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Z. Ammari∗, S. Breteaux† and F. Nier‡
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Abstract

We study, via multiscale analysis, some defect of compactness phenomena which occur in
bosonic and fermionic quantum mean-field problems. The approach relies on a combination
of mean-field asymptotics and second microlocalized semiclassical measures. The phase space
geometric description is illustrated by various examples.

Keywords and phrases: Semiclassical and multiscale measures, reduced density matrices, second
quantization, microlocal analysis.
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1 Introduction

Motivations: Over the past two decades, it becomes clear that microlocal analysis provides inter-
esting mathematical tools for the study of quantum field theories and quantum many-body theory,
see for instance [AmNi1, Rad]. In particular, in the analysis of general bosonic mean-field problems,
as done in [AmNi1, AmNi2, AmNi3, AmNi4], the following defect of compactness problem arises.

If γ
(p)
ε denotes the p-particles reduced density matrix, one may have

lim
ε→0

Tr[γ(p)ε b̃] = Tr[γ
(p)
0 b̃] (1)

for any p-particle compact observable b̃ , while it is not true for a general bounded b̃ , e.g.

lim
ε→0

Tr[γ(p)ε ] > Tr[γ
(p)
0 ] .

In the fermionic case, it is even worse, because mean-field asymptotics cannot be described in terms

of finitely many quantum states and the right-hand side of (1) is usually 0 while limε→0Tr[γ
(p)
ε ] > 0 .

From the analysis of finite dimensional partial differential equations, it is known that such defect of
compactness can be localized geometrically with accurate quantitative information by introducing
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scales and small parameters within semiclassical techniques (e.g. [Ger, GMMP]). We are thus led to
introduce two small parameters ε > 0 for the mean-field asymptotics and h > 0 for the semiclassical
quantization of finite dimensional p-particles phase space. The small parameter ε stands for 1/n ,
where n→ ∞ is the typical number of particles, while h is the rescaled Planck constant measuring
the proximity of quantum mechanics to classical mechanics. The combined analysis of this article
is concerned with the general situation when ε = ε(h) with limh→0 ε(h) = 0 . In order to keep
track of the information at the quantum level especially in the bosonic case we also introduce finite
dimensional multiscale observables in spirit of [Bon, FeGe, Fer, Nie].

Framework: The one particle space Z is a separable complex Hilbert space endowed with the
scalar product 〈 , 〉 (anti-linear in the left-hand side). For a Hilbert space h the set of bounded
operator is denoted by L(h) , while the Schatten class is denoted by Lp(h) , 1 ≤ p ≤ ∞ , the case
p = ∞ corresponding to the space of compact operators. Let Γ±(Z ) be the bosonic (+ sign) or
fermionic (− sign) Fock-space built on the separable Hilbert space Z :

Γ±(Z ) =
⊥⊕

n∈N
Sn
±Z

⊗n ,

where tensor products and direct sum are Hilbert completed. The operator Sn
± is the orthogonal

projection given by

Sn
±(f1 ⊗ · · · ⊗ fn) =

1

n!

∑

σ∈Sn

s±(σ)fσ(1) ⊗ · · · ⊗ fσ(n) ,

where s+(σ) equals 1 while s−(σ) denotes the signature of the permutation σ and Sn is the n-
symmetric group.
The dense set of many-body states with a finite number of particles is

Γfin
± (Z ) =

⊥,alg
⊕

n∈N
Sn
±Z

⊗n ,

where the ⊥,alg superscript stands for the algebraic orthogonal direct sum.
We shall use the notations [A,B]+ = [A,B] = adAB = AB −BA for the commutator of two oper-
ators and the notation [A,B]− = AB +BA for the anticommutator.
One way to investigate the mean-field asymptotics relies on parameter-dependent CCR (resp.
CAR) . The small parameter ε > 0 has to be thought of as the inverse of the typical number
of particles and the Canonical Commutation (resp. Anticommutation) Relations are given by

[a±(g), a±(f)]± = [a∗±(g), a
∗
±(f)]± = 0 , [a±(g), a

∗
±(f)]± = ε〈g , f〉 .

Let (̺ε)ε>0 be a family of normal states (i.e., non-negative and normalized trace-class operators)
on the Fock space Γ±(Z ) , depending on ε > 0 , we want to investigate the asymptotic behaviour
of reduced density matrices, defined below, as ε → 0 , by possibly introducing another scale h > 0
on the p-particles phase-space, with ε = ε(h) and limh→0 ε(h) = 0 .
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Outline: In Section 2, we recall how Wick observables are used to define the reduced density

matrices γ
(p)
ε . Note that it is much more convenient here, in the general grand canonical framework,

to work with non normalized reduced density matrices. Some symmetrization formulas are also
recalled in this section. In Section 3, we present the geometry of the classical p-particles phase
space and introduce the formalism of double scale semiclassical measures, after [Fer, FeGe]. In
Section 4, we combine the mean-field asymptotics with semiclassical analysis, the two parameters
ε and h being related through ε = ε(h) with limh→0 ε(h) = 0 . Instead of studying the collection of

non normalized reduced density matrices (γ
(p)
ε(h))p∈N , it is more convenient to associate generating

functions z 7→ Tr
[
̺ε(h) e

z dΓ±(aQ,h)
]
, and to use holomorphy arguments presented there. In Section 5,

some classical examples with various asymptotics illustrate the general framework: coherent states
in the bosonic setting; simple Gibbs states in the fermionic case; more involved Gibbs states in
the bosonic case, which make explicit the separation of condensate and non condensate phases for
rather general non interacting steady Bose gases. The Appendices collect or revisit known things
about multiscale semiclassical measures, the (PI)-condition of bosonic mean-field problems, Wick
composition formulas, and traces of non self-adjoint second quantized contractions.

2 Wick observables and reduced density matrices

2.1 Wick observables

Notation: For n ∈ N , the operator Sn
± is an orthogonal projection in Z ⊗n so that (Sn

±)
∗ = Sn

± .
However, we consider Sn

± as a bounded operator from Z ⊗n onto Sn
±Z ⊗n and its adjoint, denoted

by Sn,∗
± : Sn

±Z ⊗n → Z ⊗n , is nothing but the natural embedding.

Let b̃ ∈ L(Sp
±Z ⊗p ; Sq

±Z ⊗q) , the Wick quantization of b̃ is the operator on Γfin
± (Z ) defined by

b̃Wick
∣
∣
Sn+p
± Z ⊗(n+p) = ε

p+q
2

√

(n+ p)!(n + q)!

n!
Sn+q
± (b̃⊗ IdZ ⊗n)Sn+p,∗

± .

In the bosonic case, an element b̃ ∈ L(Sp
+Z ⊗p;Sq

+Z ⊗q) is determined by the symbol Z ∋ z 7→
b(z) = 〈z⊗q , b̃z⊗p〉 owing to the relation b̃ = 1

q!p!∂
q
z∂

p
z b . Observe that b(z) admits higher Fréchet

derivatives with the natural identification of ∂kz b(z) as a continuous form on Sk
+Z ⊗k and ∂kz̄ b(z) as

a vector in Sk
+Z ⊗k . We shall use also the notation bWick = b̃Wick .

Examples:

a) The annihilation operator a±(f) , f ∈ Z , is the Wick quantization of b̃ = 〈f | : Z ⊗1 = Z ∋
ϕ 7→ 〈f , ϕ〉 ∈ Z ⊗0 = C .

b) The creation operator a∗±(f) , f ∈ Z , is the Wick quantization of b̃ = |f〉 : Z ⊗0 = C ∋ λ 7→
λf ∈ Z ⊗1 = Z .

c) For b̃ ∈ L(Z ) its Wick quantization b̃Wick is nothing but

dΓ±(b̃)
∣
∣
Sn
±Z ⊗n = ε

[

b̃⊗ IdZ ⊗ · · · ⊗ IdZ + · · ·+ IdZ ⊗ · · · ⊗ IdZ ⊗ b̃
]

.

When b̃ is self-adjoint one has

dΓ±(b̃) = i∂te
−itdΓ±(b̃)

∣
∣
t=0

= i∂tΓ±(e
−iεtb̃)

∣
∣
t=0

,
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while for a contraction C ∈ L(Z ;Z ) ,

Γ±(C)
∣
∣
Sn
±Z ⊗n = C ⊗ · · · ⊗ C .

A particular case is b̃ = IdZ associated with the scaled number operator (N±,ε=1 stands for the
usual ε-independent number operator):

b̃Wick = dΓ±(IdZ ) = N± = εN±,ε=1 .

From the definition of the Wick quantization one easily checks the following properties.

Proposition 2.1. For b̃ ∈ L(Sp
±Z ⊗p ; Sq

±Z ⊗q) :

•
[

b̃Wick
]∗

= [b̃∗]Wick .

• The operator (1 +N±)−m/2b̃Wick(1 +N±)−m′/2 extends to a bounded operator on Γ±(Z ) as
soon as m+m′ ≥ p+ q with

‖(1 +N±)
−m/2b̃Wick(1 +N±)

−m′/2‖L(Γ±(Z )) ≤ Cm,m′‖b̃‖L(Sp
±Z ;Sq

±Z ) , (2)

with Cm,m′ independent of b̃ and of ε ∈ (0, ε0) .

• (b̃ ≥ 0) ⇔ (b̃Wick ≥ 0) , while this makes sense only for q = p .

The Wick quantized operators generally are unbounded operators on Γ±(Z ) (e.g. N±) but they
are well defined on the dense set Γfin

± (Z ) which is preserved by their action. Hence b̃Wick
1 ◦ b̃Wick

2

makes sense at least on Γfin
± (Z ) and the following composition law holds true.

Proposition 2.2 (Composition of Wick operators). Let b̃j ∈ L(Spj
± Z ⊗pj ;Sqj

± Z ⊗qj), j = 1, 2, then

b̃Wick
1 ◦ b̃Wick

2 =

min{p1,q2}∑

k=0

(±1)(p1−k)(p2+q2) ε
k

k!
(b̃1♯

k b̃2)
Wick , (3)

where b̃1♯
k b̃2 :=

p1!
(p1−k)!

q2!
(q2−k)! S

q1+q2−k
± (b̃1 ⊗ Id⊗q2−k) (Id⊗p1−k ⊗ b̃2)Sp1+p2−k,∗

± .

For reader’s convenience, the proof of Prop. 2.2 is provided in Appendix C.
In the bosonic case the symbols b(z) = 〈z⊗q , b̃z⊗p〉 are convenient for writing the composition

of Wick quantized operators. If b1♯
Wickb2 denotes the symbol of b̃Wick

1 ◦ b̃Wick
2 , the composition law

is summarized below (see [AmNi1]).

Proposition 2.3 (Composition of Wick symbols in the bosonic case).

b1♯
Wickb2(z) = eε∂z1 ·∂z2 b1(z1)b2(z2)

∣
∣
z1=z2=z

=

min{p1,q2}∑

k=0

εk

k!
∂kz b1(z) · ∂kz b2(z) .

The commutator of Wick operators in the bosonic case:

[

bWick
1 , bWick

2

]

=





max{min{p1,q2},min{p2,q1}}∑

k=1

εk

k!
{b1, b2}(k)





Wick

,

where the k-th order Poisson bracket is given by {b1, b2}(k) = ∂kz b1(z) · ∂kz b2(z)− ∂kz b2(z) · ∂kz b1(z) .
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Proposition 2.4. Let p, m, m′ ∈ N, such that m + m′ ≥ 2p − 2. Then, there exist coefficients
Cj1,...,jk ≥ 0 such that, for any b̃ ∈ L(Z;Z) ,

dΓ±(b̃)
p − (b̃⊗p)Wick =

p−1
∑

k=1

εp−k
∑

0≤j1≤···≤jk
j1+···+jk=p

Cj1,...,jk

(

Sk
± b̃

j1 ⊗ · · · ⊗ b̃jk Sk,∗
±

)Wick
(4)

and the estimate

‖(1 +N±)
−m/2

(
dΓ±(b̃)

p − (b̃⊗p)Wick
)
(1 +N±)

−m′/2‖L(Γ±(Z)) ≤ εBp ‖b̃‖pL(Z)

holds in both the bosonic case and the fermionic case, with Bp the p-th Bell number.

Remark 2.5. The p-th Bell number Bp can be defined as the number of partitions of a set with p

elements and satisfies Bp <
(

0.792p
ln(p+1)

)p
(see [BeTa]), and hence it grows much slower than p! .

Proof. We first prove Formula (4) by induction on p ∈ N
∗.

For p = 1, Formula (4) holds because dΓ±(b̃) = (b̃)Wick .
We then set rp(b̃) := dΓ±(b̃)p − (b̃⊗p)Wick. Assuming the result holds for some p ∈ N

∗, one can
compute

dΓ±(b̃)
p+1 = (b̃⊗p)Wick(b̃)Wick + rp(b̃)

Wick(b̃)Wick

using the composition formula (3) for

(b̃⊗p)Wick(b̃)Wick = (b̃⊗p+1)Wick + pε
(
Sp
± b̃⊗p−1 ⊗ b̃2 Sp,∗

±
)Wick

and for

εp−k
(
Sk
± b̃

j1 ⊗ · · · ⊗ b̃jk Sk,∗
±
)Wick

(b̃)Wick

= εp+1−(k+1)
(
Sk+1
± b̃⊗ b̃j1 ⊗ · · · ⊗ b̃jk Sk+1,∗

±
)Wick

+ kεp+1−k
(

Sk
±
(
b̃j1 ⊗ · · · ⊗ b̃jk

)
Sk,∗
± Sk

±
(
b̃⊗ Id⊗j1+···+jk−1

Z
)
Sk,∗
±
)Wick

,

which yields the expected form for rp+1(b̃), and achieves the induction.
We then remark that the sum of coefficients of order k,

S2(p, k) =
∑

0≤j1≤···≤jk
j1+···+jk=p

Cj1,...,jk ,

satisfies the recurrence relation S2(p, k) = kS2(p−1, k)+S2(p−1, k−1), with S2(p, 1) = 1 = S2(1, k)
for all p, k ∈ N

∗, where the S2(p, k) are the Stirling numbers of the second kind. Observe that, for
M/2 ≥ k, and for any c̃ ∈ L(Sk

±Z⊗k),

‖c̃Wick(1 +N±)
−M/2‖L(Γ±(Z)) ≤ ‖c̃‖L(Sk

±Z⊗k ;Sk
±Z⊗k) .

We thus get,

‖(1 +N±)
−m/2

(

dΓ±(b̃)
p − (b̃⊗p)Wick

)

(1 +N±)
−m′/2‖L(Γ±(Z)) ≤

p−1
∑

k=1

εp−kS2(p, k) ‖b̃‖pL(Z)

and the estimate then follows from
∑p−1

k=1 ε
p−kS2(p, k) ≤ ε

∑p
k=1 S2(p, k) = εBp with Bp the p-th

Bell number.
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2.2 Reduced density matrices

Reduced density matrices emerge naturally in the study of correlation functions of quantum gases
and in particular in the quantum mean-field theory they are the main quantities to be analysed.
We shall work with non normalized reduced density matrices, which are easier to handle. Going
back to the more natural reduced density matrices with trace equal to 1 , requires attention when
normalizing and taking the limits.

Definition 2.6. Let ̺ε ∈ L1(Γ±(Z )) (ε > 0 is fixed here) be such that ̺ε ≥ 0 , Tr [̺ε] = 1 and
Tr
(
̺εe

cN±
)
< ∞ for some c > 0 . The non normalized reduced density matrix of order p ∈ N ,

γ
(p)
ε ∈ L1(Sp

±Z ⊗p) , is defined by duality according to

∀b̃ ∈ L(Sp
±Z

⊗p;Sp
±Z

⊗p) , Tr
[

γ(p)ε b̃
]

= Tr
[

̺εb̃
Wick

]

.

The definition makes sense owing to the number estimate (2) and to (1+N±)ke−cN± ∈ L(Γ±(Z )) .

When Tr
[

γ
(p)
ε

]

6= 0 , the normalized density matrix γ̄
(p)
ε is defined by γ̄

(p)
ε = γ

(p)
ε

Tr
[

γ
(p)
ε

] , that is

∀b̃ ∈ L(Sp
±Z

⊗p), Tr
[

γ̄(p)ε b̃
]

=
Tr
[

̺εb̃
Wick

]

Tr
[

̺ε(IdSp
±Z ⊗p)Wick

]

=
Tr
[

̺εb̃
Wick

]

Tr [̺εN±(N± − ε) . . . (N± − ε(p − 1))]
.

These normalized reduced density matrices γ̄
(p)
ε are commonly used, especially when ̺ε ∈ L1(S±Z ⊗n),

with nε ∼ 1 (see [BGM, BEGMY, BPS, KnPi, LNR]), for the following reason: When ̺ε ∈
L1(Sn

±Z ⊗n) ⊂ L1(Z ⊗n) lies in the n-particles sector (with nε → 1 for the mean-field regime)
it is simply given by the partial trace of ̺ε when n > p . Actually

b̃Wick
∣
∣
Sn
±Z ⊗n = εp

n!

(n− p)!
Sn
±(b̃⊗ Id

Z ⊗(n−p))Sn,∗
±

and, as εp n(n− 1) · · · (n− p+ 1) → 1 if nε→ 1, it follows that

lim
nε∼1
ε→0

Tr
[

γ(p)ε b̃
]

= lim
nε∼1
ε→0

Tr
[

̺ε(b̃⊗ Id
Z ⊗(n−p)))

]

.

When Z = L2(M ; dv) one thus often considers:

γ̃(p)ε (x1, . . . , xp;x
′
1, . . . , x

′
p) =

∫

Mn−p

̺ε(x1, . . . , xp, x;x
′
1, . . . , x

′
p, x) dv

⊗(n−p)(x) .

But, if the states ̺ε are not localized on the n-particles sector, such an alternative definition does

not coincide with γ
(p)
ε , even asymptotically in the mean-field regime.

As well there is no general relation between the non normalized density matrices γ
(p+1)
ε and

γ
(p)
ε . Actually we have

(

Sp+1
± (b̃⊗ IdZ )Sp+1,∗

±
)Wick ∣

∣
Sn+p+1
± Z

= εp+1 (n+ p+ 1)!

n!
Sn+p+1
± (b̃⊗ IdZ ⊗n+1)Sn+p+1,∗

±

= ε(n + 1)b̃Wick
∣
∣
Sn
±Z n+p+1 ,
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from which we deduce

Tr
[

γ(p+1)
ε (b̃⊗ IdZ )

]

= Tr
[

̺εN±b̃
Wick

]

+O(ε) ,

while Tr
[

γ(p)ε b̃
]

= Tr
[

̺εb̃
Wick

]

,

where we have again identified γ
(p+1)
ε as an element of L1(Z ⊗(p+1)) . We thus conclude with the

following important remark.

Remark 2.7. Simple asymptotic relation between the γ
(p)
ε and γ

(p′)
ε (or the normalized version γ̄

(p)
ε

and γ̄
(p′)
ε ) can be expected when ̺ε = ̺ε1[ν−δ(ε),ν+δ(ε)](N±) with ν > 0 and limε→0 δ(ε) = 0 but not

otherwise (of course the condition above is sufficient but not necessary).

We shall use recurrently with variations the following lemma, with the following notations

b̃1 ⊙ · · · ⊙ b̃p =
1

p!

∑

σ∈Sp

b̃σ(1) ⊗ · · · ⊗ b̃σ(p) ,

for b̃1, . . . , b̃p ∈ L(Z ) .

We also write shortly (b̃1 ⊙ . . .⊙ b̃p)
Wick and (b̃⊗p)Wick instead of

(

Sp
±(b̃1 ⊙ . . . ⊙ b̃p)Sp,∗

±

)Wick
and

(

Sp
±(b̃

⊗p)Sp,∗
±
)Wick

.

Lemma 2.8. Quantum symmetrization lemma: In the bosonic and fermionic cases for any
p ∈ N , the equality

Sp
±(b̃1 ⊗ · · · ⊗ b̃p)Sp,∗

± = Sp
±(b̃1 ⊙ · · · ⊙ b̃σ(p))Sp,∗

± , (5)

holds in L(Sp
±Z ⊗p;Sp

±Z ⊗p) for all b̃1, . . . , b̃p ∈ L(Z ;Z ) .
As a consequence, under the assumptions of Definition 2.6, the non normalized (resp. normalized

if possible) reduced density matrix γ
(p)
ε (resp. γ̄

(p)
ε ) , p ∈ N , is completely determined by the set of

quantities
{

Tr
[

̺ε(b̃
⊗p)Wick

]

, b̃ ∈ B
}

when B is any dense subset of L∞(Z ;Z ) .

Remark 2.9. While computing Tr
[

γ
(p)
ε

]

or studying γ̄
(p)
ε one can simply add to B the element IdZ

owing to Sp
±Id

⊗p
Z

Sp,∗
± = IdSp

±Z ⊗p . For ε > 0 fixed it is not necessary because compact observables

are sufficient to determine the total trace owing to Tr
[

γ
(p)
ε

]

= supB∈L∞(Sp
±Z ⊗p), 0≤B≤Id Tr

[

γ
(p)
ε B

]

.

However, while considering weak∗-limits as ε→ 0 , adding the identity operator IdSp
±Z ⊗p to the set

of compact observables, or possibly replacing B by the Calkin algebra CId(Z ) ⊕ L∞(Z ), is useful
in order to control the asymptotic total mass.

Proof. For b̃1, . . . , b̃p ∈ L(Z ) , we decompose Sp
±
(

b̃1 ⊗ · · · ⊗ b̃p

)

Sp,∗
± Sp

±(ψ1 ⊗ · · · ⊗ ψp) as

Sp
±




1

p!

∑

σ′∈Sp

s±(σ
′)(b̃1ψσ′(1))⊗ · · · ⊗ (b̃pψσ′(p))





=
1

p!p!




∑

σ∈Sp

∑

σ′∈Sp

s±(σ)s±(σ
′)(b̃σ(1)ψσ◦σ′(1))⊗ · · · ⊗ (b̃σ(p)ψσ◦σ′(p))



 .
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Setting σ′′ = σ ◦ σ′ , with s±(σ′′) = s±(σ)s±(σ′) yields the Eq. (5), after noting that b̃1 ⊙ · · · ⊙ b̃p =
1
p!

∑

σ∈Sp
b̃σ(1) ⊗ · · · ⊗ b̃σ(p) commutes with Sp

± in both the bosonic case and the fermionic case.
Now the non normalized reduced density matrix is determined by

Tr
[

γ(p)ε B̃
]

= Tr
[

̺εB̃
Wick

]

for B̃ ∈ L∞(Sp
±Z ⊗p) as L1(Sp

±Z ⊗p) is the dual of L∞(Sp
±Z ⊗p) . But B̃ ∈ L∞(Sp

±Z ⊗p) means

B̃ = Sp
±B̃

′Sp,∗
± with B̃′ ∈ L∞(Z ⊗p) , while the algebraic tensor product L∞(Z )⊗

algp is dense in
L∞(Z ⊗p) .
With the estimate

∣
∣
∣Tr
[

̺εB̃
Wick

]∣
∣
∣ =

∣
∣
∣Tr
[

ec/2N̺εe
c/2Ne−c/2NB̃Wicke−c/2N

]∣
∣
∣

≤ CTr
[
̺εe

cN
]
‖B̃‖L(Sp

±Z ⊗p;Sp
±Z ⊗p) ,

it suffices to consider B̃ = Sp
±B̃

′Sp,∗
± with B̃′ ∈ L∞(Z )⊗

algp. By linearity and density, γ
(p)
ε is

determined by the quantities Tr[̺εB̃
Wick] with B̃′ = b̃1 ⊗ · · · ⊗ b̃p , b̃i ∈ B . We conclude with

Sp
±
(

b̃1 ⊗ · · · ⊗ b̃p

)

Sp,∗
± = Sp

±
(

b̃1 ⊙ · · · ⊙ b̃p

)

Sp,∗
± ,

and the polarization identity

b̃1 ⊙ · · · ⊙ b̃p =
1

2pp!

∑

εi=±1

ε1 · · · εp(
p
∑

i=1

εib̃i)
⊗p .

Remark 2.10. In the bosonic case, the non normalized reduced density matrices γ
(p)
ε are also

characterized by the values of Tr[γ
(p)
ε B] for B in B = {|ψ⊗p〉〈ψ⊗p| , ψ ∈ Z } ∪

{

Id⊗p
Z

}

. This does

not hold in the fermionic case.

The rest of the article is devoted to the asymptotic analysis of γ
(p)
ε as ε → 0 . In particular we

shall study their concentration at the quantum level while testing with fixed observable b̃ (with b̃
compact) and their semiclassical behaviour after taking semiclassically quantized observables, e.g.
a(x, hDx) with some relation ε = ε(h) between ε and h .

3 Classical phase-space and h-quantizations

When Z = L2(M1, dx) , with M1 = M a manifold with volume measure dx , the classical one
particle phase-space is X 1 = X = T ∗M1 and we will focus on the h-dependent quantizations which
associates with a symbol a(x, ξ) = a(X) , X ∈ X 1 an operator aQ,h = a(x, hDx) with the standard
semiclassical quantization or when M1 = R

d , aQ,h = aW,h = aW (htx, h1−tDx) by using the Weyl
quantization, t ∈ R being fixed.

Note that in later sections the parameters ε and h will be linked through ε = ε(h) with
limh→0 ε(h) = 0 . In relation with the symmetrization Lemma 2.8, we introduce the adapted
p-particles phase-space which was also considered in [Der1], and the corresponding semiclassical
observables.
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3.1 Classical p-particles phase-space

A fundamental principle of quantum mechanics is that identical particles are indistinguishable.
The classical description is thus concerned with indistiguishable classical particles. If one classical
particle is characterized by its position-momentum (x, ξ) ∈ X 1 = T ∗M1 , x ∈M being the position
coordinate and ξ the momentum coordinates, p indistinguishable particles will be described by
their position-momentum coordinates (X1, . . . ,Xp) = (x1, ξ1, . . . , xp, ξp) ∈ X p/Sp = (T ∗M)p/Sp =
T ∗(Mp)/Sp , where the quotient by Sp simply implements the identification

∀σ ∈ Sp , (Xσ(1), . . . ,Xσ(p)) ≡ (X1, . . . ,Xp) .

The grand canonical description of a classical particles system then takes place in the disjoint union

⊔
p∈N

X p/Sp = ⊔
p∈N

(T ∗M)p/Sp .

A p-particles classical observable will be a function on X p/Sp and when the number of particles
is not fixed a collection of functions (a(p))p∈N each a(p) being a function on X p/Sp . The situation
is presented in this way in [Der1]. A p-particles observable is a function a(p) on X p/Sp and a
p-particles classical state is a probability measure (and when the normalization is forgotten a non
negative measure) on X p/Sp .
However while quantizing a classical observable, it is better to work in X p which equals T ∗(Mp) , a
function a(p) on X p/Sp being nothing but a function on X p which satisfies

∀σ ∈ Sp , σ∗a(p) = a(p) =
1

p!

∑

σ̃∈Sp

σ̃∗a(p) ,

with ∀X1 . . . Xp ∈ X p , σ∗a(p)(X1, . . . ,Xp) = a(p)(Xσ(1), . . . ,Xσ(p)) .

In the same way, we define for a Borel measure ν on X p and σ ∈ Sp , the measure σ∗ν by
∫

X σ∗a(p)dν =
∫

X p a
(p) d(σ∗ν) for all a(p) ∈ C0

c (X p) , or alternatively σ∗ν(E) = ν(σ−1E) for all
Borel subset E of X p . A non-negative measure on X p/Sp is identified with a non-negative measure
ν on X p such that

∀σ ∈ Sp , σ∗ν = ν =
1

p!

∑

σ̃∈Sp

σ̃∗ν . (6)

Lemma 3.1 (Classical symmetrization lemma). Any Borel measure µ(p) on X p/Sp is characterized
by the quantities

{∫

X p a
⊗pdµ(p) , a ∈ C

}
where the tensor power a⊗p means a⊗p(X1, . . . ,Xp) =

∏p
i=1 a(Xi) and C is any dense set in C0

∞(X 1) =
{
f ∈ C0(X 1) , limX→∞ f(X) = 0

}
.

Proof. By Stone-Weierstrass Theorem the subalgebra generated by the algebraic tensor product
C⊗algp is dense in C0

∞(X p) . Hence it suffices to consider

a1 ⊙ · · · ⊙ ap =
1

p!

∑

σ∈Sp

aσ(1) ⊗ · · · ⊗ aσ(p) , ai ∈ C .

We conclude again with the polarization identity

a1 ⊙ · · · ⊙ ap =
1

2pp!

∑

εi=±1

ε1 . . . εp

(
p
∑

i=1

εiai

)⊗p

.
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We will work essentially with M = R
d and X = T ∗

R
d and therefore on X p = T ∗

R
dp ∼ R

2dp and
recall the invariance properties, if possible by a change of variable in order to extend it to the general
case. Remember that on R

dp, the standard and Weyl semiclassical quantization are asymptotically
equivalent a(x, hDx)− aW (x, hDx) = O(h) when a ∈ S(1, dX2) (supX∈T ∗Rdp |∂αXa(X)| < ∞ for all
α ∈ N

2d) . Moreover on R
dp , aW (x, hDx) is unitary equivalent to aW (htx, h1−tDx) for any fixed

t ∈ R so that result can be adapted to different scalings.

3.2 Semiclassical and multiscale measures

We recall the notions of semiclassical (or Wigner) measures and multiscale measures in the finite
dimensional case. We start with the results onM = R

D (think of D = d p) and review the invariance
properties for applications to some more general manifolds M .

3.2.1 In the Euclidean Space

On R
D the semiclassical Weyl quantization of a symbol a ∈ S ′(R2D) will be written aW,h =

aW (htx, h1−tDx) with t > 0 fixed and a kernel given by

[aW (x,Dx)](x, y) =

∫

Rd

eiξ·(x−y)a(
x+ y

2
, ξ)

dξ

(2π)d
.

Definition 3.2. Let (γh)h∈E with 0 ∈ E , E ⊂ (0,+∞) , be a family of trace-class non-negative
operators on L2(RD) such that limh→0Tr [γh] < +∞ . The semiclassical quantization a 7→ aW,h =
aW (htx, h1−tDx) is said adapted to the family (γh)h∈E if

lim
δ→0+

lim sup
h∈E, h→0

Re Tr
[

(1− χ(δ ·)W,h)γh

]

= 0

for some χ ∈ C∞
0 (T ∗

R
D) such that χ ≡ 1 in a neighborhood of 0 .

The set of Wigner measures M(γh, h ∈ E) is the set of non-negative measures ν on T ∗
R
D such

that there exists E ′ ⊂ E , 0 ∈ E ′ such that

∀a ∈ C∞
0 (T ∗

R
D) , lim

h∈E ′

h→0

Tr
[

γha
W,h
]

=

∫

T ∗RD

a(X) dν(X) .

The following well known statement (see [CdV, HMR, Ger, GMMP, LiPa, Sch]) results from
the asymptotic positivity of the semiclassical quantization and it is actually the finite dimensional
version of bosonic mean-field Wigner measures (with the change of parameter ε = 2h) (see [AmNi1]–
Section 3.1).

Proposition 3.3. Let (γh)h∈E with 0 ∈ E , E ⊂ (0,+∞) , such that γh ≥ 0 and limh→0Tr [γh] <
+∞ . The set of semiclassical measures M(γh, h ∈ E) is non-empty. The semiclassical quantization
aW,h is adapted to the family (γh)h∈E , if, and only if, any ν ∈ M(γh, h ∈ E) satisfies ν(R2D) =
limh→0Tr [γh] .

Remark 3.4. The manifold version, with aQ,h = a(x, hDx) instead of aW,h , results from the
semiclassical Egorov theorem.

By reducing E to some subset E ′ (think of subsequence extraction), one can always assume that
there is a unique semiclassical measure. While considering a time evolution problem, or adding
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another non countable parameter, (γt,h)h∈E,t∈R finding simultaneously the subset E ′ for all t ∈ R

requires some compactness argument w.r.t the parameter t ∈ R , usually obtained by equicontinuity
properties.

We now review the multiscale measures introduced in [FeGe, Fer]. For reader’s convenience,
details are given in Appendix A, concerning the relationship between Prop. 3.5 below and the more
general statement of [Fer].

The class of symbols S(2) is defined as the set of a ∈ C∞(R2D ×R
2D) , such that

• there exists C > 0 such that ∀Y ∈ R
2D , a(·, Y ) ∈ C∞

0 (B(0, C)) ;

• there exists a function a∞ ∈ C∞
0 (R2D×S

2D−1) such that a(X,Rω)
R→∞→ a∞(X,ω) in C∞(R2D×

S
2D−1) .

Those symbols are quantized according to

a(2),h = aW,h
h , ah(X) = a(X,

X

h1/2
) .

A geometrical interpretation of those double scale symbols can be given by matching the compact-
ified quantum phase space with the blow-up at r = 0 of the macroscopic phase space, see Figure 1.

Figure 1: On the left-hand side, the macroscopic phase space with its sphere at infinity. On the
right-hand side the matched quantum and macroscopic phase spaces for which the quantum sphere
at infinity and the r = 0 macroscopic sphere coincide.

Proposition 3.5. Let (γh)h∈E be a bounded family of non-negative trace-class operators on L2(RD)
with limh→0Tr [γh] < +∞ . There exist E ′ ⊂ E , 0 ∈ E ′ , non-negative measures ν and ν(I) on R

2D

and S
2D−1, and a γ0 ∈ L1(L2(RD)) , such that M(γh, h ∈ E ′) = {ν} and, for all a ∈ S(2),

lim
h∈E ′

h→0

Tr
[

γha
(2),h

]

=

∫

R2D\{0}
a∞(X,

X

|X| ) dν(X)

+

∫

S2D−1

a∞(0, ω) dν(I)(ω) + Tr [a(0, x,Dx)γ0] .
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Definition 3.6. M(2)(γh, h ∈ E) denotes the set of all triples (ν, ν(I), γ0) which can be obtained in

Prop. 3.5 for suitable choices of E ′ ⊂ E , 0 ∈ E ′ .

Remark 3.7. Actually when aW,h = aW (
√
hx,

√
hDx) , this trace class operator γ0 is nothing

but the weak∗-limit of γh . Take simply ã(X,Y ) = χ(X)α(Y ) with χ , α ∈ C∞
0 (R2D) , χ ≡ 1 in

a neighborhood of 0 , for which limh→0 ‖ã(2),h − αW (x,Dx)‖L(L2) = 0 . The above results says

limh→0Tr
[
γhα

W (x,Dx)
]
= Tr

[
γ0α

W (x,Dx)
]

for all α ∈ C∞
0 (R2D) ⊂ L2(R2D, dX) , and by the

density of the embeddings C∞
0 (R2D) ⊂ L2(R2D, dx) ∼ L2(L2(RD)) ⊂ L∞(L2(RD)) , the test ob-

servable αW (x,Dx) , can be replaced by any compact operator K ∈ L∞(L2(RD, dx)) . Moreover the
relationship between ν and the triple (1(0,+∞)(|X|)ν, ν(I), γ0) can be completed in this case by

ν({0}) =
∫

S2D−1

dν(I)(ω) + Tr [γ0] , (7)

and ν(I) ≡ 0 is equivalent to ν({0}) = Tr [γ0] .

Because products of spheres are not spheres, handling the par ν(I) in the p-particles space,
D = dp , is not straitghtforward within a tensorization procedure, see Figure 2. Actually we expect

Figure 2: Tensor product of two blow-ups. The product of the two matching spheres is not a sphere:
the corners of the grey square correspond to the case when the quantum variables |X1| and |X2| go
to infinity without any proportionality rule.

in the applications that a well chosen quantization leads to ν(I) = 0 . This leads to the following
definition.

Definition 3.8. Assume that the quantization aW,h = aW (
√
hx,

√
hDx) is adapted to the family

(γh)h∈E , γh ≥ 0 , Tr [γh] = 1 . We say that the quantization aW,h = aW (
√
hx,

√
hDx) is separating

for the family (γh)h∈E if one of the three following (equivalent) conditions is satisfied:

1. For any triple (ν, ν(I), γ0) ∈ M(2)(γh, h ∈ E), ν(I) = 0 .

2.
M(γh, h ∈ E ′) = {ν} ,

w∗ − lim
h∈E ′,h→0

γh = γ0 in L1(L2(RD))

}

⇒ ν({0}) = Tr [γ0] .
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3. For any triple (ν, ν(I), γ0) ∈ M(2)(γh, h ∈ E), ν({0}) = Tr [γ0] .

Remark 3.9. This terminology expresses the fact that the mass localized at any intermediate scale
vanishes asymptotically when ν(I) ≡ 0 . Accordingly, the microscopic quantum scale and the macro-
scopic scale are well identified and separated.

Hence we can get all the information by computing the weak∗-limit of γh and the semiclassical
measure ν and then by checking a posteriori the equality ν({0}) = Tr [γ0] .
This will suffice when the quantum part corresponds within a macroscopic scale, to a point in the
phase-space. When M = R

d , we have enough flexibility by choosing the small parameter h > 0
and using some dilation in R

D in order to reduce many problems to such a case. On a manifold M
if we can first localize the analysis around a point x0 ∈ M , the problem can be transferred to R

D

and then analyzed with the suitable scaling.

3.2.2 On a Compact Manifold

We now consider another interesting case of a compact manifold M with the semiclassical calculus
aQ,h = a(x, hDx). This case is not completely treated in [Fer] because the geometric invariance
properties do not follow only from the microlocal equivariance of semiclassical calculus. We assume
Z = L2(M,dx) to be defined globally on the compact manifold M (e.g. by introducing a metric,
dx being the associated volume measure).

Remark 3.10. When M is a general manifold, replace aW,h in Def. 3.2 by aQ,h = a(x, hDx) , and
χ(δ ·) with δ → 0 by some increasing sequence of comptacly supported cut-off functions (χn)n∈N ,
such that ∪n∈Nχ−1

n ({1}) = T ∗M .

To adapt Prop. 3.5 to the case of a compact manifold, we consider another notion instead of the
symbols S(2). For the observables we shall consider the pair (K,a) where K ∈ L∞(L2(M,dx)) and
a ∈ C∞

0 (S∗M ⊔ (T ∗M \M)) with S∗M ⊔ (T ∗M \M) being described in local coordinates through
the identification

M × [0,∞) × S
D−1 ∋ (x, r, ω) 7→

{

(x, ω) ∈ S∗M if r = 0 ,

(x, ξ = rω) ∈ T ∗M \M otherwise .

We have identified the 0-section of the cotangent bundle T ∗M with M . After introducing an
additional parameter δ > 0 , δ ≥ h , and a C∞ partition of unity (1 − χ) + χ ≡ 1 on T ∗M with
1− χ ∈ C∞

0 (T ∗M) , 1− χ ≡ 1 in a neighborhood of M , we can quantize a as

a(2)Q,δ,h = [χ(x, ξ)a(x, hδ−1ξ)]Q,δ .

Note that K and the quantization of a are geometrically defined modulo O(δ) when h ≤ δ in
L(L2(M,dx)): Use local charts for the semiclassical calculus with parameter δ while L∞(L2(M,dx))
is globally defined like all natural spaces associated with L2(M,dx) . Actually in local coordinates
the seminorms of the symbol χ(x, ξ)a(x, hδ−1ξ) in S(1, dx2 + dξ2) are uniformly bounded w.r.t. h ∈
(0, δ] by seminorms of a in C∞

0 ((T ∗M \M) ⊔ S∗M) . When a ≥ 0 one also has

‖(χa(·, hδ−1·)Q,δ − Re
[

(χa(·, hδ−1·)Q,δ
]

‖ ≤ Caδ (8)

‖a‖L∞ + Caδ ≥ Re
[

(χa(·, hδ−1·)Q,δ
]

≥ −Caδ (9)

uniformly w.r.t to h ∈ (0, δ] .
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Proposition 3.11. Let (γh)h∈E be a family of non-negative trace class operators on L2(M,dx) ,
such that limh→0Tr [γh] < +∞ . Then there exist E ′ ⊂ E , 0 ∈ E ′ , with M(γh, h ∈ E ′) = {ν} ,
a non-negative measure ν(I) on S∗M and a non-negative γ0 ∈ L1(L2(M,dx)) such that, for any
K ∈ L∞(L2(M,dx)),

lim
h∈E ′

h→0

Tr [γhK] = Tr [γ0K]

and, for any a ∈ C∞
0 (S∗M ⊔ (T ∗M \M)), and any partition of unity (1− χ) + χ ≡ 1 with 1− χ ∈

C∞
0 (T ∗M) , 1− χ ≡ 1 in a neighborhood of M ,

lim
δ→0

lim
h∈E ′

h→0

Tr
[

γh a
(2)Q,δ,h

]

=

∫

T ∗M\M
a(X) dν(X) +

∫

S∗M
a(X)dν(I)(X) .

Additionally (ν(I), γ0) is related to ν by

ν(E) = ν(I)(π
−1(E)) + ν0(E) ,

for any Borel set E ⊂M identified with E×{0} , when π : S∗M →M is the natural projection and
ν0 is defined by

∫

M ϕ(x)dν0(x) = Tr [γ0ϕ] , where ϕ ∈ C∞(M) is identified with the multiplication
operator by the function ϕ.

Proof. When γh is bounded in L1(L2(M,dx)) , after extraction of a sequence hn → 0 from E ,
M((γhn)n∈N) = {ν} , and the weak∗ limit γ0 of (γhn), and the associated measure ν0 are well-
defined objects on the manifold M .

Let us construct a measure ν̃ on

(T ∗M \M) ⊔ S∗M =
{

(x, rω) , x ∈M,ω ∈ Sd−1 , r ∈ [0,∞)
}

and a subset E ′ ⊂ E , 0 ∈ E ′, such that

lim
δ→0

lim
h∈E ′

h→0

Tr
[

γh(χa(·, hδ−1·))Q,δ
]

=

∫

(T ∗M\M)⊔S∗M
a dν̃ (10)

holds for all a ∈ C∞
0 ((T ∗M \M) ⊔ S∗M) .

Fix first the partition of unity (1− χ) + χ ≡ 1, 1− χ ∈ C∞
0 (T ∗M), 1− χ ≡ 1 in a neighborhood

of M , and δ = δ0 > 0 . For a given a ∈ C∞
0 ((T ∗M \M) ⊔ S∗M) , the inequalities (8) and (9) imply

that one can find a subsequence (hk,χ,δ0,a)k∈N of (hn)n∈N , such that

lim
k→∞

Tr
[

γhk,χ,δ0,a
(χa(·, hk,χ,δ0,aδ−1

0 ·)Q,δ0
]

= ℓχ,δ0,a ∈ C . (11)

For a different partition of unity (1 − χ̃) + χ̃ ≡ 1 the symbol [χ − χ̃]a(x, hδ−1
0 ξ) is supported in

C−1
χ,χ̃,δ0

≤ |ξ| ≤ Cχ,χ̃,δ0 and equals

[χ− χ̃]a(x, hδ−1
0 ξ) = [χ− χ̃]a0(x,

ξ

|ξ|) + hrχ,χ̃,δ0,h(x, ξ) ,

where a0 = a
∣
∣
S∗M

and with rχ,χ̃,δ0,h uniformly bounded in S(1, dx2 + dξ2) . For δ0 > 0 fixed, the

operator [(χ− χ̃)a0]
Q,δ0 is a compact operator and we obtain

lim
h→0

Tr
[

γh(χa(·, hδ−1
0 ·))Q,δ0

]

− Tr
[

γh(χ̃a(·, hδ−1
0 ·))Q,δ0

]

= Tr
[

γ0((χ− χ̃)a0)
Q,δ0

]

.
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Therefore the subsequence extraction, which ensures the convergence (11) can be done independently
of the choice of χ̃ and by taking χ̃(x, ξ) = χ(x, δδ−1

0 ξ) independently of δ > 0 . For Ea = (hk,a)k∈N
such a sequence of parameters, the limits can be compared by

ℓχ̃,δ,a − ℓχ,δ0,a = lim
h∈Ea
h→0

Tr
[

(γhχ̃a(., hδ
−1.))Q,δ

]

− Tr
[

(γhχa(·, hδ−1
0 ·))Q,δ0

]

= Tr
[

((χ̃(δδ−1
0 )− χ)a0)

Q,δ0γ0

]

. (12)

By choosing χ̃ = χ above, the inequality 0 ≤ (χ − χ(δδ−1
0 ))a0 ≤ χa0, for a0 ≥ 0 and δ ≤ δ0, and

the δ0-Garding inequality implies

|Tr
[

((χ̃(δδ−1
0 )− χ)a0)

Q,δ0γ0

]

| ≤ Tr[(χa0)
Q,δ0γ0] +O(δ0)

uniformly with respect to δ ≤ δ0 . Thus the quantity ℓχ,δ,a thus satisfies the Cauchy criterion as
δ → 0 because s− limδ0→0(χa0)

Q,δ0 = 0 and γ0 is fixed in L1(L2(M,dx)) . Hence the limit

ℓχ,a = lim
δ→0

ℓχ,δ,a = lim
δ→0

lim
h∈Ea
h→0

Tr
[

(γhχa(·, hδ−1·))Q,δ
]

exists for any fixed a ∈ C∞
0 ((T ∗M \M)⊔S∗M) . Using (12) with δ = δ0 but a general pair (χ, χ̃) and

taking the limit as δ → 0 shows ℓχ̃,a = ℓχ,a = ℓa . The inequalities (8) and (9) give 0 ≤ ℓa ≤ ‖a‖L∞ .
By the usual diagonal extraction process according to a countable set N ⊂ C∞

0 ((T ∗M \M)⊔S∗M)
dense in the set of continuous functions with limit 0 at infinity , we have found a subset E ′ ⊂ E ,
0 ∈ E ′ , and a non-negative measure ν̃ such that (10) holds. Note that we have also proved

∫

(T ∗M\M)⊔S∗M
a dν̃ = lim

δ→0
lim
h∈E ′

h→0

Tr
[

γh(χa(., hδ
−1.))Q,δ

]

= lim
δ→0

lim
h∈E ′

h→0

Tr
[

(γh − γ0)(χa(., hδ
−1.))Q,δ

]

where both limits do not depend on the partition of unity (1− χ) + χ ≡ 1 with 1− χ ∈ C∞
0 (T ∗M)

equal to 1 in a neighborhood of M .
We still have to compare ν̃ and ν . For this take a ∈ C∞

0 (T ∗M) and set a0(x, ω) = ϕ(x) = a(x, 0) .
The symbol identity

a(x, hδ−1ξ) = a(x, hδ−1ξ)(1− χ) + a(x, hδ−1ξ)χ = ϕ(x)(1 − χ) + a(x, hδ−1ξ)χ+ hra,χ,δ,h

with ra,δ,χ,h uniformly bounded in S(1, dx2 + dξ2) w.r.t. h , leads after δ-quantization to
∫

T ∗M
a dν = lim

h∈E ′

h→0

Tr
[

γha
Q,h
]

= lim
h∈E ′

h→0

Tr
[

γh(ϕ(x)(1 − χ))Q,δ
]

+ lim
h∈E ′

h→0

Tr
[

γh(χa(·, hδ−1·))Q,δ
]

.

For δ > 0 fixed (ϕ(x)(1 − χ))Q,δ is a fixed compact operator so that the first limit is

lim
h∈E ′

h→0

Tr
[

γh(ϕ(x)(1 − χ))Q,δ
]

= Tr
[

γ0(ϕ(x)(1 − χ))Q,δ
]

,
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while the second one is exactly the quantity occuring in the definition of ν̃ . Taking the limit as δ → 0
with s− limδ→0(ϕ(x)(1 − χ))Q,δ = ϕ(x) , yields ν

∣
∣
T ∗M\M = ν̃

∣
∣
T ∗M\M . Finally setting ν(I) = ν̃

∣
∣
S∗M

yields, for any a ∈ C∞
0 (T ∗M),

∫

T ∗M
adν =

∫

T ∗M\M
adν +

∫

S∗M
a0dν(I) +

∫

M
ϕdν0

which imply the relation for the measures.

Definition 3.12. M(2)(γh, h ∈ E) denotes the set of all triples (ν, ν(I), γ0) which can be obtained

in Prop. 3.11 for suitable choices of E ′ ⊂ E , 0 ∈ E ′ .

We note that the equality ν(M) = Tr [γ0] implies ν(I) ≡ 0 and this leads like in the previous
case to the following definition.

Definition 3.13. On a compact manifold M , assume that the quantization aQ,h = a(x, hDx) is
adapted to the family (γh)h∈E , with γh ∈ L1(L2(M)) , γh ≥ 0 and limh→0Tr [γh] <∞ . We say that
the quantization is separating if for any E ′ ⊂ E , 0 ∈ E ′ ,

M(γh, h ∈ E ′) = {ν} ,
w∗ − lim
h∈E ′,h→0

γh = γ0 in L1(L2(M))

}

⇒ ν({ξ = 0}) = Tr [γ0] .

While doing the double scale analysis of the non normalized reduced density matrices γ̄
(p)
h es-

pecially with the help of tensorization arguments, we will simply study their weak∗ limit in L1 and
their semiclassical measures. The equality of Definition 3.8 or Definition 3.13 will be checked a
posteriori in order to ensure ν(I) ≡ 0 .

4 Mean-field asymptotics with h-dependent observables

We now combine the mean-field asymptotics with semiclassically quantized observables. This means
that the parameter ε appearing in CCR (resp. CAR) relations in Section 2 is bound to the semi-
classical parameter h of Section 3 parametrizing observables aW,h (or aQ,h) :

ε = ε(h) > 0 with lim
h→0

ε(h) = 0 .

Firstly, we give a sufficient condition in terms of semiclassical 1-particle observables and of the family
(̺ε(h))h∈E so that a quantization aW,h defined on the p-particles phase-space X p is adapted to the non

normalized reduced density matrix γ
(p)
ε(h) for all p ∈ N . If limh→0Tr

[

γ
(p)
ε(h)

]

= limh→0Tr
[
̺ε(h)N

p
±
]
=

T (p) then the semiclassical measures ν(p) ∈ M
(
γ
(p)
ε(h), h ∈ E

)
(or multiscale asymptotic triples

(ν(p), ν
(p)
(I) , γ

(p)
0 )) have a total mass equal to T (p) .

After this, the quantum and classical symmetrization Lemmas 2.8 and 3.1 then provide simple ways

to identify the weak limits γ
(p)
0 or the semiclassical measures associated with the family (γ

(p)
ε(h))h∈E

for all p ∈ N . According to the discussion in Section 2, about Definitions 3.8 and 3.13, a simple
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mass argument allows to check that all the multiscale information has been classified.

Remember that the non normalized reduced density matrices γ
(p)
ε(h) are defined for h > 0 by

∀b̃ ∈ L(Sp
±Z

⊗p) , Tr
[

γ
(p)
ε(h)b̃

]

= Tr
[

̺ε(h)b̃
Wick

]

.

They are well defined and uniformly bounded trace-class operators w.r.t h ∈ E , as soon as Tr
[
̺ε(h)N

p
]

is bounded uniformly w.r.t h ∈ E , for every p ∈ N . Actually, it is more convenient in many cases,
and not so restrictive, to work with exponential weights in terms of the number operator N± .

Hypothesis 4.1. The family (̺ε(h))h∈E in L1(Γ±(Z )) satisfies

i) For all h ∈ E , ̺ε(h) ≥ 0 and Tr
[
̺ε(h)

]
= 1 ;

ii) There exists c, C > 0 such that Tr
[
̺ε(h)e

cN±
]
≤ C , for all h ∈ E .

When the one particle phase-space is X 1 = T ∗
R
d we use the Weyl quantization on X p = T ∗

R
dp ,

aQ,h = aW,h = aW (htx, h1−tDx) , x ∈ R
dp , and when M1 is a compact manifold, X p = T ∗Mp , we

use aQ,h = a(x, hDx) , x ∈Mp .

Proposition 4.2. Assume Hypothesis 4.1. Let χ ∈ C∞
0 (T ∗M1) satisfy 0 ≤ χ ≤ 1 and χ ≡ 1 in a

neighborhood of 0 (resp. in a neighborhood of the null section {(x, ξ) ∈ T ∗M , ξ = 0} = M) when
M = R

d (resp. M compact manifold) and let χδ(X) = χ(δX) (resp. χδ(x, ξ) = χ(x, δξ)) . For
c′ < c , c given by Hypothesis 4.1-ii) , If

sc′,χ(δ) = lim sup
h→0

Re Tr
[

̺ε(h)(e
c′N± − ec

′dΓ±(χQ,h
δ ))

]

→ 0 as δ → 0 , (13)

then for all p ∈ N , the quantization aQ,h is adapted to the family γ
(p)
ε(h) .

Lemma 4.3. Let A ∈ L(Z ) and α ≥ ‖A‖. For z in the open disc D(0, α
‖A‖) ⊂ C, the operator

ezdΓ±(A)e−αN± = edΓ±(zA−αIdZ ) is a contraction in Γ±(Z ) .

1. The function z 7→ edΓ±(zA−αIdZ ) is holomorphic in D(0, α
‖A‖ ) and

1

p!
dΓ±(A)

pe−αN± = e−αN±
1

p!
dΓ±(A)

p =
1

2iπ

∫

|z|=r
edΓ±(zA−αIdZ ) dz

zp+1

holds in L(Γ±(Z )) for all p ∈ N and all r ∈ (0, α
‖A‖ ) .

Assume moreover that A,B ∈ L(Z ), and α > α0 = max {‖A‖ , ‖B‖}, then:

2. For all z ∈ D(0, α
α0
) ,

∥
∥
∥(ezdΓ±(B) − ezdΓ±(A))e−αN±

∥
∥
∥
L(Γ±(Z ))

≤
α‖B −A‖L(Z )

α0(α− α0)e
.

3. This contains, for all p ∈ N and r ∈ (0, α
α0
) ,

∥
∥(dΓ±(B)p − dΓ±(A)

p) e−αN±
∥
∥
L(Γ±(Z ))

≤
αp!‖B −A‖L(Z )

α0(α− α0)erp
.
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Proof of Lemma 4.3. After setting A′ = zA with |z| < α
‖A‖ so that ‖A′‖ < α , notice that αIdZ −

A′ = α−A′ is a bounded accretive operator so that (e−tε(α−A′))t≥0 is a strongly continuous semigroup
of contractions on Z , the same holds for Γ±(e−tε(α−A′)) = e−αN±etdΓ(A

′) = etdΓ(A
′)e−tαN± in

Γ±(Z ) . The holomorphy and the Cauchy formula are then standard.
For the second inequality, set B′ = zB and A′ = zA , |z| < α

α0
, and use Duhamel’s formula

e−dΓ±(α−B′) − e−dΓ±(α−A′)

=

∫ 1

0
e−(1−t)dΓ±(α0−A′)dΓ±(B

′ −A′)e−(α−α0)N±e−tdΓ±(α0−B′) dt .

Since e−(1−t)dΓ±(α0−A′) and e−tdΓ±(α0−A′) are contractions , the inequality

‖dΓ±(B
′ −A′)e−(α−α0)N±‖ ≤ α

α0
‖B −A‖ sup

n∈N
εne−(α−α0)εn ≤ α‖B −A‖

α0(α− α0)e
,

yields Point 2.
Point (3) follows from Point (1) and Point (2).

Proof of Proposition 4.2. Fix p ∈ N . We want to find χ̃ ∈ C∞
0 (T ∗Mp) , 0 ≤ χ̃ ≤ 1 and χ̃ ≡ 1 in a

neighborhood of
{
X ∈ R

2dp ,X = 0
}
(resp. {(x, ξ) ∈ T ∗Mp , ξ = 0} = Mp) when Mp = R

dp (resp.
when M is a compact manifold) , such that

lim
δ→0

lim sup
h→0

T (δ, h) = 0

with T (δ, h) := Re Tr
[

γ
(p)
ε(h)

(IdSp
±Z ⊗p − χ̃Q,h

δ )
]

= Re Tr
[

̺ε(h)(IdSp
±Z ⊗p − χ̃Q,h

δ )Wick
]

.

We know that χ⊗p ∈ C∞
0 (T ∗Mp) , with 0 ≤ χ⊗p ≤ 1 . Take χ̃ such that χ⊗p ≤ χ̃ ≤ 1 . For a

constant κδ > 0 to be fixed, the inequalities of symbols

0 ≤ χ⊗p
δ ≤ χ̃δ ≤ 1

0 ≤ χδ + κδh ≤ 1 + κδh

and the semiclassical calculus imply

‖(1 − χ̃δ)
Q,h − Re

[

(1− χ̃δ)
Q,h
]

‖L(Z ⊗p) ≤ Cδh , ‖χQ,h
δ − Re

[

χQ,h
δ

]

‖ ≤ Cδh ,

0 ≤ Re
[

(1− χ⊗p
δ )Q,h

]

+ C ′
δh = 1− (Re

[

χQ,h
δ

]

)⊗p + C ′
δh

≤ (1 + 2κδh)
p − (Re

[

(χδ + κδh)
Q,h
]

)⊗p + C ′′
δ h in L(Z ⊗p) ,

for some constants Cδ, C
′
δ , C

′′
δ > 0 , chosen according to p ∈ N , δ > 0 and κδ > 0 . Moreover for

δ > 0 fixed, the constant κδ can be chosen so that

0 ≤ Re
[

(χδ + κδh)
Q,h
]

≤ 1 + 2κδh .

With ‖(1 + N±)pe−c′/2N±‖L(Γ±(Z )) ≤ Cp,c′ , the number estimate (2) and the positivity property

(b̃ ≥ 0) ⇒ (b̃Wick ≥ 0) , writing

̺ε(h) = e−c/2N±ec/2N±̺ε(h)e
c/2N±e−c/2N±
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leads to

T (δ, h) := Re Tr
[

̺ε(h)(IdSp
±Z ⊗p − χ̃Q,h

δ )Wick
]

= Tr
[

̺ε(h)(IdSp
±Z ⊗p − Re

[

χ̃Q,h
δ

]

)Wick
]

+Oδ(h)

≤ Tr

[

̺ε(h)

(

(1 + 2κδh)
p − (Re

[

(χδ + κδh)
Q,h
]

)⊗p
)Wick

]

+Oδ(h) .

We now use Propostion 2.4 for

T (δ, h) ≤ Tr
[

̺ε(h)

(

dΓ±(1 + 2κδh)
p − dΓ±

(
Re [(χδ + κδh)

Q,h]
)p
)]

+Oδ(h+ ε(h)) .

The two operators A = dΓ±(1+2κδh) and B = dΓ±(Re [(χδ +κδh)
Q,h]) are commuting self-adjoint

operators such that 0 ≤ B ≤ A , so that 0 ≤ Ap − Bp ≤ Cp,c′[e
c′A − ec

′B] . We deduce

T (δ, h)

≤ Cp,c′Tr
[

̺ε(h)e
cN±e−cN±

(

edΓ±(c′(1+2κδh)) − edΓ±(c′Re [(χδ+κδh)
Q,h])

)]

+Oδ(h+ ε(h)) .

We apply Lemma 4.3 with z = 1 , A = c′(1 + 2κδh) and B = c′ , or A = c′Re [(χδ + κδh)
Q,h] and

B = c′χQ,h
δ , and finally

α = c > α0 =
c+ c′

2
≥ c′ max

{

1 + 2κδh, ‖(χδ + κδh)
Q,h‖, ‖χQ,h

δ ‖
}

for h ≤ hδ,c,c′

and we get

T (δ, h) ≤ Re Tr
[

̺ε(h)

(

ec
′
N± − ec

′dΓ±(χQ,h
δ )
)]

+Oδ(h+ ε(h)) .

We thus obtain
lim sup
h→0

T (δ, h) ≤ sc′,χ(δ)

and our assumption limδ→0 sc′,χ(δ) = 0 allows to conclude.

Notation For any open set Ω ⊆ C the Hardy space H∞(Ω) is the space of bounded holomorphic
functions on Ω.

Proposition 4.4. Assume Hypothesis 4.1. The set E can be reduced to E ′ so that M(γ
(p)
ε(h), h ∈

E ′) =
{
ν(p)

}
, where ν(p) is a non-negative measure on T ∗Mp/Sp , i.e. a measure on (T ∗M)p with

the invariance (6).

When (13) is satisfied, this implies limh∈E ′

h→0
Tr
[

γ
(p)
ε(h)

]

=
∫

T ∗Mp dν
(p)(X) for all p ∈ N .

For any a ∈ C∞
0 (R2d) there exists ra > 0 such that the function Φa,h : s 7→ Tr

[

̺ε(h)e
sdΓ±(aW,h)

]

is

uniformly bounded in H∞(D(0, ra)) and

lim
h∈E ′

h→0

Φa,h(s) = Φa,0(s) :=

∞∑

p=0

sp

p!

∫

T ∗Mp

a⊗p(X) dν(p)(X) . (14)

Reciprocally if Φa,h converges, pointwise on the interval (−ra, ra) or in D′((−ra, ra)) , to some

function Φa,0, as h → 0, h ∈ E , then M(γ
(p)
ε(h) , h ∈ E) =

{
ν(p)

}
for all p ∈ N and Φa,0 is equal to

(14).
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Proof. The uniform bound

Tr
[

γ
(p)
ε(h)

]

≤ Tr
[
̺ε(h)〈N〉p

]
≤ Cp,cTr

[
̺ε(h)e

cN
]

and Hypothesis 4.1 ensure for each p ∈ N the existence of E(p) ⊆ E(p−1) ⊆ E , 0 ∈ E(p) , and

M(γ
(p)
ε(h), h ∈ E(p)) =

{
ν(p)

}
. A diagonal extraction w.r.t to p determines E ′ ⊂ E , 0 ∈ E ′ , such that

M(γ
(p)
ε(h) , h ∈ E ′) =

{
ν(p)

}
for all p ∈ N .

The second statement is a straightforward application of Lemma 4.3.
Thanks to the classical symmetrization Lemma 3.1 , the measures ν(p) are determined after inte-
grating with all the test functions a⊗p with a ∈ C∞

0 (T ∗M) .
Hypothesis 4.1 now combined with

‖e−cNezdΓ(α
W,h)‖ = ‖Γ(eε(zαW,h)−c)‖ ≤ e|z|‖a

W,h‖−c and ‖aW,h‖ ≤ Ca ,

provides the uniform boundedness w.r. t h ∈ E of Φa,h in H∞(D(0, 2ra)) . In any E1 ⊂ E , 0 ∈ Ẽ1 ,
we can find a subset E2 , 0 ∈ E2 , such that Φa,h , locally uniformly in D(0, 2ra) and therefore in
H∞(D(0, ra)) , to some function Φa,0 . In particular when E2 ⊂ E1 ⊂ E ′ , Corollary 2.4 implies

∫

T ∗Mp

a⊗p dν(p) = lim
h∈E2
h→0

Tr
[

γ
(p)
ε(h)(a

W,h
)⊗p
]

= lim
h∈E2
h→0

Tr

[

̺ε(h)

(

(a
W,h

)⊗p
)Wick

]

= lim
h∈E2
h→0

Tr
[

̺ε(h)dΓ(a
W,h)p

]

= lim
h→0

dpΦa,h

dsp
(0) =

dpΦa,0

dsp
(0)

Hence the limit Φa,0 ∈ H∞(D(0, ra)) , as h ∈ E2 , h→ 0 , equals the right-hand side of (14) and this
uniqueness implies the convergence for the whole family (Φa,h)h∈E ′ .
Reciprocally assume the convergence of Φa,h to Φa,0 in a weak topology on the interval (−ra, ra) as
h ∈ E . With the a uniform bound on Φa,h in H∞(D(0, 2ra)) , Φa,0 has an holomorphic extension in

D(0, ra) . Additionally we can extract a subset E ′ ⊂ E such that M(γ
(p)
h , h ∈ E ′) =

{
ν(p)

}
and (14)

hold. Again the uniqueness of the limit Φa,0

∣
∣
(−ra,ra)

and of its holomorphic extension to D(0, ra)

ends the proof.

Replacing the semiclassical symmetrization Lemma 3.1 by the quantum ones, Lemma 2.8 in the
above proof leads to the following similar result for the quantum part.

Proposition 4.5. Assume Hypothesis 4.1. For all K ∈ L∞(Z ) there exists rK > 0 such that the
set {ΨK,h, h ∈ E} of functions ΨK,h(s) := Tr

[
̺ε(h)e

sdΓ±(K)
]
is bounded in H∞(D(0, rK)) .

The pointwise or D′((−rK , rK))-convergence limh∈E
h→0

ΨK,h = ΨK,0 is equivalent to w∗ − limh∈E,
h→0

γ
(p)
h =

γ
(p)
0 (remember L1 = (L∞)∗) with

ΨK,0(s) =

∞∑

p=0

Tr
[

γ
(p)
0 K⊗p

] sp

p!
,

Let us consider the fermionic case:
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Proposition 4.6. Let (̺ε)ε∈E be a family of non-negative, trace 1 operators in L1(Γ−(Z)). Let γ
(p)
ε

denote the corresponding non normalized reduced density matrices of order p. If γ
(p)
0 ∈ L1(Sp

−Z⊗p)
is such that

∀K ∈ L∞(Sp
−Z⊗p) , lim

ε∈E
ε→0

Tr[γ(p)ε K] = Tr[γ
(p)
0 K] ,

then γ
(p)
0 = 0.

As a consequence, the weak limits γ
(p)
0 always vanish in the fermionic case.

Proof. First consider K a non-negative finite rank operator. Then

lim
ε∈E
ε→0

Tr[̺εK
Wick] = Tr[γ

(p)
0 K] .

For fermions, KWick ≤ εpTr[K], and hence Tr[̺εK
Wick] ≤ ε(h)p → 0 as ε → 0. Any finite rank

operator being of the form K = K1 −K2 + i(K3 −K4) for some non-negative finite rank operators

Kj, j ∈ {1, 2, 3, 4}, the limit Tr[̺εK
Wick] → 0 = Tr[γ

(p)
0 K] holds for any finite rank operator K.

Hence, by density of the finite rank operators in the compact operators for the operator norm,

Tr[γ
(p)
0 K] = 0 for any K ∈ L∞(Sp

−Z⊗p), i.e., γ
(p)
0 = 0.

5 Examples

5.1 h-dependent coherent states in the bosonic case

We first recall our normalization for a coherent state. We need the notion of empty state: if we use
the identification S0

±Z ≡ C, then the empty state is defined as Ω = (1, 0, 0, . . . ) ∈ Γ±(Z) . We then
introduce the usual field operators Φ(f) = 1√

2
(a∗(f) + a(f)) , with f ∈ Z and the Weyl operators

are the W (f) = exp( i√
2
Φ(f)) . A coherent state is a pure state Ez =W (

√
2z
iε )Ω, with z ∈ Z . One

then also speak of coherent state for the corresponding density matrix |Ez〉〈Ez | . One of the useful
properties of coherent states is that

b(z) = 〈E(z), bWickE(z)〉 . (15)

(See e.g. [AmNi1, Prop. 2.10] ) The case of coherent states is simple:

Proposition 5.1. Let (zε)ε∈(0,1] a bounded family of Z , choose the semiclassical quantization a 7→
aW,h = aW (

√
hx,

√
hDx) , and fix a function ε = ε(h) → 0 as h → 0 . Up to an extraction, zε(h) →

z0 ∈ Z weakly, and M(|zε(h)〉〈zε(h)|, h ∈ E) = {ν} . Assume that the semiclassical quantization

aW,h = aW (
√
hx,

√
hDx) is adapted to (|zε(h)〉〈zε(h)|)h and separating for (|zε(h)〉〈zε(h)|)h . Then

the family (̺ε(h) = |Ezε(h)〉〈Ezε(h) |)h∈E has γ
(p)
ε(h) = |z⊗p

ε(h)〉〈z
⊗p
ε(h)| as (non normalized) reduced density

matrices of order p , for which the quantization is adapted and separating, and

M(2)(γ
(p)
ε(h), h ∈ E) = {(ν⊗p, 0, |z⊗p

0 〉〈z⊗p
0 |)} .

Proof. Formula (15) yields, for B ∈ L(Sp
+Z⊗p),

〈z⊗p
ε(h)

, Bz⊗p
ε(h)

〉 = 〈Ezε(h) |BWick|Ezε(h)〉 = Tr[̺ε(h)B
Wick] = Tr[γ

(p)
ε(h)

B] ,

which implies the result.
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The case of coherent states, although simple, can already exhibit interesting behaviors for some
families (zε)ε∈(0,1]. Indeed,

Remark 5.2. Let (zj,ε)ε∈(0,1], j ∈ {1, 2}, be families of Z such that

• z1,ε −−−→
ε→0

z1,0 ∈ Z, and

• (z2,ε)ε∈(0,1] is bounded, converges weakly to 0, limR→∞ lim supε→0 ‖z2,ε1∁B(0,R)‖ = 0 (no mass
escaping at infinity), and M(|z2,ε(h)〉〈z2,ε(h)|, h ∈ E) = {ν2}, with ν2({0}) = 0.

Then (|z1,ε + z2,ε〉〈z1,ε + z2,ε|)ε∈(0,1] satisfies the assumptions of Prop. 5.1, and z0 = z1,0, ν =
‖z1,0‖2δ0 + ν2.

5.2 Gibbs states

For a given non-negative self-adjoint hamiltonian H defined in Z with domain D(H) , the Gibbs
state at positive temperature 1

β and with the chemical potential µ < 0 is given by

ωε(A) =
Tr
[
Γ±(e−β(H−µ))A

]

Tr
[
Γ±(e−β(H−µ))

] = Tr [̺εA] .

In general ̺ε ∈ L1(Γ±(Z )) as soon as e−β(H−µ) ∈ L1(Z ) (in the bosonic case H ≥ 0 and µ < 0
imply ‖e−β(H−µ)‖L(Z) < 1, see Lemma D.1). Moreover the quasi-free state formula (see [BrRo2])
with ε-dependent quantization gives

Tr [̺εN] = εTr
[

e−β(H−µ)(1∓ e−β(H−µ))−1
]

and additionally, in the case of bosons,

Tr [̺εW (f)] = exp
[

−ε
4
〈f , (1 + e−β(H−µ))(1 − e−β(H−µ))−1f〉

]

.

5.2.1 In the fermionic case

We begin by the fermionic case, which is simpler than the bosonic case for two reasons: first because
the quantum part vanishes (see Prop. 4.6), and second because there is no singularity to handle.
To fix the ideas we consider the simple case when H is the harmonic oscillator. Actually one can
treat more general pseudo differential operators, and we do that below in the more interesting case
of bosons and Bose-Einstein condensation.

Proposition 5.3. Let β > 0, H = 1
2 |X|2W,h, µ(ε) such that µ(ε) ≥ Cε for some constant C >

0, and assume that ε = ε(h) = hd. Let ̺ε(h) = Γ−(e−β(H−µ(ε)))

Tr[Γ−(e−β(H−µ(ε)))]
and γ

(p)
ε(h)

its non normalized

reduced density matrix of order p ≥ 1. Then M(2)(γ
(p)
ε(h), h ∈ (0, 1]) = {(ν(p), 0, 0)}, where dν(p) =

p!
(

e−β|X|2/2

1+e−β|X|2/2

dX
(2π)d

)⊗p
.

Proof. From Rem. 3.7 and Prop. 4.6, any (ν(p), ν
(p)
I , γ

(p)
0 ) ∈ M(2)(γ

(p)
ε(h), h ∈ (0, 1]) satisfies γ

(p)
0 = 0.

Since we are considering a Gibbs state, the Wick formula yields

γ
(p)
ε(h) = p! εp Sp

± γ
(1)⊗p
ε(h) Sp,∗

± .
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Moreover, in the fermionic case, γ
(1)
ε(h) =

C
1+C for ̺ε(h) =

Γ−(C)
Tr[Γ−(C)] , that is to say γ

(1)
ε(h) = hd e−β(H−µ)

1+e−β(H−µ)

in our case. The semiclassical calculus combined with Helffer-Sjöstrand functional calculus formula
yields

e−β(|X|2W,h/2−µ)

1 + e−β(|X|2W,h/2−µ)
=
( e−β|X|2/2

1 + e−β|X|2/2

)W,h
+O(h) in L(Z) .

For details we refer the reader e.g. to [DiSj, HeNi] or to the proof of Prop. 5.6. Again by the
semiclassical calculus we know hdaW,h is uniformly bounded in L1(L2(Rd)) for a ∈ C∞

0 (R2d). This
leads to

Tr[(aW,h)⊗pγ
(p)
ε(h)] = p! Tr[aW,hγ

(1)
ε(h)]

p = p! Tr
[

(
e−β|X|2/2

1 + e−β|X|2/2 )
W,h hdaW,h

]p
+O(h) .

We finally use hdTr[aW,hbW,h] =
∫

R2d a(X)b(X) dX
(2π)d

which implies

lim
h→0

Tr[(aW,h)⊗p γ
(p)
ε(h)] = p!

( ∫

R2d

e−β|X|2/2

1 + e−β|X|2/2 a(X)
dX

(2π)d

)p
.

Hence dν(p)(X) = p! ( e−β|X|2/2

1+e−β|X|2/2

dX
(2π)d

)⊗p.

5.2.2 Parameter dependent Gibbs states and Bose-Einstein condensation in the bosonic
case

The Bose-Einstein condensation phenomenon occurs when H has a ground state kerH = Cψ0 and
the chemical potential is scaled according to

−βµ =
ε

νC
for some fixed νC > 0 .

An especially interesting case is when H is a semiclassically quantized symbol with semiclassical
parameter h related to ε , or ε = ε(h) according to our previous notations. The quantum and
semiclassical parts arise simultaneously when ε = hd . Two cases will be considered: the first one
concerns Z = L2(Rd) with a non degenerate bottom well hamiltonian; the second one Z = L2(M)
with the semiclassical Laplace-Beltrami operator on the compact riemannian manifold M .
In the first case, let S(〈X〉m, dX2

〈X〉2 ) denote the Hörmander class of symbols satisfying |∂βXa(X)| ≤
Cβ〈X〉m−β , and let α ∈ S(〈X〉2, dX2

〈X〉2 ) be elliptic in this class with a unique non degenerate minimum

at X = 0 (e.g. the symbol of the harmonic oscillator hamiltonian). We can even consider small
perturbations of this situation after setting

H = αW,h +Bh − λ0(α
W,h +Bh) , αW,h = α(

√
hx,

√
hDx) , ε = hd ,

where Bh = Bh ∗ ∈ L(L2(Rd)) , ‖Bh‖ = o(h) and λ0(α
W,h + Bh) = inf σ(αW,h + Bh) . It is

convenient in this case to introduce the linear symplectic transformation T ∈ Sp2d(R) such that
tXtT−1Hess α(0)T−1X =

∑d
j=1 βjX

2
j and to introduce some unitary quantization UT of T , i.e. a

unitary operator on L2(Rd) such that U∗
T b

WUT = b(T−1.)W .
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Proposition 5.4. Under the above assumptions with dimension d ≥ 2 , for any p ∈ N , M(2)(γ
(p)
ε(h), h ∈

E) =
{

(ν(p) , 0 , γ
(p)
0 )
}

(see Def. 3.12), where

γ
(p)
0 = p!|ψ⊗p

0 〉〈ψ⊗p
0 | with ψ0(x) = UT

e−x2/2

πd/4

ν(p) =
∑

σ∈Sp

σ∗

[
p
∑

k=0

1

(p− k)!
νkCδ

⊗k
0 ⊗ ν(β, ·)⊗p−k

]

,

with dν(β,X) =
e−βα(X)

1− e−βα(X)

dX

(2π)d
.

The proof is, given in Section 5.2.4, needs some preliminaries given in Prop. 5.6 and Lemma 5.7.
Another even simpler case, related to the example M = T

d presented in [AmNi1], is Z =
L2(M,dvg(x)) when (M,g) is a compact Riemannian manifold with volume dvg(x) and

H = −h2∆g +Bh − λ0(−h2∆g +Bh) ,

where ∆g is the Laplace Beltrami operator on (M,g) and Bh = B∗
h ∈ L(L2(M)) , ‖Bh‖ = o(h2) .

Proposition 5.5. Under the above assumptions with d ≥ 3 , for any p ∈ N , M(2)(γ
(p)
ε(h) , h ∈ E) =

{

(ν(p), 0, γ
(p)
0 )
}

where

γ
(p)
0 = p!|ψ⊗p

0 〉〈ψ⊗p
0 | , ψ0 =

1

vg(M)1/2
,

ν(p) =
∑

σ∈Sp

σ∗

[
p
∑

k=0

1

(p − k)!
νkC(

1

vg(M)
dvg(x)⊗ δ0(ξ))

⊗k ⊗ ν(β)⊗(p−k)

]

,

with dν(β,X) =
e
−β|ξ|2

g(x)

1− e
−β|ξ|2

g(x)

dxdξ

(2π)d
,

and |ξ|2g(x) =
∑

i,j≤d

gij(x)ξiξj when g =
∑

i,j≤d

gij(x)dx
idxj , (gij)

−1 = (gij) .

We shall focus on the first case which requires a more carefull analysis, while σ(−h2∆g) =

h2σ(−∆g) reduces even more easily the problem to the integrability of e
−β|ξ|2

g(x)

1−e
−β|ξ|2

g(x)
valid when d ≥ 3 .

The proof of Proposition 5.5 is left as an exercise, which requires the adaptation of the following
arguments in the case of Proposition 3.11 with the associated Definitions 3.13 and 3.12.

5.2.3 Semiclassical asymptotics with a singularity at X = 0

We give here a general semiclassical result in T ∗
R
d , which involves traces and symbols with a

singularity at X = 0 .

Proposition 5.6. Consider the hamiltonian H = αW,h + Bh − λ0(α
W,h + Bh) , with αW,h =

α(
√
hx,

√
hDx) , α ∈ S(〈X〉2, dX2

〈X〉2 ) elliptic and real such that α(0) = 0 is the unique non de-

generate minimum, Bh = B∗
h ∈ L(L2(Rd)), ‖Bh‖ = o(h) , and λ0(α

W,h + Bh) = inf σ(αW,h + Bh) .
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Assume that f ∈ C∞((0,+∞);R) is decreasing and satisfies

0 ≤ f(u) ≤ Cu−κ∞ , lim
u→0+

uκ0f(u) = f0 ∈ R , 0 < κ0 < d < κ∞ .

For c > 0 , the operator f(H + chd/κ0) is trace class with

lim sup
h→0+

hd‖f(H + chd/κ0)‖L1(L2(Rd)) < +∞ .

Moreover the convergence

lim
h→0

hdTr
[

f(H + chd/κ0)aW,h
]

=
f0
cκ0

a(0) +

∫

R2d

f(α(X))a(X)
dX

(2π)d
,

holds for all a ∈ S(1, dX2) . Finally, all the above estimates and convergences hold uniformly with
respect to c ∈ ( 1

A , A) for any fixed A > 1 .

The following Lemma gives in a simple way useful inequalities for our purpose which are deduced
with elementary arguments, an in a robust way w.r.t the perturbation Bh , from more accurate and
sophisticated results on the spectrum of αW,h (see [ChVN][DiSj] and references therein).

Lemma 5.7. Let α ∈ S(〈X〉2, dX2

〈X〉2 ) be real-valued, elliptic, which means 1 + α(X) ≥ C−1〈X〉2 ,
with a unique non degenerate minimum at X = 0 and set α0(X) = |X|2

2 . Let Bh = B∗
h ∈ L(L2(Rd))

be such that ‖Bh‖ = o(h) . The ordered eigenvalues are denoted by λj(α
W,h +Bh) and λj(α

W,h
0 ) for

j ∈ N .

• For j = 0 , λ0(α
W,h + Bh) = Tr [Hess α(0)] h + o(h) and the associated spectral projection

satisfies

lim
h→0

1{λ0(αW,h+Bh)}(α
W,h +Bh) = (π−de−|TX|2)W (x,Dx) , in L1(L2(Rd)) ,

where T ∈ Sp2d(R) is such that tXtT−1Hess α(0)T−1X =
∑d

j=1 βjX
2
j .

• There exist h0 > 0 and C ′ ≥ 1 such that , for all j > 0 and h ∈ (0, h0) ,

C ′−1hd/2 ≤ C ′−1λj(α
W,h
0 ) ≤ λj(α

W,h +Bh)− λ0(α
W,h +Bh) ≤ C ′λj(α

W,h
0 ) . (16)

Remark 5.8. Of course σ(αW,h
0 ) =

{
h (d/2 + |n|) , n ∈ N

d
}
and the bounds (16) are actually written

in order to use this later. But for an easy use of the min-max principle it is better to write the
eigenvalues λj(α

W,h
0 ) in the increasing order, with repetition according to their multiplicity.

Proof of Lemma 5.7. We start by noting that 1 + α ∈ S(〈X〉2, dX2

〈X〉2 ) is fully elliptic in the sense

that (1 + α)−1 ∈ S(〈X〉−2, dX2

〈X〉2 ) . Therefore

(1 + α)♯W,h 1

1 + α
= 1 + h2R+(h) ,

1

1 + α
♯W,h(1 + α) = 1 + h2R−(h)

with R±(h) uniformly bounded in S(〈X〉−2, dX2

〈X〉2 ) . The semiclassical calculus with the metric dX2

〈X〉2 ,
then says

(1 + αW,h)−1 = [(1 + α)−1]W,h +O(h2) in S

(

〈X〉−2 ,
dX2

〈X〉2
)

. (17)
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The same of course also holds for τα0(X) = τ |X|2
2 with τ ∈ (0,+∞) fixed. Therefore αW,h + Bh

and αW,h
0 are self-adjoint with the same domain D(αW,h) = D(αW,h

0 ) = D(αW,1
0 ) , and they have a

compact resolvent. We shall collect all the necessary information by comparing the eigenvalues of
αW,h + Bh and αW,h

0 in the intervals (−∞, 2|β|h] , [0, 2] and [1,+∞[ , with |β| =∑d
j=1 βj . For the

first part, we refer to the ready-made simple statement of [ChVN]-Theorem 4.5 and complete the
other parts with simple pseudodifferential calculus and the min-max principle .
Interval (−∞, 2|β|h]: By Theorem 4.5 of [ChVN] , there exist a family of real numbers (ωh

n)h>0,n∈Nd

and, for any t > 0, a constant Ct > 0 such that

σ(αW,h) ∩ (−∞, th] =
{

ωh
n , n ∈ N

d
}

∩ [|β|h/2, th]

and

∣
∣
∣ωh

n −
d∑

j=1

hβj(
1

2
+ nj)

∣
∣
∣ ≤ Cth

3/2 .

As ‖Bh‖ = o(h), the min-max principle with αW,h and αW,h +Bh then gives,

σ(αW,h +Bh) ∩ (−∞, th] =
{

ωh
n + o(h) , n ∈ N

}

∩ [0, th] .

By choosing t = 2|β| , the operator αW,h +Bh is non-negative with λ0(α
W,h +Bh) = |β|h/2 + o(h)

and the spectral gap is bounded from below by

∀j ∈ N \ {0} , λj(α
W,h +Bh)− λ0(α

W,h +Bh) ≥ λ1(α
W,h +Bh)− λ0(α

W,h +Bh)

≥ βmh+ o(h) ≥ βmh/2 , (18)

with βm = min {β1, . . . , βd} .
Let T ∈ Sp2d(R

d) be such that tXtT−1Hess α(0)T−1X =
∑d

j=1 βjX
2
j , let UT be a unitary operator

such that U∗
T b

WUT = b(T−1.)W and set ϕT (x) = (π)−d/4UT e
−x2

2 . We compute

〈ϕT , (α
W,h +Bh)ϕT 〉 = Tr

[

U∗
Tα

W,hUT |ϕId〉〈ϕId|
]

+ o(h)

=

∫

R2d

α(
√
hT−1X)e−|X|2 dX

πd
+ o(h) .

But since α(T−1X) =
∑d

j=1 βj |Xj |2/2 + P3(X) + O(|X|4) , with P3 a homogeneous polynomial of
degree 3, we obtain

〈ϕT , (α
W,h +Bh)ϕT 〉 = h|β|/2 + o(h) = λ0(α

W,h +Bh) + o(h) .

With the spectral gap (18) this implies that the ground state ψh
0 of αW,h+Bh satisfies limh→0 ‖ψh

0 −
ϕT ‖L2 = 0 and

lim
h→0

‖1{λ0(αW,h+Bh)}(α
W,h +Bh)− π−d(e−|TX|2)W,1‖L1 = 0 .

Interval [0, 2]: Our assumptions on α provide a constant C2 ≥ 1 such that C−1
2 α0 ≤ α ≤ C2α0

and therefore
C−1

2 α0

1+C−1
2 α0

≤ α
1+α ≤ C2α0

1+C2α0
, as x 7→ x

1+x is increasing on R
∗. Since all those symbols
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belong to S(1, dX2) , the semiclassical Fefferman-Phong inequality for the constant metric dX2 (see
[Hor3]-Lemma 18.6.10) says

C−1
2 αW,h

0

1 +C−1
2 αW,h

0

−O(h2) ≤ αW,h

1 + αW,h
≤ C2α

W,h
0

1 + C2α
W,h
0

+O(h2) ,

after using
(

α.
1+α.

)W,h
= αW,h

.

1+αW,h
.

+O(h2) . With ‖(1+αW,h)−1−(1+αW,h+Bh)
−1‖ = O(‖Bh‖) = o(h)

and x
1+x = 1− 1

1+x , we deduce

C−1
2 αW,h

0

1 + C−1
2 αW,h

0

− o(h) ≤ αW,h +Bh

1 + αW,h +Bh
≤ C2α

W,h
0

1 + C2α
W,h
0

+ o(h) .

For r = 2(1+C2) and h0 > 0 small enough the above operators have a discrete spectrum in [0, r
1+r ]

with eigenvalues in this interval, while the function x 7→ x
1+x increases on [0,+∞) . Hence the

min-max principle implies that there exists C ′
2 ≥ 1 such that

(

λj(α
W,h +Bh) ≤ 2

)

⇒
(

C ′−1
2 λj(α

W,h
0 )− o(h) ≤ λj(α

W,h +Bh) ≤ C ′
2λj(α

W,h
0 ) + o(h)

)

(19)

holds for all j ∈ N . With the spectral gap (18) and λ0(α
W,h + Bh) = |β|h/2 + o(h) we conclude

that (16) holds when λj(α
W,h +Bh) ≤ 2 .

Interval [1,+∞): Our assumptions on α provide a constant C1 ≥ 1 such that C−2
1 ≤

(
1+α0
1+α

)2
≤

C2
1 . With (17) , the semiclassical Garding inequality then gives for h0 small enough:

max
{

‖(1 + αW,h
0 )(1 + αW,h)−1‖ , ‖(1 + αW,h)(1 + αW,h

0 )−1‖
}

≤ 2C1

Owing to ‖Bh‖ = o(h) this is also true when αW,h is replaced by αW,h +Bh . We obtain

∀ψ ∈ D(αW,1
0 ) ,

(2C1)
−2〈ψ , (1 + αW,h

0 )2ψ〉 ≤ 〈ψ , (1 + αW,h +Bh)
2ψ〉 ≤ (2C1)

2〈ψ , (1 + αW,h
0 )2ψ〉 .

and the min-max principle gives

∀j ∈ N , (2C1)
−2λj((1 + αW,h

0 )2) ≤ λj((1 + αW,h +Bh)
2) ≤ (2C1)

2λj((1 + αW,h
0 )2) .

By taking the square roots

∀j ∈ N , (2C1)
−1(1 + λj(α

W,h
0 )) ≤ 1 + λj(α

W,h +Bh) ≤ 2C1(1 + λj(α
W,h
0 )) .

yields (16) for λj(α
W,h +Bh) ≥ 1 .

Proposition 5.6. With H = αW,h + Bh − λ0(α
W,h + Bh) , Lemma 5.7 provides a constant C ′ > 0

such that
∀j ∈ N \ {0} , C ′−1λj(α

W,h
0 ) ≤ λj(H) ≤ C ′λj(α

W,h
0 )
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while λ0(H) = 0 and the ground state of H is the same as the one of αW,h +Bh .
When the function f is non-negative and decaying, we deduce

Tr
[

f(H + chd/κ0)
]

= f(chd/κ0) +

∞∑

j=1

f(λj(H) + chd/κ0)

≤ f(chd/κ0) +
∞∑

j=1

f(λj(H)) ≤ f(chd/κ0) +
∑

n∈Nd

n 6=0

f(C−1
4 h|n|) , (20)

with C4 = C3

(

1 + 4|β|
βm

)

; and for R > 0 ,

Tr
[

f(H + chd/κ0)1[R,+∞)(H)
]

=
∑

λj(H)≥R

f(λj(H) + chd/κ0) ≤
∑

n∈Nd

h|n|≥R/(2C3)

f(C−1
4 h|n|) .

Apply (20) first, with f = s−κ0〈s〉−κ∞+κ0 :

hdTr
[

f(H + chd/κ0)
]

≤ c−κ0 + Chd
∑

n∈Nd , n 6=0

(h|n|)−κ0〈h|n|〉−κ∞+κ0

after splitting the sum into
∑

h|n|≤1 and
∑

h|n|≥1 and with #
{
n ∈ N

d , |n| = m
}

= Cd−1
m+d−1 =

O(md−1) , it becomes

hdTr
[

f(H + chd/κ0)
]

≤ c−κ0 + C ′hd
⌈h−1⌉
∑

m=1

h−κ0md−1−κ0 + C ′hd
∞∑

m=⌊h−1⌋
h−κ∞md−1−κ∞ .

≤ c−κ0 + C ′′hd−κ0⌈h−1⌉d−κ0 + C ′′hd−κ∞⌊h−1⌋d−κ∞ ≤ c−κ0 + C ′′′ .

owing to κ∞ > d and κ0 ∈ (0, d) . With a function f(s) = s−κ0χ(s/δ) with 0 ≤ χ ≤ 1 compactly
supported and decaying on [0,+∞) we get similarly

lim
δ→0+

lim sup
h→0

hdTr
[

f(H + chd/κ0)
]

− c−κ0 = 0 ,

while with f(s) = 〈s〉−κ∞ , the truncated trace Tr
[
f(H + chd/κ0)1[δ−1,+∞)(H)

]
satisfies

lim
δ→0+

lim sup
h→0

hdTr
[

f(H + chd/κ0)1[δ−1,+∞(H)
]

= 0 .

The comparison of λj(H) with λj(α
W,h
0 ), j ∈ N, stated in Lemma 5.7 does not depend on the

parameter c. Neither do the constants C3, C4, C, C ′, C ′′ and C ′′′ (f is non-negative and decaying)
depend on c . Therefore the previous asymptotic trace estimates are uniform with respect to c ∈
( 1
A , A) for any fixed A > 1.

Thus if χ ∈ C∞
0 (R) is a cut-off function such that 0 ≤ χ ≤ 1 , χ ≡ 1 in (−1, 1) and if a general

f ∈ C∞((0,+∞)) fulfills all the assumptions of Prop. 5.6, then

lim
δ→0+

lim sup
h→0+

hd‖[f(H + chd/κ0)1(0,+∞)(H)[χ(δ−1H) + (1− χ(δH))]‖L1 = 0 . (21)
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For g ∈ C∞
0 (R) , with an almost analytic extension g̃ ∈ C∞

0 (C) , Helffer-Sjöstrand formula

g(αW,h) =
1

2iπ

∫

C

∂z̄ g̃(z)(z − αW,h) dz ∧ dz̄ ,

combined with the semiclassical Beals criterion [DiSj, HeNi, NaNi] with the constant metric dX2

implies that
g(αW,h)− g(α)W,h = h r(h)W,h ,

with r(h) uniformly bounded (with respect to h) in S(1, dX2) . Since (1 + α) ∈ S(〈X〉2, dX2

〈X〉2 ) is

an invertible elliptic symbol, (1 + αW,h)−N − [(1 + α)−N ]W,h = h2r′(h)W,h with r′(h) uniformly

bounded in S(〈X〉−2N−2, dX2

〈X〉2 ) ⊂ S(〈X〉−2N , dX2) . For a function fδ ∈ C∞
0 ((0,+∞)) , we take

g(s) = (1 + s)Nfδ(s) and write

fδ(α
W,h) = g(αW,h)(1 + αW,h)−N ,

so that

fδ(α
W,h)− fδ(α)

W,h =
[

g(αW,h)− g(α)W,h
]

(1 + αW,h)−N

+ g(α)W,h(1 + αW,h)−N − fδ(α)
W,h = h r′′(h)W,h ,

with r′′(h) uniformly bounded in S(〈X〉−2N , dX2) . In particular, hdr′′(h)W,h is uniformly bounded
in L1(L2(Rd)) if we choose N > d .
Similarly, Helffer-Sjöstrand formula can be used to prove g(H + chd/κ0) − g(αW,h) = o(h) in
L(L2(Rd)) . With hd

[
(1 +H + chd/κ)−N − (1 + αW,h)−N

]
= o(h) in L1(L2(Rd)) due to

(1 +H + chd/κ0)−1 =
[

1 + (1 + αW,h)−1(Bh + chd/κ0)
]−1

(1 + αW,h)−1

the same trick as above transforms the L(L2(Rd)) estimate into

hd
[

fδ(H + chd/κ0)− fδ(α
W,h)

]

= o(h) in L1(L2(Rd)) (22)

Note again that this holds uniformly with respect to c ∈ ( 1
A , A) for any fixed A > 1 .

Now take fδ(s) = (1− χ(δ−2s))χ(δ2s)f(s) for which we note that the inequality

∀s ≥ 0, 1− (1− χ(δ−2s))χ(δ2s) ≤ χ(δ−1s) + (1− χ(δs))

as soon as δ < δchi implies

∀s ≥ 0, 0 ≤ f(s)− fδ(s) ≤ f(s)[χ(δ−1s) + (1− χ(δs))] . (23)

In the expression hdTr[f(H + chd/κ0aW,h] , decompose f(H + chd/κ0) into

fδ(H + chd/κ0)
︸ ︷︷ ︸

(I)

+(f(H + chd/κ0 − fδ(H + chd/κ0))1(0,+∞)(H)
︸ ︷︷ ︸

(II)

+1{0}(H)f(chd/κ0)
︸ ︷︷ ︸

(III)

.

We now conclude with the following steps:

29



• The estimate (22) yields

lim
h→0

hdTr
[

fδ(H + chd/κ0)aW,h
]

= lim
h→0

hdTr
[

fδ(α)
W,haW,h

]

=

∫

R2d

fδ(α(X))a(X)
dX

(2π)d
,

which provides the contribution of (I) .

• The upperbound (23) combined with (21) leads to

lim
δ→0+

lim sup
h→0

∣
∣
∣hdTr[[f(H + chd/κ0)− fδ(H + chd/κ0)]1(0,+∞)(H)aW,h]

∣
∣
∣ = 0 ,

which says that (II) has a null contribution in the limit δ → 0 .

• The contribution of (III) is simply computed as

hdTr
[

f(H + chd/κ0)1{0}(H)aW,h
]

=
f0
cκ0

〈ψh
0 , a

W,hψh
0 〉

where ψh
0 is the ground state of H + chd/κ0 with ‖ψh − π−d/4e−x2/2‖ h→0→ 0 . This implies

limh→0〈ψh , aW,hψh〉 = a(0) .

• Finally, the assumptions on f ensure f(α) ∈ L1(R2d) and

lim
δ→0

∫

R2d

fδ(α(X))a(X) dX =

∫

R2d

f(α(X))a(X) dX .

5.2.4 Semiclassical analysis of the reduced density matrices in the bosonic case

Proof of Proposition 5.4. This will be made in two parts: We first compute the semiclassical mea-

sures ν(p) and then identify the weak-∗ limit γ
(p)
0 .

For the first part Proposition 4.4 says that it suffices to find the limit Φa,0(s) of Φa,h(s) for
a ∈ C∞

0 (T ∗
R
d) , real-valued, and s ∈ (−ra, ra) . Actually Proposition 5.6 allows to consider

more generally a ∈ S(1, dX2) . For a ∈ S(1, dX2) , real-valued, take s ∈ R , |s| < ra = 1
νCCa

,

4‖aW,h‖ ≤ Ca and set

DTa,h(s) = log Tr [̺εΓ(e
εsa)] = −Tr [log(1− CBs)] + Tr [log(1− C)]

and Φa,h(s) = Tr
[

̺εΓ(e
εsaW,h

)
]

= expDTa,h(s) , ε = hd ,

with C = e
−β(H+ ε

βνC
)
and Bs = eεsa

W,h
.

Assume s ∈ (−ra, ra) and compute

DTa,h(s) =

∫ 1

0
Tr

[

CtsB̃ts

1− CtsB̃ts

εsaW,h

]

dt

=

∫ 1

0
Tr

[

εsf(H +
ε

β
(ν−1

C − tsa(0)))aW,h

]

dt

+

∫ 1

0
Tr
[

εs[−(1− Cts)
−1 + (1− CtsB̃ts)

−1]aW,h
]

dt
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with Cts = e−β(H+ ε
β
(ν−1

C −tsa(0))) , B̃ts = eεts(a−a(0))W,h
and f(u) = e−βu

1−e−βu . Note that for t ∈ [0, 1]

the parameter 1
β (ν

−1
C − tsa(0)) remains in a compact subset of (0,+∞) . Prop. 5.6 implies for all

t ∈ [0, 1]:

lim
h→0

Tr

[

εsf(H +
ε

β
(ν−1

C − tsa(0)))aW,h

]

=
νCsa(0)

1− tνCsa(0)
+ s

∫

R2d

e−βα(X)

1− e−βα(X)
a(X)

dX

(2π)d
.

With the uniform control with respect to 1
β (ν

−1
C − tsa(0)) = c ∈ [ 1A , A] in Proposition 5.6, we obtain

for the first term

lim
h→0

∫ 1

0
Tr

[

εsf(H +
ε

β
(ν−1

C − tsa(0)))aW,h

]

dt

= − log(1− sνCa(0)) + s

∫

R2d

e−βα(X)

1− e−βα(X)
a(X)

dX

(2π)d
.

For the remainder term, introduce Πh
0 = |ψh

0 〉〈ψh
0 | , where ψh

0 = UT (π
−d/4e−

x2

2 )+o(h0) is the ground
state of H , and write

(1− CtsB̃ts)

= 1− Cts − Cts(B̃ts − 1) = (1− Cts)

[

1 +
Cts

1− Cts
(1− B̃ts)

]

= (1− Cts)

[

1 +
Cts

1−Cts
Πh

0(1− B̃ts) +
Cts

1− Cts
(1−Πh

0)(1− B̃ts)

]

= (1− Cts)






1 + f

(
ε

β
(ν−1

C − tsa(0))

)

Πh
0(1− B̃ts)

︸ ︷︷ ︸

I

+
Cts

1− Cts
(1−Πh

0)(1− B̃ts)

︸ ︷︷ ︸

II






.

We know

ε× f

(
ε

β
(ν−1

C − tsa(0))

)

=
1

ν−1
C − tsa(0)

+O(ε) =
1

ν−1
C − tsa(0)

+ o(h) .

We write

ε−1(1− B̃ts)ψ
h
0 = −

∫ 1

0
eεuts(a−a(0))W,h

ts(a− a(0))W,hψh
0 du ,

where ψh
0 = π−d/4UT e

−x2

2 + o(h0) and a(X) − a(0) ≤ Cmin{1, |X|} for some C > 0 imply
limh→0 ‖(a− a(0))W,hψh

0 ‖L2(Rd) = 0 . Therefore the second term in the above bracket satisfies

I = f

(
ε

β
(ν−1

C − tsa(0))

)

Πh
0(1− B̃ts) = o(h0) in L1(L2(Rd)) .

Note that we have also proved

(1− B̃ts)Π
h
0 −Πh

0(1− B̃ts) = o(ε) in L(L2(Rd)) .
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By using

‖1− B̃ts‖ = O(ε) ,

∥
∥
∥
∥

Cts

1− Cts
(1−Πh

0)

∥
∥
∥
∥
= O(

1

h
) ,

and

lim
h→0

‖ε Cts

1− Cts
‖L1 = lim

h→0
Tr

[

εf(H +
ε

β
(ν−1

C − tsa(0)))

]

=
νC

1− tνCsa(0)
+ s

∫

R2d

e−βα(X)

1− e−βα(X)

dX

(2π)d
,

the third term in the above bracket satisfies

‖II‖L1 = O(1) , ‖II‖ = O(εh−1) = o(h0) ,

‖II − Cts

1− Cts
(1−Πh

0)(1 − B̃ts)(1−Πh
0)‖L1 = o(h0) .

Again all these estimates are uniform with respect to t ∈ [0, 1] owing to the uniformity of the
estimates in Proposition 5.6 with respect to c = 1

β (ν
−1
C − tsa(0)) . By expanding the Neumann

series (1 + I + II)−1 =
∑∞

k=0(−1)k(I + II)k we deduce

[

1 +
Cts

1− Cts
(1− B̃ts)

]−1

= 1− Cts

1− Cts
(1−Πh

0)(1 − B̃ts)(1−Πh
0) +Rh

with ‖Rh‖L1 = o(h0) . With ‖ε(1 − Cts)
−1‖ = O(1) we finally obtain

εs[(1− Cts)
−1 − (1− CtsB̃ts)

−1]

=
sεCts

1− Cts
(1−Πh

0)(1− B̃ts)(1 −Πh
0)(1− Cts)

−1 +R′
h , ‖R′

h‖L1 = o(h0) ,

while ‖εCts(1− Cts)
−1‖L1 = O(1) , ‖1− B̃‖ = O(ε) and ‖(1−Πh

0)(1 −Cts)
−1‖ = O(h−1) .

With 4‖aW,h‖ ≤ Ca , the remainder term tends to 0 as h→ 0 and we have proved

∀s ∈ (−ra, ra) , lim
h→0

Φa,h(s) = Φa,0(s)

=
1

1− sνCa(0)
exp

[

s

∫

R2d

e−βα(X)

1− e−βα(X)
a(X)

dX

(2π)d

]

.

By expanding the generating function according to Proposition 4.4, we obtain

lim
h→0

Tr
[

̺ε((a
W,h)⊗p)Wick

]

=

p
∑

k=0

1

(p − k)!
νkCa(0)

k

∫

R2d(p−k)

a⊗(p−k)dν(β)⊗p−k .

with dν(β) = e−βα(X)

1−e−βα(X)
dX

(2π)d
. The possibility to take a ∈ S(1, dX2) contains the fact that our

quantization is adapted to all the γ
(p)
h .

Now in order to identify the weak∗ limits of the γ
(p)
h we compute the Wigner measure associated

with ̺ε(h) . Remember (see (24) and (25))

Tr
[

̺εW (
√
2πf)

]

= exp

[

−επ
2

2
〈f , 1 + e

−β(H+ ε
βνC

)

1− e
−β(H+ ε

βνC
)
f〉 .
]
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By using the orthonormal basis of eigenvectors (ψh
j )j∈N ofH with associated eigenvalues λhj , λ

h
0 = 0 ,

λhj ≥ ch for j > 0 , we obtain

log
(

Tr
[

̺ε(h)W (
√
2πf)

])

= −π2νC |〈f, ψh
0 〉|2 +O(εh−1) .

With ‖ψh
0 − ψ0‖L2 = o(h) , ψ0(x) = π−d/4UT e

−x2

2 , we obtain after decomposing f = f0ψ0 ⊕⊥ f ′

∫

L2

e2iπRe 〈f,z〉 dµ(z) = lim
h→0

Tr
[

̺ε(h)W (
√
2πf)

]

= e−π2νC |f0|2 .

We deduce, like in [AmNi1, Section 7.5] or [AmNi3, Section 4.4],

M(̺ε(h), h ∈ E) =










e
− |z0|

2

νC

πνC
L(dz0)



⊗ δ0(z
′)






(z = z0ψ0 ⊕⊥ z′) ,

and γ
(p)
0 = p!νpC |ψ

⊗p
0 〉〈ψ⊗p

0 | ,∀p ∈ N .

The fact that ν
(p)
(I) ≡ 0 for all p ∈ N , now comes from

Tr
[

γ
(p)
0

]

= p!νpC = ν(p)({0}) .

A Multiscale Measures

We now recall facts about multiscale measures, introduced in [FeGe, Fer]. For this we need a
new class of symbols. Let D′,D′′,D′′′ ∈ N be such that D′ + D′′ + D′′′ = D and set F =
{
X = (x′, x′′, x′′′, ξ′, ξ′′, ξ′′′) ∈ R

2D , x′ = 0 , x′′ = ξ′′ = 0
}
. The class of symbols S

(2)
F is defined as

the set of (X,Y ) → a(X,Y ) ∈ C∞(R2D ×R
D′+2D′′

) , (note that RD′+2D′′ ∼= F⊥, hence the notation

S
(2)
F ) such that

• there exists C > 0 such that: ∀Y ∈ R
D′+2D′′

, a(·, Y ) ∈ C∞
0 (B(0, C)) ;

• there exists a function a∞ ∈ C∞
0 (R2D × S

D′+2D′′−1) such that a(X,Rω)
R→∞→ a∞(X,ω) in

C∞(R2D × S
D′+2D′′−1) .

Those symbols are quantized according to

a(2),h = aW,h
h , ah(X) = a(X,

x′

h1/2
,
X ′′

h1/2
) X = (x′, x′′, x′′′, ξ′, ξ′′, ξ′′′) .

Theorem 0.1 in [Fer], which also considers the case when ( x′

h1/2 ,
X′′

h1/2 ) is replaced by ( x
′

hs ,
X′′

hs ) , s <
1
2 ,

says the following.
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Proposition A.1. Let (γh)h∈E be a bounded family of non-negative trace-class operators on L2(R2D)
with limh→0Tr [γh] < +∞ . There exist E ′ ⊂ E , 0 ∈ E ′ , with M(γh, h ∈ E ′) = {ν} , a non-
negative measure ν(I) on F ×S

D′+2D′′−1 and a L1(L2(R2D′′
))-measure m on F ×R

D′
, such that the

convergence

lim
h∈E ′ , h→0

Tr
[

γha
(2),h

]

=

∫

R2D\F
a∞(X,

(x′,X ′′)
|(x′,X ′′)|) dν(X)

+

∫

F×SD
′+2D′′−1

a∞(X,ω) dν(I)(X,ω) + Tr

[∫

F×RD′
a(X,x′, z,Dz)dm(X,x′)

]

holds for all a ∈ S
(2)
F .

Remark A.2. With this scaling and when aW,h = aW (x, hDx) = a(x, hDx)+O(h) , t = 0 , Ferma-
nian checked in [Fer] the equivariance by the semiclassical Egorov theorem. Hence, this construction
is naturally extended to the case when T ∗

R
D is replaced by T ∗M and F is replaced by a submanifold

of T ∗
R
D on which the symplectic form has constant rank.

In Prop. 3.5 we use the simple case of the above result when D′ = D′′′ = 0 and D′′ = D . Note
that in this case F × R

D′
= {0} and the trace-class-valued measure is nothing but a trace-class

operator γ0 .

B Mean-field Wigner measures in the bosonic case and condition
(PI)

The bosonic mean-field analysis is like a semiclassical analysis in infinite dimension. Let Z be a
separable complex Hilbert space and Γ+(Z ) be the associated bosonic Fock space. With the scaled
CCR relations

[a+(g), a
∗
+(f)] = ε〈g, f〉 , [a+(g), a+(f)] = [a∗+(g), a

∗
+(f)] = 0

and after setting

Φ(f) =
a+(f) + a∗+(f)√

2
, W (f) = eiΦ(h) , (24)

mean-field Wigner measures where introduced in [AmNi1]. Actually the parameter ε−1 represents
the typical number of particles. Let (̺ε)ε∈E , 0 ∈ E , be a family of normal states (normalized non-
negative trace-class operators) in Γ+(Z ) . Under the sole uniform estimate Tr

[
̺ε(1 +N)δ

]
≤ Cδ

for some δ > 0 , Wigner measures are defined as Borel probability measures on Z and characterized
by their characteristic function as follows: µ ∈ M(̺ε, ε ∈ E) , iff there exists E ′ ⊂ E , 0 ∈ E ′ , such
that

∀f ∈ Z , lim
ε∈E ′

ε→0

Tr
[

̺εW (
√
2πf)

]

=

∫

Z

e2iπRe 〈f,z〉 dµ(z) . (25)

Assuming Tr
[
̺εN

k
+

]
≤ Ck for all k ∈ N (or as we do in Hypothesis 4.1, Tr

[
̺εe

cN+
]
≤ C) ,

M(̺ε , ε ∈ E) = {µ} implies that

lim
ε→0

Tr
[

̺εb̃
Wick

]

=

∫

Z

〈z⊗p , b̃z⊗p〉 dµ(z) (26)
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holds for all compact b̃ ∈ L∞(Sp
+Z ⊗p) . In particular with the definition of non normalized reduced

density matrices we obtain

∀p ∈ N, w∗ − lim
ε→0

γ(p)ε = γ
(p)
0 =

∫

Z

|z⊗p〉〈z⊗p| dµ(z) .

This w∗-limit can be transformed to a ‖ ‖L1 iff the restriction to compact b̃ in (26) can be removed.
It actually suffices to check that (26) holds for b̃ ∈ L∞(Sp

+Z ⊗p) and b̃ = IdSp
+Z ⊗p , as shows the

following result.

Proposition B.1. For a family (̺ε)ε∈E in L1(H) , 0 ∈ E , such that ̺ε ≥ 0, Tr[̺ε] = 1, M(̺ε, ε ∈
E) = {µ}, the conditions (PI) and (P ) are equivalent:

(

(PI) : ∀α ∈ N, lim
ε→0

Tr [̺εN
α] =

∫

Z

|z|2α dµ(z) <∞
)

⇔
(

(P ) : ∀b ∈ Palg(Z ), lim
ε→0

Tr
[

̺εb
Wick

]

=

∫

Z

b dµ

)

,

where Pp,q(Z ) =
{

b : Z ∋ z 7→ b(z) = 〈z⊗q , b̃z⊗p〉 ∈ C , b̃ ∈ L(Sp
+Z ⊗p;Sq

+Z ⊗q)
}

, and Palg(Z ) =

⊕alg
p,q∈NPp,q(Z ) .

We give below the proof, which rectifies a minor mistake in [AmNi3].

Proof. For α ∈ N
∗, (|z|2α)Wick = N(N−ε) . . . (N−(α−1)ε). Hence the condition (PI) is equivalent

to

(PI)′ : ∀α ∈ N, lim
ε→0

Tr
[

̺ε(|z|2α)Wick
]

=

∫

Z

|z|2α dµ(z) <∞ .

Hence the condition (PI) is a particular case of (P ) and it is sufficient to prove (PI)′ ⇒ (P ). From
now, assume (PI)′ .

We want to prove (P ) for a general b ∈ Palg(Z ) = ⊕alg
p,q∈NPp,q(Z ) . Let us first consider the

“diagonal” case b ∈ Pp,p(Z ) , p ∈ N
∗ . Using the decomposition b̃ = b̃R,+ − b̃R,− + ib̃I,+ − ib̃I,− with

all the b̃• ≥ 0 we can assume b̃ ≥ 0. For such a b̃ , there exists a non-decreasing sequence (b̃n)n≥0

of non-negative compact operators in L∞(Sp
+Z )⊗p such that limn→∞ b̃n = b̃ in the weak operator

topology. Recall from [AmNi3, Prop. 2.9] that the convergence in the (P ) condition always holds
when the kernel b̃ is compact, thus

∀n ∈ N ,

∫

Z

bn dµ = lim
ε→0

Tr[̺ε b
Wick
n ] ≤ lim inf

ε→0
Tr[̺ε b

Wick] .

Using bn(z) = 〈z⊗p, b̃nz
⊗p〉 → 〈z⊗p, b̃z⊗p〉 = b(z) as n→ ∞ and Fatou’s lemma yield

∫

Z

b dµ ≤ lim inf
ε→0

Tr[̺εb
Wick] . (27)

The same arguments with b̃ replaced by |b|Pp,pIdSp
+Z ⊗p − b̃ ≥ 0 provide

lim inf
ε→0

Tr[̺ε(|b̃|Sp
+Z⊗p |z|2p − b(z))Wick] ≥

∫

(|b̃|Sp
+Z⊗p |z|2p − b(z))dµ(z) .
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With (PI)′ condition, the |z|2p terms can be removed on both sides and thus

lim sup
ε→0

Tr[̺εb
Wick] ≤

∫

Z

b dµ . (28)

The inequalities (27) and (28) show that the convergence in the (P ) condition holds for all b ∈
Pp,p(Z ) such that b̃ ≥ 0, and hence for all b ∈ Pp,p(Z ).

We now consider the general case b ∈ Pp,q(Z ). There exists a sequence of compact operators
b̃n ∈ L∞(SpZ ⊗p,Sq

+Z ⊗q) such that:

∀n ∈ N , |bn|Pp,q = |b̃n|L(Sp
+Z ⊗p,Sq

+Z ⊗q) ≤ |b̃|L(Sp
+Z ⊗p,Sq

+Z ⊗q) = |b|Pp,q

and ∀z ∈ Z , lim
n→∞

bn(z) = lim
n→∞

〈z⊗q , b̃nz
⊗p〉 = 〈z⊗q , b̃z⊗p〉 = b(z) .

For any fixed n ∈ N ,

lim sup
ε→0

∣
∣
∣
∣
Tr
[

̺εb
Wick

]

−
∫

Z

b(z) dµ(z)

∣
∣
∣
∣

≤ lim sup
ε→0

∣
∣
∣Tr
[

̺ε(b
Wick − bWick

n )
]∣
∣
∣+ lim sup

ε→0

∣
∣
∣
∣
Tr
[

̺εb
Wick
n

]

−
∫

Z

bn dµ

∣
∣
∣
∣
+

∫

Z

|bn − b| dµ , (29)

where the second term of the right-hand side vanishes because b̃n is a fixed compact operator. Using
the Cauchy-Schwarz inequality with Tr[̺ε] = 1 gives

∣
∣
∣Tr
[

̺ε(b
Wick − bWick

n )
]∣
∣
∣ ≤ Tr

[

̺ε(b
Wick − bWick

n )(bWick,∗ − bWick,∗
n )

]1/2
.

From the proved result when p = q , we deduce:

lim sup
ε→0

∣
∣
∣Tr
[

̺ε(b
Wick − bWick

n )
]∣
∣
∣ ≤

[∫

Z

|b− bn|2 dµ(z)

]1/2

. (30)

With
∫

Z
|z|r(p+q) dµ(z) <∞ and

∀n ∈ N , ∀z ∈ Z , |b(z) − bn(z)|r ≤ (2|b|Pp,q )
r|z|r(p+q) ,

Lebesgue’s convergence theorem yields

lim
n→∞

∫

Z

|b− bn|r dµ = 0 (31)

for r ∈ {1, 2} . Combining (29), (30) and (31) proves (P ) for any b ∈ Pp,q(Z ) .

C The Composition Formula of Wick Quantized Operators

We give an algebraic proof for the composition formula (3) of two Wick quantized operators on
a finite or infinite dimensional separable complex Hilbert space Z . This proof holds in both the
bosonic and fermionic cases. It uses only the definition of the Wick quantization, and it involves
neither creation and annihilation operators, nor the canonical commutation or anticommutation
relations.
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We note Jm,nK := {m, . . . , n} for m ≤ n ∈ N. The action of the symmetric group SJ1,nK on
product vectors in Z ⊗n, σ · (z1 ⊗ · · · ⊗ zn) = zσ1 ⊗ · · · ⊗ zσn , zj ∈ Z , is extended to Z ⊗n by
linearity and density. With this notation Sn

± = 1
n!

∑

SJ1,nK
s±(σ)σ· .

We begin with a preliminary lemma on a special set of permutations.

Lemma C.1. Let k, p, q,K ∈ N such that k ∈ Jmax{0, p + q −K},min{p, q}K , and

S(k) :=
{

σ ∈ SJ1,KK

∣
∣
∣ card

(
σ(Jp− k + 1, p− k + qK) ∩ J1, pK

)
= k

}

.

1. The cardinal of S(k) is cardS(k) =
(q
k

)(p
k

)
k! (K−q)! (K−p)!

(K−(q+p−k))! .

2. Any permutation σ ∈ S(k) can be factorized as σ = σ(1)σ(2)σ(3)σ(4), where σ(1) ∈ SJ1,pK ,

σ(2) ∈ SJp+1,KK , σ
(3) ∈ SJp−k+1,p−k+qK , σ

(4) ∈ SJ1,KK\Jp−k+1,p−k+qK .

Note that:

• There is no uniqueness of such a decomposition.

• For A ⊂ B an element of SA is identified with the corresponding element of SB which is the
identity on B \A .

• The permutations σ(1) and σ(2) commute, and so do σ(3) and σ(4).

Proof. For Point 1: We count the number of permutation in S(k). We first choose k integers out of
Jp−k+1, p−k+qK and k integers out of J1, pK . There is

(
q
k

)(
p
k

)
such possible choices and k! possible

permutations for each of these choices. Then the remaing q − k integers of Jp − k + 1, p − k + qK
have to be sent in Jp+1,KK . There is (q−k)!

(
K−p
q−k

)
possibilities for that. In the same way we have

(p− k)!
(K−q
p−k

)
possibilities for the remaining integers of J1, pK that come from J1,KK \ Jp− k+1, p−

k + qK . Finally the K − k − (q − k) − (p − k) remaing integers on both sides can be permuted in
(K − q − p+ k)! different ways. So that

cardS(k) =

(
q

k

)(
p

k

)

k!(q − k)!

(
K − p

q − k

)

(p− k)!

(
K − q

p− k

)

(K − q − p+ k)!

and this gives the result.
For Point 2: Let A = σ−1(J1, pK) ∩ Jp − k + 1, p − k + qK . There exists σ(3) ∈ SJp−k+1,p−k+qK

such that σ(3)(A) = Jp− k + 1, pK . Then

σ σ(3)−1(Jp− k + 1, pK) = σ(A) ⊆ J1, pK .

Hence there exists σ(1) ∈ SJ1,pK such that σ(1)(j) = σ σ(3)−1(j) on Jp − k + 1, pK . And, similarly,

there exists σ(2) ∈ SJp+1,KK such that σ(2)(j) = σ σ(3)−1(j) on Jp + 1, p − k + qK . Note that σ(1)

and σ(2) commute. Finally, we set σ(4) = σ(2)−1σ(1)−1σσ(3)−1 . By construction, σ(4)(j) = j for
j ∈ Jp− k + 1, p − k + qK , hence σ(4) ∈ SJ1,KK\Jp−k+1,p−k+qK and σ = σ(1)σ(2)σ(3)σ(4) (as σ(4) and

σ(3) commute).

Notation: On L(Z ⊗p;Z ⊗q) , the equivalence relation ∼= is defined by

A ∼= B ⇔ Sq
±ASp,∗

± = Sq
±B Sp,∗

± .
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Lemma C.2. Let b̃j ∈ L(Spj
± Z ⊗pj ;Sqj

± Z ⊗qj) and nj such that n1 + p1 = n2 + q2 =: K. Then

(b̃1 ⊗ Id⊗n1)SK,∗
± SK

± (b̃2 ⊗ Id⊗n2) ∼=
∑

k

(±1)(p2+q2)(k−p1) n2!n1!

K ′!K! k!
(b̃1♯

k b̃2)⊗ Id⊗K ′
,

where k ∈ Jmax{0, p1 + q2 −K},min{p1, q2}K , and K ′ = K − q2 − p1 + k .

Proof. Using the partition SJ1,KK =
⊔

k S̃(k) in subsets

S̃(k) :=
{

σ ∈ SJ1,KK

∣
∣
∣ card

(
σ(J1, q2K) ∩ J1, p1K

)
= k

}

for k ∈ Jmax{0, p1 + q2 −K},min{p1, q2}K , yields

(b̃1 ⊗ Id⊗n1)SK,∗
± SK

± (b̃2 ⊗ Id⊗n2) =
1

K!

∑

k

∑

σ̃∈S̃(k)

(b̃1 ⊗ Id⊗n1)s±(σ̃)σ̃ · (b̃2 ⊗ Id⊗n2) .

We fix k and σ̃ ∈ S̃(k). A cyclic permutation τr := (1 2 3 · · · r) acting on Z⊗r defines the shift

operator τr· = (1 2 3 · · · r)· and then σ := σ̃ τk−p1
K is in S(k) (with p = p1 and q = q2) and

(b̃1 ⊗ Id⊗n1) s±(σ̃) σ̃τ
k−p1
K τp1−k

K · (b̃2 ⊗ Id⊗n2) τk−p1
p2+n2

τp1−k
p2+n2

·
∼= (b̃1 ⊗ Id⊗n1) s±(σ)σ · (±1)K(k−p1)(Id⊗p1−k ⊗ b̃2 ⊗ Id⊗K ′

)(±1)(p2+n2)(k−p1)

∼= (±1)(K+p2+n2)(k−p1)(b̃1 ⊗ Id⊗n1)s±(σ)σ · (Id⊗p1−k ⊗ b̃2 ⊗ Id⊗K ′
)

holds for operators in L(Z ⊗q1+n1 ;Z ⊗p2+n2) . We used

s±(σ) = s±(σ̃)s±(τ
k−p1
K ) = s±(σ̃)(±1)K(k−p1)

and (τp1−k
p2+n2

·) ◦ Sp2+n2
± = (±1)(p2+n2)(p1−k)Sp2+n2

± .

Owing to the factorization σ = σ(1)σ(2)σ(3)σ(4) of Lemma C.1 with σ(i)σ(i+1) = σ(i+1)σ(i) for
i ∈ {1, 3} , we get

(b̃1 ⊗ Id⊗n1)s±(σ)σ · (Id⊗p1−k ⊗ b̃2 ⊗ Id⊗K ′
)

∼= (b̃1 ⊗ Id⊗n1)s±(σ)(σ
(1)σ(2)σ(3)σ(4)) · (Id⊗p1−k ⊗ b̃2 ⊗ Id⊗K ′

)

∼= s±(σ)((b1 σ
(1)· )⊗ Id⊗n1σ(2)· )σ(4) · (Id⊗p1−k ⊗ (σ(3) · b̃2)⊗ Id⊗K ′

)

∼= s±(σ)(b̃1s±(σ
(1))⊗ s±(σ

(2))Id⊗n1)s±(σ
(4))(Id⊗p1−k ⊗ s±(σ

(3))b̃2 ⊗ Id⊗K ′
)

∼= (b̃1 ⊗ Id⊗n1) (Id⊗p1−k ⊗ b̃2 ⊗ Id⊗K ′
)

∼= [(b̃1 ⊗ Id⊗q2−k)(Id⊗p1−k ⊗ b̃2)]⊗ Id⊗K ′

∼=
( p1!
(p1−k)!

q2!
(q2−k)!

)−1
(b̃1♯

k b̃2)⊗ Id⊗K ′
.

We conclude with the first statement of Lemma C.1 which counts the terms in
∑

σ̃∈S̃(k) because

card(S̃(k)) = card(S(k)) .
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Proof of Proposition 2.2. For n1, n2 such that n1 + p1 = n2 + q2 =: K, using Lemma C.2,

ε−
p1+q1+p2+q2

2 × b̃Wick
1 b̃Wick

2

∣
∣
∣
Sn2+p2
± Z ⊗n2+p2

=

√
K!(n1+q1)!

n1!

√
(n2+p2)!K!

n2!
Sq1+n1
± (b̃1 ⊗ Id⊗n1)Sp1+n1,∗

± Sp2+q2
± (b̃2 ⊗ Id⊗n2)Sp2+n2,∗

±

=
∑

k

(±1)(p2+q2)(k−p1)
√

(n1+q1)!(n2+p2)!

n1!n2!
K! n2!n1!

K ′!K! k! S
q1+n1
±

(
(b̃1♯

k b̃2)⊗ Id⊗K ′)Sp2+n2,∗
±

=
∑

k

(±1)(p2+q2)(k−p1)
√

(q2+q1−k+K ′)!(p2+p1−k+K ′)!

K ′! k! Sq1+n1
±

(
(b̃1♯

k b̃2)⊗ Id⊗K ′)Sp2+n2,∗
±

where K ′ := K − q2 − p1 + k .
With p2 + n2 = p2 + p1 − k + K ′ and q1 + n1 = q2 + q1 − k +K ′ , we thus obtain the equality of
operators

b̃Wick
1 b̃Wick

2 =
∑

k

(±1)(p2+q2)(k−p1) ε
k

k!
(b̃1♯

k b̃2)
Wick

restricted to Sn2+p2
± Z ⊗n2+p2 .

D A general formula for Tr [Γ±(C)]

The following result about traces of the second quantized operator Γ±(C) is often presented for self-
adjoint trace-class operators, although it is valid without self-adjointness. We recall here the general
version for the sake of completeness. It relies on a simple holomorphy argument and can be compared
with Lidskii’s Theorem which says that for any trace-class operator T , Tr[T ] =

∑

λ∈σ(T ) λ .

Lemma D.1. For any trace-class operator C ∈ L1(Z ) (which is assumed to be a strict contraction
in the bosonic case, ± = +) , its second quantized version Γ±(C) is trace-class in Γ±(Z ) and

Tr [Γ±(C)] = exp (∓Tr [log(1∓ C)]) .

Proof. When C = C∗ ∈ L1(Z ) using an orthonormal basis of eigenvectors (en)n∈N in Z with the
corresponding eigenvalues (λn)n∈N , and Γ±(Z ) = ⊗n∈NΓ±(Cen) , we obtain

• in the bosonic case with ‖C‖ < 1 ,

Tr [Γ+(C)] =
∏

n∈N
Tr [Γ+(λnIdC)] =

∏

n∈N

1

1− λn
= exp

(

−
∑

n∈N
log(1− λn)

)

= exp (−Tr [log(1− C)]) ,

• in the fermionic case ,

Tr [Γ−(C)] =
∏

n∈N
Tr [Γ−(λnIdC)] =

∏

n∈N
(1 + λn) = exp

(

+
∑

n∈N
log(1 + λn)

)

= exp (Tr [log(1 +C)]) .
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The functoriality of Γ± for the polar decomposition C = U |C| , reads Γ±(C) = Γ±(U)Γ±(|C|) ,
while ‖C‖ < 1 ⇔ ‖|C|‖ < 1 in the bosonic case. Hence Γ±(C) is trace-class when C ∈ L1(Z ) (and
‖C‖ < 1 in the bosonic case).
Set C = L1(Z ) in the fermionic case and C = L1(Z ) ∩ {C ∈ L(Z ) , ‖C‖ < 1} in the bosonic case.
In both cases C is an open convex set, on which the two sides of the equality are holomorphic
functions. Actually the holomorphy of the left-hand side comes from series expansion

Tr [Γ±(C)] =

∞∑

n=0

Tr
[
Sn
±C

⊗nSn,∗
±
]
,

which converges uniformly in B(C0, δC0) =
{
C ∈ L1(Z ) , ‖C −C0‖L1(Z ) < δC0

}
for δC0 > 0 small

enough, for any C0 ∈ L1(Z ) (satisfying additionally ‖C0‖ < 1 in the bosonic case). Actually the
estimate ‖C‖L1(Z ) ≤ A (and ‖C‖ ≤ ̺ with ̺ < 1 in the bosonic case) imply ‖ |C| ‖L1(Z ) ≤ A (and
‖ |C| ‖ ≤ ̺ in the bosonic case). Now the inequality

|Tr
[
Sn
±C

⊗nSn,∗
±
]
| ≤ Tr

[
Sn
±|C|⊗nSn,∗

±
]
,

and the formula in the self-adjoint case with

∞∑

n=0

Tr
[
Sn
−|C|⊗nSn,∗

−
]
≤ exp(A) (fermions)

resp.

∞∑

n=0

Tr
[
Sn
+|C|⊗nSn,∗

+

]
≤ exp(

A

1− ̺
) (bosons) ,

ensure the uniform convergence of the series .
For any C ∈ C , C and Re C = C+C∗

2 belong to C so that C(s) = Re C + isIm C belong to
C when s ∈ ω0 = (−δ, δ) + i(−δ, δ) and when s ∈ ω1 = (1 − δ, 1 + δ) + i(−δ, δ) for δ > 0 small
enough. By convexity of C , C(s) ∈ C for all s ∈ ω = (−δ, 1 + δ) + i(−δ, δ) . When s ∈ i(−δ, δ) ,
C(s) is self-adjoint and the equality holds. The holomorphy of both sides w.r.t s ∈ ω implies that
the equality holds true for all s ∈ ω in particular when s = 1 .
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