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Kinematic regimes of convection at high Prandtl number in a

shallow cavity.

Régimes cinématiques de la convection à haut nombre de Prandtl

dans une cavité allongée.

Jean-Marc FLESSELLES a Franck PIGEONNEAU a

aSaint-Gobain Recherche, 39 quai Lucien Lefranc, F-93303 AUBERVILLIERS Cedex, FRANCE

Abstract

We consider free convection in a horizontal shallow cavity with different end temperatures, filled with high Prandtl
number fluid. From scaling analysis, we find two kinematic regimes resulting from the competition of heat transfer
by conduction and by convection. Numerical simulations realized for a large range of Rayleigh number and aspect
ratio confirm the phenomenological analysis and provide the threshold between the two regimes.

The conductive (resp. convective) regime occurs at RaA
2 smaller (resp. larger) than 443, where Ra is the

Rayleigh number and A is the aspect ratio. In the convective regime, the characteristic velocity is independent of
depth of the cavity.

To cite this article: J.-M. Flesselles, F. Pigeonneau, C. R. Mecanique xxx (2004).

Résumé

Nous traitons de la convection naturelle dans une cavité horizontale allongée différentiellement chauffée selon les
parois verticales, emplie d’un fluide à grand nombre de Prandtl. L’analyse d’échelles fait apparâıtre deux régimes
cinématiques résultant de la compétition entre transfert de la chaleur par conduction et par convection. Des
simulations numériques faites dans une large gamme de nombre de Rayleigh et de facteur de forme confirment
l’analyse phénoménologique.

Le régime conductif (resp. convectif) apparâıt pour RaA
2 inférieur (resp. supérieur) à 443, où Ra est le nombre

de Rayleigh et A le facteur de forme. La loi d’échelle du régime convectif donne une vitesse caractéristique
indépendante de la hauteur de la cavité.

Pour citer cet article : J.-M. Flesselles, F. Pigeonneau, C. R. Mecanique xxx (2004).
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Version française abrégée

Nous considérons une cavité allongée bidimensionnelle de hauteur H et de longueur L emplie d’un
fluide incompressible de viscosité cinématique ν, de diffusivité thermique κ et de coefficient de dilatation
volumique β avec Pr = ν/κ ≫ 1. Le champ de gravité est noté g. Les deux parois verticales sont placées
respectivement à des températures fixes T− et T+. On note ∆T = T+ − T− et A = H/L.

Par une analyse phénoménologique réalisée dans le cadre de l’approximation de Boussinesq, nous mon-
trons qu’il n’existe que deux régimes cinématiques selon la valeur de RaA2. Cette quantité correspond
au rapport du temps caractéristique de diffusion de la chaleur suivant la verticale au temps d’advection
longitudinale.

Dans le régime conductif obtenu à faible valeur de RaA2, la vitesse caractéristique est donnée par

u0 ∼ Ra
κ

L
avec Ra =

gβ∆TH3

νκ
. (1)

Dans le régime convectif, observé à grand RaA2, la vitesse caractéristique a pour expression

u0 ∼ (RaA2)−3/5Ra
κ

L
∼ (gβ∆T/ν)2/5κ3/5L1/5. (2)

Cette analyse confirme celle précédemment faite par Boehrer [1] car nous retrouvons que le paramètre
de contrôle est la quantité RaA2. Par contre, nous concluons qu’il n’y a que deux régimes cinématiques
alors qu’une analyse basée sur la thermique montrait trois régimes. Dans le régime convectif, la vitesse
caractéristique ne dépend plus de la hauteur, et augmente avec la longueur de la cavité.

Nous avons réalisé plusieurs simulations numériques du problème considéré dans cette note en faisant
varier le nombre de Rayleigh de 1 à 109 et le facteur de forme de 1/2 à 1/20. La représentation de
la composante longitudinale de la vitesse obtenue numériquement en fonction de RaA2 confirme les
prédictions théoriques. La transition entre les deux régimes est assez franche. Elle est observée pour
RaA2 ≃ 443.

1. Introduction

Despite the amount of work devoted to natural convection, the subject is not yet exhausted because
of the variety of situations of interest, the number of possible control parameters and the subtlety of the
effects at play. The purpose of this note is to determine the different kinematic regimes that occur in a
two-dimensional cavity with end walls kept at fixed temperature and filled with a high Prandtl number
fluid.

The side-heated cavity is an academic model for many realistic situations of natural or technological
flows. It has first been introduced by Batchelor [2] to study air circulation in buildings. In this case, the
geometry —a tall and thin cavity— is characterized by a large aspect ratio A and the fluid, namely air, is
characterized by a Prandtl number of order 1. The situation of a shallow cavity (with a small aspect ratio)
also received much attention since it applies to a large number of geophysical flows, like estuaries or waste
heat disposal. Studies concentrated on low Prandtl number fluids like air (Pr = 0.7) or water (Pr = 7)
which are most commonly encountered, but a few authors have also studied high Prandtl number flows.

Boehrer published [1] a comprehensive analysis of all available experimental data as well as possible
theoretical scalings for the flow of a fluid in a two-dimensional shallow cavity with end heated walls,
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within the Boussinesq approximation. He deplored that no clear understanding of the various regimes
that may occur in such an apparently simple flow would yet emerge and suggested a global picture of the
convection regimes as well as the relevant control parameters.

According to him, his analysis applies to long cavities (0 < A < 0.25), provided the Rayleigh number
is not excessively high (Ra < A−12), and filled with any fluid such that the Prandtl number is larger
than unity. His main results are the following : the relevant control parameter is RaA2, where Ra is the
Rayleigh number ; there exist three regimes, called conductive regime, transition regime and convective
regime, the boundaries of which are at RaA2 ≃ 102 and RaA2 ≃ 104. He also provides estimates for the
temperature gradient in the core of the cavity.

Boehrer’s analysis is based on a comparison of published data, together with a physical analysis of the
different scaling, and a systematic re-plotting of all data according to the different hypothesis. However,
Boehrer emphasis is essentially put on the temperature gradient within the core of the cavity.

Following Boehrer, we have reconsidered the case of high Prandtl number fluids. Our analysis is based
on a physical analysis of the scaling laws and extensive computational fluid dynamics simulations. We
deduce that, from a kinematic point of view, two regimes only exist. We provide the threshold between
them and the laws for the velocity scale in each regime.

2. Formulation

We consider a two-dimensional rectangular shallow cavity of height H and length L filled with an
incompressible fluid of constant kinematic viscosity ν and constant heat diffusivity κ. The heat expansion
coefficient of the fluid is β. The cavity is in the gravity field g. One vertical side of the cavity is kept at
a hot fixed temperature T+ and the opposite side is kept at a cold temperature T−. The temperature
difference is ∆T = T+ −T−. Top and bottom sides are adiabatic. The fluid velocity vanishes on all sides.
The Boussinesq approximation is assumed.

The continuity equation writes

u0

L

∂u

∂x
+

v0

H

∂v

∂y
= 0, (3)

where x = x/L, y = y/H , u = u/u0, v = v/v0 and overlines indicate dimensional variables. The scaling
variables u0, v0 for horizontal and vertical velocity scales are still unknown. Eq. (3) sets the relation
between them:

v0 ∼ (H/L)u0. (4)

Since the aspect ratio A = H/L is very small, v0 is much smaller than u0: the flow is parallel (except
near the lateral walls). With the use of eq. (4), the equations of motion are:

St
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=− δP

ρ0u2
0

∂P ′

∂x
+

ν

u0LA2

[

A2 ∂2u

∂x2
+

∂2u

∂y2

]

(5)

A2

(

St
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

=− δP

ρ0u2
0

∂P ′

∂y
+

ν

u0L

[

A2 ∂2v

∂x2
+

∂2v

∂y2

]

+
β∆TgH

u2
0

θ (6)

St
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

κ

u0LA2

[

A2 ∂2θ

∂x2
+

∂2θ

∂y2

]

(7)

in which the Strouhal number St is defined by St = L/(u0t0). In eq. (5–7), new unknown scaling variables
for time, density and pressure have been introduced with the corresponding nondimensional variables:
t = t/t0, ρ = ρ/ρ0, P = P/δP . Nondimensional temperature is θ = (T − T−)/(T+ − T−).
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The scaling variables correspond to the maximum values attained within the domain where the scaling
applies: it is the central region where the flow is parallel. In the next section, we determine these variables
by a phenomenological analysis [3]. It relies on the least degeneracy principle, according to which the
largest possible number of terms should be kept (see [4,5]).

3. Phenomenological analysis

From eq. (7), one deduces that

κ/(u0LA2) ∼ max(St, 1) (8)

We first consider the case where St ≫ 1, which means that the typical horizontal advection distance is
much smaller than the length of the cavity. In this case, eq. (8) yields the time scale:

t0 ∼ H2/κ. (9)

It is a characteristic thermal diffusion time over height H . When inserted into eq. (5), with the assumption
of large Prandtl number (Pr ≫ 1), this yields a relation between pressure and velocity scales:

δP/(ρ0u
2
0) ∼ ν/(u0LA2). (10)

This, with eq. (6), sets the u0 velocity as proportional to the H based Rayleigh number:

u0 ∼ Ra
κ

L
with Ra =

gβ∆TH3

νκ
. (11)

This equation may be written in a nondimensional way by introducing the Péclet number:

Pe ∼ Ra with Pe =
u0L

κ
. (12)

It is easily checked that the St ≫ 1 condition also writes RaA2 ≪ 1.
The Strouhal number may also be seen as the ratio of the horizontal advection time scale to the

vertical thermal diffusion time scale. Hence we call this low Rayleigh number regime the conductive

regime since the motion is controlled by the (long) thermal time scale. A temperature perturbation has
time to equilibrate vertically because of thermal diffusion before being advected along the length of the
cavity: isotherms are essentially vertical, which corresponds to a conductive solution.

On the other hand, if the Strouhal number becomes small enough, hence at large Rayleigh number, a
thermal perturbation will travel along the cavity. This means that a horizontal boundary layer of thickness
δ has appeared, within which the fluid moves to the vertical walls. This thickness is such that the Strouhal
number associated to it is equal to unity:

κL/(δ2u0) ∼ 1. (13)

Vertical length scales should be rescaled with δ instead of H . A similar analysis to the previous one may
be performed. One finds that the Péclet number is no more equal to the Rayleigh number:

Pe ∼ Ra(δ/H)3. (14)

The size of the boundary layer is found by inserting eq. (14) in eq. (13). Finally one gets the final
expression of the (nondimensional) velocity in the convective regime:

Pe ∼ Ra(RaA2)−3/5. (15)
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Figure 1. Nondimensional maximum value of the x-velocity component in shallow cavities of various aspect ratios A vs.
RaA2 for a high-Prandtl number fluid.

Figure 1. Valeur maximale de la composante x de la vitesse adimensionnée dans des cavités de différents facteurs de forme
A en fonction de RaA2 pour un fluide de haut nombre de Prandtl.

The previous analysis sets on firm grounds the analysis and hypothesis of Boehrer: we recover the role
of the quantity RaA2 as the control parameter and we derive rigorously the relevance of the conductively
controlled boundary layer, based on the advection time scale. In addition, we show that there exists only
two kinematic convection regimes, whereas the current understanding focuses on the thermal field, and
leads to a three regime classification.

4. Comparison to numerical data

In order to check the theoretical predictions (12) and (15), we have performed extensive numerical
simulations of the problem expressed in the appropriate nondimensional variables. In a permanent state,
the equations of motion write:

∂u

∂x
+

∂v

∂y
= 0, (16)

u
∂u

∂x
+ v

∂u

∂y
=−∂P ′

∂x
+

Pr

RaA
∇2u, (17)

u
∂v

∂x
+ v

∂v

∂y
=−∂P ′

∂y
+

Pr

RaA
∇2v +

Pr

RaA2
θ, (18)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

RaA
∇2θ, (19)

where velocities are normalized by Raκ/L, and lengths by H . Eq. (16–19) are solved with a commercial
CFD code in a rectangular box of height 1, and length 1/A, filled with a fluid of viscosity Pr/RaA, of
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thermal conductivity 1/RaA, and of thermal expansion coefficient Pr/RaA2.
About 40 cases have been run, where the aspect ratio A was varied between 1/20 and 1/2 and the

Rayleigh number Ra was varied in the range 1 to 109. The Prandtl number was fixed, and equal to
1000. With the considered nondimensional variables, the maximum value of the x component of the
velocity is equal to Pe/Ra. Its value is reported a function of RaA2 on Fig. 1. In accordance with the
phenomenological analysis Pe/Ra is constant at low RaA2, i.e. in the conductive regime. This constant
value is easily calculated in the Ra → 0 limit. It is equal to 1/72

√
3 ≃ 8.02 · 10−3 [6]. At high RaA2, i.e.

in the convective regime, Pe/Ra = 0.32(RaA2)−3/5, where the proportionality constant comes from a fit.
The intersection between the two scalings provides the regimes boundary. It is rather sharp and occurs
at RaA2 ≃ 443.

5. Conclusion

The numerical data are in perfect agreement with our phenomenological analysis. These results both
confirm and extend Boehrer’s analysis: the relevant control parameter for natural convection of a high-
Prandtl number fluid in a shallow box is indeed RaA2, which is the ratio of the heat diffusion time scale
to the convection time scale. There are only two kinematic regimes, and the only condition lies on RaA2,
provided Pr > 1.

In the convective regime, that occurs when RaA2 & 443, a boundary layer develops. As this new
length scale sets in the problem, the velocity scale changes. When expressed in dimensional quantities,
the velocity coming from eq. (15) writes:

umax = 0.32

(

gβ∆T

ν

)2/5

κ3/5L1/5. (20)

Hence, contrary to the intuitive understanding, the velocity does not depend on depth any more and
increases with the length of the cavity, in full agreement with theoretical prediction and numerical results.
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