
HAL Id: hal-01442745
https://hal.science/hal-01442745v1

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Up-To Techniques for Weak Bisimulation
Damien Pous

To cite this version:
Damien Pous. New Up-To Techniques for Weak Bisimulation. Theoretical Computer Science, 2007,
380, pp.164 - 180. �10.1016/j.tcs.2007.02.060�. �hal-01442745�

https://hal.science/hal-01442745v1
https://hal.archives-ouvertes.fr

New Up-to Techniques for Weak Bisimulation

Damien Pous 1

ENS Lyon, France

Abstract

Up-to techniques have been introduced to enhance the bisimulation proof method
for establishing bisimilarity results. While up-to techniques for strong bisimilarity
are well understood, the irregularities that appear in the weak case make it difficult
to give a unified presentation.

We propose a uniform and modular theory of up-to techniques for weak bisim-
ulation that captures most of the existing proof technology and introduces new
techniques.

Some proofs rely on nontrivial – and new – commutation results based on ter-
mination guarantees. All results presented in this paper have been formally proved
using the Coq proof assistant.

Key words: weak bisimilarity, up-to techniques, termination, commutation.

Introduction

Bisimilarity is a widely used behavioural equivalence in concurrency theory.
It can be seen as the finest extensional equivalence that enjoys a natural
formulation and nice mathematical properties. Bisimilarity can be defined as
the greatest bisimulation. Given a labelled transition system (LTS), allowing
one to write transitions between states of the form P −α−→ P ′ (meaning that a
state P can perform an action α and evolve to P ′), we say that a relation R
between states is a bisimulation whenever the leftmost diagram below holds:
whenever P and Q are related by R and P −α−→ P ′, there must exist some

1 This work has been supported by the french initiative “Action Concertée Nou-
velles Interfaces des Mathématiques GEOCAL”. Author’s version of the paper pub-
lished by Elsevier in Theoretical Computer Science, available at http://dx.doi.

org/10.1016/j.tcs.2007.02.060, 2007.

Q′ such that Q −α−→ Q′ and R relates P ′ and Q′ (and symmetrically for the
transitions of Q).

P

α
��

R Q

α
��

P ′ R Q′

P

α

��

R Q

α

��
P ′ F(R) Q′

P

α
��

R Q

α
��

P ′ S Q′

P

α
��

R Q

α
����

P ′ R Q′

Bisimulation is the most popular technique to establish bisimilarity between
two processes: to prove that P and Q are bisimilar (written P ∼ Q), exhibit a
bisimulation R such that PRQ. Up-to techniques for bisimulation have been
introduced to alleviate the task of bisimulation proofs, by working with smaller
relations. The proof scheme is shown on the second diagram above: a correct
up-to technique is given by a function F from relations to relations such that
if we prove that R ‘evolves to’ F(R), then we know that R is contained in
the bisimilarity. The advantage is that R need not be a bisimulation (and can
be ‘much smaller’ than a bisimulation). The notion of evolution of relations
(depicted on the third diagram, where R evolves to S — its informal meaning
is made precise below) serves as the basis of [10], where a general theory of
up-to techniques for bisimulation is presented. The corresponding framework
gives a unified and modular view of known up-to techniques, that can be
combined together to yield powerful proof techniques for bisimilarity.

Up to now, we have implicitly been referring to the strong version of bisim-
ulation. When analysing nontrivial systems, however, one is interested in the
weak version, where a special action, called τ , is isolated, and the game of
bisimulation is redefined by abstracting over τ transitions (τ is treated as
a silent action, while other actions are visible). In the weak version of the
bisimulation game, as shown on the rightmost diagram above, Q responds to
P −α−→ P ′ by performing an −α−� transition: this means that Q can do zero or
several silent steps before and after the transition along α, or even not move
at all in the case where α = τ (and symmetrically when Q offers a challenge).
One might then want to follow the same path as above: redefine the evolution
of relations, and look for some functions F that yield correct up-to techniques
for weak bisimilarity (written ≈). An important motivation for doing so is
that in general, weak bisimulation proofs tend to be much larger than strong
bisimulation proofs, so that having up-to techniques for the weak case is at
least as important as in the strong case.

Unfortunately, in the weak case, irregularities appear, the paradigmatic ex-
ample being given by the unsoundness of the ‘weak bisimulation up to weak
bisimilarity’ proof technique. We recall the counterexample, from [11]. We sup-
pose that the reader is familiar with CCS, and define R , {〈τ.a, 0〉}. Let us
show that R is a weak bisimulation up to ≈, i.e., that R evolves to ≈R≈ (we
use juxtaposition to denote relation composition). The right process, 0, cannot
move. The only move the left process can do is a τ transition to a, to which

2

the right process answers by no move, and we get the pair 〈a, 0〉. Now since
we are reasoning up to ≈, and since a ≈ τ.a, we are allowed to replace this
pair with 〈τ.a, 0〉, and we are back in R. Nevertheless, we obviously cannot
conclude that τ.a and 0 are bisimilar processes.

Novel and useful proof techniques have been introduced to circumvent this
difficulty [11,3], notably based on the expansion preorder [1], that allows one
to avoid situations where one can ‘undo a τ transition’ as in the example
above. However, as we have experienced in a recent study [5], in some cases
reasoning up to expansion is not possible. The intuitive reason can be formu-
lated as follows: when a process P expands a process Q, P has to be more
efficient (in terms of internal computations, represented by silent transitions)
than Q at every step. Typically, expansion is a well suited relation to get rid
of intermediate computation steps that do not affect the behaviour of the sys-
tem. However, it is common (in particular, it is the case in [5]) that along such
transitions, an increased efficiency is achieved at the cost of some initial com-
putation. Because of its ‘very controlled’ nature, expansion fails in handling
this kind of pre-calculation techniques.

In the present work, we develop a theory of up-to techniques for weak bisimu-
lation. This theory slightly departs from that proposed in [12, Section 2.4.3.3],
and it enjoys nice properties in terms of generality and modularity. We then
introduce new useful proof techniques for weak bisimilarity that can be used
in that framework.

We start by adapting the work of [10] to the weak case, yielding the notion
of monotonic function over relations. We explore the class of monotonic func-
tions, and argue that it is too restrictive. We are thus led to relax the notion
of monotonicity, and introduce weakly monotonic functions, for which up-to
techniques can be applied only to reason about visible actions (those that can-
not be undone by ≈). We then show under which conditions monotonic and
weakly monotonic functions can be combined together to obtain sound proof
techniques. The resulting framework gives a unified and modular account of
most of the existing technology for weak bisimulation proofs. Beyond that, we
validate some proof principles, such as ‘up to transitivity on visible actions’,
that to our knowledge had not been proposed before.

We then attack the question of finding alternatives to the expansion relation
to handle τ transitions in weak bisimulation proofs. We propose an up to
controlled bisimulation technique. The notion of controlled bisimulation in-
tuitively captures the idea of avoiding ‘going back in time’ in bisimulation
proofs. We introduce relaxed expansion, a coinductively defined relation that
is a controlled bisimulation and is coarser than expansion. We also propose two
new proof principles for which the control on τ steps exploits a different kind
of argument, based on termination guarantees. The corresponding correctness

3

proofs are best formulated as rewriting results, that are technically difficult
and may be of interest per se; we therefore describe them in that setting in a
dedicated section. Like all other results in the paper, except for the example
of Section 5, they have been formally checked in the Coq proof assistant [9].

Outline of the paper. In Section 1, we introduce some necessary background
and show where the approach of [10] breaks when adapted to the weak case.
We develop our theory of up-to techniques for weak bisimulation in Section 2,
introducing monotonic and weakly monotonic functions. In Section 3 we in-
troduce controlled simulations and present new up-to techniques based on this
notion. The correctness of some of these techniques is supported by the proofs
given in Section 4, which are formulated as commutation results. Section 5 il-
lustrates the use of our framework on a simple example. We give final remarks
in Section 6.

This is an extended version of [6]. Additional material includes the details of
proofs, a proposal for an up to context technique, as well as the example in
Section 5.

1 The Problem of “Weak Bisimulation Up to”

1.1 Labelled Transition Systems, Relations, Evolution

We consider a labelled transition system (LTS) 〈P ,L,→〉, with domain P ,
labels or actions in L and transition relation→ ⊆ P×L×P . The elements of
P are called processes and are denoted by P,Q. We distinguish a silent action,
τ ∈ L. We let α, β (resp. a, b) range over actions, in L (resp. visible actions,
in L\{τ}).

We let R,S,B, E range over binary relations (simply called relations in the
sequel) on processes, and denote respectively by R+,R=,R? the transitive,
reflexive, transitive and reflexive closures of the relation R. PRQ stands for
〈P,Q〉 ∈ R. The composition of two relations R and S, written RS, is defined
by RS , {〈P,Q〉 /PRT and TSQ for some process T}. We will also need
the inverse of a relation: R−1 , {〈P,Q〉 /QRP}. I will denote the identity
relation, {〈P, P 〉 /P ∈ P}. We say that R contains S (alternatively, that S
is contained in R), written S ⊆ R, if PSQ implies PRQ. A relation R
terminates if there is no infinite sequence P1, P2 . . . such that ∀i, PiRPi+1.

Given an action α, the set of transitions along α induces a relation denoted
by −α−→: −α−→, {〈P,Q〉 / 〈P, α,Q〉 ∈ →}.

4

We let F ,G range over functions from relations to relations. We say that F
contains G, written G ⊆ F , if G(R) ⊆ F(R) for any relation R.

Definition 1.1 (Weak transitions). The weak transition relation, written
−α−�, is defined as the reflexive transitive closure of −τ−→ when α = τ , and the
composition −τ−�−a−→−τ−� for α = a ∈ L\{τ}.

Notice that unlike in [10], −τ−� is reflexive.

Definition 1.2 (Evolution). Let α be an action and R, S two relations. We
say that R α-evolves to S, if whenever PRQ, P −α−→ P ′ implies Q −α−� Q′ and
P ′SQ′ for some Q′. Given two relations R and S, we say that:

• R evolves to S, denoted by R �−→ S, if R α-evolves to S for all α ∈ L,
• R evolves silently to S, denoted by R �τ−→ S, if R τ -evolves to S,
• R evolves visibly to S, denoted by R �v−→ S, if R a-evolves to S for all
a ∈ L\{τ}.

Our notion of evolution is the ‘asymmetric’ version of progression [12, Defi-
nition 2.4.48]: R progresses to S in the sense of [12] iff R evolves to S and
R−1 evolves to S−1. In the following, we build a theory of up-to techniques to
reason about simulations. This leads to simpler developments, and we show
at the end of each section how to use the results to obtain proof techniques
for bisimulation.

The following two lemmas will be useful in the proofs below. The first one
states some properties of evolutions w.r.t. union and containment of relations.
The second one focuses on properties of relations that evolve to themselves.

Lemma 1.3. Let (Ri)i∈I be an arbitrary family of relations, let R,S,S ′ be
three relations, and let α be an action.

(1) If for any i ∈ I, Ri α-evolve to S, then
⋃
i∈I Ri α-evolve to S.

(2) If R α-evolve to S and S ⊆ S ′, then R α-evolve to S ′.

Proof. Straightforward from the definitions. �

Lemma 1.4. Let R be a relation and suppose that PRQ.

(1) If R �τ−→ R and P −τ−� P ′, then there is Q′ such that Q −τ−� Q′ and P ′RQ′.
(2) If R �−→ R and P −a−� P ′, then there is Q′ such that Q −a−� Q′ and P ′RQ′.

Proof. (1) By induction on the derivation P −τ−� P ′: if P = P ′ we take Q′ =
Q. Otherwise, we have P −τ−→ P1 −τ−� P ′ and since R �τ−→ R, there exists
Q1 such that Q −τ−� Q1 and P1RQ1. The induction hypothesis then gives
Q′ such that Q1 −τ−� Q′ and P ′RQ′ and we check that Q −τ−� Q′.

5

(2) Suppose that PRQ and P −τ−� P1 −a−→ P ′1 −τ−� P ′. By the previous point,
we find Q1 such that Q −τ−� Q1 and P1RQ1 (R �−→ R entails in particular
R �τ−→ R). SinceR �v−→ R, there exists Q2 such that Q2 −a−� Q2 and P2RQ2.
By another application of the previous point, we obtain Q′ such that
Q2 −τ−� Q′ and P ′RQ′. We finally check that Q −a−� Q′. �

In the definition below, and in the remainder of the paper, we implicitly refer
to weak relations. There are several equivalent definitions of bisimilarity. The
following directly gives the standard way to prove a bisimilarity result between
two processes P and Q: exhibit a bisimulation relation R containing the pair
〈P,Q〉.

Definition 1.5 (Simulation, Bisimulation, Expansion). Let R be a relation.

• R is a simulation (resp. silent simulation) if R �−→ R (resp. R �τ−→ R).
• R is a bisimulation if R and R−1 are simulations. Two processes P and Q

are bisimilar, written P ≈ Q, if PRQ for some bisimulation R.
• Expansion, denoted by %, is the largest relation such that %−1 is a simula-

tion, and, whenever P % Q,
· P −τ−→ P ′ implies Q −τ−→ Q′ and P ′ % Q′ for some Q′, or P ′ % Q;
· P −a−→ P ′ implies Q −a−→ Q′ and P ′ % Q′ for some Q′.

Definition 1.6 (Functions, Constructors). Given a relation S, we define iden-
tity (U), constant-to-S (S̃), S-left-chaining (S•) and S-right-chaining (•S) as
follows:

U(R) , R S̃(R) , S S • (R) , SR •S(R) , RS

We define four constructors, i.e., functions from functions to functions: com-
position (◦), union (

⋃
), iteration (ω) and chaining (_), as follows:

(F ◦ G)(R) , F(G(R)) (F0)(R) , R
(F_G)(R) , F(R)G(R) (Fn+1)(R) , Fn(R) ∪ F(Fn(R))(⋃
i∈I
Fi
)

(R) ,
⋃
i∈I
Fi(R) (Fω)(R) ,

⋃
n≥0
Fn(R)

1.2 The Difficulty in the Weak Case

We now adapt the theory of up-to techniques of [10] to the weak case, and
show where the difficulties arise.

Definition 1.7 (Monotonicity). A function F is monotonic if the following
conditions hold:

6

(1) R ⊆ S entails F(R) ⊆ F(S);
(2) R ⊆ S and R �τ−→ S entail F(R) �τ−→ F(S); and
(3) R ⊆ S and R �−→ S entail F(R) �v−→ F(S).

This slightly strengthens the notion of safe function [12, Definition 2.4.49], in
which the two kinds of transitions are handled uniformly. While the results
of this section would hold using safe functions, we will need this separation
between silent and visible actions in Section 2.2 (see Remark 2.6). This sepa-
ration is not total however: notice that in (3), the hypothesis ranges over both
visible and silent evolutions (R �−→ S).

Proposition 1.8 (Correctness of Monotonic Functions).

Let F be a monotonic function. If R �−→ F(R), then Fω(R) is a simulation.

Proof. We show by induction that Fn(R) �−→ Fn+1(R):

• when n = 0, we use the hypothesis and Lemma 1.3: R �−→ F(R) ⊆ F1(R);
• otherwise, n > 0:

Fn−1(R) �−→ Fn(R) (by induction)

F(Fn−1(R)) �−→ F(Fn(R)) (by monotonicity of F)

Fn−1(R) ∪ F(Fn−1(R)) �−→ Fn(R) ∪ F(Fn(R)) (by Lemma 1.3)

Fn(R) �−→ Fn+1(R) (by definition)

We conclude by using Lemma 1.3: for all n, Fn(R) �−→ Fω(R) and we have:

Fω(R) =
⋃
n≥0
Fn(R) �−→ Fω(R) . �

�

This proposition ensures that a monotonic function provides a sound up-to
technique: whenever we can prove thatR evolves to F(R), thenR is contained
in Fω(R), which is a simulation. We now exhibit some monotonic functions,
and show how to combine them to obtain more powerful techniques.

Lemma 1.9. Let S be a simulation, U , S̃, •S and %• are monotonic func-
tions.

Proof. The cases of U , S̃ and •S are immediate, we give the proof for %•:
suppose that R ⊆ S and R �τ−→ S. That %R ⊆ %S is trivial; we show that
%R �τ−→ %S: suppose that P % P0RQ and P −τ−→ P ′. By definition of % we
have:

• either P ′ % P0 and we check that P ′%SQ;

7

• or P0 −τ−→ P ′0 and P ′ % P ′0 for some P ′0. Since R �τ−→ S, we find Q′ such that
Q −τ−� Q′ and P ′0SQ′. We finally check that P ′%SQ′.

The case of a visible evolution is handled similarly. �

In the sequel, we will say that a constructor respects a predicate P over func-
tions, if, given arguments that satisfy P, it returns a function satisfying P.

Lemma 1.10. Composition (◦), union (
⋃

) and iteration (ω) are constructors
that respect monotonicity.

We can now apply our framework to reason about bisimulation relations, and
revisit a result from [11]. We show that the proof becomes elementary.

Theorem 1.11. If R �−→ %R=≈ and R−1 �−→ %(R−1)=≈, then R ⊆ ≈ .

Proof. Using the previous results, F(R) , %R=≈ is monotonic, and Fω(R)
and Fω(R−1) are simulations, using Prop. 1.8. It follows that ≈Fω(R) and
Fω(R−1)≈ are simulations. We finally check that (≈Fω(R))−1 = Fω(R−1)≈,
so that R ⊆ ≈Fω(R) ⊆ ≈ . �

The transitivity problem. The ≈-left-chaining function is not monotonic.
As a consequence, the chaining constructor does not respect monotonicity in
general. To see why, let us try to prove the monotonicity of ≈•. Given R and
S such that R �τ−→ S and R ⊆ S, we have to show ≈R �τ−→ ≈S. For that, we
have to close the leftmost diagram below. Our hypothesis allows us to close
the first step of the transition P1 −τ−� P ′1, and obtain the second diagram.
However, from this point, we are stuck, since we have no hypothesis on the
silent evolution of S.

P

τ

��

≈ P1

τ

��

R Q

τ
����

P ′ ≈ P ′1

P

τ

��

≈ P1

τ

��

R Q

τ
����

τ
����

S Q1

P ′ ≈ P ′1 ?

8

2 A Smooth Theory for the Weak Case

2.1 A Weaker Notion of Monotonicity

When looking at the counterexample given in the Introduction, we can observe
that the problem is related to silent transitions: unlike visible transitions, they
can be cancelled by ≈ . We now exploit this observation to relax the definition
of monotonicity, which leads to a smoother theory, where reasoning up to weak
bisimilarity is allowed, but on visible actions only.

Definition 2.1 (Weak Monotonicity). A function F is weakly monotonic if
the following conditions hold:

(1) R ⊆ S entails F(R) ⊆ F(S);
(2) R �τ−→ R entails F(R) �τ−→ F(R); and
(3) R �τ−→ R, R ⊆ S, S �τ−→ S, and R �v−→ S entail F(R) �v−→ F(S).

The main difference w.r.t. Definition 1.7 is in clause (2): instead of respecting
silent evolutions, a weakly monotonic function has to respect silent simula-
tions. On the visible side (3), we suppose that R and S are silent simulations.
The immediate consequence of these modifications appears in the following re-
sult: the up-to function may only be used on visible actions, and the candidate
relation R has to be a silent simulation.

Proposition 2.2 (Correctness of Weakly Monotonic Functions).

Let F be weakly monotonic. If R �τ−→ R, and R �v−→ F(R), then Fω(R) is a
simulation.

Proof. R �τ−→ R and (2) in the weak monotonicity of F give Fn(R) �τ−→ Fn(R)
for all n, by induction on n. Then, by a second induction on n, we get for all
n, Fn(R) �v−→ Fn+1(R). We conclude with Lemma 1.3. �

Now we study the class of weakly monotonic functions: the following lemma
ensures that the functions given by Lemma 1.9 can be used in the setting of
weakly monotonic functions. Furthermore, weakly monotonic functions can be
composed using the most important constructors:

Lemma 2.3. Any monotonic function is weakly monotonic. Composition (◦),
union (

⋃
), iteration (ω) and chaining (_) respect weak monotonicity.

Proof. We prove that chaining respects weak monotonicity. Let F and G be
two weakly monotonic functions.

9

(1) Straightforward.
(2) Suppose R �τ−→ R, then F(R) �τ−→ F(R) and G(R) �τ−→ G(R) by weak

monotonicity of F and G. We get the leftmost diagram below, that we
can close using Lemma 1.4 (rightmost diagram).

P

τ
��

F(R) P1

τ
����

G(R) Q

P ′ F(R) P ′1

P

τ
��

F(R) P1

τ
����

G(R) Q

τ
����

P ′ F(R) P ′1 G(R) Q′

(3) Suppose R �τ−→ R, R �v−→ S, S �τ−→ S and R ⊆ S. By weak monotonicity
of F , we have F(R) �v−→ F(S); G is weakly monotonic, so that G(R) �v−→
G(S), G(R) �τ−→ G(R) and G(S) �τ−→ G(S). With Lemma 1.4 and simple
diagram chasing arguments, we prove F(R)G(R) �v−→ F(S)G(S). �

The closure of weakly monotonic functions under the chaining constructor
naturally suggests the use of interesting up-to techniques, and in particular
up to transitivity, given by F(R) = R?, and up to weak bisimilarity, using
F(R) = ≈R≈ . An example of such use is given by the following theorem.

Theorem 2.4. Let R be a relation.

If

R �τ−→ R
R �v−→ (R∪≈)?

and

R−1 �τ−→ R−1

R−1 �v−→ (R−1 ∪ ≈)?
then R ⊆ ≈ .

Proof. Let F(R) , ≈ ∪ (R_R). We have (R ∪ ≈)? = Fω(R), and we check
using Lemma 2.3 that F and Fω are weakly monotonic. Therefore, by applying
Proposition 2.2, both (R∪≈)? and (R−1 ∪ ≈)? are simulations. �

2.2 Combining Monotonicity and Weak Monotonicity

When introducing weakly monotonic functions, we have restricted the use
of up-to techniques to visible steps. We show how to develop further this
approach by combining a monotonic function and a weakly monotonic function
so as to employ constrained up-to techniques on silent steps, and full-fledged
up-to techniques on visible steps.

Proposition 2.5 (Unified up-to Technique). Let F be monotonic and G be
weakly monotonic, and suppose further that F ⊆ G.

If R �τ−→ F(R) and R �v−→ G(R), then Gωω(R) is a simulation.

10

Proof. We successively establish the following results:

R ⊆ Fω(R) ⊆ Gω(R) (1)

Fω(R) �τ−→ Fω(R) (2)

Fω(R) �v−→ Gω(Fω(R)) (3)

Gωω(R) = Gωω(Fω(R)) (4)

Since G is weakly monotonic, so is Gω, so that Proposition 2.2, applied with (2)
and (3) to the candidate relation Fω(R) will ensure that Gωω(Fω(R)) is a
simulation. The result will finally follow from (4).

(1) By induction, we prove ∀n,R ⊆ Fn(R) ⊆ Gn(R).
(2) We prove ∀n,Fn(R) �τ−→ Fn+1(R), by induction on n, using the mono-

tonicity of F and R �τ−→ F(R).
(3) We actually show that Fω(R) �v−→ Gω(R), which is sufficient by using

Lemma 1.3. We prove ∀n,Fn(R) �−→ Gn+1(R) by induction on n:
• n = 0: the hypotheses F ⊆ G, R �τ−→ F(R) and R �v−→ G(R) entail that
R �−→ G(R) ⊆ G1(R).
• n > 0: the induction hypothesis is Fn−1(R) �−→ Gn(R). By using the

monotonicity of F , we get Fn(R) �−→ Gn(R) ∪ F(Gn(R)) ⊆ Gn+1(R).
(4) We have immediately Gωω(R) ⊆ Gωω(Fω(R)). To show the converse, we

prove first ∀n, (Gω)n(Gω(R)) ⊆ (Gω)n+1(R) by induction on n, and it
follows that Gωω(Fω(R)) ⊆ Gωω(Gω(R)) ⊆ Gωω(R). �

Remark 2.6. The proof of the above proposition justifies the separation we
imposed between silent and visible evolutions in Definition 1.7 (monotonicity):
it makes it possible to show that Fω(R) is a silent simulation, without having
to look at the visible evolutions of R.

Remark 2.7. While in practise, all functions we will manipulate will satisfy
Gωω = Gω or even Gω = G, one could in principle define monotonic functions
such that this is not true. Indeed, consider the following function, defined over
sets of natural numbers (N) 2 :

f : P(N)→ P(N)

X 7→

N if N\{0} ⊆ X,

X ∪ {min (N\(X ∪ {0}))} otherwise.

It is monotonic (w.r.t. ⊆), but fω({1}) = N\{0} 6= N = fωω({1}).

The following theorem subsumes Theorems 1.11 and 2.4: the richer setting we
have introduced makes it possible to combine these two results.

2 We thank Emmanuel Jeandel for this counter-example.

11

Theorem 2.8. Let R be a relation.

If

R �τ−→ %R=≈
R �v−→ (R∪≈)?

and

R−1 �τ−→ %R−1=≈
R−1 �v−→ (R−1 ∪ ≈)?

then R ⊆ ≈ .

Proof. F(R) , %R=≈ and G(R) , (R∪≈)? satisfy the conditions of Propo-
sition 2.5 (% ⊆ ≈), so that G(R) and G(R−1) are simulations (G = Gωω).
Since G(R)−1 = G(R−1), G(R) is a bisimulation, and R ⊆ G(R) ⊆ ≈ . �

We thus have a modular theory of up-to techniques for weak bisimulation that
follows the approach for the strong case in [10]. Technically, the main improve-
ment over previous works [12] is the ability to exploit weaker hypotheses when
reasoning about visible steps: for instance, up to transitivity (R �v−→ R?) and
up to weak bisimilarity (R �v−→ ≈R≈) techniques entail valid proof methods.

2.3 An ‘Up to Context’ Proof Technique

An important family of up-to techniques that has not been discussed yet is
‘up to context’. When the states of the LTS are described by a syntax, such
techniques make it possible to remove common sub-terms of the processes
being compared along the bisimulation game, and thus help reducing the size
of the relation one has to exhibit.

As explained below, we cannot present in our setting all up to context proof
techniques that have been widely used in CCS and the π-calculus [10,12]. We
can however define a class of up to context techniques that should be useful
in other systems.

We denote by P̃ a vector of processes, and by P i the i-th component of such
vector. We call (polyadic) context of arity n a function from vectors of size n to
processes (we adopt an approach that allows us to abstract over the details of
the underlying syntax). We let C,D range over contexts, and denote by C[P̃]
the application of a context C to a vector of processes P̃ (we shall implicitly
assume that the size of P̃ and the arity of C are equal). We let C,D range
over families of contexts. Given a family C of contexts, we define the closure
up to C function by

C(R) ,
{ 〈

C[P̃], C[Q̃]
〉
/C ∈ C and ∀i, P iRQi

}
.

In the following technical definition, we use notations −ε−→ and −ε−� as synonyms

for the identity relation I (we suppose ε /∈ L). Furthermore, we write P̃ −̃δ−→ P̃ ′

(resp. P̃ −̃δ−� P̃ ′) for ∀i, P i −δi−→ P ′i (resp. ∀i, P i −δi−� P ′i).

12

Definition 2.9 (Faithfulness). Let C be a family of contexts. We say that C
is faithful if for all C ∈ C, whenever C[P̃] −α−→ R, there are C ′ ∈ C, P̃ ′, and a
vector δ̃ whose components are in L ∪ {ε} such that:

(1) R = C ′[P̃ ′] and P̃ −̃δ−→ P̃ ′;

(2) for all Q̃, Q̃′ such that Q̃ −̃δ−� Q̃′ and C[Q̃] −α−� C ′[Q̃′];

(3) if α = τ then the components of δ̃ are taken in {τ, ε}.

A context C is faithful if it belongs to a faithful family of contexts.

This is the direct adaptation to the weak case of the notion of faithfulness
in [10,12], to which we add the restriction (3) for silent evolutions. We return
to this additional clause below.

Proposition 2.10. The closure up to a faithful family of contexts is mono-
tonic.

Proof. We consider the case of contexts of arity 1, and prove separately the
three implications of Definition 1.7.

(1) Straightforward.
(2) Suppose R �τ−→ S, R ⊆ S, PC(R)Q, with P = C[P0], Q = C[Q0], P0RQ0

and P −τ−→ P ′. By faithfulness, there is C ′, P ′0 and δ such that P ′ = C ′[P ′0]
and P0 −δ−→ P ′0. From (3), δ is either τ or ε:
• δ = ε: using (2), C[Q0] −τ−� C ′[Q0] and since R ⊆ S, we have P0SQ0.
• δ = τ : since P0RQ0 and R �τ−→ S there is Q′0 such that Q0 −τ−� Q′0 and
P ′0SQ′0. Using (2), we get C[Q0] −τ−� C ′[Q′0].

(3) Suppose R �−→ S, R ⊆ S, PC(R)Q, with P = C[P0], Q = C[Q0], P0RQ0

and P −a−→ P ′. By faithfulness, there is C ′, P ′0 and δ such that P ′ = C ′[P ′0]
and P0 −δ−→ P ′0.
• δ = ε is similar to the previous case
• δ = α ∈ L: since P0RQ0 and R �−→ S there is Q′0 such that Q0 −α−� Q′0

and P ′0SQ′0. Using (2), we get C[Q0] −a−� C ′[Q′0]. �

This result ensures that we can use Theorem 2.8 to reason up to faithful
contexts both on visible and silent steps.

In the strong up-to theory of [10], all CCS contexts are faithful, as well as all
non input-guarded π-calculus contexts (i.e. those where the argument process
is not placed under an input prefix). This is not the case in our setting: closure
by parallel composition (given by CQ[P] = P |Q) does not obey to our defi-
nition of faithfulness. This is due to the restriction (3): when C[P] −τ−→ R we
require that the context either does the silent action itself (like C[P] = τ.P),
or delegates it to P (like C[P] = P), but the silent action cannot follow from

13

an interaction between the context and a visible action of P (in CCS, e.g.,
C[P] = a|P and P = a.P ′). This restriction is a consequence of the sepa-
ration between silent and visible actions in Definition 1.7: in order to prove
C(R) �τ−→ C(S), we only suppose R �τ−→ S (while working in the setting of [10]
would mean supposing R �−→ S). Therefore, when we observe the silent evolu-
tion of a process C[P], we have no hypothesis to reason about the case where P
does a visible transition. Formulating our results with the original definition of
faithfulness would have been possible up to Proposition 2.5 and Theorem 2.8,
that inherently exploit a separation between visible and silent transitions, and
thus render clause (3) necessary in Definition 2.9 (Remark 2.6).

To comment further on this restriction, let us remark that one of the main
motivations of this work is to provide useful proof techniques to reason about
rather large systems, such as in [5,8]. In such settings, it is often the case
that the system is defined without labels: only internal reductions are defined;
visible labels are then added in order to help reasoning about those reductions.
Hence, the internal behaviour of a system (its silent actions) is not defined
in a compositional way as synchronisations between visible transitions of its
sub-components, and it seems likely that clause (3) does not prevent the use
of up to context proof techniques in such situations.

3 Beyond Expansion

3.1 Controlled Relations

In this section, we enrich our framework with the possibility to use alternatives
to % (which is the best we can do using Theorem 2.8) to handle τ transitions
in bisimulation proofs. We define a class of relations that are controlled w.r.t.
silent transitions, meaning that they prevent silent steps from being cancelled
in an up-to bisimulation game.

The left-chaining functions associated to such relations are not weakly mono-
tonic, and we thus have to depart from the theory we have developed so far.
Intuitively, a controlled relation is defined as a relation that induces a correct
proof technique when used as a left-chaining up-to technique. The following
technical definition introduces a uniform way to plug a non weakly monotonic
left-chaining function into our setting.

Definition 3.1 (Controlled relation). We say that B is a controlled relation
if the following conditions hold for all relations R, S:

(1) R �τ−→ B?R entails B?R �τ−→ B?R; and

14

(2) R �τ−→ B?R, S �τ−→ S and R �v−→ S entail B?R �v−→ B?S.

Remark 3.2. Note that a controlled relation needs not be a simulation. How-
ever, by taking R = S = I, we see that if B is controlled, then B? is a simula-
tion. Also, the union of two controlled relations is not necessarily a controlled
relation. Thus, this does not a priori induce a generic notion of controlled
bisimilarity.

We say that B is a controlled bisimulation if it is a controlled relation contained
in bisimilarity.

We now show how controlled relations can be used in simulation proofs.

Definition 3.3 (Transparency). Given a relation B and a function F , F is
B-transparent if F(B?R) ⊆ B?F(R) for any relation R.

F is transparent if it is B-transparent for any relation B.

This transparency property is necessary to compute fixpoints in the proof of
the following proposition.

Proposition 3.4 (Up to Controlled relation). Let F and G be two functions,
and B a relation such that:

(i) F is monotonic and B-transparent,
(ii) G is weakly monotonic and contains F and B?•.

(iii) B is a controlled relation,

If R �τ−→ B?F(R) and R �v−→ G(R), then Gωω(R) is a simulation.

Proof. We successively establish the following results:

R ⊆ B?Fω(R) ⊆ B?Gω(R) ⊆ Gω(R) (1)

Fω(R) �τ−→ B?Fω(R) (2)

B?Fω(R) �τ−→ B?Fω(R) (3)

Gω(B?Fω(R)) �τ−→ Gω(B?Fω(R)) (4)

Fω(R) �v−→ Gω(B?Fω(R)) (5)

B?Fω(R) �v−→ Gω(B?Fω(R)) (6)

Gωω(R) = Gωω(B?Fω(R)) (7)

Since G is weakly monotonic, so is Gω, so that Proposition 2.2, applied with (3)
and (6) to the candidate relation B?Fω(R) will ensure that Gωω(B?Fω(R)) is
a simulation. The result will finally follow from (7).

(1) By induction, ∀n,R ⊆ B?Fn(R) ⊆ B?Gn(R) ⊆ Gn+1(R).
(2) By induction, and using (i), we prove ∀n,Fn(R) �τ−→ B?Fn+1(R).

15

(3) We apply the first point in the definition of a controlled relation (Defini-
tion 3.1) with Fω(R) and (2).

(4) We use the weak monotonicity of G (ii) and (3) to prove by induction
∀n,Gn(B?Fω(R)) �τ−→ Gn(B?Fω(R)).

(5) We actually show Fω(R) �v−→ Gω(R), by proving ∀n,Fn(R) �−→ Gn+2(R)
by induction:
• n = 0: the visible case is immediate; for the silent case, using (ii), we

have that R �τ−→ B?F(R) ⊆ B?G(R) ⊆ G2(R).
• n > 0: the inductive hypothesis is Fn−1(R) �−→ Gn+1(R). Using (ii) and

the monotonicity of F , we obtain Fn(R) �−→ Gn+1(R)∪F(Gn+1(R)) ⊆
Gn+2(R).

(6) We apply the second point in the definition of a controlled relation (Def-
inition 3.1) with Fω(R), Gω(B?Fω(R)), (3), (4) and (5).

(7) We have Gωω(B?Fω(R)) ⊆ Gωω(Gω(R)) ⊆ Gωω(R). �

Lemma 3.5. The identity and all S-right-chaining or constant-to-S functions
are transparent. If B ⊆ S then the S-left-chaining function is B-transparent.

Given a family of contexts C, if C(B) ⊆ B (i.e. “B is a C-congruence”), then
the closure up to C function is B-transparent.

The composition, union and iteration constructors respect B-transparency.

The chaining constructor does not respect B-transparency, but this would be
of little use anyway: Proposition 3.4 indeed requires the transparency of a
monotonic function, which rules out the chaining constructor, that does not
respect monotonicity.

Also notice that %•, the expansion-left-chaining function, is not transparent
in general. This hence prevents us from encompassing the up to expansion
proof technique in the statement of the following theorem.

Theorem 3.6. Let B be a controlled bisimulation.

If

R �τ−→ B?R=≈
R �v−→ (R∪≈)?

and

R−1 �τ−→ B?R−1=≈
R−1 �v−→ (R−1 ∪ ≈)?

then R ⊆ ≈ .

Proof. B, F(R) , R=≈ and G(R) , (R ∪ ≈)? satisfy the conditions of
Proposition 3.4, so that G(R) and G(R−1) are simulations (G = Gωω). Since
G(R)−1 = G(R−1), G(R) is a bisimulation, and R ⊆ G(R) ⊆ ≈ . �

This theorem is the counterpart of Theorem 2.8, using a controlled bisimu-
lation instead of % . A refined version of this result, in which two distinct
controlled bisimulations are used for the silent evolutions of R and R−1, also

16

holds. Making the distinction can be useful in particular because the class of
controlled bisimulations is not closed under union, as explained in Remark 3.2.

If we need the closure under a family of contexts given by R �τ−→ B?C(R)≈
and R �v−→ (C(R) ∪ ≈)?, we have to ensure that the controlled bisimulation B
is a C-congruence (see Lemma 3.5), which can be quite difficult. In such cases,
one can restrict the family of contexts used on silent actions to D ⊆ C, with
R �τ−→ B?D(R)≈, in order to weaken the congruence condition.

The previous remarks lead to the following proposition. Although in our expe-
rience in bisimulation proofs, we have not encountered a situation where this
result is needed in its full generality, we give it to illustrate the modularity of
our setting.

Proposition 3.7. Let B1, B2 be two controlled bisimulations, and D1, D2, C
be three faithful families of contexts. Suppose moreover that D1 (resp. D2) is
B1-transparent (resp. B2-transparent), and that C contains both D1 and D2.

If

R �τ−→ B?1D1(R=)≈
R �v−→ (C(R) ∪ ≈)?

and

R−1 �τ−→ B?2D2(R−1=)≈
R−1 �v−→ (C(R−1) ∪ ≈)?

then R ⊆ ≈ .

The following lemma gives a way to prove that a controlled relation is a
controlled bisimulation.

Lemma 3.8. If B is a controlled relation and B−1 �−→ B−1 ∪ ≈, then B is a
controlled bisimulation.

Proof. With Lemma 1.3, B−1∪≈ is a simulation; from Remark 3.2, B? as well,
so that B? ∪ ≈ is a bisimulation. �

The remainder of the section is devoted to the construction of controlled re-
lations. We propose first a coinductively defined preorder, derived from the
expansion preorder; we then give two sufficient conditions based on termina-
tion guarantees.

3.2 Relaxed Expansion

The expansion preorder is quite constrained on visible transitions: whenever
P % Q and P does a visible transition, Q has to answer exactly with that
visible transition. We show that, as far as up-to techniques are concerned, we
can allow Q to do some silent transitions after this visible transition.

17

Definition 3.9 (Relaxed Expansion). A relation E is a relaxed expansion if
whenever PEQ,

(1) P −τ−→ P ′ implies Q −τ−→ Q′ and P ′EQ′ for some Q′ or P ′EQ,
(2) P −a−→ P ′ implies Q −a−→−τ−� Q′ and P ′EQ′ for some Q′.

Relaxed expansion, denoted by v, is the union of all relaxed expansions E
such that E−1 is a simulation.

When P v Q and P −a−→ P ′, Q has to do immediately a transition along a, but
then can do as many silent transitions as necessary. The intuition behind the
definition of relaxed expansion is that, using this possibility, Q can do some
‘preliminary internal computation’ in order to be able to remain faster than
P until the next visible action.

Lemma 3.10. v is a relaxed expansion, and the following strict inclusions
hold:

% (v (≈ .

Proof. The first point and the inclusions are straightforward. We illustrate
the strictness of the inclusions using CCS processes: a.b v a.τ.b holds but not
a.b % a.τ.b, and a ≈ τ.a holds but not a v τ.a . �

Relaxed expansion cannot be captured in the framework of weakly monotonic
functions (Proposition 2.5): v• is not weakly monotonic. However, we can
show that it is a controlled relation, so that it can be used with Proposition 3.4
or Theorem 3.6.

Theorem 3.11. A relaxed expansion is a controlled relation. v is a controlled
bisimulation.

Proof. We show that if E is a relaxed expansion, then it is also the case for
E?. Both points of Definition 3.1 follow easily. �

In general, v is not a congruence: for instance, in CCS, a.b v a.τ.b holds
but not a | a.b v a | a.τ.b . This is somewhat related to the problem of up
to parallel composition, discussed in Subsection 2.3: as contexts may turn a
visible action into a silent one, the stress we put on visible actions in the
definition of v is lost when adding parallel components.

[11] defines almost weak bisimilarity. This relation is very close to v, but
coarser; it is a controlled bisimulation, and it is not a congruence in general.
We preferred our version because it fits better within the style of the definitions
of behavioural equivalences in our presentation.

18

3.3 Introducing Termination Guarantees

We now show how to obtain controlled relations using termination guarantees.
The theorems below follow from general results about commuting diagrams,
presented in Section 4. Their proofs are thus deferred to that section.

Theorem 3.12. Let B be a relation.

If B �−→ B+ and B terminates, then B is a controlled relation.

Theorem 3.13. Let B be a relation.

If B �−→ B? and B+−τ−→+ terminates, then B is a controlled relation.

Unlike for the case of v, where the control on silent moves is fixed by the
coinductive definition of the relation, in these two results we start with a
relation that intuitively respects the – too permissive – weak bisimulation
game, and constrain it a posteriori, in such a way that it cannot cancel silent
steps indefinitely. For example, the erroneous up-to relation B = {〈a, τ.a〉} is
rejected because B evolves to I = B0, and B+−τ−→+ = {〈a, a〉} obviously does
not terminate.

Theorems 3.12 and 3.13 provide up-to techniques that are incomparable with
“up to expansion”. There are processes that are not related by%, but by a rela-
tion satisfying the conditions of the previous theorems: consider 〈a | (νb)b, τ.a〉
or 〈a+ a, τ.a〉. Conversely, % cannot be captured by the above results: it does
not fit in Theorem 3.12 because it is reflexive, and, since a % a|τ −τ−→ a, Theo-
rem 3.12 is ruled out as well.

Like for controlled relations, there is no direct way to define the greatest
relation satisfying the requirements of Theorems 3.12 or 3.13, the main reason
being that the union of terminating relations does not terminate in general.
Also remark that the termination of B+−τ−→+ does not entail the termination
of B or −τ−→. Theorem 3.13 can thus be applied to systems exhibiting infinite
chains of τ transitions.

Remark 3.14 (Controlled relations up-to). We can use the up-to techniques
we have defined previously to show the evolution condition in the above the-
orems (B �−→ B+ or B �−→ B?). However one has to be careful, because the
simulation relation obtained with these techniques is Fω(B). Depending on
F , this relation may be reflexive, which discards Theorem 3.12; in other cases,
it might just be too tedious to prove the termination of Fω(B) or Fω(B)+−τ−→+.

The theorems above give sufficient conditions for a relation to be a controlled.
However, they can also be used directly, in order to prove that a relation is

19

contained in weak bisimilarity:

Corollary 3.15. Let R be a relation.

If R−1 �−→ R−1∪≈ and

R �−→ R? and R+−τ−→+ terminates

or R �−→ R+ and R terminates,
then R ⊆ ≈ .

4 Results about Commuting Diagrams

In this section, we work in the more general setting of commuting diagrams,
commonly found in rewriting theory. In addition to R,S we let →, ↪→ and
range over relations. As before, →+ (resp. �) is the transitive (resp. reflexive
transitive) closure of →. We shall say that four relations (R,→,S, ↪→) form
a diagram, denoted (R,→)� (S, ↪→), if whenever PRQ and P → P ′, there
is Q′ such that P ′SQ′ and Q ↪→ Q′ (in our proofs, we shall often adopt the
usual graphical notation for diagrams). We say that two relations R and →
commute if (R,→)� (R,→). Notice that a relation R is a simulation iff R
commutes with −α−� for all α ∈ L.

4.1 A First Termination Argument

Lemma 4.1. Let B, → be two relations such that B terminates.

If (B,→)� (B+,�), then B+ and � commute.

Proof. Let φ(P ′) be the following predicate over processes: “For all P,Q such
that P � P ′ and PB+Q, there is Q′ such that Q � Q′ and P ′B+Q′”. We
prove that φ is true for any process by induction over the well-founded relation
B−1, which leads to the induction hypothesis (IH1): ∀P ′′, P ′B+P ′′ ⇒ φ(P ′′).
Then we do a second induction on the derivation P � P ′, leading to a second
induction hypothesis: (IH2). The interesting case is represented on the first
following diagram, where we close the first step using the hypothesis. We use
the internal induction to obtain the second diagram, and the main induction
to close the whole diagram (we check that P ′B+P ′′).

P

��

B
(H)

P0

����

B+ Q

����

B+

P ′

P

��

B P0

����

B+ Q

����

B+

(IH2) ����
P ′ B+ P ′′

P

��

B P0

����

B+

(IH1)

Q

��������

B+

����
P ′ B+ P ′′ B+ Q′

�

20

Remark 4.2. The commutation hypothesis (B,→)� (B+,�) cannot be
weakened to (B,→)� (B?,�), or to “whenever PBQ and P → P ′, P ′ = Q
or there is Q′ such that P ′B+Q′ and Q� Q′”. Indeed, if we define

B , {〈2, 3〉 , 〈3, 4〉 , 〈1, 0〉}
→ , {〈3, 2〉 , 〈2, 1〉 , 〈1, 0〉}

0 1oo
Boo 2oo

B &&
3 B //ff 4

B terminates and satisfies the two alternative hypotheses; 2B?4 and 2 → 1,
but there is no i such that 4� i and 1B?i.

Lemma 4.1 has been first proposed in [4, p.47], and is more commonly stated
as “if B terminates and (B,→)� (B+,�), then B? and � commute” ([13,
Exercise 1.3.15]) However we are interested in showing the stronger results be-
low, in which diagrams can be composed with other relations (this is necessary
to obtain controlled simulations).

Lemma 4.3. Let B,→, ↪→ be three relations such that B terminates.

If (B,→)� (B+,�) and (B, ↪→)� (B+,�↪→),

then B+ and �↪→ commute.

Proof. As previously, we reason by well-founded induction, with the predicate
φ(P ′): “For all P,Q such that P �↪→ P ′ and PB+Q, there is Q′ such that
Q�↪→ Q′ and P ′B+Q′”.

P

����

B+

(Lem. 4.1)

Q

����
_�

��

B
(H)

����

B?

(IH,∅) ����_�

��

_�

��
P ′ B+ B? Q′

�

Proposition 4.4. Let B,→, ↪→,R,S, be six relations such that B termi-
nates.

If

(B,→)� (B+,�)

(B, ↪→)� (B+,�↪→)
and

(R,→)� (B?R,�)

(R, ↪→)� (B?S,�)

then (B?R,�↪→)� (B?S,�) .

Proof. We reason by well-founded induction, with the predicate φ(P ′): “For
all P, P1, P2, Q such that P � P1 ↪→ P ′ and PB?P2RQ, there is Q′ such
that Q � Q′ and P ′B?SQ′”. If PB+P2, we conclude with Lemma 4.3 and
the induction hypothesis. Otherwise, (P = P2) we do an internal structural

21

induction over the derivation P � P1. Again, we use Lemma 4.3, and a case
study allows us to conclude using the induction hypotheses. �

We can now present the first deferred proof from the previous section:

Proof of Theorem 3.12. Let B be a relation such that B �−→ B+ and B termi-
nates. We show that B satisfies the requirement of Definition 3.1:

(1) Suppose R �τ−→ B?R, we apply Proposition 4.4, taking −τ−→ for →, and the
identity relation for ↪→, , and R for S.

(2) Suppose furthermore R �v−→ S and S �τ−→ S. Lemma 4.1 ensures that B+ is
a silent simulation. We apply Proposition 4.4, using −τ−→ for→, and −a−→−τ−�
for ↪→ and . Lemma 4.1 ensures that B+ is a silent simulation, and we
check that the following diagrams can be closed:

a

��

B
(H) a

����

τ
����

B+

(Lem. 4.1) τ
����B+

a

��

R
(H) a

����

τ
����

S
(Lem. 1.3) τ

����S

�

4.2 A Generalisation of Newman’s Lemma

Lemma 4.5. Let B,→,R be three relations such that B+→+ terminates.

If (B,→)� (B?,�) and (R,→)� (B?R,�), then B?R and � commute.

Proof. It suffices to prove (B?R,→)� (B?R,�): the commutation result
then follows by a simple induction. We use an induction over the well-founded
order induced by the termination of B+→+, with the predicate φ(P): “For
all P ′, Q such that P → P ′ and PB?RQ, there is Q′ such that Q � Q′ and
P ′B?RQ′” (IH1). Then we do a second induction on the derivation of PB?RQ
(IH2). From the first hypothesis, we get Pn such that the leftmost diagram
below holds (we show the interesting case where P0 →+ Pn). We use the in-
ternal induction to obtain Q1 in the central diagram; this is possible since any
process P ′′ such that P0 B+→+P ′′ satisfies P B+→+P ′′: the external induc-
tion hypothesis is preserved. Finally, using a third induction on the derivation
P1 � Pn, we close the diagram by applying n−1 times the external induction

22

hypothesis (all processes between P1 and Pn satisfy P B+→+Pi).

P

��

B

(H)

P0

��

B?RQ

P1

����
P ′ B? Pn

P

��

B P0

��

B?R
(IH2)

Q

����
P1

����

B?R Q1

P ′ B? Pn

P

��

B P0

��

B?R Q

����
P1

����

B?R
(IH1)

n−1

Q1

����
P ′ B? Pn B?R Q′

�

By taking R = I in this lemma, we obtain the following commutation result:

Corollary 4.6. Let B,→ be two relations such that B+→+ terminates.

If (B,→)� (B?,�), then B? and � commute.

By taking B = →, we get Newman’s lemma: “Local confluence and termi-
nation entail confluence”. A different generalisation of this confluence lemma
to commutation can be found in [2, Lemma 4.26]. However, the latter result
is weaker than ours since it requires the termination of B ∪→, and thus the
termination of both B and →.

Notice that the previous corollary admits a direct and elegant proof using the
decreasing diagram techniques of van Oostrom et al. [2]:

Proof using decreasing diagram techniques. Take A , {BP /P ∈ P}]P , and
define the following relations:

� , {〈P,BQ〉 /PB � Q} →BP , {〈P,Q〉 /PBQ}
∪ {〈BP , Q〉 /P → B?Q} →P , {〈P,Q〉 /P → Q}

Then, since B+→+ terminates, � is well-founded and we can apply the de-
creasing diagram technique, as presented in [2, Theorem 4.25] for commutation
results:

B? = (∪P →BP)? and � = (∪P →P)? commute. �

�

Remark 4.7. Results like Lemma 4.5 and Proposition 4.8 cannot be proved
within the setting of [2], because they express properties beyond ‘pure com-
mutation’. A solution would be to rewrite the decreasing diagram proofs using
stronger invariants – this is discussed in the concluding remarks.

23

Proposition 4.8. Let B,→,R, ↪→,S, be six relations such that B+→+ ter-
minates.

If

(B,→)� (B?,�)

(B, ↪→)� (B?,�↪→)
and

(R,→)� (B?R,�)

(R, ↪→)� (B?S,�)

then (B?R,�↪→)� (B?S,�) .

Proof. It suffices to prove (B?R, ↪→)� (B?S,�): with Lemma 4.5, this
yields the expected result. Again, we use a well-founded induction over the
relation B+→+, with the predicate φ(P): “For all P ′, Q such that P ↪→ P ′

and PB?RQ, there is Q′ such that Q � Q′ and P ′B?SQ′” (IH1), followed
by an induction on the derivation PB?RQ (IH2). The interesting cases are
represented on the following diagrams.

P
_�

��

B

(H)

P0

+

��

B?R
(Lem. 4.5)

Q

����
_�

��

B?R

(IH1)
����

��
P ′ B? P ′0 B?S Q′

P
_�

��

B

(H)

P0_�

��

B?R

(IH2)

Q

����

��
P ′ B? P ′0 B?S Q′

�

We can finally give the second deferred proof from the previous section. This
proof closely follows the lines of the proof of Theorem 3.12, but uses the
previous results:

Proof of Theorem 3.13. Let B be a relation such that B �−→ B? and B+−τ−→+

terminates. We show that B satisfies the requirement of Definition 3.1:

(1) Suppose R �τ−→ B?R, we apply Proposition 4.8, taking −τ−→ for →, and the
identity relation for ↪→, , and R for S.

(2) Suppose furthermore R �v−→ S and S �τ−→ S. We apply Proposition 4.8,
using −τ−→ for →, and −a−→−τ−� for ↪→ and . Corollary 4.6 ensures that B?
is a silent simulation, and we check that the following diagrams can be
closed:

a

��

B
(H) a

����

τ
����

B?
(Cor. 4.6) τ

����B?

a

��

R
(H) a

����

τ
����

S
(Lem. 1.3) τ

����S

�

24

A theorem prover formalisation of our results. The proofs about dia-
grams sometimes require nontrivial inductive reasoning, and it is easy to make
mistakes when nesting several inductions.

These results, as well as all other results above in this paper have been formally
checked using the Coq proof assistant [9]. These developments are available
from [7] and the descriptions of the proofs we give actually closely follow the
proof scripts. Also notice that since we work in a completely abstract setting,
our development fits well to the technology offered by the calculus of inductive
constructions for inductive reasoning about transition systems.

5 Application: Validating a Caching Technique

The up-to techniques presented in the paper in Sections 1 and 2 were for the
most part already known. The uniform presentation we have given makes it
possible to encompass the new techniques presented in Section 3.

Illustrating when the latter techniques turn out to be useful is not so easy: in
most simple bisimulation proofs, expansion is sufficient in order to reason in a
modular way. The only actual case where we found that expansion could not
be used is a complex proof of correctness for an optimisation of a distributed
abstract machine [5]. Due to the complexity of the system being analysed,
the resulting proof of weak bisimilarity is rather involved, and goes beyond
the scope of this paper. [8] presents a study of this example, where we use
Theorem 3.13 in order to give a modular proof.

Here we illustrate the use of Theorem 3.12 by analysing a caching technique.
This example could be expressed using CCS or π processes, however for the
sake of clarity we give here a direct definition under the form of a simple LTS.

We study a system whose purpose is to serve requests for information by
giving appropriate answers. In the simple version, the system accepts a re-
quest, computes the corresponding answer (for example, by searching for it in
a database), and returns it. The optimised version of the system maintains a
cache, in which previously computed answers can be stored, as well as some
answers that the system might want to compute in advance (e.g., one could
think of predicting requests that are deemed to be liable, in view of previous
sessions).

Processes are pairs [R ‖C], where R is a set of requests, and C is a set of
cached values. In both cases, we denote by x::S the addition of an element x

25

to a set S, and by #S the size of the set S. The rules are given below:

[R ‖C] −ar−→ [r::R ‖C] [r::R ‖ r::C] −br−→ [R ‖ r::C]

[R ‖C] −τ−→ [R ‖ r::C] [R ‖ s::C] −τ−→ [R ‖ r::C]

The first visible action, ar is the reception of a request r. The two transitions
at the bottom are silent: they show how a value can be added or replaced in
the cache. Once the answer to this request is available, it can be sent using
the second visible action, br.

Within a large proof of some property of the system, we would like to be
able to reason up to the cache, which means manipulating relations where all
processes have an empty cache.

It can be proved that for any set of requests R, [R ‖C] ≈ [R ‖ ∅]. However,
this is not sufficient to obtain an up-to technique: the cache is filled using
silent actions, for which reasoning up to bisimilarity is not allowed. It does
neither hold that [R ‖C] v [R ‖ ∅] for any R: if R and C both contain a value
r, [R ‖C] can do a visible action by completing the request r, while [R ‖ ∅]
has to compute r before being able to do the corresponding visible action.
With Theorem 3.12, we prove that B , {〈[R ‖C], [R ‖C ′]〉 /#C > #C ′} is a
controlled bisimulation, which gives a way to reason ‘up to the cache’.

6 Concluding Remarks

An up-to theory for strong bisimilarity is defined [10], and has already been
extended to weak bisimilarity in [12, Section 2.4.3.3]. Unlike in [12], the frame-
work we have introduced here is based on a separation between visible and
silent transitions. This make it possible to provide flexible and powerful proof
techniques on visible transitions. For instance, reasoning up to weak bisimi-
larity is possible as long as it is restricted to visible actions (Theorem 2.4).
This result is present in [12, Exercise 2.4.64], but cannot be obtained as an
instance of the general framework presented in [12]: the distinction between
visible and silent transitions is required. By contrast, our setting does not fully
encompass the standard up to context technique, while this technique fits in
the framework of [12] (Lemma 2.4.52), and can thus nicely be combined with
other techniques, like up to expansion (Exercise 2.4.67).

The main improvement over [12] in this work is the introduction of controlled
relations, that allows us to use the new techniques given by Theorems 3.12
and 3.13 in our modular setting.

26

Due to the presence of labelled transitions, results about decreasing diagrams
from [2] are not applicable directly in our setting. As announced in Remark 4.7,
we could easily adapt these results by strengthening the invariants used in or-
der to keep track of visible, preserved, actions. We would then obtain the result
corresponding to Theorem 3.6, but at the cost of less modularity (Proposi-
tion 3.7 cannot be adapted, at least directly). We plan to study whether this
theory could be extended in a more fundamental way, by generalising the
notions of silent and visible actions. This could be a way to provide an ab-
stract approach for the definition of ‘up to transitivity’ techniques based on
termination guarantees.

Fournet [3] and others have been using results from [2] to validate up-to tech-
niques for barbed equivalences. This is not directly comparable to the present
work, since in that setting, commutation results apply directly (visible actions
are not taken into account). Moreover, these works do not exploit results based
on termination guarantees on the relations between processes.

Experience on case studies (such as the one in [5,8]) has to be developed
in order to have a better understanding of how our techniques can be best
combined, and how the distinction between visible and internal computation
steps should be tuned.

Acknowledgements

We would like to thank Davide Sangiorgi for his comments and suggestions,
and Daniel Hirschkoff for helpful discussions and a great help during the redac-
tion process.

References

[1] S. Arun-Kumar and M. Hennessy. An Efficiency Preorder for Processes. Acta
Informatica, 29(9):737–760, 1992.

[2] M. Bezem, J. W. Klop, and V. van Oostrom. Diagram Techniques for
Confluence. Information and Computation, 141(2):172–204, 1998.

[3] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

[4] A. Geser. Relative Termination. PhD thesis, Universität Passau, Germany,
1990.

27

[5] D. Hirschkoff, D. Pous, and D. Sangiorgi. A Correct Abstract Machine for Safe
Ambients. In Proc. COORDINATION ’05, volume 3454 of Lecture Notes in
Computer Science, pages 17–32. Springer Verlag, 2005.

[6] D. Pous. Up-to Techniques for Weak Bisimulation. In Proc. 32th ICALP,
volume 3580 of Lecture Notes in Computer Science, pages 730–741. Springer
Verlag, 2005.

[7] D. Pous. Web appendix of this paper, 2005.
http://perso.ens-lyon.fr/damien.pous/upto.

[8] D. Pous. On Bisimulation Proofs for the Analysis of Distributed Abstract
Machines. To appear in Proc. TGC ’06. Springer Verlag, 2006.

[9] INRIA projet Logical. The Coq proof assistant. http://coq.inria.fr/.

[10] D. Sangiorgi. On the Bisimulation Proof Method. Journal of Mathematical
Structures in Computer Science, 8:447–479, 1998.

[11] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In
Proc. 3rd CONCUR, volume 630 of Lecture Notes in Computer Science, pages
32–46. Springer Verlag, 1992.

[12] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[13] TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

28

