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RÉSUMÉ. Les réseaux de capteurs sans fil (RCSF) font face à de nombreux problèmes dans leur
mise en œuvre, notamment aux problèmes de connectivité des nœuds, de sécurité, d’économie
d’énergie, de tolérance aux pannes, d’interférence, de collision, de routage, etc. Dans ce document,
nous considérons un RCSF peu dense, caractérisé par une mauvaise couverture de la zone d’inté-
rêt, et l’architecture virtuel introduite par Wadaa et al qui permet de partitionner efficacement ce type
de réseau en clusters. Dans l’optique de router optimalement les informations collectés par chaque
capteur jusqu’à une station de base (nœud sink, supposé au centre du réseau), nous proposons une
technique d’utilisation des fréquences multiples pour limiter les interférences lors des communica-
tions. Ensuite, nous proposons un algorithme de détection de clusters vides permettant d’avoir une
vue globale de la répartition réelle des capteurs dans la zone d’intérêt, et ainsi donner la possibilité
de réagir en conséquence. Nous proposons également une stratégie de déplacement des capteurs
mobiles (actuators) afin de: sauvegarder la connectivité du RCSF, optimiser le routage, économiser
l’énergie des capteurs, améliorer la couverture de la zone d’intérêt, etc.

ABSTRACT. Wireless sensor networks (WSN) face many implementation’s problems such as con-
nectivity, security, energy saving, fault tolerance, interference, collision, routing problems, etc. In this
paper, we consider a low-density WSN where the distribution of the sensors is poor, and the virtual
architecture introduced by Wadaa and al which provides a powerful and fast partitioning of the network
into a set of clusters. In order to effectively route the information collected by each sensor node to
the base station (sink node, located at the center of the network), we propose a technique based on
multiple communication frequencies in order to avoid interferences during the communications. Sec-
ondly, we propose an empty clusters detection algorithm, allowing to know the area actually covered
by the sensors after the deployment, and therefore, gives the possibility to react accordingly. Finally,
we also propose a strategy to allow mobile sensors (actuators) to move in order to: save the WSN’s
connectivity, improve the routing of collected data, save the sensors’ energy, improve the coverage of
the interested area, etc.

MOTS-CLÉS : Réseau de capteurs sans fil, architecture virtuelle, déplacement des actuators, cluster
vide, évitement de collisions, connectivité, routage.

KEYWORDS : Wireless sensor network, virtual architecture, moving actuators, empty cluster, colli-
sions avoidance, connectivity, routing.



1. Introduction
For few years now, many improvements have been made in domains such as micro-

electro-mechanical systems (MEMS) technology [9], wireless communications, and digi-
tal electronics. This enabled the development of micro components that easily combine
data collection tools and wireless communication devices, and then opens a wide scope
to wireless sensor networks (WSN) [3, 5, 8, 12]. Usually called micro-sensors or sim-
ply sensors, these devices with limited resources (bandwidth, computing power, available
memory, embedded energy, etc.) have revolutionized traditional networks by bringing the
idea of developing sensors networks based on the collaborative effort of a large number
of sensors operating autonomously, and communicating with each other via short-range
transmissions [6, 7]. The vulnerability of the radio communication that sensors are using
added to thier resource limitations are factors that raise many problems (interference, in-
trusion, disconnection, data integrity, etc.).

Nowadays, this technology allow sensors to move while remaining connected. When
the transmitters are relatively close and use the same frequencies, there may be interfe-
rences while sending messages. The messages that never arrive because of collisions can
make the network useless. Radio frequencies should be better used to avoid collisions
during the various message’s broadcast. In addition, it is common to see WSN compo-
sed of several thousand units [4]. In these large networks, the sensors can be grouped
into clusters based on their proximity in order to significantly increase the scalability,
economy of energy, routing, and consequently the lifetime of the network. The structure
provided by this partitioning allows the use of various techniques to improve the quality
of a WSN, such as data aggregation [11, 12]. One of the biggest challenges of wireless
sensor networks remains a fast and energy efficient routing protocols. If in a sensor net-
work, communications are not well organized, the sensors will communicate haphazardly,
and spend their energies unnecessarily. This may cause the networks to be quickly off. Si-
milarly, in a real-time application, the data must quickly reach the base station so that
decisions can be taken consistently.

Several works have already focused on this field of study. For example Wada and al
[1] has set up a virtual architecture which provides a powerful and fast partitioning of the
network into a set of clusters, making administration of WSN more easier. S. Faye and J.
F. Myoupo [2] were also interested in this topic, showing the first way to route messages
in a sparse network. They also showed how to optimize routing using mobile sensors
(actuators). Their work has helped to establish a routing protocol that quickly routes the
packets to the base station while limiting some redundancies in the clusters. F. Saffre and
al [10] were interested in the use of communication channels to limit collisions during the
broacastings.

In this paper, we consider a low-density WSN where the distribution of the sensors is
poor, and the virtual architecture introduced by Wadaa and al [1]. The latter is created and
orchestrated by base station, which is able to split the network into a set of clusters, de-
pending on the strength and direction of the broadcast it can perform. Here, many empty
clusters can be formed in the virtual architecture, contrary in [1] where the WSN is assu-
med to be dense.
In order to effectively route the data collected by each sensor to the base station (sink
node, located at the center of the network), we firstly propose a technique using multiple
communication channels to greatly reduce collisions during communications. Secondly,
we propose an algorithm for the detection of empty clusters, allowing us to know the area



actually covered by the sensors after the deployment, and therefore, gives the possibility
to react accordingly. Finally, we propose a strategy to allow mobile sensors (actuators)
to move in order to : save the connectivity of the WSN, improve the routing of collected
data, save the energy of our sensors, improve the coverage of the interested area, reduce
the time taken by packets to reach the base station, etc.

The rest of this paper is organized as follows : in section 2, we present the virtual
architecture in which we work. Then in section 3, we present our collision avoidance
mechanisms. We present a technique of detecting empty clusters in section 4, followed
in section 5 by our method of strengthening strategic points by the actuators, and the
technique used to proper move the actuators. In section 6, we present the overall structure
of our fast and energy efficient routing protocol. Examples and simulation results are
presented in section 7. Finally, a conclusion ends the paper.

2. Architecture of the virtual sensor network

2.1. Anatomy of a sensor
This is the basic equipment of any WSN. It has three main tasks : information collec-

tion from the deployment area, light treatment (optional) on the collected data and sharing
these data with other sensors through multi-hop routing. Despite the great diversity (tem-
perature sensors, humidity, pressure, etc.) existing on the market, they are all mounted on
the same architectural diagram mainly made of a unit of : capture, processing, storage,
communication, and energy. This material may be supplemented or reduced according
to the developer [3]. One can for example add a locating system such as a GPS (Global
Positioning System), a mobilizer (to get an actuator). The main and optional elements
(represented by dashed lines) are shown in figure 1.

Figure 1 – Hardware architecture of a sensor.

2.2. Virtual network architecture
Let’s consider a special sensor called the sink or base station (BS) unconstrained by

common sensors’s limits and capable of omni-directional transmissions according to dif-
ferent radius forming coronas and directional transmissions at various angles forming an-
gular sectors. Once deployed in the supervised area (figure 2a), the sensors can be grouped
in clusters (as described in [1]) depending on the corona and the angular sector in which



they are located (see figure 2b). Thus, the intersection of the corona i and the angular
sector j forms the cluster (i, j). Exceptionally, the sink is alone in its cluster and its co-
ordinates are (−1,−1). Since the network is sparse, it is important to identify the empty
clusters. This allows the sink to have an overview of the area covered by the sensors, and
to achieve a better monitoring.

(a) Example of a basic WSN. (b) A sparse virtual architecture.

Figure 2 – A WSN represented in a virtual architecture.

For the rest we advance the following hypotheses.

2.3. Hypotheses
The network is fully clustered as shown in figure 2b using the technique described in

[1]. Furthermore,
– Each sensor has a unique identifier ID in the network. The sensors are static and

form a connected network. Adding or removing a sensor is a rare event ;
– A node is able to estimate its residual energy Er and the sink has the ability to

broadcast messages in the network at different radius, or at different angles ;
– The time is divided into slots of length r. The sensors are aware of the number of

coronas and angular sectors. The local clock of each sensor is synchronized with the sink’s
clock ;

– A message sent by a sensor reaches all the sensors located in its transmission range
within a slot ;

– Clusterisation is made such that all sensors of a given cluster can communicate with
each other and some sensors of neighbor clusters.

With these hypotheses we can tackle the first contribution of this paper which is to
limit collisions at different message transmissions both in a cluster and amongst clusters.

3. Collision avoidance mechanisms
In this section, we show how to avoid interference between the messages exchanged

amongst the sensors of the same cluster, and those exchanged between the sensors of
neighboring clusters.



3.1. Intra cluster collision avoidance : Sharing a communication
channel amongst many sensors

To quickly and correctly route the collected data to the base station (through the
cluster-heads), we must prevent messages from collision risks. For this, there are seve-
ral techniques :

FDMA (Frequency Division Multiple Access) : A communication channel is a frequency
range. Each sensor will then have its own sub communication channel. In this case,
we will ensure to limit the number of sensors per cluster to ensure that the channel
is not divided to the point of being unable to carry sensor’s data.

TDMA (Time Division Multiple Access) : Each sensor will then have its own time space,
large enough, to transmit its data. Here too, we should make sure we limit the
number of sensors per cluster to allow cluster-head to collect data from all stations
of their cluster at a time not very long. A good time synchronization that allows
each sensor to retrieve his messages and send hers without interfering with other
sensor’s messages, and in the allotted time is one of the major problems of this
method.

CDMA (Code Division Multiple Access) : The allocated frequency range supports its
spread spectrum technique. But a problem would remain : the modulation and de-
modulation operations still require significant computing capacity, which implies
more energy and expensive components.

We choose to use CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)
for several reasons :

1) The bandwidth is not divided, which allows fast data transfer ;
2) In most of WSN, the collected data is not large, so they are unlikely to be frag-

mented, and even if that were the case, the CSMA/CA’s fragmentation-reassembly me-
chanism can solve the problem ;

3) It enables to share access to the medium ; interference problems and concur-
rency access ;

4) His back-off algorithm gives the same probability to the various sensors to ac-
cess the channel ;

5) Even if in a given cluster, the informations’ harvesting time is relatively short,
sensors that were unable to send their data during the allotted time can always do it at the
next round thanks to the equiprobability of the back-off algorithm.

In summary, CSMA/CA is an appropriate way of solving interference problems and
sensor’s concurrent channel access in a cluster. But, it is unwise to use this technique
over the entire network, because it is possible that sensors in neighboring clusters have
adjacent transmission range, and therefore, can not communicate at the same time without
risk of collision. To enable them to communicate at the same time, and thus reduce the
latency time due to the access time to the communication channel, an additional tip must
be associated with the CSMA/CA protocol. To do this, we propose the modulation of
frequency of communication between neighboring clusters.



3.2. Inter clusters collision avoidance : Communication channels
distribution

Our idea is to assign different communication frequencies to neighboring clusters, so
that their sensors can communicate at the same time without risk of collision. To do this,
we rely on the techniques of graphs coloring.

In graph theory, to color a graph refers to assign a color to each vertex such a way that
two vertices joined by an edge have different colors. The frequency assignment in a net-
work is often compared to the graph coloring problem : defining a graph where vertices
represent issuers. Two emitters are connected when they are close enough to interfere.
Each emitter has a color representing for us, a communication channel. The issuers re-
present for us the clusters of our virtual architecture. We generally try to minimize the
number of colors (channels), said chromatic number while respecting the fact that two
related issuers (clusters) should not have the same color (do not transmit on the same
channel), but the sensors of the same cluster communicate on the same channel. This
minimization of the number of colors (channels) allows the reuse of frequencies.

There are some accurate algorithms for the coloring of a graph using the minimum
number of colors such as the Zykov’s algorithm [18, 19] which uses the branch an bound
method ; but this class of algorithms have an exponential complexity. Heuristics such as
those of Welsh and Powell proposed in [16] and [17] can be used to achieve an acceptable
results in polynomial time. An allocation of frequencies to clusters of a sensor network
using previous techniques could give the result of figure 3a. But for our use, this frequency
distribution also pose interference problems for some clusters. For example, if a sensor
A from the cluster (2, 1) wants to send a message to the sensors of cluster (1, 1), it will
listen to the communication channel of the cluster (1, 1) (using channel 4) to seek if its
channel is free. Note that there’s also a neighboring cluster (cluster (3, 1)) communicating
on channel 4. If the channel is indeed free in cluster (1, 1) but busy in cluster (3, 1) which
also uses channel 4, then sensor A will think that the recipient’s channel (channel of
cluster (1, 1)) is busy (because clusters (1, 1) and (3, 1) are both using the same channel
4) and will try to postpone the transmission of its message.

To overcome this problem, we propose a greedy heuristic (algorithm 1) allocating
communication channels at a distance of two hops to different clusters of our virtual
architecture. The communication channels are distributed such that two clusters separated
by a single intermediate cluster use different channels. This will have for first effect to
reduce the flooding of the network, because a message will be confined in a single cluster
since it is transmitted using a particular frequency. We will see in the following that it can
get out of this cluster only via a gateway node that controls all the outgoing messages.

The heuristic we propose performs a cluster by cluster processing. For each cluster,
it lists its neighbors (including those at two hops), and derives the frequencies used by
these neighbors. The channel assigned to the cluster is the smallest unused channel in the
vicinity of the cluster.

When the base station has finished determining the communication channels, each
cluster is then alerted by a message UseFreq broadcasted in an angular section (or angu-
lar wedge) covering the cluster. This message allow the sensors of the recipient cluster
to update their communication channels according to algorithm 2. The message UseFreq
consists only of small numbers. The first is a real number defining the amplitude of a
channel, the second is an integer representing the index of the frequency that the clus-
ter should use, the third is a list of small integers representing the index-numbers of the
frequencies of neighboring clusters and the last is a pair of integers representing the co-



ordinates of the cluster concerned. These index-numbers allow a sensor to calculate the
frequency range on which to transmit a message towards its own cluster and also to its
neighboring clusters.

Figure 3b shows an allocation of frequencies in two hops using our algorithm. We also
use the CSMA/CA protocol for inter-cluster communication for its many benefits. Each
cluster has a leader node also called cluster-head (CH) which can both play the role of a
common sensor and the role of the gateway by wich a message can go out of the cluster.
Each cluster (apart from those of the first corona) also have an other cluster called relay
cluster or cluster-relay through which passes any message it sends to the sink. When a
cluster-head wants to transmit data to the sink, it transmits it on its relay cluster’s channel
using the back-off algorithm of the CSMA/CA protocol.

(a) One hop frequency allocation scheme. (b) Two hops frequency allocation scheme.

Figure 3 – Frequency allocation scheme.

Theorem 1 This communication channels allocation algorithm determine a distribution,
limiting interference with neighboring clusters in O(n log(n)) time for n clusters.

Proof. In fact, this algorithm is articulated in three main axes. We start by performing
a sorting ; We know that this operation has a complexity in O(n log(n)). Then comes
two loops : the first calculates for the n clusters of the architecture, the frequency to be
used ; hence a complexity of O(n) for this loop. Then the second makes n broadcast to
inform each cluster of the channel to be used ; Hence a complexity inO(n) for this second
loop. This algorithm thus has an overall complexity in O(n log(n)) + O(n) + O(n) =
O (n log(n)).

The available frequency range is divided into N channels and dispatched for each
cluster using the directional transmissions reaching the concerned cluster. Each cluster has
at must 24 neighbors (including those at two hops). After repeating the algorithm several
times on various samples, we noticed that the frequencies range is beeing subdivided into
N = 9 channels for an odd number of angular sectors and N = 12 channels for an even
number of angular sectors.

Now that we know how to avoid collisions at various emissions, we can tackle the next
goal of this paper : How to correctly and quickly route messages to the base station. For
this, we will start with the detection of empty clusters, and then we will see how to move
mobile sensors into these empty clusters to improve the routing.



4. Detection of empty clusters and distributed cluster-heads
election

This detection of empty clusters phase must precede routing of data in order to define
the best path that data should follow to quickly reach the sink (using for example the
message propagation tree of figure 5b). It also allows to know the area actually covered by
the sensors after the deployment, and therefore, gives the possibility of react accordingly.
A cluster is considered empty if it contains no sensor, or if it contains a set of sensors
disconnected from the rest of the network (or disconnected from the sink).

For c coronas and s angular sectors, the sink counts (c × s) clusters in its virtual
architecture ; therefore, for each message received, it regularly updates two tables h(c, s)
and relay(c, s). Each entry (i, j) of the table h(c, s) contains 1 if cluster (i, j) is not
empty and 0 otherwise, allowing the sink to get an overview of the sensors distribution ;
and each entry (i, j) of the table relay(c, s) contains the coordinates of the relay cluster
of the cluster (i, j).

4.1. Sink’s algorithm
After the partitioning and distribution of communication channels, the sink periodi-

cally broadcasts the date on which the detection algorithm will begin. All sensors are
awake and the sink initiates the detection. The sink then transmits on each channel of its
neighboring clusters (those of the first corona) a message Detect containing its coordi-
nates (−1,−1) and an integer numberOfHops initialized at 0 representing the distance
(in terms of number of hops) to the sink (algorithm 3). After this, it wait some acknow-
ledgments (ACK messages) that will allow it to update the tables h and relay. Due to
network connectivity, it is certain that at least one sensor of the first corona will receive
this message. During the algorithm, each ACK message transmitted by a sensor towards
the sink contains the coordinates of its cluster and those of his relay cluster. Table h(c, s)
is initialized to 0. At each reception of a message from a sensor of the cluster (i, j), BS
puts 1 in h(i, j) and, in the entry relay(i, j), it assigns the value contained in the variable
relay of the received message. The first ACK message arrives 6 slots after the launch of
the algorithm (as we shall see later, 1 slot for the transmission of the Detect message, 2
slots for the two timers, 2 slots for the transmission of the messagesHead1 andHead2, 1
slot for the transmission of the ACK message), and then an ACK message arrives every
2 slots ; the sink knows that the detection (algorithm 3) has ended when it receives no
ACK message after more than two slots.

4.2. Sensor’s algorithm
The network is supposed connected, so for all cluster (i, j) considered non-empty,

there is always a path from it to the sink node. Isolated clusters cannot reach the sink and
are considered empty even if there are not. There are five main events in the detection of
empty clusters :

1) The reception of a message Detect asking sensors to indicate their coordinates ;
2) The reception of a message Detect_timer asking sensors to be ready for the

election of the cluster-head ;
3) The reception of a message Head1 sent by a node to propose itself as a gateway

node (or cluster-head), if it has the smallest distance to the sink ;



4) The reception of a message Head2 sent by a node to notify the other sensors of
his cluster that he is the cluster-head and ;

5) The reception of a message ACK sent by a cluster-head to the sink node to
indicate their coordinates, and also the fact that the cluster is not empty.

Reception of a message Detect
When a sensor receives a Detect message, it checks two conditions : if it has not

already had to route a Detect message, and if its cluster is adjacent to that of the sen-
der of this message. The reason is the following : firstly, each sensor has to route only
a single Detect message, because any other similar message necessarily comes from a
more distant cluster to the sink. Secondly, the sizes of the clusters of the lower coronas
are smaller than the sizes of the more distant clusters, since the sensors transmission range
are constant, in lower coronas, transmission can easily cover several neighbors clusters. If
one of the two conditions is not satisfied, it ignores the Detect message. Otherwise, if it
is the first time he receives theDetectmessage (i.e. if it has not received aDetect_timer
message), it builds a message Detect_timer containing the starting date of the distribu-
ted cluster-head election notedEnd_Date, and broadcasts it on its own cluster’s channel.
Any sensor that receives a Detect_timer message can’t send an other Detect_timer
message. It just waits still the date End_Date to begin the cluster-head’s election algo-
rithm.

While waiting for End_Date, sensors that receive the Detect message (including the
one that received the first Detect message), compare the value Detect.numberOfHops
to their local value numberOfHops. IfDetect.numberOfHops+1 < numberOfHops
this means that the message comes from a nearest cluster from the sink (numberOfHops
is initialized at ∞ for all the sensors, forcing the sensors to route a single Detect mes-
sage), then the sensor puts its variable numberOfHops atDetect.numberOfHops+1,
takes the sender as relay cluster, builds an other Detect message an broadcast it to permit
other sensors to identify theirselves (algorithm 4).
At the time End_Date contained in the Detect_timer message previously received, the
distributed cluster-head election algorithm (algorithm 6) is immediately executed. At the
end of this algorithm, the elected cluster-head sends an ACK message to the sink using
the frequency of its relay cluster.

Before the distributed cluster-head’s election in each cluster, every sensor of the given
cluster that are able to join some relay cluster have received a Detect message from this
relay cluster, and know how far they are from the sink (numberOfHops) ; they are also
able to estimate their residual energy Er. We rely on these information available locally
at each sensor to elect the cluster-head. The algorithm takes place in two phases, requiring
only two broadcasts (messages Head1 and Head2). Each sensor with a residual energy
superior or equal to the energy threshold Es begins by calculating a first timer at the end
of which it is supposed to broadcast a Head1 message to propose itself as the leader.
The local channel is normally free and the timer is calculated such that it is the nearest
sensor to the sink that will access the channel. If there are many sensors having the same
distance to the sink, the one with the highest ID accesses the channel. The duration of
this first timer is

(
1− 1

numberOfHops +
e(−ID)

Λ

)
slots 1. The first sensor accessing the

channel broadcasts its Head1 message and oblige other sensors to cancel the sending of
their Head1 message (algorithm 7 : Reception of a Head1 message).

1. Λ is selected relatively large so that the timers of two sensors having the same distance to the sink
differ by only a few microseconds. Eg 100, 1000, ...



Reception of a message Head1
The sensor that sent the Head1 message, and other sensors that have received the

messageHead1, and which have a residual energy greater than the thresholdEs, and have
a numberOfHops less or equal to the one contained in the message Head1, calculate
and arm a second timer. This second timer rely on the residual energy Er of each sensor,
and is such that it is the sensor having the highest residual energy that accesses the channel
the first. The duration of this second timer is

(
1
Er

+ e(−ID)

Λ

)
slots. At the end of this

second timer, a single sensor (this is actually the cluster-head) access the channel and
notifies (by sending a message Head2) all other sensors of its cluster that it is now the
cluster-head.

Reception of a message Head2
At the reception of the messageHead2, the receiving sensor disarms the second timer

and puts its local data up to date (algorithm 8 : Reception of a message Head2). This
message contains the ID of the cluster-head, the coordinates of the relay cluster, as well
as the distance (in terms of number of hops) of the cluster to the sink. The cluster-head
is charged of building and sending an acknowledgment (ACK message) to the sink. The
cluster-heads of the first corona send their ACK message directly to sink, while those of
the other coronas send their ACK message through the relay cluster.

Reception of a message ACK
A sensor that receives a message ACK from the neighbor node checks whether this

message is for its cluster. In this case, it sends it to its gateway node which checks if it has
not already routed an ACK message from the same cluster. In this case, it broadcasts it
on the channel of its relay cluster. Otherwise, it simply ignores the message.

Theorem 2 For c coronas and s angular sectors, the empty clusters detection algorithm
requires [c× (s− 1) + 4] slots in the worst case.

Proof. The worst case corresponds to the one where the Detect and ACK messages
move from the sink to the furthest cluster following a path in the form of a spiral as in the
figure 4. For c coronas and s angular sectors, the Detect message needs

(
c
2 × (s− 1)

)
slots to reach the most distant sensor if c is even,

(
c−1

2 × (s− 1) + 1
)

slots if c is odd,
and 1 slot if c = 1. The ACK message sent by this sensor takes an equivalent amount
of time to reach the sink. Additionally, it is easy to see that the election of a cluster-head
takes 4 slots in each cluster. So the first ACK message arrives 6 slots after the launch,
then another arrives every 2 slots, and the last one arrives [c× (s− 1) + 4] slots after the
launch.

After the detection of empty clusters and the election of cluster-heads, the network is
ready to be use. Sensors can collect data and send them to the sink through possibly non
optimal paths. The following section aims to optimize routing by offering more optimal
paths.



Figure 4 – Longest path traveled by a message to reach the sink node.

5. Routing optimization using mobile sensors
This section is inspired from [2]. Here we introduce the actuators : sensors with a mo-

bilizer, allowing them to move on the sink’s order. They can be used for many purposes,
depending on the user, for example :

– Being the CH in a cluster where the residual energies of the sensors are under the
threshold energy ;

– Collect and route information in isolated areas ;
– Connect a sub isolated connected network to the main network ;
– Being sent in strategic empty clusters (purpose of this paper) to optimize the routing.

5.1. Searching and filling strategic empty clusters by actuators
From the table h(c, s), the sink can identify empty clusters. In order to know which

ones it is going to fill first, it should produce the messages spreading tree like in figure 5b
by using the two tables it has like this : Take BS as root and the first tree’s leaf. As long
as there’s an unvisited leaf (i, j), search in the table relay(c, s) the cluster that has the
cluster (i, j) as relay cluster and add them as the sons of (i, j).

Filling a strategic empty cluster has the effect of reducing the tree’s height (figure
5b). The ideal one would be to reduce this height to the number of coronas of the virtual
architecture. The routing will be optimal if for any cluster of corona k, the transmission
of a message towards BS passes through k intermediate clusters.

5.1.1. Rule of detection of clusters which access can be improved
To optimize the routing to a cluster, it would be good to know whether the current

access is optimizable. In figure 5, it is the case of cluster (1, 4) which is at 5 intermediate
clusters from BS instead of 1 if an actuator were judiciously placed in cluster (0, 3).

Rule : Let T be a messages spreading tree similar to that of figure 5b, prof(i, j)
denotes the depth of the cluster (i, j) in the tree T. The path from sink to (i, j) can be
improved if there is another cluster (i′, j′) with a depth prof(i′, j′), such as i′ ≥ i and
prof(i′, j′) < prof(i, j), i.e. (i′, j′) is in a corona greater or equal to (i, j)’s but in the
tree T, (i′, j′) appears at a depth less than (i, j)’s.



(a) Propagation of messages in the supervised area. (b) Messages spreading tree.

Figure 5 – The messages spreading tree obtained after the detection of the empty clusters.

5.1.2. Detection of strategic empty cluster to fill in priority
To determine this priority cluster (PC), we establish for every corona a the list L[a] of

clusters of this corona which access can be improved (i.e for C coronas, we should have
C lists). Each list L[a] contains the coordinates (a, j) of clusters of the corona a which
access can be improved. It is in the form : L[a] = [(a, j1), (a, j2), . . . , (a, jn)]. From each
list L[a], we extract the longest list Ls[a] made of consecutive clusters of L[a]. In the list
Ls[a], each (a, j) represents the coordinates of the clusters of corona a that follows in the
message spreading tree. The coordinates (x, y) of PC are deduced from the longest sub
list Lsp[a] taken among the Ls[a] extracted lists. x = a− 1 and y is equals to the default
rounding average of j (the j are the second components items (a, j) of the list Lsp[a]).
As long as there are available actuators, it is necessary to move an actuator at the cluster
(x, y), another at the cluster (x− 1, y) if it is empty, ... another at the cluster (0, y) if it is
empty. The process can be repeated until the routing is optimal, i.e. up to prof(T) ≤ C.
For the example of figure 5, the determination of PC is presented in annex A.

Before moving a mobile sensors, the sink node must calculate the distances from it
to the target empty cluster, it is better to choose the most appropriate actuator, based on
distance, residual energy, availability, etc.

5.2. Moving a mobile sensor
We propose to move an actuator from the cluster (x, y) to the empty cluster (j, k). To

properly move our actuator from cluster (x, y) to cluster (j, k), it will need a distance (not
in terms of number of hops) and a direction. To simplify our calculations, we should be
in a Cartesian plane. For this we describe here how to transform our current coordinate
system (Dynamic Coordinate System : DCS) in a Polar Coordinate System (PCS) and
then in to a Cartesian Coordinate System (CCS).

5.2.1. Correspondence between the DCS, the PCS and the CCS
To get the distance and the direction to follow, we must define a reference. Thus the

origin of our reference will be the sink. The Y axis is taken such that it coincides with the
left edge of the first section (section 0). The X axis is at a quarter turn from the Y axis so
that the angle ̂X, sink, Y is direct (figure 6a). Any point of the DCS is discoverable using
p (its distance from the sink) and ϕ (angle measured from the Y axis) as in figure 6b.
Denote ’α’ the angle of a sector and ’e’ a thickness of a corona, we can state corollary 1.



(a) Definition of the reference (b) PCS and CCS

Figure 6 – Correspondence between the DCS, the PCS and the CCS

Corollary 1 Let M be a sensor of the cluster (c, s) assumed at it center. In the PCS, M
has the coordinates (p, ϕ) where p = c× e+ e

2 and ϕ = s× α+ α
2 ;

Let M(p, ϕ) be a point in the PCS. In the CCS, M has coordinates (x, y) with
x =Mx = p sin(ϕ) and y =My = p cos(ϕ).

Now we can start the necessary calculations (distance p and angles ϕ) to move the
actuators.

5.2.2. Calculation of the distance (p)

The distance between two points A and B of the plane is given by the norm of the
vector −−→AB, denoted ||−−→AB|| or just AB. According to figure 6b, an actuator that moves
from the sink node (with coordinates (0, 0)) to the point M (with coordinates (x, y)) must
cover the distance p = ||−−−−−→sink M || = ||(x − 0, y − 0)|| = ||(x, y)||. But ||−−−−−→sink M ||2 =

(sink Mx)
2 + (sink My)

2 = x2 + y2. Thus ||−−−−−→sink M || =
√
x2 + y2. So we have

corollary 2.

Corollary 2 Moving an actuator from the center of the cluster A(c1, s1) of polar co-
ordinates (p1, ϕ1) to the center of the cluster B(c2, s2) of polar coordinates (p2, ϕ2)
returns to move this actuator from the point A(Ax, Ay) to the point B(Bx, By) of the
cartesian coordinates system on a distance p = ||−−→AB|| where −−→AB(Bx − Ax, By − Ay),
p = ||−−→AB|| = 2

√
(Bx −Ax)2 + (By −Ay)2, Ax = p1 cos(ϕ1), Ay = p1 sin(ϕ1),

Bx = p2 cos(ϕ2) and By = p2 sin(ϕ2).

5.2.3. Calculation of the angle (ϕ)

To facilitate the calculation of the value of ϕ, let’s make a change of reference.

Change of reference : We want to move a mobile sensor from a point A to a point B.
For this, we define a new reference in which the base vectors are collinear with those of
the previous (see figure 7a).

The reference R1 = (sink,
−→
i ,
−→
j ) ; R2 = (A,

−→
i ,
−→
j ) ; R2 = t−−−−→

sink A
(R1) where t

denotes the translation of vector −−−−→sink A. The coordinates of two points M(x, y) ∈ R1,
and M ′(x′, y′) ∈ R2 such that M ′ = t−−−−→

sink A
(M) are now linked by the following

relations : x′ = x− xA and y′ = y − yA.
Basis vectors of these two references are pairwise collinear, that’s why the angles found
in one of the references will be equivalent in the second.



(a) Reference change (b) Angle between the axis Y ′ and the dis-
placement vector

Figure 7 – Angle displacement

Calculation of the inclination α0 formed by the displacement vector and the Y ′ axis :
The displacement angle ϕ that we want to calculate is strongly related to the angle α0

formed by the vector −−→AB and the Y ′ axis. Figure 7b presents the different situations we
may encounter. We deduced that sin(α0) =

|Bx|
AB ⇒ α0 = sin−1

(
|Bx|
p

)
where p = AB.

Determination of the displacement angle ϕ : From figure 7b, point B can be found in
one of the four sectors.

Corollary 3 The displacement angle ϕ of an actuator from the point A(Ax, Ay) to the
point B(Bx, By) of (A,−→i ,−→j ) reference is given by :

1) if B is in the sector 0, i.e. Bx > 0 and By ≥ 0 then ϕ = α0

2) if B is in the sector 1, i.e. Bx ≥ 0 and By < 0 then ϕ = π − α0

3) if B is in the sector 2, i.e. Bx < 0 and By ≤ 0 then ϕ = π + α0

4) if B is in the sector 3, i.e. Bx ≤ 0 and By > 0 then ϕ = 2π − α0

For a practical example of moving a sensor, see annex B.
Now that we have all the different modules of our protocol, we can now describe how

it works.

6. Unrolling of the routing protocol
Once the sensors are randomly deployed around the sink, the base station performs

the clustering of the deployment area in small clusters easily manageable. Note that at
this phase, sensors does not communicate, therefore their energy consumption is quite
insignificant. Then the base station determines and allocates communication channels
to different clusters to limit inter-clusters interferences. Then comes the empty cluster
detection phase initiated by the sink. This step allows the base station to get an overview
of the distribution of the sensors in the region of interest. Cluster-heads and relay clusters
are also defined at this step. Already at this stage, the routing of collected data can begin.



The informations collected in the empty clusters detection phase will allow the sink to
move the actuators in strategic empty clusters in oder to optimize the routing.

Once the data are captured, it would be wise to send them as soon as possible to
the base station while avoiding network congestion. The messages spreading tree seen
previously may be very useful here. This tree optimized by the sink with actuators, allows
each cluster to send its data to the sink by the shortest path (number of hops).

In addition, the CSMA/CA protocol executed by each sensor in each cluster and bet-
ween clusters helps to avoid network congestion. Another way of making the best results
would be to attach an aggregation protocol to limit redundant messages routed in each
cluster.

7. Simulation and analysis of our solution

7.1. Tools and simulation environment
Using an HP computer Intel (R) Core (TM) i7-2630QM CPU @ 2.00 GHz×8, 8GB

of RAM, running Windows 8 Professional ; a discrete event network simulator J-Sim ;
and a sample of 1000 sensors randomly deployed within 10 km of the sink ; the virtual
architecture has 10 coronas and 8 sectors of 45o each. We performed repeatedly tests and
averages the results. The energy model is the one adopted by many efficient contributions
[14] : E = Etrans +Erecep. Etrans and Erecep are respectively the total energy used for
transmissions in the network and receptions, knowing that each sensor has a range of 500
meters, an initial energy of 100 joules, and needs 35.28×10−3joule per transmission and
31.32× 10−3joule per reception. A slot takes 78µs. The curves were made with version
5.0 of gnuplot software.

7.2. Analysis of the simulation results

Time taken for the election of CH
Figure 8 shows that our distributed cluster-head election algorithm which needs only

two broadcasts in each cluster stays less than four slots in each cluster.

Figure 8 – Time taken for our distributed cluster-head election algorithm in each cluster.



Energy progress
Figure 9 shows the energy consumption among both ordinary sensors and cluster-

heads sensors. The sharp fall of energy observed at the beginning of the curve is normal.
Initially, CH are not yet elected, and this operation wastes enough energy. This drop of
energy is significantly reduced once the CH are elected.

Figure 9 – Energy consumption of ordinary sensors and cluster-heads

Use of actuators to improve energy consumption
Figure 10 compares the energy consumption of the cluster-heads and ordinary sensors

when the routing is not optimized and when routing is optimized with actuators. An eco-
nomy of energy is observed among both ordinary sensors and cluster-heads sensors. This
increases the longevity of the network. The simulation is made for the detection of empty
clusters, the election of cluster-head and routing. Here too, the great loss of energy obser-
ved at the beginning of the curve is due to the fact that the cluster-head are not elected at
the beginning. It is clear that this energy loss is significantly reduced once the cluster-head
are elected.

8. Conclusion
In this paper we have presented a virtual architecture that facilitates the management

of WSN. We have presented some technics which allows us to avoid collisions in a WSN
both between clusters an inside clusters. We also introduced the gateways nodes, their
economical election protocol needs only two message transmissions, we show how to
limit redundant messages through them. But our main aim was to optimize the routing of
collected data towards the sink. That’s why we describe a method of detecting and filling
strategic empty clusters in which we can send mobile sensors (actuators) in oder to shorten
the road taken by messages. We also present other possible utilities of the actuators, and
show a new way to perform their movements to improve the routing of the collected data.

In a very soon future, we intend to work on the mechanism of reelection of the cluster-
head in a cluster ; the mechanism of changing relay cluster if the current relay cluster is
no longer accessible and the mechanism of redirection of packets after the positioning of



Figure 10 – Improved of the power consumption using actuators
a mobile sensor. It would be also interesting to integrate data aggregation techniques to
minimize the number of messages circulating in the network. Authentication and security
are also important issues in this kind of network.
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A. Practical example for determination of priority clusters
With the example of figure 5, the determination of priority clusters is performed as

follow :
Lists construction :
L[0] = ∅ ; L[1] = [(1, 1), (1, 2), (1, 3), (1, 4)] ; L[2] = [(2, 1), (2, 4), (2, 5)]
Extraction of clusters sublists which follow :
Ls[0] = ∅ ; Ls[1] = [(1, 1), (1, 2), (1, 3), (1, 4)] ; Ls[2] = [(2, 4), (2, 5)]
The longest sub-list : Lsp = Ls[1] = [(1, 1), (1, 2), (1, 3), (1, 4)]
Calculation of the coordinates (x, y) :
x = 1− 1 = 0 and y = floor(Average(1, 2, 3, 4)) = floor(2.5) = 2
Filling stategic clusters : The cluster (0, 2) is free, an actuator should be sent into it. By
repeating the process : We should put an actuator (if there are available) in the cluster
(0, 4) ...

B. Practical example of moving a mobile sensor
Let’s move an actuator from the cluster A(1, 1) to the cluster B(0, 3). For our tests,

let’s suppose : the scope of the sink is 30.0m and the virtual architecture includes 3 coro-
nas with e = 10.0m each ; there are 8 angular sectors of α = π

4 rad each.

Polar Coordinates : A(15.0, 1178 rad) and B(5.0, 2.749 rad)

Cartesian coordinates : A(13858, 5740) and B(1913, 4619)



Distance : p = ||−−→AB|| = 15.811

Displacement angle : B′x = Bx −Ax = −11.945 and B′y = By −Ay = −10.359,
then α0 = 0.856 rad. Since B′x < 0 and B′y <= 0 then B is in sector 2 and thus,
ϕ = π + α0 = 3.998 rad or ϕ = 229.065˚.

Conclusion : To strengthen the area (0, 3), the sink node asks the actuator of the cluster
(1, 1) to cover a distance p = 15.811m with an angle of ϕ = 229, 065˚.

C. Algorithms

Lexicon of parameters and functions

Parameters Description
numberofneighbours Numbers of neighbors in a cluster including those at

two hops
NumberOfFreq Contains the number of channels we need in our net-

work. The frequency range will then be divided by this
number

Vc2 Neighbors of cluster ’c’ including those at two hops
NeighbouringFreqOfC Set of all the indices of the channels used in the vicinity

of a cluster
neighbouringFreqs(L) Function that returns the indexes of the channels used

by the clusters passed in parameter (L)
UsableFreqForC Indexes of unused channels in the vicinity of a cluster
cluster.freq Denotes the index of the channel used by this cluster
NumberOfFreq.size() Returns the current number of channels required
first(L) Returns the first item in list L
amplitude Amplitude of a channel
Stop_freq End of the range of frequencies allocated to the network
Start_freq Start of the range of frequencies allocated to the net-

work
neighbourOf(cluster) Function that returns the neighbors of the cluster passed

in parameter
UseFreq(amplitude, freq,
neighbourFreqs, dest)

Message that allows to communicate to a cluster the
index of the channel on which to communicate (freq),
as well as the indexes of the channels of its neighbors
(neighbourFreqs). amplitude denotes the amplitude
of the channel, (dest) is the destination cluster.

msg() Function that allows to build several types of messages
Radio.tansmit(ri, f0, UseFreq) Function that allows the sink to broadcast a message

(for example UseFreq) on a channel (for example, on
the channel of index f0) and within a radius (ri)



Parameters Description
Radio.tansmit(message, freq) Function which allows a sensor to broadcast a message

on a channel of indexe freq. The coverage radius is that
of the sensor.

UseFreq.dest Allows to extract the coordinates of the recipient of a
message

UseFreq.neighbourFreqs Denote frequency indexes used by neighboring clusters
numberOfHops Number of hops
Detect Message allowing different clusters to identify them-

selves
EndTime End date of the empty cluster detection algorithm
AKC Message acting as acknowledgment of receipt
relay_cluster Cluster through which the CH sends messages to the

sink
relay(x, y, z) Table that allows the sink to have the coordinates of the

relay cluster of the cluster of coordinates (x,y,z)
h(x, y, z) Allows the sink to know whether the cluster of coordi-

nates (x, y, z) is empty or not
are_neighbours(c1, c2) Function which makes it possible to know if two clus-

ters c1 and c2 are neighbors or not
τ The duration of a slot
Er Residual energy of a sensor
Es Threshold energy of a sensor
Detect_timerNotReceived Boolean that lets you know if a sensor has received a

Detect_timer
time() Function that returns the local time of a sensor
Detect_timer Message that indicates to the sensors the date on which

the CH will be elected
fork_launch_CH_election Sub-process that effectively replaces an active wait

that consumes enough energy. The latter schedules the
launch of the CH election.

fork_send_ACK Sub-process that effectively replaces an active wait that
consumes enough energy. The latter schedules the sen-
ding of an acknowledgment of receipt.

node(ID) Returns a sensor from its ID
Head1 Message used during the election of the CH to choose

the sensor closest to the sink in terms of number of
hops.

Head2 Message used during the election of the CH to choose
the CH among the sensors closest to the sink in terms of
number of hops and having the greatest residual energy
(Er).

Head1MessageNotReceived Boolean which allows to know if a sensor has pre-
viously received a Head1 message.

Head2MessageNotReceived Boolean which allows to know if a sensor has pre-
viously received a Head2 message.

cluster_head Local reference of the sensor playing the role of CH.



Algorithm 1: Channel allocation to the clusters.
Input: A 2 dimensions table of clusters of size c× s.
Output: UseFreq messages giving the communication channel of each cluster.

1 Put the clusters of the table in a list L;
2 Sort L in descending order of numberofneighbours;
3 NumberOfFreq ← ∅ /* NumberOfFreq contains the number of necessary frequencies */

4 foreach c ∈ L do
5 Vc2 ← ∅;
6 NeighbouringFreqOfC ← ∅ /* frequencies’ indexes of the clusters neighbouring to the cluster c

*/

7 Vc2 ← neighbourOf(c)− {c} /* Vc2 : neighbours of c, including those at two hops */

8 NeighbouringFreqOfC ← neighbouringFreqs(Vc2);
9 UsableFreqForC ← NumberOfFreq −NeighbouringFreqOfC;

10 if (UsableFreqForC = ∅) then
11 c.freq ← NumberOfFreq.size() + 1;
12 NumberOfFreq ← NumberOfFreq∪{NumberOfFreq.size()+1};
13 else
14 c.freq ← first(UsableFreqForC) /* first(L) returns the first element of the list L */

15 /* Distributing the frequencies to the clusters */

16 amplitude← Stop_freq−Start_freq
NumberOfFreq.size() ;

17 foreach c ∈ L do
18 dest← c;
19 freq ← amplitude× c.freq;
20 neighbourFreqs← neighbourFreqs(neighbourOf(dest));
21 UseFreq ← msg(amplitude, freq, neighbourFreqs, dest);
22 Radio.tansmit(ri, f0, UseFreq) /* Transmit the message M on the channels of the

neighbouring clusters */

Algorithm 2: Reception of a message UseFreq.
Input: A message UseFreq.

1 /* If the message is for my cluster */

2 if ((i, j, k) = UseFreq.dest) then
3 freq ← UseFreq.amplitude× UseFreq.freq;
4 neighbourFreqs← UseFreq.neighbourFreqs;



Algorithm 3: Sink’s algorithm.
Input: The duration τ of a slot.
Output: The tables h(c, s) and relay(c, s) filled.

1 sender ← (−1,−1,−1);
2 numberOfHops← 0;
3 Detect← msg(sender, numberOfHops);
4 NumFreq ← neigbouring clusters’ frequencies list;
5 foreach (freq ∈ NumFreq) do
6 Radio.transmit(r1, freq,Detect);

7 EndTime← time() + 6× τ ;
8 while (time() < EndTime) do
9 if ((ACK ← radio.receive()) == true) then

10 EndTime← time() + 2× τ ;
11 (x, y, z)← ACK.sender;
12 if (h(x, y, z) == 0) then
13 h(x, y, z)← 1;
14 relay(x, y, z)← ACK.relay_cluster;

15 return the tables h(c, s) and relay(c, s) filled;



Algorithm 4: Reception of a Detect message.
Input: A Detect message.
Output: Another Detect message.

1 if (are_neighbours((i, j, k), Detect.sender) and (Er > Es)) then
2 /* If i have not received aDetect_timer message that means i am the first receiving theDetect message. I

build and broadcast aDetect_timer */

3 if (Detect_timerNotReceived and time() < End_Date) then
4 End_Date← time() + (1− 1

numberOfHops +
e(−ID)

Λ )× τ ;
5 dest← (i, j, k);
6 Detect2← msg((i, j, k), Detect.numberOfHops);
7 foreach (freq ∈ Frequences_voisines) do
8 radio.transmit(freq,Detect2);

9 Detect_timer ← msg(End_Date, dest,Detect.numberOfHops);
10 radio.transmit(dest.freq,Detect_timer);
11 numberOfHops← Detect.numberOfHops+ 1;
12 relay_cluster ← Detect.sender;
13 Detect_timerNotReceived← false;
14 /* We shedule the starting of the cluster-heads election algorithm */

15 fork_launch_CH_election← forkAt(End_Date,Election_CH);
16 /* After the cluster-heads election, we send anACK message to the sink */

17 fork_send_ACK ← forkAt(4× τ + time(), Send_ACK);
18 else
19 if ((time() < End_Date) and (Detect.numberOfHops+ 1 <

numberOfHops)) then
20 relay_cluster ← Detect.sender;
21 numberOfHops← Detect.numberOfHops+ 1;
22 /* We shedule the starting of the cluster-heads election algorithm */

23 fork_launch_CH_election←
forkAt(End_Date,Election_CH);

24 /* After the cluster-heads election, we send anACK message to the sink */

25 fork_send_ACK ← forkAt(4× τ + time(), Send_ACK);

Algorithm 5: After the cluster-head election.
Output: An ACK message.

1 /* If i am the elected cluster-head, i send anACK message */

2 if (cluster_head = node(ID)) then
3 sender ← (i, j, k);
4 dest← (−1,−1,−1);
5 ACK ← msg(sender, dest, relay_cluster);
6 radio.transmit(relay_cluster.freq,ACK);



Algorithm 6: Distributed election of cluster-heads.
Input: Locale energy threshold Es.

1 if ((numberOfHops! =∞) and (Er > Es)) then
2 time← (1− 1

numberOfHops +
e(−ID)

Λ )× τ ;
3 dest← (i, j, k);
4 Head1← msg(numberOfHops,Er, ID, relay_cluster, dest);
5 sleep(time);
6 if (Head1MessageNotReceived and isFreqFree()) then
7 radio.transmit(freq,Head1);

8 time← ( 1
Er

+ e(−ID)

Λ )× τ ;
9 Head2← msg(numberOfHops,Er, ID, relay_cluster, dest);

10 sleep(time);
11 if

(Head2MessageNotReceived and isFreqFree() and numberOfHops ≤
Head1.numberOfHops) then

12 radio.transmit(freq,Head2);
13 cluster_head← node(ID);

Algorithm 7: Reception of a message Head1.
Input: A message Head1.

1 if (Head1.dest = (i, j, k)) then
2 cluster_head← Nil;
3 Head1MessageNotReceived← false;

Algorithm 8: Reception of a message Head2.
Input: A message Head2.

1 if (Head2.dest = (i, j, k)) then
2 Head2MessageNotReceived← false;
3 cluster_head← node(ID);
4 numberOfHops← Head2.numberOfHops;
5 relay_cluster ← Head2.relay_cluster;


