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DGM, an item of GDM

Robert Eymard and Cindy Guichard

Abstract We show that a version of the Discontinuous Galerkin Method (DGM) can
be included in the Gradient Discretisation Method (GDM) framework. We prove
that it meets the main mathematical gradient discretisation properties on any kind of
polytopal mesh, and that it is identical to the Symmetric Interior Penalty Galerkin
(SIPG) method in the case of first order polynomials. A numerical study shows the
effect of the numerical parameter included in the scheme.

Key words: Gradient Discretisation method, Discontinuous Galerkin method

MSC (2010): 65M08, 65N08, 35Q30

1 Introduction

Discontinuous Galerkin (DG) methods are being more and more studied. They
present the advantage to be suited to elliptic and parabolic problems, while opening
the possibility to closely approximate weakly regular functions on general meshes.
Although the convergence of DG methods has been proved on a variety of prob-
lems (see [2] and references therein), note that the stabilisation of the classical DG
schemes has to be specified in each case. On the other hand, convergence and error
estimate results for a wide variety of numerical methods applied to some elliptic,
parabolic, coupled, linear and nonlinear problems are proved on the generic “gradi-
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ent scheme” issued from the Gradient Discretisation Method framework, assuming
that a very small number of core properties hold true (see [3]).

The aim of this paper is to show that, from the DG setting, we can build a Gradi-
ent Discretisation which satisfies all these core properties. This is done on general
polytopal meshes in any space dimension. This work immediately extends the range
of problems which can be handled by Discontinuous Galerkin methods to all for
which the Gradient Discretisation is shown to converge (degenerate parabolic prob-
lems, two-phase flow problems,. . . ). Note that the gradient scheme resulting from
the Discontinuous Galerkin Gradient Discretisation (DGGD) may be not identical
to the corresponding stabilised DG scheme proposed in the literature, although we
show in this paper that it is identical to the Symmetric Interior Penalty Galerkin
(SIPG) method in the P1(Rd) case for the following elliptic problem:

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),∫
Ω

Λ(xxx)∇u(xxx) ·∇v(xxx)dxxx =
∫

Ω

f (xxx)v(xxx)dxxx, (1)

where:

• Ω is an open bounded polytopal connected subset of Rd (d ∈ N?), (2a)
• Λ is a measurable function from Ω to the set of d×d

symmetric matrices and there exists λ ,λ > 0 such that,

for a.e. xxx ∈Ω , Λ(xxx) has eigenvalues in [λ ,λ ], (2b)

• f ∈ L2(Ω). (2c)

This paper is organised as follows. In Section 2, we give a gradient discretisation
version of Discontinuous Galerkin schemes. We then prove in Section 3 that this
gradient discretisation satisfies the core properties which are sufficient for conver-
gence and error estimates results. A short numerical example finally shows the role
the numerical parameter used in the design of the scheme on its accuracy (Section
4).

2 Discontinuous Galerkin Gradient Discretisation (DGGD)

We consider a polytopal mesh of Ω , in the sense of [3, Definition 7.2], defined by
the triplet T= (M ,F ,P).

The set M is a finite family of non empty connected polytopal open disjoint
subsets of Ω . For K ∈M , |K|> 0 is the measure of K and hK denotes the diameter
of K.

The set F contains the “faces” of the mesh – “edges” in 2D. x For all σ ∈F , the
set Mσ , which contains the elements of M having σ as face or edge, has exactly
one element if σ ∈Fext (the exterior faces) or two elements if σ ∈Fint (the interior
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faces). For all K ∈M , FK ⊂F contains the faces of K, and for any σ ∈FK , we
denote by nnnK,σ the (constant) unit vector normal to σ outward to K.

We denote by P the family of points P = (xxxK)K∈M , such that for all K ∈M ,
K ∈M is strictly star-shaped with respect to xxxK (see Figure 1). This implies that
the orthogonal distance dK,σ between xxxK and σ ∈FK is such that dK,σ > 0. For all
K ∈M and σ ∈FK , we denote by DK,σ the cone with vertex xxxK and basis σ .

The size of the polytopal mesh is defined by:

hM = sup{hK ,K ∈M }. (3)

Finally, for a given polytopal mesh T we define a number that measures the
regularity properties of the mesh:

ηT = max{hK

hL
+

hL

hK
, σ ∈Fint , Mσ = {K,L}}∪{ hK

dK,σ
,K ∈M ,σ ∈FK}. (4)

dK,σ ′

dK,σ ′′

nnnK,σ ′

K

nnnK,σ ′′

σ ′

σ ′′

σ

xxxK

K(β )

xxxK

DK,σ

σ
yyyK,σ (xxx)

D(β )
K,σ

xxx

Fig. 1 A cell K of a polytopal mesh and notation on DK,σ

Let us now define the Discontinuous Galerkin Gradient Discretisation (DGGD)
for the approximation of (1) in the sense of [5, 3]. For a given value k ∈N?, and for a
given p ∈]1,+∞[, we define the space XD ,0 of all functions v ∈ Lp(Ω) such that, for
all K ∈M , v|K ∈ Pk(Rd), the latter denoting the space of polynomial function with

degree less or equal to k (recall that the dimension of Pk(Rd) is (k+d)!
k!d! , and therefore

the dimension of XD ,0 is equal to (k+d)!
k!d! #M ). We denote by D = (XD ,0,ΠD ,∇D ),

where ΠD = Id. Let us now define ∇D . Let β ∈]0,1[ be given. For v ∈ XD ,0, for
K ∈M and for any σ ∈FK , we set
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∇Dv(xxx) = ∇v|K(xxx) for a.e. xxx ∈ D(β )
K,σ ,

∇Dv(xxx) = ∇v|K(xxx)+
d [v]K,σ (yyyK,σ (xxx))
(1−β d)dK,σ

nnnK,σ for a.e. xxx ∈ DK,σ \D(β )
K,σ ,

(5)

where (see Figure 1):

•
D(β )

K,σ := {xxx ∈ DK,σ ,
(xxx− xxxK) ·nnnK,σ

dK,σ
< β} and K(β ) =

⋃
σ∈FK

D(β )
K,σ , (6)

(note that we have |DK,σ \D(β )
K,σ |=

1−β d

d dK,σ |σ |),
• yyyK,σ (xxx)∈σ is the intersection between σ and the line joining xxxK and xxx; it satisfies

xxx = xxxK +
(xxx− xxxK) ·nnnK,σ

dK,σ
(yyyK,σ (xxx)− xxxK),

• for all K ∈M , we denote by

∀yyy ∈ σ , [v]K,σ (yyy) = 1
2 (v|L(yyy)− v|K(yyy)) if Mσ = {K,L},

[v]K,σ (yyy) = 0− v|K(yyy) if Mσ = {K}. (7)

Remark 1. It is possible to consider βK,σ instead of a constant β , without changing
the mathematical analysis done in this paper. It is also possible to consider the more
general definition for the discrete gradient

∇Dv(xxx) = ∇v|K(xxx)+ψ(
(xxx− xxxK) ·nnnK,σ

dK,σ
)
[v]K,σ (yyyK,σ (xxx))

dK,σ
nnnK,σ for a.e. xxx ∈ DK,σ ,

where ψ : ]0,1[→ R+ is a bounded measurable function such that ψ(s) = 0 on
]0,β [ and ∫ 1

1−β

ψ(s)sd−1ds = 1.

Then the following mathematical analysis holds as well.

Remark 2 (Piecewise constant reconstruction). One can for example replace ΠD

by Π̂D such that, for all K ∈M , and a.e. xxx ∈ K, Π̂Dv(xxx) = 1
|K|
∫

K v(xxx)dxxx, which
provides a piecewise constant reconstruction, choosing a basis including the value
at the centre of gravity of K.

Using the DGGD D = (XD ,0,ΠD ,∇D ), the gradient scheme for the discretisation
of (1) is given by: find u ∈ XD ,0 such that∫

Ω

Λ(xxx)∇Du(xxx) ·∇Dv(xxx)dxxx =
∫

Ω

f (xxx)ΠDv(xxx)dxxx,∀v ∈ XD ,0. (8)

Owing to the properties proved in Section 3, the DGGD scheme then satisfies the
convergence and error estimates properties detailed in [3].
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Link with the SIPG scheme

In the case k = 1, the gradient of any element of XD ,0 restricted to K ∈M is constant
in K. Let us assume that Λ follows the same property. Then the left hand side of (8)
can be computed in this particular case:

∫
Ω

Λ(xxx)∇Du(xxx) ·∇Dv(xxx)dxxx = ∑
K∈M

(∫
K

ΛK∇u|K ·∇v|Kdxxx

+ ∑
σ∈FK

(∫
σ

ΛK
(
[u]K,σ (yyy)∇v|K +[v]K,σ (yyy)∇u|K

)
·nnnK,σ dγ(yyy)

+
d ΛKnnnK,σ ·nnnK,σ

(1−β d)dK,σ

∫
σ

[u]K,σ (yyy)[v]K,σ (yyy)dγ(yyy)
))

.

We then recover the SIPG scheme as presented in [4] or [2], the penalty coefficient
τσ (term σe

|e|β0
of [4, eqn. (11)], term η

hF
of [2, eqn. (4.12)]) being equal, in the

preceding relation, to

τσ =
d

4(1−β d)

(
ΛKnnnK,σ ·nnnK,σ

dK,σ
+

ΛLnnnL,σ ·nnnL,σ

dL,σ

)
if Mσ = {K,L},

and
τσ =

d
(1−β d)

ΛKnnnK,σ ·nnnK,σ

dK,σ
if Mσ = {K}.

Note that τσ has a minimum value letting β → 0, which can be compared, for ex-
ample, to that given by [2, Lemma 4.12]. In our setting, it does not depend on the
regularity of the mesh nor on the maximum cardinal of FK (in the DGGD scheme,
we don’t handle separately the case d = 1 and the cases d > 1).

3 Mathematical properties of the DGGD method

In this paper, we denote, for ξ ∈Rd by |ξ |= (∑d
i=1 ξ 2

i )
1/2 the Euclidean norm of ξ .

Lemma 1. Let n ∈ N and β ∈]0,1[ be given. Let T be a polytopal mesh. Then there
holds

∀v ∈ Pn(Rd), ∀K ∈M , ∀σ ∈FK ,
∫

DK,σ

|v(xxx)|pdxxx≤ (n+1)p−1

β d+pnCp,n

∫
D(β )

K,σ

|v(xxx)|pdxxx,

where Cp,n only depends on p, n and d, and where D(β )
K,σ is defined by (6).

Proof. This lemma is proved thanks to the change of variable xxx = xxxK + s(yyy− xxxK),
where yyy ∈ σ and s ∈]0,β [ (we then have dxxx = dK,σ sd−1dγ(yyy)ds).
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Lemma 2. There exists A > 0, only depending on β , p, k and d, such that

∀v ∈ XD ,0,
1
A
‖v‖DG,p ≤ ‖∇Dv‖Lp(Ω)d ≤ A‖v‖DG,p, (9)

where

‖v‖p
DG,p = ∑

K∈M

(∫
K
|∇v|K(xxx)|pdxxx+ ∑

σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ (yyy)|pdγ(yyy)
)
. (10)

Remark 3 (DG norm). Note that Definition (10) for the DG norm is slightly different
from [1, eqn. (5)] or [2, eqn. (5.1)], with the use of dK,σ instead that of diam(σ), and
with notation (7) for the jump at the faces of the mesh. This allows the application
of discrete functional analysis results without regularity hypotheses on the polytopal
mesh.

Proof. We apply the inequality |a+b|p ≤ (1+ cp′)p−1(|a|p + | bc |
p) with 1

p +
1
p′ =

1, a = ∇v|K(xxx) +
d [v]K,σ (yyyK,σ (xxx))

(1−β d)dK,σ
nnnK,σ and b = −∇v|K(xxx), for some c > 0 chosen

accounting for Lemma 1, applied to the components of ∇v|K , which are polynomial
too.

From an adaptation of the discrete functional analysis results provided in [1] to
our polytopal mesh framework, we conclude on one hand that ‖∇D · ‖Lp(Ω)d is a
norm on XD ,0, and on the other hand the two following lemmas.

Lemma 3 (coercivity). Let D be a DGGD. We define CD ≥ 0 by

CD = max
v∈XD ,0\{0}

‖ΠDv‖Lp(Ω)

‖∇Dv‖Lp(Ω)d
. (11)

Then there exists CP only depending on |Ω |, β , p, k and d such that CP ≥CD , which
means that any sequence (D)m∈N is coercive in the sense of [3, Definition 2.2].

Lemma 4 (compactness). Let (D)m∈N be a sequence of DGGD. Then, for all
(vm)m∈N such that, for all m ∈ N, vm ∈ XDm,0 and such that the sequence
(‖∇Dmvm‖Lp(Ω))m∈N is bounded, the sequence (vm)m∈N is relatively compact in
Lp(Ω), which means that any sequence (D)m∈N is compact in the sense of [3, Defi-
nition 2.8].

Lemma 5 (GD-consistency). Let (D)m∈N be a sequence of DGGD such that hTm

tends to 0 as m→∞ while ηTm remains bounded. We define SD :W 1,p
0 (Ω)→ [0,+∞)

by

∀ϕ ∈W 1,p
0 (Ω), SD (ϕ) = min

v∈XD ,0

(
‖ΠDv−ϕ‖Lp(Ω)+‖∇Dv−∇ϕ‖Lp(Ω)d

)
. (12)

Then it holds ∀ϕ ∈C∞
c (Ω), lim

m→∞
SDm(ϕ) = 0,

which is a sufficient condition for the GD-consistency of (D)m∈N in the sense of [3,
Definition 2.4] thanks to [3, Lemma 2.13].



DGM, an item of GDM 7

Proof. Let ϕ ∈C∞
c (Ω), and let M be an upper bound of D2ϕ := (∂ 2

i jϕ)1≤i, j≤d on
Ω . We let D = Dm for a given m, and we consider v ∈ XD ,0 defined by

∀K ∈M , ∀xxx ∈ K, v|K(xxx) = ϕ(xxxK)+∇ϕ(xxxK) · (xxx− xxxK).

Indeed, v|K ∈ Pk(Rd) since k≥ 1. We then perform Taylor expansions at the second
order of the function ϕ , which allow to conclude the existence of C≥ 0, increasingly
depending on ηT, such that

‖∇ϕ−∇Dv‖Lp(Ω)d ≤CMhM (|Ω |)1/p.

Lemma 6 (limit conformity). Let (D)m∈N be a sequence of DGGD such that hTm

tends to 0 as m→ ∞. Let p′ = p
p−1 and define WD : W p′

div(Ω)→ [0,+∞) by

∀ϕϕϕ ∈W p′
div(Ω) ,

WD (ϕϕϕ) = max
v∈XD ,0\{0}

∣∣∣∣∫
Ω

(∇Dv(xxx) ·ϕϕϕ(xxx)+ΠDv(xxx)divϕϕϕ(xxx))dxxx
∣∣∣∣

‖∇Dv‖Lp(Ω)d
.

(13)

Then it holds ∀ϕϕϕ ∈C∞(Rd)d , lim
m→∞

WDm(ϕϕϕ) = 0,

which is a sufficient condition for the limit conformity of (D)m∈N in the sense of [3,
Definition 2.6] thanks to [3, Lemma 2.14] since (D)m∈N is coercive.

Proof. The proof relies on the coefficient of [v]K,σ , which ensures that the terms at
the faces of the mesh behave as ChM .

4 Numerical results

The aim of this section is to assess the influence of the parameter β ∈]0,1[ on the
accuracy of the gradient scheme (8) issued from the DGGD for the discretisation
of (1). We consider the 1D case Ω =]0,1[, and the polytopal mesh T defined, for
N ∈N? and h = 1

N , by M = {](i−1)h, ih[, i = 1, . . . ,N}, F = {{ih}, i = 0, . . . ,N},
P = {(i− 1

2 )h, i = 1, . . . ,N}. We consider one of the test cases studied in [4], that
is Problem (1) with Λ = Id and u(x) = cos(8πx)−1 (hence f (x) = (8π)2 cos(8πx)).
Considering first degree polynomials, the set XD ,0 is a vector space with dimension
2N. In the following tables (where “order” is the convergence order with respect
to the size of the mesh), the columns “FE” correspond to the conforming P1 Finite
Element solution, and we check that the results provided by “[4]” with σn = 4.5,
which corresponds to β = 1−1/σn for the interior faces, and β = 1−2/σn for the
exterior faces, are close to ours:
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N\β 0 0.5 0.9 0.99 FE [4]
10 0.496 0.241 0.347 0.394 0.399 0.247

order 1.438 1.529 1.734 1.843 1.855
20 0.183 0.083 0.104 0.110 0.110 0.083

order 1.092 1.706 1.909 1.959 1.964
40 0.086 0.026 0.028 0.028 0.028 0.024

order 1.013 1.894 1.973 1.989 1.991
80 0.043 0.007 0.007 0.007 0.007

order 0.999 1.967 1.992 1.997 1.998
160 0.021 0.002 0.002 0.002 0.002

N\β 0 0.5 0.9 0.99 FE [4]
10 13.233 11.533 11.360 11.349 11.348 11.777

order 0.172 0.781 0.862 0.863 0.863
20 11.743 6.714 6.251 6.240 6.240 6.421

order 0.010 1.004 0.966 0.965 0.965
40 11.666 3.348 3.199 3.197 3.197 3.253

order -0.008 1.034 0.992 0.991 0.991
80 11.728 1.635 1.609 1.608 1.608

order -0.007 1.014 0.998 0.998 0.998
160 11.781 0.810 0.805 0.805 0.805

L2 error of the solution L2 error of the broken gradient

Although we did not prove that the linear systems are invertible when β = 0, we
note that in practice a solution is obtained but that the broken gradient does not
seem to converge. In this very regular case, the L2 error is the lowest for β = 0.5 but
the convergence seems slightly better for β closer to 1, and it tends to the results of
the finite element method as β → 1.

5 Conclusion

The version of the DG method included in the GDM framework has the advantages
to be samely defined for d = 1 and d > 1, to hold on any polytopal mesh provided
that the grid block are strictly star-shaped, to involve Discrete Functional Analysis
results which do not depend on the regularity of the mesh, and to apply on any
problem on which the GDM is shown to converge. This version is identical to the
SIPG method in the case k = 1. The differences with the SIPG scheme in the case
k > 1 remain to be assessed.
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Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer,
Heidelberg (2012). DOI 10.1007/978-3-642-22980-0. URL https://dx-doi-org.fennec.u-
pem.fr/10.1007/978-3-642-22980-0
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