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A PROOF OF THE MUIR-SUFFRIDGE CONJECTURE FOR CONVEX

MAPS OF THE UNIT BALL IN Cn

FILIPPO BRACCI† AND HERVÉ GAUSSIER

Abstract. We prove (and improve) the Muir-Suffridge conjecture for holomorphic con-
vex maps. Namely, let F : Bn → C

n be a univalent map from the unit ball whose image
D is convex. Let S ⊂ ∂Bn be the set of points ξ such that limz→ξ ‖F (z)‖ = ∞. Then we
prove that S is either empty, or contains one or two points and F extends as a homeo-
morphism F̃ : Bn \ S → D. Moreover, S = ∅ if D is bounded, S has one point if D has
one connected component at ∞ and S has two points if D has two connected components
at ∞ and, up to composition with an automorphism of the ball and renormalization, F
is an extension of the strip map in the plane to higher dimension.

1. Introduction

Let Bn := {z ∈ Cn : ‖z‖ < 1} be the unit ball of Cn, n ≥ 1. A domain D ⊂ Cn is
convex if for every z, w ∈ D the real segment joining z and w is contained in D.

In the paper [12] J. Muir and T. Suffridge made the following conjecture:

Conjecture 1.1. Let F : Bn → Cn be a univalent map such that F (0) = 0 and dF0 = id.
Suppose that D := F (Bn) is convex. Then

(a) D is bounded and F extends continuously to ∂Bn, or
(b) F extends continuously to ∂Bn except for one point that is an infinite discontinuity,

or
(b) up to pre-composing with an automorphism of Bn and post-composing with an

affine transformation, there exists a holomorphic function H : Bn−1 → Cn, con-
tinuous up to ∂Bn−1, such that

(1.1) F (z1, z
′) =

(

1

2
log

1 + z1

1− z1

)

e1 +H

(

z′
√

1− z21

)

.

Here, z = (z1, z
′) ∈ C×Cn−1, e1 = (1, 0, . . . , 0) and a point ξ ∈ ∂Bn is a point of infinite

discontinuity for F if limz→ξ ‖F (z)‖ = ∞.

Key words and phrases. holomorphic convex maps of the unit balls; boundary extension; Gromov
hyperbolicity; semigroups of holomorphic maps; commuting maps.
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We point out explicitly that no regularity assumptions on the boundary of D are made.
Since the boundary of a convex domain in C is a Jordan curve, the conjecture is true for

n = 1 because of Carathéodory’s extension theorem. In case n > 1, in [12, Theorem 2.13],
Muir and Suffridge proved that if there exists v ∈ Cn, ‖v‖ = 1, such that tv ⊂ D for
all t ∈ R, then ξ1 := limt→−∞ F−1(tv) and ξ2 := limt→∞ F−1(tv) exist and, if ξ1 6= ξ2,
then F has the form (1.1) (although they could not prove that H extends continuously
up to ∂Bn−1). In [13], the same authors proved that, in case ξ1 = ξ2 and there is only
one infinite singularity whose span contains the direction v, then F has a simple form for
which the Conjecture holds.

In the recent paper [5] we proved, as a consequence of a prime ends-type theory (called
“Horosphere theory”) we developed there, that the conjecture is true if D is bounded and,
moreover, in that case, F extends as a homeomorphism up to Bn.

In this paper we prove Conjecture 1.1. In fact, we prove a stronger result:

Theorem 1.2. Let F : Bn → D ⊂ Cn be a biholomorphism. Suppose that D is convex.
Then

(1) D is bounded and F extends as a homeomorphism from Bn onto D, or
(2) D is unbounded and has one connected component at ∞, there exists a unique

point ξ ∈ ∂Bn such that limz→ξ ‖F (z)‖ = ∞ and F extends as a homeomorphism
from Bn \ {ξ} onto D, or

(3) D is unbounded and has two connected components at ∞, there exist ξ1, ξ2 ∈ ∂Bn,
ξ1 6= ξ2, such that limz→ξ1 ‖F (z)‖ = limz→ξ2 ‖F (z)‖ = ∞ and F extends as a
homeomorphism from Bn \ {ξ1, ξ2} onto D.

Here, we say that an unbounded convex domain D ⊂ Cn has one connected component
at ∞ if for every compact ball B, the set D\B has one unbounded connected component,
otherwise we say that it has two connected components at ∞ (see Section 2 for precise
definitions and statements).

The Muir-Suffridge Conjecture 1.1 follows then from Theorem 1.2. Indeed, we show
that a convex domain has two connected components at ∞ if and only if there exists
v ∈ Cn, ‖v‖ = 1, such that z + tv ⊂ D for all z ∈ D and t ∈ R, v is the unique “direction
at ∞” for D and, in such a case, limt→−∞ F−1(tv) 6= limt→∞ F−1(tv) (see Lemma 2.2 and
Proposition 5.2). Therefore, up to composing with an automorphism of Bn in order to have
the infinite discontinuities in e1 and−e1 and post-composing with an affine transformation
in such a way that F (0) = 0 and dF0 = id, F has precisely the form (1.1) by [12, Theorem
2.13].

The proof of Theorem 1.2 uses many ingredients: the properties of real geodesics for
the Kobayashi distance of Bn, Gromov’s theory of quasi-geodesics in D, the theory of
continuous one-parameter semigroups of Bn and that of commuting holomorphic self-
maps of Bn, and properties of horospheres and horospheres sequences of D.
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We remark that, since all the ingredients we use are available for strongly convex
domains with C3 boundary, using Lempert’s theory [10], one can prove that Theorem 1.2
holds replacing B

n with any strongly convex domain with C3 boundary. We leave the
details of this generalization to the interested readers.

The outline of the paper is the following. In Section 2 we prove some simple geometrical
properties of unbounded convex domains. In Section 3, in order to make the paper as self-
contained as possible, we collect the results and known facts we need for our proof.

Then, in Proposition 4.4 we show that F extends continuously to ∂Bn with image the
closure of D in the one-point compactification of Cn. The proof of such a result uses
Gromov’s theory of quasi-geodesics and properties of the Kobayashi distance in D.

Next, in Proposition 5.2, we deal with points in ∂Bn which are mapped to ∞ by F and
we prove that those points correspond to the connected components at ∞ of D (which
might be one or two). The proof uses results from the theory of continuous one-parameter
semigroups in Bn: indeed, if {pn} ⊂ D is a sequence converging to ∞ and pn

‖pn‖
→ v,

then z + tv ∈ D for all z ∈ D and all t ≥ 0 (and we call such a v a “direction at ∞”
for D). Thus one can define a (continuous one-parameter) semigroup in Bn with no fixed
points by setting φt(ζ) := F−1(F (ζ) + tv), ζ ∈ B

n and t ≥ 0. Using horospheres and
properties of horospheres defined by sequences in D, we show essentially that the infinite
discontinuities of F are the Denjoy-Wolff points of such semigroups. We then conclude our
proof by using the fact that every two “directions at ∞” for D give rise to two commuting
semigroups and commuting holomorphic self-maps of Bn do share the same Denjoy-Wolff
point, unless they have very particular forms. The case of two connected components at
∞ for D is handled by using simple properties of real geodesics for the Kobayashi distance
in Bn.

Finally, Theorem 1.2 is proved in Section 6 (see Theorem 6.1).

This paper was written while both authors were visiting the Center for Advanced Stud-
ies in Oslo for the 2016-17 CAS project Several Complex Variables and Complex Dynam-
ics. They both thank CAS for the support and for the wonderful atmosphere experienced
there.

2. Geometry of unbounded convex domains

In this section we collect some simple results about geometry of unbounded convex
domains.

If x, y ∈ Cn, we denote by [x, y] the real segment joining x, y, i.e.,

[x, y] := {z ∈ C
n : z = tx+ (1− t)y, t ∈ [0, 1]}.

For z ∈ Cn and R > 0 we let

B(z, R) := {w ∈ C
n : ‖w − z‖ < R}

be the Euclidean ball of center z and radius R.
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Definition 2.1. Let D ⊂ Cn be an unbounded convex domain. A vector v ∈ Cn, ‖v‖ = 1,
is called a direction at ∞ for D if there exists x ∈ D such that x+ tv ∈ D for all t ≥ 0.

By convexity of D, if v is a direction at ∞ for D, then for every z ∈ D and all t ≥ 0 it
holds z + tv ∈ D.

Lemma 2.2. Let D ⊂ C
n be an unbounded convex domain. Then there exists at least one

direction v at ∞ for D. Moreover

(1) either D \B(0, R) has only one unbounded connected component for all R > 0,

(2) or there exists R0 > 0 such that D \B(0, R) has two unbounded connected compo-
nents for all R ≥ R0. This is the case if and only if the only directions at ∞ for
D are v and −v.

Proof. Since D is unbounded, there exists a sequence {pk} ⊂ D such that limk→∞ ‖pk‖ =
∞. Up to subsequences, we can assume that limk→∞

pk
‖pk‖

= v. Let z ∈ D. Since D is

convex, the real segment [z, pk] ⊂ D for all k. Hence, by convexity of D, it follows that
z + tv ∈ D for all t ≥ 0.

Next, assume that there exists R > 0 such that D \B(0, R) is not connected. We claim

that D \B(0, R) has at most two unbounded components. Indeed, if U is an unbounded

connected component of D \B(0, R) and {pk} ⊂ U converges to ∞ and limk→∞
pk

‖pk‖
= v

then for every z ∈ U such that ‖z‖ > R and for every t ≥ 0 it holds z + tv ∈ U . Hence,

for every unbounded connected component of D \ B(0, R) there exists v ∈ Cn, ‖v‖ = 1,
such that z + tv belongs to such a component for every t ≥ 0 and some z ∈ D. If the
unbounded components were more than two there would exist two components U and U ′

and two directions v and w at ∞ for D which are R-linearly independent and such that
z0 + tv ∈ U for all t ≥ 0 and some z0 ∈ D, and z1 + tw ∈ U ′ for all t ≥ 0 and some
z1 ∈ D. But then, since v and w are R-linearly independent, for a, b sufficiently large the
intersection [z0+av, z1+ bw]∩B(0, R) is empty and connects U with U ′, a contradiction.

Therefore, if D\B(0, R) is not connected, then it has at most two unbounded connected

components. If D \ B(0, R) contains two unbounded connected components, then it is

easy to see that for every R′ > R, also D \ B(0, R′) contains two unbounded connected
components.

Moreover, the previous argument shows that if there are two R-linearly independent
directions at ∞, then for every R > 0, D \ B(0, R) has only one unbounded connected
component.

Therefore, if D \ B(0, R) has two unbounded connected components, then there are
only two directions at ∞ for D, namely, v and −v for some v ∈ Cn, ‖v‖ = 1.

Conversely, assume v,−v are the only directions at ∞ for D. Suppose by contra-
diction that for every R > 0 the open set D \ B(0, R) had only one unbounded con-
nected component. Let z0 ∈ D, and R > ‖z0‖. Then there exists tR ∈ (0,∞) such that

z0 + tv, z0 − tv ∈ D \ B(0, R) for all t ≥ tR. Since D \ B(0, R) has only one unbounded
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connected component, the points z0 + tRv and z0 − tRv can be joined by a continuous
path γR in D \B(0, R). Let H be the real affine hyperplane through z0 orthogonal to v.
Then, by construction, H ∩ γR 6= ∅ for all R ≥ ‖z0‖. Therefore, there exists a sequence
{pk} ⊂ H ∩ D converging to ∞ such that w := limk→∞

pk
‖pk‖

is a direction at ∞ for D

which is R-linearly independent of v, a contradiction. �

The previous lemma allows us to give the following definition:

Definition 2.3. Let D ⊂ Cn be an unbounded convex domain. We say that D has one
connected component at ∞ if for every R > 0 the open set D \B(0, R) has only one un-
bounded connected component. Otherwise we say that D has two connected components
at ∞.

3. Hyperbolic geometry of the unit ball

In this section we briefly recall what we need from hyperbolic geometry of the unit ball
Bn. We refer the reader to [1, 9] for details.

3.1. Kobayashi distance and real Kobayashi geodesics. Given a domain D ⊂ C
n,

for every z, w ∈ D, we denote by KD(z, w) the Kobayashi distance in D between z and
w. If D = D ⊂ C the unit disc, then KD is the Poincaré distance of D. If D1, D2 ⊂ Cn are
two domains and f : D1 → D2 is a biholomorphism, then KD1

(z, w) = KD2
(f(z), f(w))

for all z, w ∈ D1.
Let D ⊂ Cn. A real (Kobayashi) geodesic for D is a piecewise C1 curve γ : (a, b) → D

such that for every t, t′ ∈ (a, b) it holds KD(γ(t), γ(t
′)) = |t − t′|, where −∞ ≤ a < b ≤

+∞.
In the unit ball Bn, given z, w ∈ Bn, there exists a real geodesic γ : [a, b] → Bn such

that γ(a) = z and γ(b) = w. Such a real geodesic is unique up to reparametrization, in

the sense that, if γ̃ : [ã, b̃] → Bn is another real geodesic such that γ̃(ã) = z and γ̃(b̃) = w,
then there exists c ∈ R such that γ̃(t) = γ(±t + c).

The image of the real geodesic joining z, w ∈ Bn can be described as follows. Let
∆ := Bn ∩ (C(z − w) + w). Then ∆ is an affine disc contained in the affine complex line
C(z − w) + w. Therefore, there exists an affine biholomorphic map ϕ : D → ∆. Up to
precomposing ϕ with an automorphism of the unit disc, we can assume that ϕ(0) = z and
ϕ(t) = w for some t > 0. Then, γ([a, b)] = ϕ([0, t]). In particular, it means that γ([a, b])
is either a real segment contained in a real line passing through the center of ∆, or an
arc of a circle in C(z−w) +w orthogonal to ∂∆. In other words, real geodesics in Bn are
exactly the real geodesics for the Poincaré distance in ∆.

In particular, if D ⊂ C
n is a domain biholomorphic to B

n, then for every z, w ∈ D

there exists a unique (up to reparametrization) real (Kobayashi) geodesic joining z and
w. Moreover, if F : Bn → D is a biholomorphism and γ : [a, b] → Bn is a real geodesic in
Bn joining F−1(a) and F−1(b), then F ◦ γ : [a, b] → D is a real geodesic in D joining z
and w.
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By the previous consideration, it follows easily that, given ξ ∈ ∂Bn and x0 ∈ Bn, there
exists a unique real geodesic γξ : [0,+∞) → Bn such that γξ(0) = x0 and limt→∞ γξ(t) = ξ.

Moreover, let x0 ∈ Bn and let {ζk} ⊂ Bn be a sequence converging to some point ζ ∈ ∂Bn.
For each k ∈ N, denote by γk : [0, ak) → Bn the unique real geodesic such that γk(0) = x0
and either γk(ak) = ζk in case ζk ∈ B

n (and in such a case, necessarily 0 < ak < ∞), or
limt→∞ γk(t) = ζk in case ζk ∈ ∂Bn (and in such a case, necessarily ak = ∞). Finally, let
γ : [0,∞) → Bn be the only real geodesic such that γ(0) = x0 and limt→∞ γ(t) = ζ . Then
{γk} converges uniformly on compacta of [0,∞] to γ. In other words, for every ǫ > 0 and
R > 0 there exists k0 ∈ N such that ak ≥ R for every k ≥ k0 and, for every s ∈ [0, R] and
every k ≥ k0, it holds KBn(γ(s), γk(s)) < ǫ.

Finally, if ξ1, ξ2 ∈ ∂Bn, ξ1 6= ξ2, there exists a unique (up to reparametrization) real
geodesic γ : (−∞,+∞) → Bn such that limt→−∞ γ(t) = ξ1 and limt→∞ γ(t) = ξ2. By
the previous considerations, it is easy to see that, if {ξk} ⊂ ∂Bn is a sequence converging
to ξ ∈ ∂Bn and γk : (−∞,+∞) is the unique (up to reparametrization) real geodesic
whose closure contains ξk and ξ, then for every ǫ > 0 there exists k0 ∈ N such that
γk(−∞,+∞) ⊂ B(ξ, ǫ) for all k ≥ k0.

3.2. Horospheres. For ξ ∈ ∂Bn and R > 0, let

EBn

(ξ, R) := {z ∈ B
n :

|1− 〈z, ξ〉|2

1− ‖z‖2
< R}.

The open set EBn

(ξ, R) is called a horosphere of center ξ and radius R > 0, and it is
a complex ellipsoid affinely biholomorphic to B

n. For the aim of this paper, we need to
recall the following properties of horospheres (see, e.g., [1, Section 2] or [5]):

(1) EBn(ξ, R) ∩ ∂Bn = {ξ} for every R > 0,
(2)

⋃

R>0E
Bn

(ξ, R) = Bn,

(3)
⋂

R>0E
Bn(ξ, R) = {ξ},

(4) if 0 < R < R′ then EBn

(ξ, R) ⊂ EBn

(ξ, R′),
(5) if ξ1, ξ2 ∈ ∂Bn and ξ1 6= ξ2, then there exists R > 0 such that EBn

(ξ1, R) ∩
EBn

(ξ2, R) = ∅.

If ξ ∈ ∂Bn and {ζk} ⊂ Bn is any sequence converging to ξ, then for every R > 0 it holds
(see [1, Prop. 2.2.20]):

EBn

(ξ, R) = {z ∈ B
n : lim sup

k→∞
[KBn(z, ζk)−KBn(0, ζk)] <

1

2
logR}.

If F : Bn → D is a biholomorphism, and {zk} ⊂ D is any sequence such that {F−1(zk)}
converges to some ξ ∈ ∂Bn, recalling that F is an isometry with respect to the Kobayashi
distance, the previous equation allows us to define the horosphere in D of radius R > 0,
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base point F (0) relative to the sequence {zk} by setting

ED({zk}, R) := F (EBn

(ξ, R))

= {z ∈ D : lim sup
k→∞

[KD(z, zk)−KD(F (0), zk)] <
1

2
logR}.

Horospheres defined using sequences can be used in general for defining a new topology
(the horosphere topology) and a new boundary for complete hyperbolic manifolds (see [5]).
We content here to state the following result which is needed later on (see [5, Proposition
6.1]):

Lemma 3.1. Let F : Bn → D be a biholomorphism. Suppose D ⊂ Cn is a convex domain.
Let {zk} ⊂ D be a sequence such that {F−1(zk)} converges to some ξ ∈ ∂Bn. Then for
every R > 0 the horosphere ED({zk}, R) is convex.

3.3. Iteration in the unit ball. Let f : Bn → Bn be a holomorphic map. If f has no
fixed points in Bn (namely, f(z) 6= z for every z ∈ Bn), then by the Denjoy-Wolff theorem
for Bn (due to M. Hervé [8], see also [11] and [1, Theorem 2.2.31]), there exists a unique
point τ ∈ ∂Bn, which is called the Denjoy-Wolff point of f , such that for every z ∈ B

n it
holds limk→∞ f ◦k(z) = τ , where f ◦k := f ◦(k−1) ◦ f , f 1 = f . In our argument we need the
following result about Denjoy-Wolff points of commuting mappings (see [3, Theorem 3.3]):

Theorem 3.2. Let f, g : Bn → B
n be holomorphic and assume f ◦ g = g ◦ f . Let τ ∈ ∂Bn

be the Denjoy-Wolff point of f and let σ ∈ ∂Bn be the Denjoy-Wolff point of g. Suppose
τ 6= σ. Let ∆ := Bn ∩ (C(σ− τ)+ τ). Then f(∆) = g(∆) = ∆ and f |∆, g|∆ are hyperbolic
automorphisms of ∆ with fixed points σ and τ .

Note that ∆ in the previous theorem is a disc contained in the affine complex line
C(σ − τ) + τ , hence there exists an affine biholomorphism ϕ : D → ∆, and, saying that
f |∆ is a hyperbolic automorphism of ∆, we mean that ϕ−1 ◦ f ◦ϕ : D → D is a hyperbolic
automorphism of D. Recall also that a hyperbolic automorphism of D is an automorphism
of D (hence a Möbius transform) having exactly two fixed points on ∂D and no fixed points
in D.

Finally, recall that a continuous one-parameter group (ht) of hyperbolic automorphisms
of D is a continuous groups-homomorphism between the additive group of real numbers
R endowed with the Euclidean topology and the group of automorphisms of D endowed
with the topology of uniform convergence on compacta, such that, for every t 6= 0, the
automorphism ht is hyperbolic (see, e.g., [1] or [14]). Then, there exist τ, σ ∈ ∂D, τ 6= σ

such that ht(τ) = τ and ht(σ) = σ for all t ∈ R. Also, τ is the Denjoy-Wolff point of ht
for all t > 0, while σ is the Denjoy-Wolff point of ht for all t < 0 (or vice versa).

Remark 3.3. Let γ : (−∞,+∞) → D be a real (Poincaré) geodesic such that
lims→−∞ γ(s) = τ and lims→∞ γ(s) = σ, and let Γ := γ(−∞,+∞). Since ht is an isometry
for KD and τ, σ are fixed points for ht for all t ∈ R, then ht(Γ) = Γ. Moreover, for t > 0,
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given s ∈ R there exists s′ ∈ (−∞, s) such that ht(γ(s)) = γ(s′) (that is, ht(γ(s)) is closer
to τ than γ(s) along γ), while, for t < 0, given s ∈ R there exists s′ ∈ (s,∞) such that
ht(γ(s)) = γ(s′). Also, for every ζ0, ζ1 ∈ Γ there exists t ∈ R such that ht(ζ0) = ζ1.

4. Extension of convex maps

In this section we prove that every convex map of the unit ball extends continuously
up to the boundary from the closed unit ball to the one-point compactification of Cn. To
this aim, we need some preliminary lemmas.

The following lemma was proved in [5, Lemma 6.16]:

Lemma 4.1. Let F : Bn → D be a biholomorphism. Suppose D is convex. Let p, q ∈
∂D, p 6= q. Then for every sequences {pn}, {qn} ⊂ D such that limn→∞ pn = p and
limn→∞ qn = q it holds

lim
n→∞

KD(pn, qn) = ∞.

If V ⊂ D and ǫ > 0, we let

Nǫ(V ) := {z ∈ D : ∃w ∈ V,KD(z, w) < ǫ}.

Lemma 4.2. Let F : Bn → D be a biholomorphism. Suppose D is convex. Let x ∈ D and
let p ∈ ∂D. Then there exist an open set U containing p and M > 0 such that for every
sequence {pk} ⊂ D ∩ U converging to p, the real (Kobayashi) geodesic γk : [0, Rk] → D

such that γn(0) = x and γk(Rk) = pk satisfies

γk(s) ∈ NM([x, pk]) ∀s ∈ [0, Rk].

Proof. By [5, Lemma 6.17], there exist A > 0 and B > 0 such that for every k ∈ N,
the real segment [pk, x] is a (A,B)-quasi-geodesic in the sense of Gromov (see, e.g., [5,
Section 6.2], [15], [6], [7]). Therefore the statement of the lemma follows immediately
from Gromov’s shadowing lemma (see [6, Théorème 11 p. 86]), since (D,KD) is Gromov
hyperbolic because so is (Bn, KBn) and F is an isometry for the Kobayashi distance. �

Definition 4.3. For a domain D ⊂ Cn we denote by D
∗
its closure in the one point

compactification of Cn.

Clearly, if D is relatively compact in Cn then D
∗
= D, while, if D is unbounded, then

D
∗
= D ∪ {∞}.

Proposition 4.4. Let F : Bn → D be a biholomorphism. Suppose D is convex. Then
there exists a continuous map F̃ : Bn → D

∗
such that F̃ |Bn = F .

Proof. We show, and it is enough, that for every ξ ∈ ∂Bn either the limit limz→ξ F (z)
exists and belongs to ∂D, or limz→ξ ‖F (z)‖ = ∞.

Assume by contradiction that this is not true. Then there exists ξ ∈ ∂Bn and two
sequences {z1k}, {z

2
k} ⊂ Bn converging to ξ such that either limk→∞ F (zjk) = pj ∈ ∂D,
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j = 1, 2, for some p1 6= p2, or limk→∞ F (z1k) = p1 ∈ ∂D and limk→∞ ‖F (z2k)‖ = ∞. In the
second case, since the cluster set of F at ξ is connected, we can find another point p2 ∈ ∂D,
p2 6= p1 and another sequence {wk} ⊂ B

n converging to ξ such that limk→∞ F (wk) = p2.
Therefore, we only need to consider the first case. Let pjk := F (zjk), k ∈ N and j = 1, 2.

Let x0 ∈ D. For every k ∈ N, let γjk : [0, Rj

k] → D be the unique real (Kobayashi)

geodesic such that γjk(0) = x0 and γjk(R
j

k) = p
j

k, k ∈ N and j = 1, 2. For j = 1, 2, let

Vj :=
⋃

k∈N

[x0, p
j

k].

Up to replace {zjk}k∈N with {zjk}k≥k0 for some large k0 ∈ N in such a way that {pjk} is all
contained in a small neighborhood of pj, j = 1, 2, by Lemma 4.2 there exists M > 0 such

that for every k ∈ N, for every s ∈ [0, Rj

k] and j = 1, 2, it holds

(4.1) γ
j

k(s) ∈ NM(Vj).

Since F is an isometry for the Kobayashi distance, it follows that F−1 ◦ γjk : [0, R
j

k] → Bn

is the unique real geodesic joining F−1(x0) and z
j

k, j = 1, 2. Since {zjk} converges to ξ as

k → ∞, j = 1, 2, it follows that F−1 ◦ γjk converges uniformly on compacta of [0,∞) to
the unique real geodesic γ̃ in Bn joining F−1(x0) with ξ. Therefore, if we let γ := F ◦ γ̃,
since F is an isometry for the Kobayashi distance, it follows that for every R > 0 there
exists kR ∈ N such that for every s ∈ [0, R] and for every k ≥ kR it holds for j = 1, 2,

(4.2) KD(γ
j

k(s), γ(s)) < M.

By the triangle inequality, (4.1) and (4.2) imply that

γ(s) ∈ NM(V1) ∩ NM(V2), ∀s ∈ [0,∞).

In particular, this implies that there exist two sequences {qjk} ⊂ Vj , j = 1, 2, such that
for every k ∈ N and j = 1, 2 it holds

(4.3) KD(γ(k), q
j

k) < M.

Since the sequence {γ(k)}k∈N is not relatively compact in D and D is complete hyperbolic,
it follows that {qjk} is not relatively compact in D, j = 1, 2. Using the convexity of D it

is not hard to see that the only possibility is that limk→∞ q
j

k = pj, j = 1, 2. But, by the
triangle inequality, (4.3) implies that

lim
k→∞

KD(q
1
k, q

2
k) < 2M,

contradicting Lemma 4.1. �
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5. Infinite discontinuities

Definition 5.1. Let F : Bn → Cn be holomorphic. We say that ξ ∈ ∂Bn is an infinite
discontinuity of F if limz→ξ ‖F (z)‖ = ∞.

Proposition 5.2. Let F : Bn → D be a biholomorphism. Suppose D is convex and
unbounded. Then F has either one or two infinite discontinuities. More precisely,

(1) if D has one connected component at ∞ then F has one infinite discontinuity,
(2) if D has two connected components at ∞ then F has two infinite discontinuities.

Proof. By Lemma 2.2, there exists v ∈ Cn a direction at ∞ for D. Then for every z ∈ D

and t ≥ 0, it holds z+ tv ∈ D. Therefore, for every t ≥ 0, the map φt : B
n → Bn, given by

φt(ζ) := F−1(F (ζ) + tv),

is well defined and univalent. Moreover, it is easy to see that φ0 = idBn , that φt+s = φt ◦φs

for every t, s ≥ 0 and that [0,∞) ∋ t 7→ φt is continuous with respect to the Euclidean
topology in [0,∞) and the topology of uniform convergence on compacta of Hol(Bn,Bn).
In other words, (φt)t≥0 is a continuous one-parameter semigroup of Bn. Moreover, by
definition, φt has no fixed points in Bn for t > 0. By the continuous version of the Denjoy-
Wolff theorem for continuous one-parameter semigroups of Bn (see [1, 2, 4]), there exists
a unique point ξ ∈ ∂Bn (which is in fact the Denjoy-Wolff point of φt for every t > 0)
such that for every ζ ∈ B

n it holds limt→∞ φt(ζ) = ξ. Unrolling the definition of φt, this
means that for every z ∈ D we have

lim
t→∞

F−1(z + tv) = ξ.

Now, let us assume that there exists another direction at ∞ for D, say w, which is
R-linearly independent of v. Then we can define another continuous one-parameter semi-
group of Bn, call it (ψs)s≥0, by setting

ψs(ζ) := F−1(F (ζ) + sw).

Let ξ′ := lims→∞ F−1(z + sw) for some–and hence, as we just proved, for every–z ∈ D.
We claim that ξ = ξ′.

Suppose by contradiction that ξ 6= ξ′. It is easy to see that for every s, t ≥ 0 the maps
φt and ψs commute, i.e., φt ◦ ψs = ψs ◦ φt. Let ∆ := (C(ξ − ξ′) + ξ) ∩ Bn. Since the
Denjoy-Wolff point of φt is ξ for all t > 0 and the Denjoy-Wolff point of ψs is ξ′ for all
s > 0, and we are supposing ξ 6= ξ′, by Theorem 3.2, it follows that for all s, t ≥ 0,

φt(∆) = ∆, ψs(∆) = ∆

and the restriction of φt and ψs to ∆ are hyperbolic automorphisms of ∆. Let γ :
(−∞,+∞) → ∆ be a parameterization of the real geodesic in ∆ whose closure con-
tains ξ and ξ′. Then, it follows that φt ◦ γ : (−∞,∞) → ∆ and ψs ◦ γ : (−∞,∞) → ∆
are other parameterizations for the same real Kobayashi geodesic whose closure contains
ξ and ξ′, for all s, t ≥ 0. Moreover, since ξ is the Denjoy-Wolff point of φt|∆ and ξ′ is
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the Denjoy-Wolff point of ψs|∆, it follows that (see Remark 3.3), letting ζ0 := γ(0), there
exists s0 ∈ (0,∞) such that ψs0(φ1(ζ0)) = ζ0. Thus,

F (ζ0) = F (ψs0(φ1(ζ0))) = F (ζ0) + s0w + v,

that is, s0w+ v = 0, which is a contradiction since w and v are assumed to be R-linearly
independent.

Summing up we proved that for every two directions v, w at ∞ for D which are R-
linearly independent it holds

(5.1) lim
t→∞

F−1(z0 + tw) = lim
t→∞

F−1(z1 + tv), ∀z0, z1 ∈ D.

Now, let {pk} ⊂ D be a sequence converging to ∞, and assume that limk→∞
pk

‖pk‖
= w,

for some w ∈ Cn direction at ∞ for D. Let z0 ∈ D. We claim that

(5.2) lim
k→∞

F−1(pk) = lim
t→∞

F−1(z0 + tw).

Assume this is not the case and, up to subsequences, limk→∞ F−1(pk) = ξ0 ∈ ∂Bn and
limt→∞ F−1(z0 + tw) = ξ1 ∈ ∂Bn with ξ0 6= ξ1.

Let fix R > 0 and let E := EBn

(ξ0, R) be the horosphere of center ξ0 and radius R
in Bn. Then F (E) = ED({pk}, R) is convex by Lemma 3.1. Also, there exists t0 ≥ 0
such that z0 + tw 6∈ F (E) for all t ≥ t0, because F

−1(z0 + tw) does not converge to ξ0
as t → ∞ and hence it is eventually outside E. Moreover, F (E) is unbounded because
by Proposition 4.4, limz→ξ0 ‖F (z)‖ = limk→∞ ‖F (F−1(pk))‖ = ∞. By Lemma 2.2, there
exists a direction at ∞ for F (E), call it u, that is, z + tu ∈ F (E) for every z ∈ F (E) and
for every t ≥ 0. Since E ∩ ∂Bn = {ξ0}, it follows that limt→∞ F−1(z + tu) = ξ0.

Hence, there are two cases: either u is R-linearly independent of w, or u = −w. In the
first case, we contradict (5.1). Therefore, u = −w. In this case, note that for every R > 0
there exist kR ∈ N and tR ≥ 0 such that pk and z0 + tw are in the same unbounded con-
nected component of D\B(0, R) for every k > kR, and t > tR, call UR such an unbounded

component. Hence,
⋂

R>0 F
−1(UR) is compact and connected in ∂Bn and contains ξ0 and

ξ1. Since ξ0 6= ξ1, this implies that there exists a sequence {qk} ⊂ D converging to ∞
which is eventually contained in UR for all R > 0 such that {F−1(qk)} converges to a point
ξ2 ∈ ∂Bn with ξ2 6= ξ0 and ξ2 6= ξ1. We can then repeat the previous argument considering
ξ2 instead of ξ1 and {qk} instead of {pk}. But this time, the direction u at ∞ for F (E)
can not be w nor −w, since, by construction, both F−1(z0 + tw) and F−1(z0 − tw) are
not eventually contained in E = EBn

(ξ2, R) for t ≥ 0, hence, we are back to the first case
and again we contradict (5.1). Therefore, (5.2) holds.

Suppose now that D has one connected component at ∞. If for every direction v at ∞
for D, the vector −v is not a direction at ∞ for D, then it follows immediately from (5.2)
and (5.1) that F has only one infinite singularity. In case v and −v are directions at ∞
for D, we claim that

lim
t→∞

F−1(z0 + tv) = lim
t→∞

F−1(z0 − tv).
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Indeed, by Lemma 2.2, since D has one connected component at ∞, there exists some
other direction w at ∞ for D such that w 6= ±v. Therefore, w is R-linearly independent
of v (and then of −v). Hence by (5.1)

lim
t→∞

F−1(z0 + tv) = lim
t→∞

F−1(z0 + tw) = lim
t→∞

F−1(z0 − tv).

From this and from (5.2) and (5.1) it follows again that F has a unique infinite disconti-
nuity.

On the other hand, if D has two connected components at ∞, the only directions at ∞
for D are v and −v. We claim that in this case

(5.3) lim
t→∞

F−1(z0 + tv) 6= lim
t→∞

F−1(z0 − tv).

Once we proved the claim (5.3), (5.2) implies at once that F has exactly two infinite
discontinuities.

In order to prove the claim, assume by contradiction that ξ := limt→∞ F−1(z0 + tv) =
limt→∞ F−1(z0− tv). By Lemma 2.2, there exists R0 such that for every R ≥ R0 the open

set D \B(0, R) has two unbounded connected components, say U1, U2. Up to relabelling,
it is clear that z0 + tv is eventually contained in U1 and z0 − tv is eventually contained in

U2, for t large. Let K := F−1(D ∩ B(0, R)). Since limz→ξ ‖F (z)‖ = ∞ by Proposition 4.4,
it follows that ξ 6∈ K, while ζ+t := F−1(z0 + tv) and ζ−t := F−1(z0 − tv) are close to ξ for
t large. Therefore, the real (Kobayashi) geodesic γt joining ζ

+
t and ζ−t satisfies γt ∩K = ∅

for t sufficiently large. But then F (γt) is a continuous path in D \ B(0, R) which joins
z0 + tv and z0 − tv, against the fact that z0 + tv ∈ U1 and z0 − tv ∈ U2. Thus, (5.3)
holds. �

6. Homeomorphic extension of convex maps

In this section we collect the previous results and prove our main theorem, from which
Theorem 1.2 follows at once:

Theorem 6.1. Let F : Bn → D be a biholomorphism. Suppose that D is convex. Then

(1) D is bounded and F extends as a homeomorphism F̃ : Bn → D, or
(2) D is unbounded and has one connected component at ∞, F extends as a home-

omorphism F̃ : Bn → D
∗
. In particular, F has only one infinite discontinuity

ξ ∈ ∂Bn such that limz→ξ ‖F (z)‖ = ∞ and F extends as a homeomorphism

F̃ : Bn \ {ξ} → D. Or,
(3) D is unbounded and has two connected components at ∞, F has two infinite dis-

continuities ξ1, ξ2 ∈ ∂Bn, ξ1 6= ξ2, such that limz→ξ1 ‖F (z)‖ = limz→ξ2 ‖F (z)‖ = ∞

and F extends as a homeomorphism F̃ : Bn \ {ξ1, ξ2} → D.

Proof. By Proposition 4.4, F has a continuous extension F̃ : Bn → D
∗
. If D is unbounded,

by Proposition 5.2, F̃−1(∞) contains either one point (in case D has one connected com-
ponent at ∞) or two points (in case D has two connected components at ∞).
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We show that, for every x1, x2 ∈ ∂Bn, x1 6= x2, such that F̃ (xj) 6= ∞, j = 1, 2, it follows

F̃ (x1) 6= F̃ (x2). The proof of this is similar to that of [5, Corollary 8.3], but we sketch it
here for the reader convenience.

Assume by contradiction that there exist x1, x2 ∈ ∂Bn such that p = F̃ (x1) = F̃ (x2) ∈
∂D. Let R > 0 be such that V := EBn

(x1, R)∩E
Bn

(x2, R) 6= ∅. Then V is an open, convex,
relatively compact subset of Bn. Since Ej := F (EBn

(xj , R)), j = 1, 2, is a horosphere in
D, hence it is convex by Lemma 3.1, it follows that F (V ) is an open, convex, relatively
compact subset of D.

Now, let {ζjk}k∈N ⊂ EBn

(xj , R), be a sequence converging to xj , j = 1, 2. Hence by

hypothesis, p = limk→∞ F (ζjk), j = 1, 2, showing that p ∈ E1 ∩ E2. Therefore, given any
z0 ∈ V , it follows that [z0, p) ⊂ Ej , j = 1, 2. Hence, [z0, p) ⊂ F (V ), which is not relatively
compact in D, a contradiction.

Thus, if either D is relatively compact in Cn, or if D has one connected component at
∞, it follows that F̃ : Bn → D

∗
is a bijective continuous map from a compact space to a

Hausdorff space, hence, a homeomorphism.
In case D has two connected components at ∞, let ξ1, ξ2 ∈ ∂Bn be the two infinite

discontinuities of F . Since every closed subset C ⊂ Bn \ {ξ1, ξ2} is also compact in Bn \
{ξ1, ξ2}, it follows that F̃ (C) is compact in D, and hence closed. Therefore, F̃ : Bn \
{ξ1, ξ2} → D is a closed, bijective, continuous map, thus it is a homeomorphism. �
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