 by changing the diffusion coefficient. We have also
modified the mass transfer coefficient due to the vigorous convection of bubbling flow. Both of
these modifications do not, however, significantly improve the results.

In order to improve the coupled model in the future, it is essential to take convection into
account. This insertion of our model into a CFD software might be one way to achieve such a
goal.

Nomenclature

Latin symbols

Symbol Name Unity

a bubble radius m
CAi

molar concentration of species Ai mol/m3

DGj
diffusion coefficient of gas Gj m2/s
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G Gibbs free energy J/mol
h glass height m
H enthalpy J/mol
Kr equilibrium constant of reaction r –
LGj

solubility of gas Gj mol/(m3.Pa
αGj )

M matrix in equation (21) m3/mol
Mrk matrix coefficient of M m3/mol
nGj

mole number of gas Gj mol
Nb concentration number of bubbles m−3

Nfg number of fining gases –
Ng number of gases –
NI number of ionic species –
Nnfg number of non-fining gases –
P total pressure in bubble Pa
P0 atmospheric pressure above melt Pa
PGj

partial pressure in bubble of gas species Gj Pa
PeGj

Péclet number of gas Gj –
R number of reactions –
R universal gas constant J/(mol.K)
Re Reynolds number –
S entropy J/(mol.K)
Sb,Gj

sink term of species Gj mol/(m3
·s)

ShGj
Sherwood number of gas Gj –

T temperature K
ub bubble velocity relative to molten glass m/s
V bubble volume m3

z vertical position m

Greek symbols

Symbol Name Unity

αGj
stoichiometric coefficient on Henry’ law of gas species Gj –

βrj stoichiometric coefficient of reaction r for gas species Gj –
νri stoichiometric coefficient of reaction r for ionic species Ai –
σ surface tension N/m
µ dynamic viscosity Pa.s
ρ density kg/m3

ζr degree of advancement of reaction r mol/m3
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Figure 1: Increase of bubble radius as a function of time with Nb = 0 and Nb = 108 bubbles/m3.

0

0.2

0.4

0.6

0.8

1

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

t (h)

x
m
o
l

x
m
o
l

Nb = 0 bubbles/m3

Nb = 108 bubbles/m3

SO2

O2

CO2

N2

H2O

Figure 2: Variation of the molar fraction of gases in bubbles as a function of time with Nb = 0
and Nb = 108 bubbles/m3. xmol is the molar fraction.

10



10
-2

10
-1

10
0

10
1

10
2

10
3

10
410

-4

10
-3

10
-2

10
-1

10
0

t (h)

P
O

2
(b
a
r)

T = 1200 ◦C

T = 1300 ◦C

T = 1400 ◦C

T = 1500 ◦C
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Reac. ∆Hr (J.mol−1) ∆Sr (J.mol−1.K−1)
Iron 1.18 · 105 51.96

Sulfate 3.34 · 105 157.22

Table 3: ∆Hr et ∆Sr of iron and sulfate reac-
tions from [1].

Species CAi
or CGj

(mol/m3)
Fe3+ 23.6
Fe2+ 5.9

SO2−
4 87.36

SO2 1.14
O2 3.37 · 10−4

Table 4: Ionic and gas concentrations at T =
1200 ◦C.

Species CGj
(mol/m3)

CO2 0.682
N2 2.1 · 10−2

H2O 38

Table 5: Non-fining gas concentrations in the glass.

Gas SO2 O2 CO2 N2 H2O
Molar fraction 0.28 0.10 0.47 0.08 0.06

Table 6: Molar fraction of gas species in the bubble at the end of evolution with Nb = 0.

Gas SO2 O2 CO2 N2 H2O
Molar fraction 0.31 0.15 0.45 0.02 0.06

Table 7: Molar fraction of gas species in the bubble at the end of evolution with Nb = 108.

T (◦C) 1200 1300 1400 1500
a (mm) 30.5 24.3 20.3 18.0
Nb (m−3) 3.50 · 103 7.07 · 103 1.22 · 104 1.82 · 104

Table 8: Calculated a and Nb at T = 1200, 1300, 1400 and 1500 ◦C for a gas flow rate equal to 2
l/min under standard conditions.
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